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Abstract

In recent years, the nonlinear 3D magnetohydrodynamic codes JOREK, M3D-
C1 and NIMROD developed the capability of modeling realistic 3D vertical
displacement events (VDEs) including resistive walls. In this paper, a compre-
hensive 3D VDE benchmark is presented between these state-of-the-art codes.
The simulated case is based on an experimental NSTX plasma but with a sim-
plified rectangular wall. There are differences between the physics models and
numerical methods, and the VDE evolution leads to sensitivities on the initial
conditions that cannot be avoided as can be done in ELM and sawtooth simu-
lations (due to the non-cyclical nature of VDEs). Nonetheless, the comparison
serves to quantify the level of agreement in the relevant quantities used to char-
acterize disruptions such as the 3D wall forces and energy decay. The results
bring confidence regarding the use of the mentioned codes for disruption studies,
and they distinguish aspects that are specific to the models used (e.g. reduced
versus full MHD models). The simulations show important 3D features for a
NSTX plasma such as the self-consistent evolution of the halo current and the
origin of the wall forces. In contrast to other reduced MHD models based on an
ordering in the aspect ratio, the ansatz based JOREK reduced MHD model al-
lows capturing many aspects of the 3D dynamics even in the spherical tokamak
limit considered here.
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1 Introduction

Vertical displacement events (VDEs) are axisymmetric instabilities that arise for
elongated plasmas when the control of the vertical position is lost. In future large
fusion devices such as ITER, major disruptions will unavoidably lead to the loss
of plasma control [1] and a resulting VDE. Such events drive the plasma column
into the wall, causing large thermal and electromagnetic loads to the plasma
facing components and to the vacuum vessel [2]. During VDEs, additional
3D MHD instabilities can arise resulting in the localization of the loads and
in net sideway forces. Moreover, it has been observed that these forces can
rotate toroidally, leading to large forces on the vacuum vessel and its supporting
structures when the rotation frequency resonates with the natural frequencies
of the vessel [3, 4].

In this respect, the development of validated 3D MHD codes including the
effect of resistive walls is crucial to the study of these loads for future machines.
Although axisymmetric codes such as DINA [5], TSC [6] or CarMa0NL [7] al-
low studying many crucial aspects of disruptions, they cannot take into account
these 3D effects. Moreover, for VDEs in which the vertical motion precedes the
thermal energy loss (known as hot VDEs), the edge safety factor (qa) is strongly
reduced due to the slow decay of the plasma current during the vertical motion
[8]. In such cases, axisymmetric codes may impose qa ≥ 1 by modifying the
current profile, otherwise qa drops below unity when the minor radius approx-
imately drops by a factor of 2 (qa ∼ a2/Ip). When qa falls below 2 or so,
the configuration will no longer remain axisymmetric [2, 9]. Non-axisymmetric
modes will grow, producing horizontal forces and stochastic field lines. The
minimum qa and the level of current density are strongly influenced by MHD
activity and parallel dynamics in the stochastic field line region. The dynam-
ics affect the current density directly and by modifying the electrical resistivity
through the fast temperature reduction.

In recent years, simulations of 3D VDEs have been performed by Strauss
[10] with the M3D code [11], Sovinec and Bunkers [12] with NIMROD [13],
Pfefferlé, et al [14] with M3D-C1 [15] and Artola [16] with JOREK [17, 18].
However, no benchmark for 3D VDEs has been performed among these codes.
Except for highly idealized cases, there are no analytical solutions for events that
involve chaotic magnetic field lines and large vertical displacements. The work
presented in this article is therefore an essential contribution to the verification
and validation of these numerical codes.

In this work, we present such a benchmark for the codes JOREK, M3D-C1

and NIMROD. These three codes are among the limited number of codes capable
of simulating 3D MHD instabilities in tokamak geometry including resistive
walls. The benchmark is addressing the full 3D dynamics and is partly based
on the axisymmetric benchmark that was already performed between these three
codes [19]. The goal of this work is to demonstrate the consistency among these
codes and to provide the fusion community with a useful benchmark for MHD
simulations of disruptions.
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This paper is organised as follows. In section 2 we revisit the models and
the numerics used by the different codes. The setup and the parameters of the
benchmark case are described in section 3. The comparison of the obtained
results and the analysis of the 3D VDE simulations are presented in section 4.
Finally, we summarize our conclusions in section 5.

2 Models and codes description

The single fluid MHD model used by the three codes for this benchmark is given
by the equations

E = −v ×B + ηJ, (1)

µ0J = ∇×B, (2)

∂B

∂t
= −∇×E, (3)

ρ
∂v

∂t
= −ρv · ∇v −∇p+ J×B +∇ · τττ , (4)

∂ρ

∂t
= −∇ · (ρv) +∇ · (DDD∇ρ), (5)

∂p

∂t
= −v · ∇p− γp∇ · v + (γ − 1)∇ · (κκκ∇T ) + (γ − 1)τττ : ∇v (6)

where E is the electric field, v is the mean flow velocity, B is the magnetic field,
J is the current density vector, ρ is the ion density, p is the total pressure and
T ≡ Te + Ti is the total temperature. The other parameters are the plasma
resistivity (η), the stress tensor (τττ), the particle diffusion tensor (DDD), the heat
conductivity tensor (κκκ), the vacuum permeability (µ0) and the ratio of specific
heats (γ). The particle diffusion and heat conduction tensors are decomposed
into parallel and perpendicular directions relative to the magnetic field (b =
B/|B|)

DDD = D‖b⊗ b +D⊥(I− b⊗ b) (7)

κκκ = κ‖b⊗ b + κ⊥(I− b⊗ b) (8)

where I is the identity tensor. For the simulations presented in this paper,
the Ohmic heating source, radiation losses and external particle, momentum
and energy sources are not included to keep the setup simple. Except for the
plasma resistivity, for which a Spitzer-like temperature dependence is used (η ∝
T
−3/2
e ), the other coefficients (κ‖, κ⊥, D‖, D⊥) do not depend on any variable

and are spatially constant. The exact values for these coefficients used in our
computations can be found in Table 2. The form of the stress tensor for each
code is given in the code-specific subsections below.

The MHD equations (1)-(6) are solved in a volume delimited by a resistive
wall (see the blue line in Figure 1 (c)). Inside the resistive wall, Ohm’s law is
simply

E = ηwJw (9)
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where ηw is the wall resistivity, which for this benchmark is spatially constant,
and Jw denotes the wall current density.

Boundary conditions Dirichlet boundary conditions are applied for the fluid
variables at the plasma-wall interface. The temperature and density B.C.s are
simply ρ = ρ(t = 0) and T = T (t = 0). These conditions do not capture
the density and temperature variations along the plasma-wall interface that
may take place in experiments. The extension of boundary conditions to more
comprehensive modeling is the subject of ongoing work [20, 21]. Although the
three codes set a no-normal flow boundary condition at the plasma-wall interface
(v · n = 0 where n is the normal vector to the boundary), NIMROD and M3D-
C1 set all the velocity components to zero (v = 0) whereas in JOREK, only the
components normal to the wall and parallel to the magnetic field are set to zero
(v ·n = v‖ = 0). For all three codes, the modeling is analogous to the cold-wall
fixed thermal-conduction computations of Section III.C in Ref. [20]. There, it
is shown that rapid open-field heat transfer to cold walls keeps the halo region
relatively thin, and the evolution is insensitive to boundary conditions on v.
With the combination of v · n = 0, D 6= 0, and the fixed-ρ boundary condition,
loss of mass occurs through particle diffusion at the plasma-wall interface and is
decoupled from the magnetic field due to the temperature-dependent resistivity.
The treatment of boundary conditions for the magnetic field is code dependent
and is explained below.

Feature/Code JOREK M3D-C1 NIMROD

Toroidal discretization Fourier harmonics Cubic Hermite elements Fourier harmonics

R-Z plane elements
Quadrilateral isoparametric

bicubic Bezier
Triangular reduced-quintic

Quadrilateral
bicubic

Continuity G1∗ C1 C0

Wall model
Axisymmetric

thin wall
Axisymmetric
thick wall

Axisymmetric
thin wall

Vacuum region
Un-meshed

Green’s function method
Meshed up to
outer boundary

Meshed up to
outer boundary

MHD model Reduced MHD Full MHD Full MHD

Time-advance Implicit (Gears) Split-implicit Implicit leapfrog

Table 1: Summary of the different numerical properties of the code versions
used in the present benchmark. ∗Note that G continuity stands for geometric
continuity instead of parametric continuity (C), which implies that derivatives
in real space are continuous (e.g. ∂ψ/∂R) but that derivatives on the local
element coordinates can be discontinuous across the finite elements.

The primary numerical properties of the codes are summarized in table 1.
The following subsections describe the particularities of the models used in
JOREK, M3D-C1 and NIMROD.
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JOREK

JOREK is a fully implicit non-linear extended MHD code for realistic tokamak
geometries including open field-line regions [17]. Although a full MHD model is
available in JOREK [22, 23], the extension for resistive walls has not yet been
implemented for that physics model. For this benchmark, we use a reduced
MHD model that is based on the following ansatz for the magnetic field and the
mean plasma velocity

B = ∇ψ ×∇φ+ F0∇φ, (10)

v = −R
2

F0
∇Φ×∇φ+ v‖, (11)

where ψ is the poloidal magnetic flux, Φ is the electrostatic potential and F0 =
RBφ is a constant representing the main reduced MHD assumption, which is
that the toroidal field is fixed in time. However, poloidal currents are not fixed
in time and they evolve according to the current conservation and momentum
balance equations; only their contribution to the toroidal field is neglected.
Note that the reduction of the equations is ansatz-based and does not result
from geometrical ordering assumptions. The specific projection of equations
(1)-(6) together with the ansatz is explained in detail in [24]. The form of the
divergence of the stress tensor in the poloidal plane projection is ∇ · τττ |pol =
R2µ∇φ×∇wφ ≈ µ∇2vpol, where µ is the dynamic viscosity, wφ ≡ ∇2

polΦ is the
toroidal vorticity, and the subscript ”pol” denotes the directions lying on the
poloidal plane. For the parallel direction, the divergence of the stress tensor is
chosen as ∇ · τττ |‖ = µ∇2v‖.

The resistive wall and the boundary conditions for the magnetic field are
included by coupling JOREK to the STARWALL code [16, 18, 25]. The cou-
pling is performed by solving the full vacuum domain with a Green’s function
method and therefore the vacuum does not need to be meshed. STARWALL
uses the thin wall assumption and discretises the wall with linear triangular
elements. Although the employed wall formalism is implemented for 3D thin
walls including holes, the used setup is restricted to an axisymmetric wall. The
no-normal flow boundary condition that is common to the three codes implies
that the boundary conditions in JOREK must be v‖ = 0 and Φ = 0. Since
in reduced MHD the poloidal electric field only depends on the electric poten-
tial (Epol = ∇polΦ), the no-normal flow condition (Φ = 0) implies that the
plasma-wall interface acts as a perfect conductor in the poloidal direction along
the boundary (Epol × n = 0). Note that this is not the case in M3D-C1 and
NIMROD, where at the boundary Epol×n = ηJpol×n 6= 0. Finally since the re-
sulting momentum equation contains third-order derivatives on Φ, an additional
boundary condition is applied for the toroidal vorticity (wφ = 0).

JOREK discretizes the poloidal plane with quadrilateral bicubic Bezier el-
ements using an isoparametric mapping [26]. The variation along the toroidal
direction is represented by Fourier harmonics and for the time advance typically
the Crank-Nicolson or the BDF5 Gears scheme is used.
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M3D-C1

M3D-C1 is a versatile MHD code with a number of options. It can be run in the
2D (axisymmetric) mode, a linear-3D mode (for a single toroidal harmonic),
or in a fully 3D nonlinear mode as was used for this paper. The magnetic
vector potential and ion velocity are represented in terms of scalar quantities as
A = ψ∇φ+R2∇φ×∇f−F0 lnR∇Z and v = R2∇U×∇φ+wR2∇φ+R−2∇polχ
. Here (R,φ, Z) are cylindrical coordinates. The function f is constrained to
be regular at the origin so that the constant F0 is proportional to the total
current in the toroidal field magnets. The code can be run in the 2-variable
reduced MHD option where only (ψ,U) are advanced in time, in the 4-variable
reduced MHD option where (ψ, f, U,w) are advanced in time, in the full single
fluid MHD option (used in this paper), or in a 2-fluid MHD option. Implicit
hyper-resistivity terms can be included in the time advance. In this paper
hyper-resistivities with spatially constant values of 2.76× 10−9 Ω m3 and 1.10×
10−9 Ω m3 were used in the equations for ψ and f respectively. The stress tensor
in M3D-C1 is τττ = µ[∇v +∇vT ]. Although M3D-C1 has the option to advance
the pressure, equation (6), in these calculations we advanced the temperature
instead, T , the same as described by equation (13) in the NIMROD section that
follows.

In the resistive wall region, only the magnetic vector potential variables are
advanced in time, with Ohm’s law: E = ηwJ, where the wall resistivity may be a
function of space even if it is set to a constant in this benchmark. In the vacuum
region: ∇×∇×A = 0 is enforced. This region is directly meshed and solved by
using perfect conductor boundary conditions (i.e. B · n = B · n(t = 0))) at the
outermost computational boundary containing the wall and the vacuum regions.
The mesh and outermost boundary is given in the axisymmetric version of this
benchmark (see purple curve of Figure 1 in [19]). The location of the outermost
boundary is such that the VDE growth rates are close to the no-outer-boundary
growth rates [19].

The code uses an unstructured mesh with triangular elements in the (R,Z)
plane, and extruded in a structured manner in the toroidal direction. The
mesh is normally adapted to the geometry and the problem, so that a finer
mesh size is used in locations where large gradients are expected. All scalar
variables are expanded in 3D finite elements that are a tensor product of the
Bell [27] element in the (R,Z) plane and Hermite cubic elements in the toroidal
angle φ. This representation enforces continuity of each scalar and all of its
first-derivatives across element boundaries. In the 3D nonlinear code, a split-
implicit time advance is used where the velocity variables are advanced first,
followed by the magnetic-field variables, the pressure(s) and then density.

NIMROD

The NIMROD code solves fluid-based models for magnetized plasma in non-
reduced form. Unlike JOREK and M3D-C1, it directly evolves the components
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of magnetic field B and flow-velocity v. A modified form of Faraday’s law is
used to advance B

∂B

∂t
= −∇×E + χdivb∇∇ ·B, (12)

where the second term on the right diffusively corrects any numerical diver-
gence error. In addition, the pressure evolution equation (6) is replaced by an
equivalent temperature equation using the ideal gas law p = nkBT and equation
(5).

nkB
∂T

∂t
= −nkBv · ∇T − (γ − 1)p∇ · v + (γ − 1)∇ · (κκκ∇T ) + (γ − 1)τττ : ∇v

(13)

Although many NIMROD computations use fixed thermal diffusivity coefficients
χ ∼ κ/n, the computations reported here and in Ref. [19] use fixed thermal
conductivity coefficients κ‖, κ⊥ for the benchmarks with JOREK and M3D-
C1. NIMROD’s stress tensor is formed with the traceless rate-of-strain tensor,
τττ = µ[∇v +∇vT − (2/3)I∇ · v].

The VDE modeling uses the thin resistive wall approximation that is de-
scribed in Ref. [12] to interface with a meshed external numerical vacuum re-
sponse, where the magnetic representation is the same as in the internal plasma
region. The meshed vacuum-field computation is similar to the approach used
in M3D-C1, and the shape of the outer region is chosen to approximate that
used in the M3D-C1 computations [19]. However, NIMROD’s thin-wall model
interfaces the internal and external regions without resolving the wall’s cross
section. The equations conserve toroidal magnetic flux over the sum of the two
regions, and the normal component of the equilibrium poloidal-B at the outer
surface of external vacuum region is fixed for all time. As noted previously, the
cold-wall fixed thermal-conductivity conditions makes extended-MHD compu-
tations insensitive to boundary conditions on v, and we set all components of
v = 0 at the resistive wall.

The system is advanced in time with an implicit leapfrog method that, in
comparison with fully consistent implicit methods, requires smaller but less
computationally intensive steps to achieve the same level of accuracy [28]. Like
JOREK, NIMROD expands φ-dependent fields in toroidal Fourier harmonics.
For the poloidal plane, the expansion is 2D C0 spectral elements with node
spacing based on Legendre polynomials. The underlying polynomial represen-
tation is chosen at runtime, and except where noted below, all computations
reported here use polynomials of degree 3. The representation does not satisfy
the magnetic divergence constraint, identically, but the diffusive error correc-
tion term in Eq. (12) is effective at maintaining minimal error with NIMROD’s
high-order spatial representation [13]. The NIMROD computations also use the
stabilization method that is described in Ref. [29] so that the numerical rep-
resentation reproduces MHD interchange with growth rates increasing to the
converged value as resolution is increased.
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a)

d)

b)

c)
Separatrix

Wall

Figure 1: Equilibrium used as initial condition for the benchmark. (a) Tem-
perature and density profiles, (b) safety factor profile and poloidally averaged
toroidal current density profile (

∮
ψ=const

Jφdl/
∮
ψ=const

dl) as functions of the

normalized poloidal flux. (c) Wall and initial separatrix geometry. (d) List of
relevant scalars describing the equilibrium.
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3 Benchmark setup

Plasma equilibrium As mentioned in the introduction, the benchmark is a
3D version of the axisymmetric benchmark that was already published for these
three codes [19]. The chosen equilibrium is based on an NSTX experimental
plasma (discharge #139536 at t = 309 ms) that was reconstructed with the
EFIT code [30]. The equilibrium profiles, the separatrix and the wall geometries
and several scalar quantities describing the equilibrium are shown in figure 1.
The temperature profile is calculated from the pressure profile (p) given in the
geqdsk file with the expression Te = Ti = 946 eV (p/paxis)

0.6. Note that this
file is available in the supplementary material of reference [19] as well as the
currents and geometry of the poloidal field coils that are needed to compute the
free-boundary equilibrium. At the plasma-wall interface, the applied Dirichlet
boundary conditions for the temperature and density are Te,edge = 14.6 eV and
ne,edge = 2.20× 1018 m−3.

Vacuum vessel For simplicity, a rectangular vacuum vessel is chosen instead
of the complicated geometry of the NSTX vacuum vessel (see figure 1 (c)). The
rectangular shape is defined by the four vertices (R = 0.24 m, Z = ±1.4 m)
and (R = 1.6 m, Z = ±1.4 m). Note that the wall corners are not exactly
sharp in the simulations because Fourier harmonics are used to represent the
wall contour. The thickness of the resistive wall is ∆w = 0.015 m and the wall
resistivity is ηw = 3× 10−5Ω m. Where a thin-wall approximation is used, the
effective thin wall resistivity ηw/∆w is used.

Simulation phases and parameter choice The simulation is divided into
two phases: an axisymmetric (2D) run and a 3D run. The values for different
parameters common to both phases and specific to each phase are specified in
table 2. In the axisymmetric phase, the X-point drifts downwards until the toka-
mak becomes limited by the lower part of the wall. The end of this phase and the
start of the 3D phase is therefore determined by the change of geometry of the
LCFS (i.e. it becomes defined by a limiter point instead of the lower X-point).
The 2D phase is identical to the initial phase for the non-linear benchmark
presented in [19] but with the wall resistivity, plasma resistivity and particle
diffusion and heat conduction coefficients increased by a factor of 10. Note that
during the full simulation the plasma resistivity is a factor 10 larger than the
Spitzer’s value. Such an increase was required to reduce the computational cost
of the simulations. Although the main goal of this work is not an experimental
comparison, the chosen parameters lead to vertical displacements of 1 m in a
time-scale of 10 ms, which is similar to the VDEs observed in experiments [31]
where such displacements take place within 5-20 ms. In the 2D phase, the heat
conduction and particle diffusion coefficients are such that the thermal energy
does not decay during the vertical motion. Since the parallel density transport
is typically governed by parallel convection, for simplicity the parallel diffusion
coefficient is set to be equal to the perpendicular particle diffusion coefficient. In
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Table 2: Physical parameters used for the benchmark case. Note that except
for the plasma resistivity, all the coefficients have spatially constant values.

During all phases
No loop voltage
No Ohmic heating
No radiation
No heating and particle sources
Ion mass: mi = 2mproton

Ion charge: Z = 1
Ion-electron temperature ratio: Te/Ti = 1
Dynamic viscosity: µ‖ = µ⊥ = 5.16× 10−7 kg (ms)−1

Resistivity: η‖ = η⊥ = 1.75× 10−2Te[eV]−3/2Ωm

During the 2D phase (before the plasma becomes limited)
Heat conduction coefficients: κ⊥ = 10−5κ‖ = 1.54× 1019 (ms)−1

Particle diffusion coefficients: D⊥ = D‖ = 1.54 m2/s

During the 3D phase (after the plasma becomes limited)
Heat conduction coefficients: κ⊥ = 10−5κ‖ = 2.35× 1021 (ms)−1

Particle diffusion coefficients: D⊥ = D‖ = 40 m2/s

the 3D phase, we significantly increase the diffusion/conduction coefficients to
smooth the sharp pressure gradients that arise due to the fast shrinking of the
LCFS. Although for that phase the diffusion/conduction coefficients do affect
the thermal energy decay, it will be shown in the next section that the final col-
lapse of plasma energy is governed by the 3D MHD activity once the magnetic
field topology becomes chaotic.

Numerical resolution

In JOREK, a polar grid is used with increased resolution in the region where the
plasma becomes limited by the wall. The number of Bézier elements used in the
plasma region is 22000, and the number of linear triangular elements to mesh
the thin wall is 48000. For the toroidal direction, 11 Fourier modes were used
with n ∈ [0, 10]. A resolution scan in the number of Fourier modes is shown in
the next section. Time-steps of the order of 5-10 Alfvén times were used during
the 2D phase and time steps of 0.1-0.2 Alfvén times were used for the 3D phase.

The M3D-C1 calculation used the unstructured poloidal plane mesh shown in
[19], which has 17424 vertices on each plane, each with 12 degrees of freedom for
each scalar field in 3D (6 in 2D). The 3D phase used 16 toroidal Hermite cubic
finite elements for each of the triangular vertices. A time step of ∆t = 0.5τA was
used, except for a period of 0.048 ms, starting at time 10.185 ms (1.233 after
the start of the 3D) when it was halved to ∆t = 0.25τA, to avoid numerical
instability. After this time, an “upwind” second-order toroidal diffusion term
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Figure 2: Vertical position of the magnetic axis, plasma current and thermal
energy (for all plasma domain) and toroidal halo current as function of time for
the three codes. NIMROD’s post-processing tools regarding computations that
separate the open and the closed field line regions (e.g. Ihalo,φ) are specially
challenging due to the magnetic field representation and are not yet developed
for VDEs.
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was added to the scalar convection terms for the pressure, density, and magnetic
field, equal to 0.125× δx× vφ, where δx = 0.4 m was the approximate distance
between toroidal planes.

The NIMROD computations have been run with 39000 quadrilateral bicubic
elements for the region inside the resistive wall. The meshing is largely rect-
angular, but a packed layer of smaller elements is used near the resistive wall
and conforms to the curved corners. On average, the bicubic C0 elements have
9 distinct nodes when taking into account the sharing of element-border nodes.
Thus, the inner region has 1 complex degree of freedom per Fourier harmonic for
n, T , and each component of v and B on 351000 nodes. Like the JOREK com-
putation, toroidal variations are represented with Fourier harmonics n ∈ [0, 10].
Regarding the time-advance, although NIMROD’s implicit leapfrog uses im-
plicit advection, the temporal staggering tends to lose accuracy for dynamics
if the timestep does not satisfy the Courant-Friedrichs-Lewy (CFL) condition
for flow-velocity. Thus, the timestep is adjusted, dynamically, to satisfy this
condition. For the most dynamic part of the 3D computations ∆t > 0.015τA,
which is hundreds of times larger than an explicit stability limit. In other parts
of the 3D evolution, timesteps are more than an order of magnitude larger.

4 Results and analysis

In this section, the simulated case is presented, the results are compared be-
tween the three codes, and the physics of the case is analysed. In subsection
4.1, the results for the different phases of the simulation are shown together with
a discussion on MHD stability. In subsection 4.2, a resolution scan is performed
to demonstrate that the case is sufficiently converged in toroidal resolution. In
subsection 4.3, the origin of the wall forces is explored as well as the influ-
ence of the parallel heat conductivity, the viscosity and the initial asymmetric
perturbations on the results.

4.1 Simulation phases and code comparison

4.1.1 Evolution overview

We compare the vertical position of the magnetic axis, the total toroidal current
(including the halo current) and the total thermal energy for the three codes in
figure 2. The total toroidal halo current is also shown for JOREK and M3D-C1.
NIMROD’s post-processing tools to compute the toroidal halo current have not
been developed yet. As expected for the 2D phase (t′ ≡ t − t3D,start < 0), the
level of agreement is similar to the axisymmetric VDE benchmark reported in
[19]. The time axis has been shifted so t′ = 0 when the plasma becomes limited
in the 3 codes. As was shown in [19], such synchronization is necessary because
the different numerical perturbations initiating the VDE can lead to different
time scales even if the growth rates are in good agreement.
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normalized βN in JOREK (black curve) are also shown in the bottom figure.
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In this benchmark case, the complete thermal quench is induced by the
vertical displacement (see next section) and takes place when the plasma volume
has decreased by more than a factor of two (Vp/Vp0 = 0.26 at t′ = 1.16 ms in
JOREK). Due to this sequence of events, the case can be classified as a hot VDE,
which features the largest wall forces observed in experiments. During the 2D
phase, the plasma current and the thermal energy do not decay due to the high
plasma temperature and the small diffusion/conduction coefficients. The chosen
increase of the diffusion/conduction coefficients at the start of the 3D phase leads
to a loss of a large fraction of the thermal energy. Note, however, that once 3D
MHD instabilities set in, the decay rate of the thermal energy is dominated by
the 3D effects and not by the choice of diffusion/conduction coefficients (see βN
time trace in figure 3). Such an increase in the diffusion/conduction coefficients
was necessary to prevent the formation of large edge pressure gradients that
arise when the plasma volume decreases. Simulations without the increase in
the diffusion/conduction coefficients showed that high-n edge localized modes
become unstable due to the large gradients. To account for the high toroidal
mode numbers adequately, the numerical resolution would have to have been
significantly larger and additional terms (e.g. diamagnetic flows terms) would
have to have been included in the equations, greatly increasing the complexity
of the benchmark. As this work is a benchmark exercise which primarily aims
to compare the 3D wall forces (which are observed to be given by low-n mode
numbers), the high-n edge localized modes are avoided with the choice of the
diffusion/conduction coefficients.

4.1.2 MHD stability

Linear stability calculations were performed at different vertical positions during
the 2D phase. All three codes find that the initial equilibrium is unstable to
resistive edge instabilities localized at the q = 3 and q = 4 rational surfaces,
but as the equilibrium profiles evolve due to current diffusion and the vertical
motion, these modes are stabilized. For example, when performing the stability
calculations at Zaxis = −0.15 m, corresponding to t′ = −1.4 ms in figure 3, no
instability was found.

In figure 3, the magnetic energies of the dominant toroidal harmonics is
shown as a function of time. The magnetic energy of a toroidal harmonic n is
defined as Wn

mag ≡ (
∫
|Bn

pol|2dV )/(2µ0), where Bn
pol is the poloidal magnetic

field contribution given by the harmonic n. Figure 3 shows that when q95
has dropped to a value around 2, several toroidal harmonics become unstable.
Before this time, a weakly growing n = 1 mode is observed, which is a mix of
an external m/n = 3/1 kink mode and a resistive 2/1 mode. Once the q = 2
surface moves into the open field line region, low-n external kink modes become
unstable. In figure 4, the mode structures of n = 1, 2, 3 are shown, and it can be
seen that these instabilities are associated with the q = 2 surface since the 2/1,
4/2 and 6/3 structures are dominant. Note that this is consistent with external
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Figure 4: Te mode structure for the toroidal harmonics with the largest ampli-
tude at t− t3D,start = 0.93 ms in JOREK (top row) and at t− t3D,start = 0.95
ms in NIMROD (bottom row).
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Figure 5: Magnetic energies from the modes n ∈ [1, 8] in JOREK, NIMROD
and M3D-C1 over time.

kink modes [32] that become unstable when

0 < nqa < m (14)

where qa denotes the cylindrical edge safety factor; in our case qa ≈ 1.8 <
m/n = 2. Higher-n modes are initially excited by non-linear coupling, and
higher n modes remain sub-dominant over most of the evolution (see figure 5).

All three codes show that the plasma becomes very unstable between 0.85-
1.10 ms after the plasma becomes limited (see figures 3 and 5). Also, there
is agreement on the fact that n = 1 is the dominant mode for all but a short
period of time. At the beginning of the saturation phase, the n = 2 mode is
important and moreover, the n = 3 mode energy can exceed the n = 1 mode
energy during short transient phases. Although the mode behavior is similar,
differences among the codes of about a factor of 2 are found on the energy
saturation level of the dominant n = 1 mode (see also figure 7). The growth
of the n = 1 mode can also be significantly different as can be inferred when
comparing n = 1 time traces of M3D-C1 with the other two codes in figure 3.
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Figure 6: Evolution of the pressure at the plane φ = 0 in JOREK (top), M3D-
C1 (middle) and NIMROD (bottom) in arbitrary units. The pressure plots are
overlaid with corresponding Poincare plots showing the magnetic field topology.
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4.1.3 Thermal quench

The evolution of the thermal pressure during the thermal quench is shown in
figure 6. The pressure evolution indicates that the external kink modes grow
from the plasma edge and start penetrating into the plasma core. The latter
process can be observed in the Poincaré plots also shown in figure 6. The
external modes deform the plasma boundary and create an ergodic layer from
about t′ = 1.00 ms onwards. Since these modes grow towards the plasma core,
several core plasma regions become areas with open field lines. This can be
observed in the zones with low density of points in the Poincaré plots, which
imply that the field lines typically intersect the wall before completing a full
toroidal turn. The regions with open field lines are the ones losing pressure at a
faster rate and therefore they have a lower pressure. This is because the thermal
energy is quickly lost along the magnetic field lines due to the fast parallel heat
conduction. The fast loss of thermal energy is sensitive to the magnetic topology
evolution, and in the simulations, it takes 0.14 ms in JOREK, 0.24 ms in M3D-
C1 and 0.18 ms in NIMROD. Therefore maximum differences of a factor of about
1.7 are found on the obtained duration of the thermal quench. This range of
times is consistent with NSTX disruptions where the loss of core confinement
occurs in a time-scale of ∼ 0.2 ms [33].

4.1.4 Wall forces

In JOREK and NIMROD the total wall force is calculated with the expression
given by [34]

F ≡
∫
wall

J×BdV =
1

µ0

∮
wall+

(
(B · n)B− B2

2
n

)
dS (15)

where n is the normal vector to a closed toroidal surface enclosing the wall.
The force in M3D-C1 is calculated directly with the integral over the vessel
elements (

∫
J×BdV ). In figure 7, the total vertical force, the total horizontal

force and the toroidal phase of the horizontal force in the three codes are shown
as a function of time (including the magnetic energy of the n = 1 mode for
reference). The vertical force (Fz) is already significant before the onset of the
non-axisymmetric instabilities, indicating that it is dominated by 2D effects.
The magnitude and the time evolution of this force are in fair agreement among

the codes. The maximum horizontal force Fh =
√
F 2
x + F 2

y among the codes

varies from 1.3 kN to 3.5 kN and the time of the peak value varies by 0.2 ms.
Although the horizontal force Fh appears together with the rise of the n = 1
magnetic energy, their correlation is not obvious. For example, JOREK shows
a horizontal force a factor approximately 2.7 larger than NIMROD although
the maximum n = 1 magnetic energy is similar. The toroidal phase of the
horizontal force indicates that Fh is not able to complete a full toroidal turn in
any of the codes after the thermal quench, showing that the force is rotating
only very slowly during the phase when asymmetric forces develop.
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Figure 7: Time traces of the n = 1 magnetic energy, the vertical force, the total
horizontal force and the toroidal phase of the total horizontal force.
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Figure 8: Normal current density at the bottom side of the rectangular wall
(Z = −1.4 m) as function of the toroidal angle φ for two times during the
thermal quench in JOREK.
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Figure 9: Total toroidal current (Ip) computed at 10 equidistant poloidal planes
with φ = 2πk/10 and k = 0, 1..9 in JOREK, NIMROD and M3D-C1. Note that
for JOREK the curves are indistinguishable and no toroidal current asymmetry
is found.

4.1.5 3D halo currents

One of the main features that these codes offer is the capability to calculate
self-consistent 3D halo currents. In figure 8, the current density normal to the
wall is shown as a function of the toroidal angle (φ) and the R coordinate on
the bottom side of the rectangular wall (Z = −1.4 m). At time t = 1.04 ms
filamentary structures appear implying that the n > 1 harmonics are important
to determine the 3D halo current. In particular, a strong n = 3 mode structure
is present in the normal current density as this mode has the largest energy at
this time in JOREK (see figure 5). Note that across the limiter point (R ∼ 0.8
m), the current filaments are strong enough to change the sign of the n = 0
current density. Later, when the horizontal force reaches a maximum (t = 1.12
ms), the halo currents show a dominant n = 1 structure. Although NIMROD
and M3D-C1 plots are not displayed, they qualitatively show the same behavior.

4.1.6 Toroidal plasma current asymmetries

Asymmetric VDEs are often characterized by the toroidal asymmetries of the
plasma current (Ip). Experimental evidence shows that when measuring Ip at
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different toroidal locations [35] (e.g. using Rogowski coils at different toroidal
sectors), VDEs can cause asymmetries on the plasma current of the order of
10-20% (∆Ip/Ip). In figure 9, the plasma current is computed at 10 equidistant
poloidal planes (φ = 2πk/10 with k = 0, 1..9) in the three codes. In NIMROD,
the maximum Ip asymmetries are of the order of 1.5-2%, in M3D-C1 they are
on the order of 1-1.4%, and in JOREK they are smaller than 0.01%.

Although it does not seem to affect key quantities such as the wall forces,
the fact that JOREK shows no Ip asymmetries has been investigated as part
of this work. The coupling with the resistive wall code [18] does not include
the effect of halo currents. This implies that there is a jump of the normal
current density across the plasma-wall interface. Although the normal current
density arriving to the interface is finite (J · n|in 6= 0) as shown in figure 8,
the normal current density leaving the interface is zero (J · n|out = 0). Due
to ∇ · J = 0, the fact that J · n|out = 0 automatically implies that ∂φIp = 0.
The jump on the normal current density is compensated by tangential surface
currents flowing on the JOREK’s plasma-wall interface that are hidden in the
formalism. These currents are not force-free, and therefore, they produce an
important contribution to the wall forces (i.e. the halo current contribution).

4.2 Resolution scans

The JOREK simulation was repeated with a larger number of toroidal harmon-
ics, n ∈ [0, 20] instead of n ∈ [0, 10]. The results are shown in figure 10, which
indicate that high-n mode numbers do not significantly change the evolution of
the important figures of merit (such as the plasma current, the thermal energy
and the wall forces). NIMROD simulations with n ∈ [0, 10] and n ∈ [0, 21]
are also shown in the figure. They also indicate convergence with respect to
toroidal representation, but we note that this comparison had been completed
with resistivity depending only on the n = 0 component of T and with parallel
viscosity that is a factor of 100 larger than the scalar viscosity value. While
another NIMROD computation with n ∈ [0, 21] and having all the parameters
of the three-code comparison shows a similar level of convergence for the NIM-
ROD computations well into the thermal-quench phase, it has not been run
sufficiently far to display. We also observe that although the wall force con-
verges with toroidal resolution within each code, the force does not converge
between codes.

A check on poloidal resolution is most easily accomplished with NIMROD,
where the degree of the spectral-element polynomials can be changed while
keeping the same mesh of elements. A lower-resolution computation of the 3D
phase with biquadratic elements (156,000 nodes) and the parameters of section
4.1 produces a peak n = 1 energy that is 37% larger but a peak horizontal force
that is only 2.2% larger than the bicubic results.
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4.3 Additional physics studies

4.3.1 Origin of the wall forces

In this section, we study the origin of the wall forces with JOREK. As it was
indicated in 4.1.6, normal electric currents do not enter the resistive wall (J ·
n|wall = 0) and, instead, flow along the plasma-wall interface in JOREK. In this
sense, the plasma domain’s boundary is not force-free. This feature allows one
to clearly separate between halo and eddy currents. Since only eddy currents
flow on the JOREK-STARWALL wall, the wall force caused by eddy currents
can be computed with

Feddy = F− Fhalo =

∮
wall+

fdS −
∮
wall−

fdS (16)

where f ≡
[
(B · n)B− nB2/2

]
/µ0 is the magnetic stress tensor projected in the

normal direction to the wall. We have used the previous formula to calculate the
different contributions to the total wall force as shown in figure 11. Although
the eddy currents have a significant contribution, the horizontal force (mainly
given by Fy) is governed by halo currents. Moreover, the eddy current force
is in the opposite direction with respect to the halo current force, and thus it
reduces the total horizontal force. In the case of the vertical force, both halo and
eddy currents have a similar contribution before the thermal quench. After the
thermal quench, the plasma resistivity is significantly increased due to the drop
in the plasma temperature. As a consequence, the core plasma current decays
and it induces halo currents in the open field line region, which has appreciable
temperature due to the imposed B.C. Te,edge = 14.6 eV. As the induction of halo
current and its associated wall force increases at a higher rate than the total wall
force (which varies on the resistive wall time), the eddy current contribution to
the total force must decrease as observed in [36]. As a general conclusion for
both forces, the JOREK simulation shows that the maximum forces are due to
halo currents.

4.3.2 Effect of parallel heat conductivity and viscosity

In this subsection a case with increased parallel thermal conductivity and a case
with decreased viscosity are presented. The results shown in figure 12 indicate
that the viscosity plays a minor role for the evolution of Ip and of the thermal
energy. Although not large, reducing the viscosity produces perceptible effects
on the wall force. Increasing the parallel conductivity produces a more dramatic
effect on the results. The dynamics become faster and the loss of thermal energy
takes 0.043 ms instead of 0.14 ms. Although it is expected that the increase of κ‖
leads to a faster thermal quench (the heat is conducted faster along the open field
lines), it is not clear that the thermal quench time has a linear dependence with
the parallel heat conduction coefficient due to the effect of the thermal pressure
on the field line topology. In this case when κ‖ was increased by a factor of 10
the thermal quench time was reduced by a factor of 3. The magnitude of the
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Figure 12: Results from a JOREK computation run with 10 times larger parallel
thermal conductivity (green curves) and from another run with 3 times smaller
viscosity (red curves). The baseline benchmark case (blue curves) is also plotted
for reference. The quantities shown are the total toroidal current (Ip), the total
thermal energy (Wth) and the total horizontal wall force. The cases represented
by the green and red curves were not run for the entire time span to reduce
computational costs.

horizontal force is significantly larger during the thermal quench although the
maximum forces measured are similar (3.5-4.2 kN).

4.3.3 Effect of 3D perturbation amplitude

The three codes use different asymmetric perturbations at the start of the 3D
phase to excite n ≥ 1 activity. JOREK and NIMROD use spatially smooth
perturbations, whereas M3D-C1 uses mesh-scale random noise. Thus, even with
perturbations of roughly the same amplitude, the projections onto any growing
modes differ. Moreover, initial asymmetric perturbations of steady symmetric
fields are typically considered arbitrary in MHD computations, as long as they
are sufficiently small. In this application, however, the VDE continually changes
the symmetric state, hence the response of the asymmetries. To investigate
how the perturbations affect the outcome of our simulations, the NIMROD and
JOREK computations have been repeated with amplitudes of the perturbations
increased, relative to the computations described in the preceding sections.

Figure 13 compares the evolution of the plasma current, thermal energy,
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n = 1 and 2 magnetic energies, and the magnitude of horizontal force from
NIMROD computations with perturbations at the start of the 3D phase that
differ in amplitude by 1000. The small-perturbation case is the one described
throughout section 4.1. The comparisons show both qualitative and quantitative
differences in the results. With the large perturbation, the (2,1) mode reaches
large amplitude before other toroidal harmonics become unstable. Therefore,
the MHD activity is dominated by the (2,1) mode and its helical harmonics,
unlike the small-perturbation case, which shows multi-helicity activity. This is
evident in figure 14, which shows pressure in the φ = 0 plane, at 1.01 ms of the
large-perturbation case and at 1.05 ms of the small-perturbation case. JOREK
results also show the dominance of the (2,1) mode structure instead of the multi-
helicity activity when starting with large n ≥ 1 perturbation amplitudes, as
confirmed by the comparison in figure 14. Apart from the timing of the thermal
quench, the quantitative impacts of starting from the large perturbation in the
NIMROD computations include peak n = 1 magnetic fluctuation energy being
7 times larger, the thermal quench taking 0.12 ms instead of 0.18 ms, and the
peak magnitude of the horizontal force being 80% larger.

We note that both sets of perturbations at the start of the 3D phase are
small enough to avoid immediate nonlinear effects. The early-time growth rates
of γτA ≈ 6× 10−3 for the n = 1 mode differ by ≈ 0.1%. Using this growth rate
with τA = 1.2 µs, we estimate that in the absence of the VDE evolution, even the
large perturbation case would not reach saturation amplitude until at least 2.5
ms after the start of the 3D phase. The increasing growth rates with the VDE
evolution and the large destabilization that occurs when q95 decreases below 2
after 0.85 ms make the timing of the disruption somewhat insensitive to the
initial perturbation. Nonetheless, our results show that the treatment of asym-
metric perturbations can be an important consideration for asymmetric VDE
computations. In physics studies, 3D perturbations would normally be present
in a self-consistent way either arising from pre-existing MHD like neoclassical
tearing modes and/or the injected material from a disruption mitigation system
such that a dependency on arbitrary initial conditions is not present.

5 Conclusions

A benchmark case for a 3-dimensonal vertical displacement event in an NSTX
plasma has been presented. The case has been run with the MHD codes JOREK,
M3D-C1 and NIMROD for a 3-code comparison. The full run is divided into two
phases: an axisymmetric run (2D) and a 3D run. Good agreement was found
during the 2D phase for several figures of merit such as the plasma current, the
thermal energy and the vertical position (as it was already checked in [19]). The
3D phase was initiated when the plasma became limited by the wall instead of
the lower X-point.

In spite of pronounced differences between physics models and numerical
methods, a wide range of 3D features predicted by the three codes are in quali-
tative agreement. For example, the three codes predict that the plasma becomes
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Figure 13: Comparison of plasma current, thermal energy, magnetic perturba-
tion energy, and horizontal force from NIMROD computations with perturba-
tions at the start of the 3D phase differing by 1000 in amplitude. The small-
perturbation case is the one described in preceding sections.
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Figure 14: Comparison of pressures from NIMROD and JOREK computations
with small-amplitude (a,c) and large-amplitude (b,d) n ≥ 1 perturbations, just
prior to initial saturation of the (2,1) mode in each case. The plots display the
φ = 0 plane except for figure (d) where φ = 1.12π was chosen to compare the
3D plasma state in the same phase.
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unstable to low-n external kink modes 0.85 - 1.1 ms after the plasma becomes
limited by the wall. This happens when the q value at the last closed flux sur-
face falls below 2. The growth of these modes lead to the stochastization of the
magnetic field lines causing a loss of thermal energy on a time-scale of 0.14 ms
in JOREK, 0.24 ms in M3D-C1 and 0.18 ms in NIMROD. During the thermal
quench, similar filamentary structures can be observed in the pressure plots for
the three codes (see figure 6). The total vertical force on the wall is in excel-
lent agreement between the codes, and they all find the predicted maximum
3D horizontal force to be an order of magnitude smaller, in the range of 1.3-3.5
kN. Moreover the horizontal force is only slowly rotating (less than one toroidal
turn) after the thermal quench. Additional JOREK studies reveal that when
the forces reach their maximum, they originate from halo currents.

The halo currents show mid-n filamentary patterns with large enough am-
plitude to reverse the sign of the normal current (J · n) given by the n = 0
component (see figure 8). At the moment when the force reaches its maximum,
the n = 1 component becomes dominant. A scan in the number of Fourier
harmonics used indicated that the wall force is sufficiently converged in toroidal
resolution n ∈ [0, 10] to provide an adequate description of the modeled physics
processes. Additional simulations show that the wall forces are weakly depen-
dent on viscosity and that the choice of the parallel heat conductivity strongly
influences the duration of the thermal quench but not the magnitude of the
forces.

The nature of VDEs implies that the entire profile and its stability proper-
ties evolve over the course of the event. We have found that this leads to both
qualitative and quantitative sensitivities to the asymmetric perturbations that
are applied to excite n ≥ 1 activity. In this case, large perturbations at the
start of the 3D phase lead to (2,1)-dominated saturation before other modes are
strongly destabilized, whereas small perturbations leave the (2,1) sufficiently
small that saturation is a multi-helicity process. This type of sensitivity differs
from other nonlinear tokamak stability problems, where the background profile
is held relatively constant. The NIMROD and JOREK results that test sensitiv-
ity to initial perturbation show the same trends, but we infer that such details
at the start of the 3D phase may contribute to the quantitative discrepancies
in the peak fluctuation energy and horizontal force that occur much later in
the VDE evolution. For physics studies outside this benchmark scenario, initial
3D perturbations would be given by pre-existing MHD activity or disruption
mitigation such that the results do not depend on somewhat arbitrary initial
conditions.

Finally, important differences were observed for the toroidal asymmetry of
Ip. The present plasma-wall coupling [24] of the JOREK’s model is not able
to reproduce any Ip asymmetries, which are of the order of a few per cent in
NIMROD and M3D-C1. Nevertheless, the ansatz-based reduced MHD model is
able to capture many of the 3D features correctly, even for the large β spherical
tokamak plasma considered here.

30



The consistent results among the three codes bring confidence for their use in
disruption studies. Moreover, important post-processing diagnostics were devel-
oped and validated during this work. Future efforts will focus on benchmarks of
more complex simulations including Ohmic heating, radiation, realistic Spitzer
resistivity, impurity injection, neutral particles and more advanced boundary
conditions. We note that in order to have predictive capabilities and to vali-
date the model predictions against the experiment, so that they can be applied
with confidence to ITER, these additional effects need to be included (especially
radiation and Ohmic heating). Nonetheless, the present work is an important
step towards realistic simulations.
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for MHD simulations. Journal of computational physics, 227(16):7423–
7445, 2008. doi:10.1016/j.jcp.2008.04.001.

[27] Dietrich Braess. Finite Elements: Theory, fast solvers and applications in
solid mechanics, 2nd edn. Cambrige University Press, 2002.

34

http://dx.doi.org/10.1063/5.0023604
https://arxiv.org/abs/2101.01755
http://dx.doi.org/10.1016/j.jcp.2016.04.007
http://dx.doi.org/10.1063/5.0018208
https://doi.org/10.1063/5.0018208
https://arxiv.org/abs/2011.09120
https://arxiv.org/abs/1508.04911
https://arxiv.org/abs/1508.04911
http://dx.doi.org/10.1016/j.jcp.2008.04.001


[28] C.R. Sovinec, J.R. King, and the NIMROD Team. Analysis of a mixed
semi-implicit/implicit algorithm for low-frequency two-fluid plasma mod-
eling. Journal of Computational Physics, 229(16):5803 – 5819, 2010.
doi:10.1016/j.jcp.2010.04.022.

[29] C.R. Sovinec. Stabilization of numerical interchange in spectral-element
magnetohydrodynamics. Journal of Computational Physics, 319:61 – 78,
2016. ISSN 0021-9991. doi:10.1016/j.jcp.2016.04.063.

[30] LL Lao, H St John, RD Stambaugh, AG Kellman, and W Pfeiffer. Re-
construction of current profile parameters and plasma shapes in tokamaks.
Nuclear fusion, 25(11):1611, 1985. doi:10.1088/0029-5515/25/11/007.

[31] S.P. Gerhardt. Dynamics of the disruption halo current toroidal asymme-
try in NSTX. Nuclear Fusion, 53(2):023005, jan 2013. doi:10.1088/0029-
5515/53/2/023005.

[32] Jeffrey P Freidberg. Ideal MHD. Cambridge University Press, 2014.

[33] S.P. Gerhardt, R.E. Bell, A. Diallo, D. Gates, B.P. LeBlanc, J.E. Menard,
D. Mueller, S.A. Sabbagh, V. Soukhanovskii, K. Tritz, and H. Yuh. Disrup-
tions, disruptivity and safer operating windows in the high-beta spherical
torus NSTX. Nuclear Fusion, 53(4):043020, apr 2013. doi:10.1088/0029-
5515/53/4/043020.

[34] V.D. Pustovitov, G. Rubinacci, and F. Villone. On the computation of the
disruption forces in tokamaks. Nuclear Fusion, 57(12):126038, oct 2017.
doi:10.1088/1741-4326/aa8876.

[35] SN Gerasimov, P Abreu, M Baruzzo, V Drozdov, A Dvornova, J Havlicek,
TC Hender, O Hronova, U Kruezi, X Li, et al. JET and COM-
PASS asymmetrical disruptions. Nuclear Fusion, 55(11):113006, 2015.
doi:10.1088/0029-5515/55/11/113006.

[36] C.F. Clauser, S.C. Jardin, and N.M. Ferraro. Vertical forces during verti-
cal displacement events in an ITER plasma and the role of halo currents.
Nuclear Fusion, 59(12):126037, oct 2019. doi:10.1088/1741-4326/ab440a.

35

http://dx.doi.org/10.1016/j.jcp.2010.04.022
http://dx.doi.org/10.1016/j.jcp.2016.04.063
http://dx.doi.org/10.1088/0029-5515/25/11/007
http://dx.doi.org/10.1088/0029-5515/53/2/023005
http://dx.doi.org/10.1088/0029-5515/53/2/023005
http://dx.doi.org/10.1088/0029-5515/53/4/043020
http://dx.doi.org/10.1088/0029-5515/53/4/043020
http://dx.doi.org/10.1088/1741-4326/aa8876
http://dx.doi.org/10.1088/0029-5515/55/11/113006
http://dx.doi.org/10.1088/1741-4326/ab440a

	Introduction
	Models and codes description
	Benchmark setup
	Results and analysis
	Simulation phases and code comparison
	Evolution overview
	MHD stability
	Thermal quench
	Wall forces
	3D halo currents
	Toroidal plasma current asymmetries

	Resolution scans
	Additional physics studies
	Origin of the wall forces
	Effect of parallel heat conductivity and viscosity
	Effect of 3D perturbation amplitude


	Conclusions

