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STM as a single Majorana detector of Kitaev’s chiral spin liquid
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In this letter, we propose a local detection scheme for the Majorana zero mode (MZM) carried
by a vison in Kitaev’s chiral spin liquid (CSL) using scanning tunneling microscopy (STM). The
STM introduces a single Majorana into the system through hole/charge injection and the Majorana
interacts with the MZM to form a stable composite object. We derive the exact analytical expression
of single-hole Green’s function in the Mott insulating limit of Kitaev’s model, and show that the
differential conductance has split peaks, as a consequence of resonant tunneling through the vison-
hole composite. The peak splitting scales with the binding energy of vison-hole composite, which is
comparable to the Majorana gap in CSL, well within the reach of experimental observation.

Introduction: In recent years, a number of candidate
materials have been proposed for quantum spin liquids
(QSL’s), and intensive studies are going on for its real-
ization [1]. An important class of QSL phases is charac-
terized by their topological nature of ground states and
excitations [2, 3]. On one hand, the underlying topologi-
cal structure means the robustness of the phase, as local
perturbations cannot change the global topology imme-
diately. However, on the other hand, due to its inherent
non-locality, the topological structure sometimes disables
direct access by local experimental probes and makes it
a challenging task to identify the QSL phase experimen-
tally.

Among many QSL candidates proposed so far, Ki-
taev’s chiral spin liquid (CSL) state deserves special at-
tention [4]. The appearance of the CSL phase is the-
oretically predicted for Kitaev’s honeycomb model in a
magnetic field. This phase hosts a finite Chern number,
which results in half-integer quantization of thermal Hall
conductivity, as recently claimed in the field-induced non-
magnetic state [5, 6] of α-RuCl3 [7–9]. Moreover, due to
the finite Chern number of the phase, the Z2 vortex ex-
citation called a vison, is turned into a non-Abelian Ising
anyon accompanied with a Majorana zero mode (MZM).

Detection and control of MZM are of considerable in-
terest in terms of both material physics and quantum
information technology [10, 11], and great efforts have
been made for the identification of MZM in quantum
wires [12–15], surface states of 3He and topological insu-
lators [16–19], topological superconductors [20–29], non-
Abelian Fractional Hall states [30–32], and so on. De-
spite these keen interests, its detection involves funda-
mental difficulty; it is difficult to pick up a single MZM,
as no local observables are coupled with a spatially iso-
lated Majorana. However, in this work, we argue that
hole/charge injection sheds a new light on this problem.

The interaction between an injected hole/charge and
vison remains largely unexplored in the CSL. Re-
cently, mobile carrier doping has been attempted for α-
RuCl3 [33–37]. Theoretically, the possibility of binding

a vison to a static hole (vacancy) has been discussed in
the anisotropic A phase and gapless B phase of Kitaev’s
spin liquid and related models [38–43].
In this work, we propose that a hole/charge injec-

tion serves as a sensitive method to detect the pres-
ence of a single MZM accompanying a vison; the injected
hole/charge effectively introduces a single Majorana into
the system, which makes a bonding state with the prece-
dent MZM accompanied with a vison. This bonding state
is much more robust, compared with the vison-vacancy
composites in A and B phases; the binding energy is com-
parable to the scale of the Majorana gap of CSL, i.e., the
composite is well stabilized, as soon as the CSL phase is
realized with a well-defined excitation gap. To address
the experimental consequence of this composite forma-
tion, we derived an exact analytical expression of hole
Green’s function at the Mott insulating limit of Kitaev’s
model and identified a low-energy peak in the local den-
sity of state, which indicates the presence of vison-hole
composite. By importing this local density of states into
the general formula for STM, we found the enhancement
of differential conductance due to the resonant tunneling
through the vison-hole composite, which provides a clear
diagnose of the presence of MZM in the CSL phase.
Model: As a theoretical model of STM, we consider

the setup shown in Fig. 1 (a): we place a target sample
to realize Kitaev CSL on a metallic substrate, and allow
conduction of the electric current from the STM tip to
the substrate through the sample. We model this device
by the Hamiltonian,

H = Hsys +Htip +Hsub +Htip
hyb +Hsub

hyb. (1)

Here, Hsys represents the Kitaev’s system,

Hsys = PHKP + PHhopP . (2)

HK is the Kitaev’s effective Hamiltonian with the pseudo-
magnetic field term to realize the CSL phase,

HK = −JK
∑

〈i,j〉α

Sα
j S

α
k − 2κ

∑

〈j,k,l〉αβ

Sα
j S

β
kS

γ
l , (3)
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FIG. 1. (Color online) (a) Theoretical setup of STM device.
Electric current conducts from an STM tip to a metallic sub-
strate through the Kitaev’s system. (b) Schematic plot of den-
sity of states and electron occupation. The Kitaev’s system
is in equilibrium with the substrate with a common chemical
potential, µ, which is fixed to the top of lower Hubbard band
of Kitaev Mott insulator. Electrons tunnel from the system
to the tip, driven by the voltage bias, V . (c) Lattice con-
vention of Kitaev’s Hamiltonian. Red, green and blue bonds
represent the Ising couplings of x, y and z components. The
dashed lines express the hopping direction of Majoranas, due
to the pseudo-magnetic field terms (∝ κ). To introduce a hole
at site i, we remove all the bonds to the site i, while keeping
the spin itself.

where Sα
j is the spin-1/2 operator in fermionic represen-

tation, Sα
j ≡ 1

2f
†
j,sσ

α
ss′fj,s′ , with f †

j,s, the creation oper-
ator of a fermion at site j and spin s. We focus on the
case of hole injection into the half-filled Mott insulating
state; P is the projection operator to exclude doublons.
Hhop describes the motion of an injected hole.

Htip =
∑

mσ E
t
mα†

mσαmσ and Hsub =
∑

lσ E
s
l β

†
lσβlσ

are the Hamiltonians of the tip and the substrate,
modeled as simple non-interacting metals, characterized
by the density of states, ρt(ε) and ρs(ε), respectively.

Htip
hyb =

∑

mσ v
t
mσ(α

†
mσfiσ+H.c.) describes the tunneling

of electrons between the tip and Kitaev’s system through
the site i in the Kitaev’s system, and Hsub

hyb accounts for
the tunneling process between the substrate and the sys-
tem.

The STM current flowing from the tip to the sample
can be written as [44–47]

Ii = −
2πe

~
|v|2

∫

dωρt(ω + eV )ρi(ω)[f(ω + eV )− f(ω)],

where ρi(ω) is the local density of states of Kitaev’s
system at site i, in contact with the tip. For its deriva-
tion, see Supplemental material [48]. The tunneling am-

plitude is set to be constant: vtmσ = v, for simplicity.
We assume the Kitaev’s system is in equilibrium with
the substrate, and their common chemical potential, µ,
is tuned just above the top of the lower Hubbard band
of Kitaev’s Mott insulating state. Meanwhile, we set a
voltage bias, V , between the tip and the system [Fig. 1
(b)], which drives the electric current between the system
and tip, through the difference of distribution functions,
f(ε) = 1

eβ(ε−µ)+1
.

If a simple constant density of states is assumed for the
tip: ρt(ε) = ρ̄, the electric current can be simplified as

Ii = − 2πe
~
|v|2ρ̄

∫ µ−eV

µ
ρi(ε)dε at zero temperature. Ac-

cordingly, the differential conductance, dI
dV

, gives direct
information on the local density of states, ρi(µ− eV ).
To address ρi(ε) theoretically, we introduce the Hole

Green’s function, giσ(t) ≡ −i〈Ω|f †
iσ(t)fiσ(0)|Ω〉, from

which we can obtain the local density of states as ρi(ε) =
− 1

π

∑

σ Imgiσ(ε). Here, |Ω〉 represents the ground state
of Hsys at half filling of fermion (1 fermion per site),
which is nothing but the ground state of Kitaev’s Hamil-
tonian, HK.
To obtain the Green’s function, giσ(t), we need to di-

agonalize the Hamiltonian, Hsys, Eq. (2). Among the
two terms in Eq. (2), Hhop represents the motion of an
injected hole in the system. Below, we ignore Hhop, by
assuming the influence of hole motion on the spin state
is small, compared with magnetic interaction. Under
this assumption, the injected hole can be regarded as a
site vacancy, and we can describe the intermediate state,
fiσ(0)|Ω〉, as a superposition of the eigenstates of Ki-
taev’s Hamiltonian, HK, in the presence of a vacancy at
site i.
To diagonalizeHK, we adopt Kitaev’s Majorana repre-

sentation of spin-1/2 operator, Sα
j = i

2cjb
α
j , and rewrite

the Hamiltonian, HK, as

HK =
i

4

∑

jj′

cjAjj′cj′ =
∑

m:εm>0

εm
(

γ†
mγm −

1

2

)

, (4)

where we have introduced complex fermion operators,
γm. The presence of site vacancy does not spoil the in-
tegrability: one just needs to modify the Hamiltonian
matrix, A. Here, the first and second terms of HK in
Eq. (3) are transformed into nearest- and next-nearest-
neighbor hoppings of c-Majorana, cj , as schematically
shown in Fig. 1 (c). The b-Majoranas, bαj , combine into
gauge fluxes defined on each hexagon and appears as a
phase in A. The π-vortex of gauge fluxes, called vison,
increases the system energy by affecting the Hamiltonian
matrix of c-Majorana, A [49, 50]. An isolated vison ac-
companies one MZM in the CSL phase (κ 6= 0), in the
same mechanism as chiral p-wave superconductors [20]
and Moore-Read fractional quantum Hall state [30].
As for the dynamical response, one of the authors re-

cently developed a technique to obtain a dynamical cor-
relation function on a real-time basis [42, 51]. We apply
this technique to obtain the Hole Green’s function in the
following form:
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giσ(t) = −
i

2

√

det(1 + e−(β−it)·iAe−it·iAi) + (−1)F
√

det(1− e−(β−it)·iAe−it·iAi)
√

det(1 + e−β·iA) + (−1)F
√

det(1− e−β·iA)
, (5)

where (−1)F is the physical fermion parity [42, 52]. Ai

and A are the Hamiltonian matrices in Eq. (4) with and
without a static hole at site i. Specifically, Ai is ob-
tained by inputting zeros to the i-th row/column of ma-
trix, A; As is the case with the previous studies on site
vacancy [38–43], we model the site vacancy at site i, by
removing all the bonds connected to i. For the derivation
of Eq. (5), see Supplemental Material [53].
Hereafter, we consider the system of N ×N unit cells

in the periodic boundary condition, with N = 48. We
consider two cases: (i) the flux free case; no hexagonal
plaquette supports a vison, and (ii) the isolated vison
case; a vison is introduced at the target site with a pair
placed with maximal separation. We set JK = 1 as a
unit of energy, and β = 50 for the computation of giσ(t)
in Eq. (5).

FIG. 2. (Color online) Local density of state, ρ0(ε) for κ = 0.1
at the neighboring site of a single vison (red), and in the flux
free case (black). The inset shows the target site i = 0 with
a yellow circle, and a vison with red shade.

Results: Figure 2 represents our central result. Here,
we set the tip at site i = 0, and compare the local density
of states, ρ0(ε) for the flux free case and the isolated
vison case, for κ = 0.1. In the latter case, we inject a
hole on a site shared by the vison [Fig. 2 inset]. The
two spectra show a clear difference. While the flux-free
spectrum shows a single broad peak at ε = εff ∼ 0.37,
the spectrum splits into two peaks in the presence of a
vison. This clear difference can be accessed through the
differential conductance, dI

dV
∝ ρ0(µ − eV ), and thus it

provides a clear diagnose of the presence of a vison.
To understand this spectral feature, we start with the

flux free case. The physical origin of the single peak
can be understood as follows. Since we consider the
limit where the charge motion is frozen, the spectrum
is dominated by the magnetic excitation caused by the
hole injection. The localized spin is removed by the hole

injection, and this effectively disconnects three bonds.
Indeed, the resonant energy of flux-free spectrum, εff is
well estimated from the nearest-neighbor spin correla-
tion, 3JK〈s

z
i s

z
i+z〉 ∼ 0.39.

Then, how does the presence of vison split this peak?
To see its origin, we plot ρ0(ε) in the presence of the
vison as changing the pseudo-magnetic field term κ in
Fig. 3 (a). For κ = 0, the spectrum consists of only a
single peak at ε ∼ 0.3, as in the flux free case. However,
for finite κ, it splits into one low-energy main peak and
one high-energy subdominant peak, and the separation
between the peaks becomes larger as increasing κ.
The low-energy main peak barely shifts from the orig-

inal single peak position at κ = 0, even when κ is
increased. As explained above, the main peak can
be explained by the release of the spin correlation en-
ergy. Meanwhile, the subdominant peak quickly shifts to
higher energy, when we increase κ.
This subdominant peak reflects the information of the

MZM carried by the vison. The key to understanding
this is in the fact that the injected hole creates addi-
tional Majorana zero modes in the system, and interacts
with the MZM if a vison is near the tip. To clarify this,
let us compare the energy level structures of the complex
fermions (γm) in the absence and presence of the vison.
In Fig. 3 (b), we show the schematic energy level towers
before and after introducing a hole in the flux free state.

A finite excitation gap ∆ = 3
√
3

4 κ, known as the Majo-
rana gap, opens in the spectrum in the absence of the
hole. When the hole is introduced, two modes (red lines)
appear inside the gap as depicted in Fig. 3 (c) for the
whole range of κ. They are the Majorana zero modes.
Among the two modes, one is physical and the other is
fictitious. The fictitious mode appears because we mod-
eled the site vacancy by removing the bonds but keeping
the site itself, and the fictitious mode sits on the hole
site, where no spin actually exists. In contrast, the other
zero mode is real. It is an unpaired Majorana left in the
bulk: Removal of one Majorana leaves an odd number of
Majorana modes locally around the vacancy site, leading
inevitably to a formation of one zero mode. It means the
injection of a hole practically introduces a single unpaired
Majorana in the bulk.
This unpaired Majorana leads to a nontrivial result

in the presence of visons [Fig. 3 (d)]. To see this, let’s
assume that there were a pair of visons. If two visons
are well separated, there exists a pair of Majorana zero
modes, each attached to the visons, and the lift of their
energies from zero is exponentially small determined by
their separation. Next, let us consider adding a hole near
one of the vison. As we explained above, the hole adds
one unpaired MZM, which then accompanies the MZM
of the vison. The two MZM form a bonding and anti-
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FIG. 3. (Color online) (a) Local density of states at the neigh-
boring site of single vison for κ = 0.0, 0.02, 0.05 and 0.10.
The vertical lines are obtained from Eq. (6) with (solid line)

δε(f) = 0 and (dashed line) 2ε1, respectively. (b) and (d)
show schematic energy levels (left) before, and (right) after
the introduction of a hole, (b) in the flux free, and (d) in the
isolated vison case. (b) Two zero modes appear after the hole
injection; (yellow) one fictitious zero mode on the “vacancy
site” and (green) one unpaired Majorana, respectively. (d)
Before the hole injection, two MZM exist as shown by blue
lines, each attached to separate visons. After the hole injec-
tion, four low-energy modes appear; (yellow) a fictitious zero
mode, (blue) a zero mode attached to a distant vison, and
(red) the anti-bonding/bonding levels between the zero mode
of target vison and the injected unpaired Majorana. (c) and
(e) show numerically obtained energy levels after the hole in-
jection (c) in the flux free, and (e) in the isolated vison case,
corresponding to the right figures of (b) and (d). The high-
energy continuum is shown with blue shade. The low-energy
modes are shown with red lines. (c) Two modes are exactly
degenerate at ε = 0. (e) There exist nearly degenerate two
modes at ε ≃ 0, and the anti-bonding/bonding states at ±ε1.

bonding pair whose energies are denoted as ±ε1 [Fig. 3
(e)]. The formation of this bonding/anti-bonding state
opens a new channel of fermion excitations, which brings
about the high-energy second peak in ρ0(ε).
To verify this scenario, let us look at the one-particle

spectrum of Majorana Hamiltonian, Eq. (4). In this rep-

resentation, the resonant energy can be written as

ωi→f
res = (E

(f)
ZP − E

(i)
ZP) + δε(f), (6)

where the first term is concerned with the change of
vacuum energy, EZP ≡ − 1

2

∑

m:εm>0 εm, obtained from

Eq. (4). The introduction of a hole affects all the energy
levels, resulting in the modification of EZP. The second
term, δε(f), accounts for the changes in occupation num-
bers of fermions at each energy level.
On the basis of Eq. (6), we can attribute the low-energy

main peaks to the vacuum-to-vacuum transition. We ob-

tain ∆E0 ≡ E
(f)
ZP − E

(i)
ZP for each κ, and plot them by

vertical solid lines in Fig. 3 (a), which match the posi-
tion of resonant peaks accurately.
In contrast, the high-energy second peaks involve

fermion excitation. As mentioned above, at finite κ, the
bonding between the injected unpaired MZM and the vi-
son MZM results in discrete levels at ±ε1. Accordingly,
we can again reproduce the position of second peaks in
Fig. 3 (a) with the transition involving the fermionic exci-
tation in the anti-bonding level, the vertical dashed lines,

corresponding to ∆E2 ≡ (E
(f)
ZP − E

(i)
ZP) + 2ε1.

These two successful comparisons mean the separation
between two resonant peaks scales with the bonding en-
ergy, 2ε1. As shown in Fig. 3 (e), ε1 is of the order of
Majorana gap, ∆, proportional to κ. κ is usually consid-
ered small, proportional to the cubic of a magnetic field,
h3[4], however, off-diagonal interactions may enhance its
magnitude [54, 55], and in fact, the estimate of ∆ ∼ 10K
is proposed from the recent field-angle dependent specific
heat [56]. This large bonding energy of the CSL phase
is in sharp contrast to the energy scale of vison-vacancy
composites discussed in A and B phases, where the per-
turbative arguments result in ∼ 10−6Jz for A phase and
0.027JK [38, 39] for B phase, respectively. Compared
with these cases, the stability of the vison-hole compos-
ite in the CSL phase is much more robust, promising
clearer experimental identification of MZM.
What happens if the STM tip is near but away from

the vison ? To clarify this, we inject the hole on sites i
away from the vison and plot the spectra ρi(ε) in Fig. 4.
As we move away from the hexagon supporting the vison,
the two peaks quickly merge and the spectrum converges
to the one in the flux-free case. As a hole goes away from
the vison, the coupling between Majorana zero modes be-
comes weaker, resulting in smaller bonding energy. The
length scale of peak collapse depends on the excitation
gap. This sensitive spatial dependence of ρi(ε), relative
to the location of vison, can be detected by sweeping the
STM tip across the sample and provide useful informa-
tion on the position of visons.
Summary: In summary, we have considered the hole

injection into the Kitaev’s chiral spin liquid phase, in
the experimental setting of STM. We found that an in-
jected hole effectively introduces a single Majorana into
the system, and it forms a stable composite object with a
precedent Majorana zero mode attached to a vison. The
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FIG. 4. (Color online) Spatial dependence of local density
of states, ρi(ε). Site index convention is shown in the inset,
together with the position of vison. Away from the vison,
ρi(ε) approaches the form of flux-free case, represented by a
black line.

bonding energy of two Majoranas is of the order of Ma-
jorana gap of the CSL phase and is much larger than the

binding energy of vison to a vacancy in A and B phases.
The composite results in a double-peak structure of the
local density of states, which can be observed through
the differential conductance. The local density of states,
with its characteristic magnetic field and spatial depen-
dence, gives a good diagnose of the presence of Majorana
zero mode attached to a vison.

The use of STM has been recently proposed for the de-
tection of edge states and fractional excitations [57, 58].
In a broader scope, the local charge response of magnet
may provide an access to “nonlocal” information in terms
of the magnetic degrees of freedom. The recent rapid de-
velopment of local charge sensitive probes may open an
avenue to the measurement of nonlocal topological or-
der, and to the long-awaited experimental identification
of quantum spin liquids and their fascinating elementary
excitations.

We deeply acknowledge Y. Matsuda, M. Knap, K.
Damle, P. Wahl, P. A. McClarty and J. Knolle for helpful
discussions. This work was supported by JSPS KAK-
ENHI (Nos. JP15H05852 and JP16H04026), MEXT,
Japan, and JST CREST Grant No. JPMJCR19T3,
Japan.
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Supplemental Material

I. DERIVATION OF STM CURRENT

We derive the STM current flowing from the tip to the sample, starting from the Hamiltonian of these two parts,

H = Htip +Hsys +Htip
hyb. (S1)

Hsys and Htip
hyb are written as

Hsys = PHKP , (S2)

Htip
hyb =

∑

m,σ

vtmσ(α
†
mσfiσ +H.c.), (S3)

as introduced in the main text. We keep the system in equilibrium with the substrate with a common chemical
potential, µ. Meanwhile we control electrostatic potential of the tip, and set a voltage bias V between the tip and
the system. The voltage bias affects the tip in two ways: it gives (i) a shift of one-particle energy, and (ii) a shift of
chemical potential. Concerning (i), the Hamiltonian of the tip is described by

Htip =
∑

m

(Et
m − eV )α†

mαm, (S4)

where the electron charge is set to be −e. Corresponding to (ii), we assume the chemical potential of the tip is
given as, µtip ≡ µ − eV . Accordingly, the particle distribution is given by the shifted Fermi distribution function,
f(ε+ eV ) = 1

1+eβ(ε−µ+eV ) .

To obtain the current, we start with the equation of motion of electric charge at the target site, i,

Îi ≡ −e
d

dt

∑

σ

f †
iσfiσ = i

e

~

∑

m,σ

vtmσ(α
†
mσfiσ − f †

iσαmσ),

which leads to the current expectation value, Ii, in terms of the non-equilibrium Green’s function [59].

Ii = −
e

~

∑

mσ

vtmσ

∫

dε

2π
Re(gKst,imσ(ε)). (S5)

Here, gKst,imσ(ε) is the Keldysh component of system-tip Green’s function, defined from g>st,imσ(t) =

−i〈fiσ(t)α
†
mσ〉, g

<
st,imσ(t) = i〈α†

mσfiσ(t)〉, and gKst,imσ(t) = g>st,imσ(t) + g<st,imσ(t).

we regard the tunneling Hamiltonian, Htip
hyb, to be small, and treat it with first-order perturbation theory. From

the standard double-path real-time perturbation theory [59], we can attribute gKst,im(t) to the system and tip Green’s
functions as

gKst,imσ(ε) = vtmσ(g
R
s,iσ(ε)g

K
t,mσ(ε) + gKs,iσ(ε)g

A
t,mσ(ε)).

Here, gRs,iσ(ε) and gAt,mσ(ε) are retarded and advanced Green’s function in the system and tip, respectively, and they
are connected with spin- and level-resolved density of states, as

ρiσ(ε) = −
1

π
ImgRs,iσ(ε), ρtmσ(ε+ eV ) =

1

π
ImgAt,mσ(ε).

Meanwhile, in equilibrium, the Keldysh components are related to distribution function,

gKs,iσ(ε) = −2πiρiσ(ε)(1− 2f(ε)) (S6)

gKt,mσ(ε) = −2πiρtmσ(ε+ eV )(1− 2f(ε+ eV )). (S7)

Combining these equations together, and assuming simple tunneling matrix elements, vtmσ ≡ v, we obtain the electric
current,

Ii = −
2πe

~
|v|2

∫

dερt(ε+ eV )ρi(ε)[f(ε)− f(ε+ eV )].
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II. DERIVATION OF HOLE GREEN’S FUNCTION

As introduced in the main text, the hole Green’s function of spin σ = ±1 is written as

giσ(t) = −i
Tr[e−(β−it)HKf †

iσe
−itHKfiσ]

Tr e−βHK
= −i

Tr[e−(β−it) i
4 ckAkk′ck′ fiσe

−it i
4 ckAkk′ck′ f †

iσ]

Tr e−β i
4 ckAkk′ck′

(S8)

Given the fermionic kinetic energy is frozen, the fermion annihilation operator, fiσ, satisfies the following commutation
relation with Hamiltonian:

f †
iσe

−it i
4 ckAkk′ck′ fiσ = e−it i

4 ckA
i
kk′ck′ f †

iσfiσ = e−it i
4 ckA

i
kk′ck′ (

1

2
+ σSz

i ), (S9)

where 1
2+σSz

i is regarded as a projection operator on the state with spin σ at site i. Accordingly, the Green’s function
can be transformed into

giσ(t) = −i

∑

{Wp} Trc[e
−(β−it) i

4 ckAkk′ck′ e−it i
4 ckA

i
kk′ck′ (iσbici +

1
2 )]

∑

{Wp} Trc[e
−β i

4 ckAkk′ck′ ]
. (S10)

Here,
∑

{Wp} stands for the summation over the Z2 flux configurations, {Wp}. Trc is the trace over c-fermions,

implicitly involving the projection onto the physical fermion parity [52]. In Eq. (S10), the term involving bj vanishes,
as it changes the conserved flux sector. Accordingly, following the procedure in Ref. 42, we obtain

giσ(t) = −
i

2

∑

{Wp} Tr[e
−(β−it) i

4 ckAkk′ck′ e−it i
4 ckA

i
kk′ck′ ]

∑

{Wp} Tr[e
β i

4 ckAkk′ck′ ]

= −
i

2

∑

{Wp}
√

det(1 + e−(β−it)·iAe−it·iAi) + (−1)F
√

det(1− e−(β−it)·iAe−it·iAi)
∑

{Wp}
√

det(1 + e−β·iA) + (−1)F
√

det(1− e−β·iA)
. (S11)

Here, (−1)F is the physical fermion parity, which depends on the flux configuration. If we consider only a fixed sector
of the flux configuration, we can omit the average over fluxes, and giσ(t) can be simplified as Eq. (5) in the main text.


