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Ghost states for separable, norm-conserving, ob initio psentlopotentials
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Some years ago Kleinman and Bylander [Phys. Rev. Lett. 48, 1425 (1982)] proposed a fully non-

local form of norm-conserving pseudopotentials. Its application reduces —if compared to other
ab initio pseudopotentials —the computational effort to calculate potential matrix elements. How-

ever, if the procedure is not applied cautiously, it can destroy important chemical properties of the

atoms. In this paper we identify the origin of this problem, and we give a theorem which tells if a
"ghost" state occurs below the zero-node state of the atom. We also show how the difficulties can

be avoided, i.e., how reliable, fully nonlocal, norm-conserving pseudopotentials can be obtained.

Some years ago Kleinman and Bylander' (KB) pro-
posed a fully nonlocal form of norm-conserving pseudo-
potentials. Its application reduces —if compared to other
ab initio pseudopotentials —the computational efFort to
calculate potential matrix elements. Although the sug-
gestion is intriguing, it has not been applied widely. The
reason is that the calculated chemical binding of mole-
cules and solids [e.g., GaAs (Ref. 2)] is sometimes de-
scribed incorrectly. These problems arise, although for
atomic calculations the wave functions and the logarith-
mic derivatives Di(E) and dDt(E)ldE at the reference
energies E& and for r )r, equal those of the all-electron
calculations. Here r, defines the range of "pseudoiza-
tion" of the ionic potential, and it roughly equals the
range of the core electrons.

In this paper we analyze the properties of the KB
Hamiltonian and explain why it may cause unphysical re-
sults. In short, the problem is due to the fact that the KB
Hamiltonian does not obey the Wronskian theorem,
which implies that atomic eigenfunctions are energetical-

ly ordered such that (for a given quantum number l) the
energies increase with the number of nodes. As this
theorem is not valid for the KB Hamiltonian, it can have
eigenstates with nodes even below the zero-node state.
Or, the zero-node states may be followed directly by an
n 2 node state. Both possibilities will usually prevent
an application of these potentials for a reliable descrip-
tion of chemical binding. Below we show how this prob-
lem can be avoided, so that no diSculties arise in actual
calculations.

We take selenium as an example. In Fig. 1 the highest
occupied eigenstates (4s and 4p) of the all-electron calcu-
lation, the corresponding states of the norm-conserving
pseudopotential of Bachelet, Hamann, and Schluter
(BHS), and the corresponding results of the BHS-based
KB potential are displayed. The two pseudopotential cal-
culations give exactly identical wave functions, which for
r & r, also equal those of the all-electron calculation. Fig-
ure 2 shows the logarithmic derivatives of the s, p, and d
states of the three calculations. In the d results of the
all-electron calculation we also see the Se 3d level at
—2.01 hartrees, which in the pseudopotential calcula-
tions is treated as a core state. We see that at the refer-
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FIG. 1. The 4s (solid curve) and 4p (dashed curve) wave func-

tions of a Se atom. Bottom: from an all-electron calculation.
Middle: from the pseudopotential of Bachelet, Hamann, and
Schluter (Ref. 4). Top: the BHS-based Kleinman-Bylander po-
tential gives the same states as those of the middle row.

ence energies Ei the logarithmic derivatives Dt(E) of the

three difFerent calculations are the same, and also the en-

ergy derivatives dDt(E) IdE at E& are identical. This is a
result of the norm-conserving condition. Therefore the
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scattering of these three potentials is well described in the
energy range around E, . However, for p states the KB
potential deviates significantly if we move away from
E =—0.24 hartrees and at —2.94 hartrees we find aP
"ghost" state (see Fig. 3), i.e., a one-node state below the
zero-node reference state. As a consequence, there are
also di8'erences in the scattering properties at higher en-
ergies.

In order to analyze this problem we note that the
"standard" (Hamann-Schliiter-Chiang or Kerker } pseu-
dopotential (ps) of the ion is usually written as an opera-
tor,
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Here t1, m) are normalized spherical harmonics and
b V&(r) is a localized function, which is zero for r & r, It. is often convenient to choose the splitting between V"'"

and b, VI such that EVI(r) vanishes for 1=2. For sp-
bonded systems the higher-1 components of hV& can be
neglected. This approximation is acceptable, because all
EVI(r) are localized and for higher-1 values the centrifu-
gal potential, 1(1+l)lr, dominates at small values of r
A systematic list of V""'(r)+b VI(r) for many atoms of
the Periodic Table has been compiled by BHS.

Kleinman and Bylander' pointed out that a significant
reduction of the numerical eff'ort of electronic-structure
calculations can be achieved if the nonlocality of the po-
tential is not restricted to the angular parts as in Eq. (I),
but if also the radial potential is replaced by a projection
operator:

b V, (r) E, tg() (g(l, (2)

FIG. 3. Radial wave function of the p-like "ghost" state of
the BHS-based KB potential.

4J 0
Cl

-10

~ '~ egg++aa~0

I I %la

Lj

t

with

a V, (r)R,"(r)
((R,"twvi2tR, "))'" ',(r)=

10

4J 0
Cl

t I

2

Energy (hartrees)

FIG. 2. Logarithmic derivative at r =2.33 a.u. for the s (top),
p (middle), and d (bottom) states of a Se atom. Solid curve: re-
sults of the all-electron calculation. Dashed curve: results us-
ing the potentials of Bachelet, Hamann, and Schluter (Ref. 4).
Dot-dashed curve: results using the BHS-based Kleinman-
Bylander potential. At the reference energies E,= —0.64 har-
trees, E~ = —0.24 hartrees, and Ed = —0.43 hartrees the
different potentials give the same results. Note that there is an
additional p state in the KB potential at E~h, = —2.94 hartrees
(also see Fig. 3).

which are normalized and well-localized functions (zero
for r &r, }. The energies EI a, which determine the
strength of the nonlocality, are given by

(R,"tSV, tR,") (4)

It is obvious that the eigenenergies EI and the radial
wave functions RI '(r) are unchanged by this procedure of
Eq. (2): It can be seen immediately that
E& tel ) (g&tR, '(r) is identical to b, V&(r)RI (r).

The possibility that such a fully nonlocal pseudopoten-
tial may give rise to a "ghost" prevents a simple applica-
tion of the BHS potentials. It is important to ensure in
the construction of the potentials that no ghost state
occurs in the chemically important energy range around
EI. How can one decide if there is a ghost? A careful
look at the logarithmic derivatives (compare Fig. 2) may
help, but it can be also misleading: A deep-lying ghost
state could give rise to a very sharp structure in D&(E),
which then is likely to be missed. Therefore, the follow-
ing theorem which tells if there is a ghost state below the
reference energy level EI is helpful.

It is useful to introduce the "local Hamiltonian, "
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such usually not acceptable inaccuracy, we also noted
that self-consistent calculations can become instable. A
slight modification of the pseudopotential, which is usual-

ly possible without destroying its scattering properties,
will significantly change EI . For the Se example this is
shown in Fig. 4, where the pseudopotential is modified by
changing the ccr parameter of the d potential. The ccI
parameter is defined by

rmax
rc

ccr

where r,„ is the position of the maximum of the radial
wave function of the all-electron calculation. We solve
the Dirac equation and therefore we obtain different wave
functions for s, p spin up, p spin down, d spin up, and d
spin down. Therefore our r, values are different for
different I and different spina. For the s and p--potentials
we use cc, =1.6 and cc~ =1.7. And ccd is used as the pa-
rameter. The I-dependent pseudopotential is then ob-

tained from the average of its spin-up and spin-down
components. E& is calculated from Eq. (4), using the d
pseudopotential as V' "'. As Fig. 4 shows, the KB ener-

gy has a pole at ccd =1.925. Therefore this ccd value and
values close to it should be avoided. For ccd =2. 1 we ob-
tain a pseudopotential which is very similar to that of
BHS, but which does not cause problems in the con-
struction of a fully nonlocal pseudopotential. In Fig. 5
we show the BHS (Ref. 4} and our pseudopotential. Fig-
ure 6 displays the logarithmic derivatives, which are now
well acceptable for molecular and crystal calculations.
At present we perform such analyses for many elements
of the Periodic Table. A list of these fully nonlocal,
norm-conserving pseudopotentials will be published else-
where.
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