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Abstract. We consider a finite-size periodically driven quantum system of
coupled kicked rotors which exhibits two distinct regimes in parameter space:
a dynamically-localized one with kinetic-energy saturation in time and a chaotic
one with unbounded energy absorption (dynamical delocalization). We provide
numerical evidence that the kinetic energy grows subdiffusively in time in a
parameter region close to the boundary of the chaotic dynamically-delocalized
regime. We map the different regimes of the model via a spectral analysis of
the Floquet operator and investigate the properties of the Floquet states in the
subdiffusive regime. We observe an anomalous scaling of the average inverse
participation ratio (IPR) analogous to the one observed at the critical point of
the Anderson transition in a disordered system. We interpret the behavior of the
IPR and the behavior of the asymptotic-time energy as a mark of the breaking
of the eigenstate thermalization in the subdiffusive regime. Then we study the
distribution of the kinetic-energy-operator off-diagonal matrix elements. We find
that in presence of energy subdiffusion they are not Gaussian and we propose an
anomalous random matrix model to describe them.

PACS numbers: Valid PACS appear here
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1. Introduction

Chaos and energy absorption are intimately related. Efficient energy absorption occurs
when the driving is resonant with some natural frequencies of the system and chaos
develops around resonances [1, 2]. If the driving amplitude is large enough, all the
phase space is chaotic and the energy diffusively increases up to the so-called infinite-
temperature value. For smaller values of the amplitude, the KAM theorem states that
only a part of the phase space is chaotic [3, 4]. Nevertheless, in the many-body case,
this fact gives rise to a chaotic web uniformly spread in the phase space. Along this
web, diffusion in phase space can occur giving rise to a slow energy increase up to the
T =∞ value, possibly after a prethermal behavior [2, 5, 6, 7, 8].

In the quantum case, the route leading to chaos, energy absorption and
T = ∞ thermalization is different. In this case a central role is played by the
properties of the Floquet states, the eigenstates of the stroboscopic periodically-driven
dynamics [9, 10]. There is thermalization when these states are strongly entangled
and locally equivalent to the thermal T = ∞ density matrix. In this case the local
observables asymptotically relax to the T = ∞ thermal ensemble with fluctuations
vanishing in the thermodynamic limit [11, 12, 13, 14, 15]. This is a form of the so-called
eigenstate thermalization [16, 17, 18], where thermal behavior appears because of the
properties of the eigenstates of the dynamics. There is a chaotic and thermalizing
behavior when the eigenstates of the dynamics behave as the eigenstates of a random
matrix ‡ [19, 20, 21].

Usually, there is correspondence between classical and quantum chaos. If
the classical dynamics is chaotic and thermalizing, the quantum eigenstates obey
eigenstate thermalization and the Hamiltonian (or the Floquet Hamiltonian in the
driven case – see later) behaves as a random matrix in physical bases [22, 21, 23,
24, 25, 26, 27, 19, 28, 29]. Despite these expectations, there are exceptions. The best
known is the quantum kicked rotor [30, 31, 32, 33]. This non-integrable model describes
a free rotor perturbed by a time-periodic kick with strength K. In the classical case,
when K is below some threshold, the system is quasi-integrable according to the KAM
theory; here there is no energy absorption. On the opposite, when K is very large, the
phase space is fully chaotic and the system absorbs energy which increases linearly
and diffusively in time. The quantum behavior is completely different: quantum
interference hinders energy absorption for all values of K and the kinetic energy
linearly increases until a saturation value is reached [34]. This phenomenon is called
dynamical localization and the reason behind it is that the wave function of the rotor
is localized in the angular momentum representation. This form of localization has
been found [32] to be equivalent to the Anderson localization of a particle hopping in
a static, one dimensional disordered lattice [35].

This is a remarkable result and many efforts have been devoted to see if dynamical
localization survives when many interacting rotors are considered. When many
interacting classical rotors are considered, chaos has a stronger effect on energy
absorption. As stated above, even a partly chaotic phase space is enough to have
Arnold diffusion, and this fact translates in a diffusive long-term dynamics, possibly
after a transient [36, 5, 37, 38, 7]. In the quantum case the behavior is different and
dynamical localization can persist for a finite number of rotors [39, 40, 41, 42, 43].

‡ This is rigorously true in the case of a driven system. In the autonomous case, the eigenstates of
the Hamiltonian behave as the eigenstates of a random banded matrix [13], in order to ensure energy
conservation.
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Figure 1. Growth of the kinetic energy per rotor E(n): it is linear in the
classical system (light-colored line) and subdiffusive in the quantum one (dark-
colored line). Other parameters: K/k̄ = 2.0, J/k̄ = 0.3, L = 3, k̄ = 5.0.

Nevertheless, it disappears in the thermodynamic limit, when the number of rotors
tends to infinity [39] (although it can persist in the thermodynamic limit in other
systems [44, 45]).

Even in absence of localization, quantum effects can alter the energy absorption
dynamics. A way in which this can happen is the induction of a sub-diffusive energy
increase, a regime where the kinetic energy does not increase linearly and diffusively
but as a power law with exponent smaller than 1. This regime up to now has only
been found in mean-field studies [39] and one might be tempted to think that it can
appear only in the peculiar conditions where mean field is valid (thermodynamic limit,
infinite-range interactions).

A hint that this might not be true comes from studies of localization in space.
In Anderson models with mean-field interactions a breaking Anderson localization
and consequent subdiffusion in space have been observed [46, 47, 48, 49] even away
from the mean-field limit. Indeed, subdiffusion in space for ergodic disordered models
near the MBL transition has been theoretically predicted in [50] and experimentally
observed in [51].

Motivated by the emergence of subdiffusive behaviors in disordered systems, in the
boundary region between localized and ergodic regimes, we want to study the case of a
periodically-driven system exhibiting two separated regimes, a dynamically-localized
one and an ergodic one. We focus on the case of L = 3 interacting quantum kicked
rotors: indeed, this is the minimal case in which a transition from a dynamically-
localized regime to a delocalized one can be observed [39]. As it appears in other
periodically-driven [52, 53, 54] as well as time-independent, few-body models [55], we
show that in our system subdiffusion occurs not in the space but in the momentum
domain, manifesting itself in the energy absorption process. In particular, we observe
a parameter region where quantum effects determine a dynamics different from the
classical one even in the absence of localization: indeed, a subdiffusive power-law
heating is observed in contrast with the linear, diffusive classical one. We show that
the subdiffusion manifests in a region of the parameters space where the system is
delocalized situated close to the boundary with the localized region, in analogy with
the results relative to systems undergoing the MBL transition.
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An example of this subdiffusion is shown in Fig. 1 where we compare it with the
corresponding classical dynamics. We see that after a transient, the quantum and the
classical evolutions are completely different, the first being subdiffusive and the second
diffusive (as appropriate for an essentially chaotic classical dynamics). Subdiffusion
is a genuinely quantum phenomenon originating from interference, with no classical
counterpart. It is therefore important to connect this subdiffusion to the quantum
properties of the model, especially to its Floquet states which are the eigenstates of
the stroboscopic dynamics.

We find that, in the subdiffusive regime, the kinetic-energy matrix elements in
the Floquet basis show anomalous distributions, different from the pure Gaussians [23,
24, 25, 26, 27, 19, 28, 29] of the fully chaotic and thermalizing case. This behavior has
already been observed in ergodic disordered systems, near the transition to many-body
localization, where two-time correlators show a subdiffusive behavior in space [56, 57].
We can provide an interpretation of the anomalous distribution of the matrix elements.
Indeed we see the same distributions if we consider a random-matrix model with
fluctuations of the matrix elements decaying as a power law with the distance from
the diagonal.

The paper is organized as follows. In Section 2 we describe the model and the
details of the numerical exact-diagonalization analysis we perform on it. In Section 3
we show the power-law behavior in time of the kinetic energy. We map the different
regimes we observe in Fig. 2: We find a dynamically-localized regime and a delocalized
one where numerics suggests unbounded energy absorption. Subdiffusion occurs close
to the boundary of the dynamically-delocalized region in parameter space. We focus
on the subdiffusive regime and show that in this regime the eigenstate thermalization
is broken. We can see this fact by studying the properties of the Floquet states:
They show long tails in the Inverse Participation Ratio (IPR) distributions and
large IPR fluctuations. The breaking of eigenstate thermalization is reflected also
in the asymptotic value of the energy with a truncated Hilbert space. We also
study the off-diagonal matrix elements of the kinetic-energy operator in the Floquet
basis: We find that the distributions of these matrix elements have long tails and
are different from a Gaussian, marking the fact that the dynamics is not perfectly
chaotic (similar distributions appear in cases of anomalous thermalization in many-
body systems [56, 57]). In Section 4 we interpret the distributions of the off-diagonal
matrix elements of the kinetic-energy operator: We show that they can be derived
from a model based on a random matrix with fluctuations of the matrix elements
decaying as a power law with the distance from the diagonal. In Section 5 we draw
our conclusions.

2. The model

The model we consider is described by the following Hamiltonian:

Ĥ(t) = Ĥ0 +

+∞∑
n=−∞

δ(t− nT )V̂ (θ) (1)

Ĥ0 =

L∑
j=1

p̂2
j

2Im. i.
, V̂ (θ) =

L∑
j=1

[
K cos θ̂j + J cos(θ̂j − θ̂j+1)

]
,
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Figure 2. Dynamical regimes of the model. K and J are the kicking
strengths; K is the amplitude of a kick which acts on each rotor separately while
J couples nearest-neighboring rotors. k̄ is the effective Planck constant. All
these definitions are in Eq. (1) and in the discussion below. The dynamically
localized and delocalized regimes coincide with the regions in which the averaged
level spacing ratio 〈r〉 assumes the Poisson value or the Circular Orthogonal
Ensemble one. The numerics suggests a limited growth of the kinetic energy and
an unbounded heating in the dynamically-localized regime and in the delocalized
one respectively. The horizontal lines represent the intervals in K/k̄ where the
subdiffusion of the kinetic energy has been observed for different values of J/k̄.
System size L = 3, effective Planck’s constant k̄ = 5.0.

with a time-independent kinetic term and an angle-dependent periodic perturbation;
in particular, K is the strength of the kick acting on each single rotor and J is the
amplitude of a nearest-neighbor coupling term. With a proper redefinition [21] of
the operators and the constants K and J in the Hamiltonian in Eq. (1) we set the
time period T and the inertia momentum Im. i. to 1. We choose periodic boundary
conditions such that L + 1 ≡ 1; we impose the canonical commutation relations
to the angle and angular momentum operators, namely [p̂j , p̂k] = [θ̂j , θ̂k] = 0 and

[θ̂j , p̂k] = ik̄ δj k, where k̄ = ~T/Im. i.. The Hilbert space in which the system evolves

is H =
⊗L

j=1Hj where Hj is the Hilbert space of a single rotor. The basis vectors
in the angular momentum representation are indicated with |p〉 = |p1, ... pL〉, where
p̂j is the angular momentum of the j-th rotor. The spectrum of the operators p̂j is
unbounded; moreover, due to the 2π-periodicity of the wave function with respect to
each of the θ̂j operators, it is discrete with eigenvalues pj = k̄mj with mj ∈ Z.

In general, the stroboscopic dynamics of periodically-driven quantum systems is
studied by introducing the Floquet operator ÛF , defined as the time propagator over
one period. In our case, we have

ÛF = e−iĤ0/(2k̄)e−i V (θ̂)/k̄e−iĤ0/(2k̄) , (2)

where we set the initial time in the middle of the free evolution in order to make
the time inversion symmetry explicit. We can numerically diagonalize this unitary
operator in the form

ÛF |ψβ〉 = e−iµβ |ψβ〉 , (3)

where the eigenstates |ψβ〉 are the so-called Floquet states and the eigenvalue phases
µβ the corresponding quasienergies [9, 10].
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Our analysis is based on the full exact diagonalization of the Floquet operator,
through which we infer its spectral properties and we compute the exact dynamics of
the system. Since the local Hilbert spaceHj relative to each site has infinite dimension,
a local truncation is necessary in order to write the Floquet operator matrix: we fix a
maximum value for the angular momentum on each site mmax ∈ N and consider only
angular momentum eigenstates with eigenvalue |pj | ≤ mmax so that the dimension of
the whole Hilbert space is ML, with M = 2mmax + 1. We restrict our analysis to the
subspace invariant under the following symmetry transformations: spatial translation
(j′ = j + 1), spatial inversion (j′ = L − j) and global momentum parity (p′j = −pj
∀j), so that the dimension of the Hilbert subspace we deal with is D = ML/(4L).

3. Subdiffusion and breaking of eigenstate thermalization

In this section we study the subdiffusion behavior of the energy (Sec. 3.1) and relate it
with the properties of the Floquet states and of the off-diagonal matrix elements of the
kinetic energy operator in the Floquet basis. We discuss the last point in Sec. 3.2. We
see that the distributions are not Gaussian, exactly as occurs in cases of anomalous
thermalization in many-body systems [56, 57, 58]. In Sec. 3.3 we study the properties of
the Floquet levels and we see that subdiffusion is associated to an average level spacing
ratio very near to the ergodic value. Nevertheless, the Floquet states do not obey the
eigenstate thermalization, as we see in Sec. 3.4 by studying the properties of the IPR
distribution of the Floquet states. Moreover, for the local Hilbert space truncations
M we can reach, the system does not thermalize to T =∞ when there is subdiffusion.
This suggests that in our case subdiffusion appears in association with breaking of
eigenstate thermalization. This is different from the known many-body cases, where
subdiffusion is associated to thermalization in the thermodynamic limit [56, 57, 58].
Honestly, due to numerical limitations, we do not know if a thermalization behavior
is attained in the limit M →∞ and if this would imply a breaking of subdiffusion in
the long time.

3.1. Energy evolution

We start studying the kinetic-energy dynamics, showing examples of power-law
increase in time of this quantity. The stroboscopic dynamics of a given initial state
|ψ0〉 is given by |ψ(n)〉 = (ÛF )n|ψ0〉. The observable on which we focus is the kinetic
energy of the system per rotor defined as E(n) = 〈ψ(n)|Ĥ0|ψ(n)〉/L, that can be
re-written as

E(n) =
∑
β,γ

H 0
β γ e−in(µβ−µγ) ψβψγ , (4)

where H 0
β γ = 〈ψβ |Ĥ0|ψβ〉/L and ψβ = 〈ψβ |ψ(0)〉. We analyze the dynamics of the

system focusing on the kinetic energy operator defined in Eq. (4). We choose as
initial state the momentum eigenstate |0〉 in which all the rotors have zero angular
momentum. Let us consider Fig. 3 in which we plot the growth of the kinetic energy
for a choice of the values of J/k̄ and K/k̄ and different values of M . In this figure
we can distinguish two regimes. The first occurs at intermediate times: the dynamics
of the system is independent on the truncation, while its duration increases with M .
The second occurs at long times dynamics: the energy tends to an asymptotic value
which depends on the truncation M . In the following we separately analyze these two
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Figure 3. The growth of the kinetic energy is plotted for K/k̄ = 2.2 and
J/k̄ = 0.3. The power law appears for all the values of the truncation we consider,
from M = 39 (lighter curve) to M = 51 (darker curve). The time at which the
growth stops depends on the saturation value of the energy, which increases with
M . It is evident that the larger is M , the longer the time window where the power
law persists, the better the fit. Other parameters: L = 3, k̄ = 5.0.

regimes. We postpone the analysis of the asymptotic regime to Sec. 3.5 and here we
focus on the intermediate-time dynamics.

In order to analyze this regime we measure the power-law exponent of the kinetic
energy growth for different values of J/k̄ and K/k̄. We observe a region in the
parameter space in which the heating process in the classical system is very different
from the quantum one, as in the first case heating is linear, while in the second we
find E(n) ∼ nα with α < 1 (see Fig. 1). The power-law heating is not due to the local
truncation, as we checked by computing the dynamics for several values of M , as it
is shown in Fig. 3. Although we cannot exclude a priori that different regimes may
arise at longer times, the available time scales and the truncation values are enough
to claim the existence of a genuine quantum regime, different from the classical one,
as it is evident from Fig. 1. We repeat the same procedure for a grid of values of J/k̄
and K/k̄ and we compute the power law coefficient. In Fig. 4 we plot α as a function
of K/k̄ for different values of J/k̄; the lower boundary in the interval of K/k̄ values
is that of the dynamically-delocalized regime, while the upper one is determined by
numerical limitations. Even though a clear dependence of α from the parameters K
and J is missing we notice that α seems to increase as J is increased.

3.2. Distribution of the off-diagonal matrix elements

Subdiffusion corresponds to the breaking of the perfect chaoticity of the dynamics.
From one side this can be already seen from the fact that a perfectly chaotic classical
dynamics leads to diffusion and not subdiffusion. From the quantum perspective this
can be seen by observing the properties of the Floquet states and noticing that they
have properties different from perfect eigenstate thermalization. In order to do that,
we start considering that the diffusion dynamics is given by the off-diagonal matrix
elements of the energy operator Ĥ0 in the Floquet basis (see Eq. (4)). This suggests to
inquire the behavior of the distribution of the off-diagonal elements H 0

βγ with γ 6= β,
in order to interpret the power-law increase behavior of the energy (a similar analysis
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Figure 4. The power-law exponent α is plotted for J/k̄ = 0.3, 0.5, 0.7 and
some values of K/k̄. It appears that the exponent increases as J/k̄ is increased
while a clear behavior is not clear in the interval of K/k̄ we can consider within
the maximum truncation M we can achieve in our simulations. The error bars
are obtained by measuring the exponents over different time intervals whose
length is one order of magnitude and then evaluating their semi-dispersion. Other
parameters: L = 3, k̄ = 5.0.

was performed to interpret an anomalous thermalization behavior in [56] possibly
associated with subdiffusion behavior in space [57]). If we had a perfect chaotic
behavior, the operators expressed in the basis of the Floquet states should behave as
a perfect random matrix [59], therefore the matrix elements H 0

βγ should be distributed
according to a Gaussian.

We plot the distribution of H 0
βγ/Σ (where Σ is the variance of the distribution of

the H 0
βγ) for many subdiffusive cases in the upper panels of Fig. 5. We find indeed a

significant deviation from a Gaussian behavior, as it should have been expected being
the corresponding behavior of E(n) different from the perfectly chaotic diffusion. (One
of the distributions of Fig. 5–right panel corresponds to the subdiffusion depicted
in Fig. 3.) In order to do a comparison, we plot in the lower panel of Fig. 5 the
distribution for a case which is fully thermalizing without any subdiffusion (at least for
the truncations we have access to). We see that it is an (almost) perfect Gaussian, in
agreement with the expectations from Random Matrix Theory. From this comparison
we see that the behavior of the distribution of the off-diagonal elements and the time
behavior of the energy are intimately connected.

3.3. Level-spacing ratio analysis and dynamical regimes

Here we consider the properties of the Floquet quasienergies. In particular, in order
to understand if the dynamics is chaotic, we study the average level spacing ratio [60].
It is defined as

〈r〉 =
1

D − 2

D−2∑
β=1

min{λβ , λβ+1}
max{λβ , λβ+1}

, (5)

where λβ = µβ+1 − µβ . If the dynamics is chaotic, the Hamiltonian should behave
as a random matrix in the angular momentum basis: The level spacings λβ obey the
Circular Orthogonal Ensemble (COE) distribution and the average level spacing ratio
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Figure 5. Distributions normalized by the variance Σ of the off-diagonal elements
of H 0

βγ . Numerical parameters: (left panel) J/k̄ = 0.7, (right panel) K/k̄ = 2.2,

(lower panel) K/k̄ = 10.0, J/k̄ = 10.0. k̄ = 5.0, L = 3, Mmax = 41.

is 〈r〉 ' 0.5269 (the Floquet operator belongs to the Circular Orthogonal Ensemble of
symmetric unitary matrices [11, 21, 61]).

On the opposite, a regular non-thermalizing behavior generically corresponds to
a Poisson distribution [62] of the λβ ; in this case the average level spacing ratio
is 〈r〉 ' 0.386. These considerations are important for the energy absorption. As
we extensively analyzed in [39], a chaotic behavior corresponds to Floquet states
delocalized in the angular momentum basis and to energy absorption. On the opposite,
a regular behavior corresponds to localized Floquet states and then to dynamical
localization.

In Fig. 6 we plot 〈r〉 as a function of K/k̄ for different values of J/k̄. In Fig. 2
we map the regimes we observe in our model into the parameter space. We recognize
the light-blue region on the right where 〈r〉 acquires the COE value and the energy
increases up to a value scaling with the truncation. This is the chaotic dynamically
delocalized region where the system heats up without a bound. This heating does not
always correspond to full chaoticity and diffusive energy behavior: subdiffusion occurs
in the delocalized regime, close to its boundary. This is strictly reminiscent of the
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Figure 6. The behavior of the average ratio 〈r〉 against K/k̄ for different values
of J/k̄. The errorbars are obtained by averaging over the values obtained with
different values of M . In this plot the maximum value of M which has been used
is Mmax = 39. Other parameters: L = 3, k̄ = 5.0.

subdiffusion in space domain occurring in the delocalized phase near the transition
to MBL [50, 51]. Going on with our description of the diagram of Fig. 2, we find
on the left a red region which we define “dynamically localized” because we have
numerically verified that the energy saturates after a transient to a value independent
of the truncation [see an example in Fig. 9(b)]. This fact marks the presence of
dynamical localization. Here 〈r〉 takes the Poisson value and the dynamics is regular-
like. In between the localized and the delocalized region there is an intermediate
regime where 〈r〉 has a value in between Poisson and COE. Here it is not easy to
characterize the energy dynamics and we postpone the analysis of this regime to a
future publication.

3.4. Inverse participation ratio

In order to explore the eigenstate thermalization breaking related to subdiffusion we
have to consider the localization properties of the Floquet states. This can be realized
by looking at the average Inverse Participation Ratio (IPR) [63, 64] in the angular
momentum basis, defined as

〈IPR〉 =
1

D

∑
β

∑
m

|〈ψβ |m〉|2q , (6)

where q = 2 is an exponent whose meaning will be clarified later. Given a state |ψ〉
which is uniformly delocalized over all the states of the angular momentum basis, one
finds that its IPR satisfies IPRψ ∼ 1/D.

Let us focus on the delocalized region of the parameter space [see Fig. 2]. We
remind that we are in the truncated Hilbert space whose dimension is D = ML/(4L).
If we suppose that there is eigenstate thermalization, then all the Floquet states are
locally equivalent to the T = ∞ density matrix. They behave as random states and
are fully delocalized, we can therefore infer that they should satisfy 〈IPR〉 ∼ 1/D as
well. We find, instead, 〈IPR〉 ∼ 1/Dδ with δ < 1. This fact occurs in a wide range
of parameters inside the delocalized region, as we can see in Fig. 7. In Fig. 7 (a) we
show some example of the scaling of the IPR with M at a fixed value of J/k̄ and some
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values of K/k̄ chosen in the dynamically-delocalized regime, while in panel (b) the
corresponding exponent δ is plotted versus K/k̄ (dark line). From a physical point of
view this fact marks the breaking of eigenstate thermalization near the boundary of
the delocalized region which we have already discussed from a different point of view
in Sec. 3.

Breaking of eigenstate thermalization implies that the Floquet states are not all
equivalent, so we expect large fluctuations from one state to the other. In order to
estimate the fluctuations in the IPR, we consider the scaling of the logarithmic average
of the IPR, defined as

IPR log = exp〈ln IPR〉 , (7)

where 〈(. . .)〉 = 1
D

∑
β(. . .)β . We find a scaling of the form IPR log ∼ 1/Dη; we plot the

scaling exponent η versus K/k̄ in Fig. 7 (b) (lighter curve). We see that the exponents
δ and η are similar and near 1 for high values of K/k̄. Here all the Floquet states are
similar (small fluctuations) and obey eigenstate thermalization (full delocalization).
For smaller K/k̄, on the opposite, the exponents are different and smaller than 1.
Here eigenstate thermalization is broken and large fluctuations in the IPRs of the
Floquet states emerge. We would like to emphasize that the eigenstate thermalization
breaking witnessed by δ , η < 1 in Fig. 7 and the subdiffusion with α < 1 occur in the
same parameter range (see Fig. 4): Further research will be devoted to investigate the
relation between these two results.

In order to better understand the origin of the fluctuations of the Floquet IPRs, we
have focused on their distributions. To this purpose we have considered a fixed value
of J/k̄ and computed the distributions for some values of K/k̄, as shown in Fig. 8(a):
The distributions exhibit a power-law tail for smaller values of K/k̄ which tends to
disappear as K/k̄ is increased. This observation is in agreement with the behavior of
the exponents δ and η discussed above: a long tail means large fluctuations and then
δ 6= η. Moreover, a long tail means coexistence of more localized and more delocalized
states with states not completely localized. A last remark regards the behavior of the
distributions with M , which is shown in Fig. 8(b). In the presence of fluctuations
[δ 6= η – left panel of Fig. 8(b)] a small fraction of localized states persists as M is
increased, as it emerges from the right extreme of the power law-tail. Differently, in
absence of fluctuations and with δ = 1, all the states are delocalized and the whole
distribution shifts to lower values of the IPR as M is increased [Fig. 8(b)].

It is worth noting that similar scaling properties of the IPRs have been found
at the Anderson transition point of a three-dimensional disordered lattice [65, 66, 67]
and across the MBL transition [68]: The eigenstates exhibit an anomalous scaling of
the probability distribution momenta [69] and they are said to have a multifractal
structure. In our analysis, we focused on the averaged second momentum, namely
the 〈IPR〉. By computing the exponent δ for higher momenta (q > 2), a set of
fractal dimensions can be obtained for characterizing a single state. Multifractal states
are also characterized through their probability distribution correlation functions and
their level spacing distributions. The mapping existing between this rotors model
and a disordered L-dimensional lattice [39] suggests the existence of multifractal
properties also in our case. This multifractal analysis, which may help understanding
the intermediate region in Fig. 2, is left for future work.
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(a)

(b)

Figure 7. (a) The behavior of the average IPR vs M is plotted for J/k̄ = 0.3 and
K/k̄ = 2.5, 3.0, 10.0 (from lighter to darker colors). For this values the system
is delocalized and the 〈IPR〉 scales as a power law with the dimension of the
Hilbert space. (b) Exponent δ relative to the scaling of the 〈IPR〉 (darker curve)
and η relative to the scaling of the logarithmic average (lighter curve). Other
parameters: L = 3, k̄ = 5.0.

3.5. Asymptotic behavior of the energy

The asymptotic behavior of the kinetic energy is governed by the diagonal matrix
elements H 0

ββ : At long times, the system reaches the infinite-time averaged kinetic
energy, defined as

En→∞ = lim
T→∞

1

T

T∑
n=0

E(n) =
∑
β

|ψβ |2H 0
ββ . (8)

The value of En→∞ is independent of M in the case of dynamical localization: The
initial state evolves until it reaches an asymptotic state which is localized in the angular
momentum space. On the other side, when the dynamics is ergodic the system is
expected to reach the so called infinite-temperature state, defined as

ρT→∞ =
1

D

∑
β

|ψβ〉〈ψβ | . (9)
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Figure 8. (a) Distributions of the IPR at a fixed value of J/k̄ and different values
of K/k̄. The power law tails disappear as K/k̄ increases and the system becomes
fully ergodic. (b) Distributions of the IPRα at different values of M in a case in
which there are fluctuations (left, K/k̄ = 2.6) and in a case in which there are not
(right, K/k̄ = 4.0). Parameters values: J/k̄ = 0.3, L = 3, k̄ = 5.0.

This state is the equivalent, in the infinite-temperature case, of the equilibrium
thermal state which is reached by time-independent ergodic systems at a given
temperature T . The corresponding expectation value of the energy, obtained by taking
E(T =∞) = Tr[Ĥ0 ρT→∞]/L, is:

E(T =∞) =
k̄2

2LD

∑
m

|m|2 . (10)

In the case of delocalized dynamics the ratio I(M) defined as

I(M) =
En→∞

E(T =∞)
(11)

should be O(1) with respect to the truncation M . Differently, in the dynamically-
localized regime the averaged, infinite-time energy is constant with respect to M , while
E(T = ∞) ∼ M2, so we have I(M) ∼ M−2 §. In Fig. 9 we plot the ratio I(M)
at a fixed value of J/k̄ for some choices of K/k̄ in the dynamically-delocalized regime
(a) and in the localized one (b). In the latter case we find the expected power-law

§ This relation comes by observing that the infinite temperature energy of a single rotor can be

re-written as k̄2

2M

∑mmax
m=−mmax m

2.
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Figure 9. (a) The ratio I(M) is plotted for several values of K/k̄ at J/k̄ = 0.3
and in the case K/k̄ = 10.0 and J/k̄ = 10.0. Note that the ratio is O(1) with
respect to M . (b) I(M) plotted for K/k̄ = 0.4 and J/k̄ = 0.3 in the dynamically-
localized regime. The points follow a power law with slope α = −1.94 ± 0.016
while the dashed curve has the expected slope -2. Other parameters: L = 3,
k̄ = 5.0.

behavior of I(M); in the former case we find that I(M) does not change significantly
with M in the interval we can access with simulations. Notice that in case of ergodicity
one would expect, in particular, I(M) = 1, and this occurs for the thermalizing case
K/k̄ = J/k̄ = 10. In the other subdiffusive cases, we observe that I(M) increases
towards 1 as K/k̄ is increased in the range of accessible values of K/k̄. Nevertheless,
due to numerical limitations, we cannot distinguish whether I(M) tends to 1 for larger
values of M , independently on K/k̄. The diffusion and thermalization occurring for
large kick parameters may suggest that in the fully ergodic regime each rotor evolves
as if it interacts with an external bath. Hence some of the phenomenology we observe
may have connections with the results in [70, 71, 72]

We remark the strong dependence of I(M) on K/k̄, in opposition with the
behavior of the subdiffusion exponent α (see Fig. 4). Nevertheless, we see that I(M)
is significantly smaller than 1 in the same interval where there is subdiffusion and no
eigenstate thermalization [see Figs. 4 and 8(b)], marking the connection between these
phenomena.
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4. Analysis of the random-matrix model

We have seen in the previous section that the operator Ĥ0 does not look like a random
matrix in the Floquet basis, as the anomalous distributions of H 0

βγ of Fig. 5 testify.
Here we build a model which can reproduce these distributions. The rationale is
the following. In the chaotic case, the operators look like random matrices in the
Floquet state basis [59]. On the opposite, in the localized case the Hamiltonian (Ĥ0)
looks like a banded random matrix [73, 74] and one can argue that the operators
showing localization appear as banded random matrices in the Floquet basis (otherwise
they would be delocalized). We construct a model interpolating between these two
conditions. It is a random matrix where the elements are Gaussian distributed, but
the variance of this distribution depends on the position inside the matrix and gets
smaller as the distance from the diagonal is increased. In particular, it depends as a
power law on the distance from the diagonal, so we assume that H0

βγ for γ 6= β is a
Gaussian random variable with variance

σβ,γ = σ|β−γ| =
1

|β − γ|b
, (12)

with b some real non-negative number. In the limit b = 0 we recover the standard
random-matrix behavior, while in the limit b→∞ we move towards a banded random
matrix behavior.

In order to show the validity of our model, we can use it to fit the distributions
of H0

βγ/Σ (Fig. 5) obtained through exact diagonalization. To do the fit, we adjust
the parameter b in order to numerically minimize the quantity

dlog(b) =

∫ ∞
−∞

dx
∣∣∣log(P (x))− log(P

(b)
model(x))

∣∣∣ . (13)

We perform some plots of dlog(b) versus b. For small values of b, our numerics gives
us distributions restricted to a too narrow interval, that’s why we have a non-physical
increase of dlog(b) (we do not show this interval of b in Fig. 10). For larger values of
b we find a physical minimum. The minimum we find is very shallow and we cannot
clearly determine it, being overwhelmed by fluctuations (Fig. 10). Nevertheless, we
find values of b for which the agreement between the distributions resulting from ED
and those from this model is good (see Fig. 11). Notice the very clear fluctuations at
large deviations, giving rise to the wigglings of dlog. From our results, we see that b is
closer to 0 for large K. This is in agreement with the physical expectation that these
cases are more chaotic and then closer to a pure random matrix condition.

5. Conclusions

In conclusion we have studied the energy subdiffusion in an interacting quantum
kicked rotors model. We have noticed that this is a purely quantum phenomenon
and, through a numerical analysis, we have mapped the different dynamical regimes
in the parameter space. We have considered the subdiffusion and the asymptotic
properties of the energy. About the latter, the absence of full thermalization in the
truncated Hilbert space is strictly related to an anomalous behavior of the Floquet
states, marking the breaking of eigenstate thermalization. Subdiffusion is associated
to anomalous non-Gaussian distributions of the off-diagonal matrix elements of the
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Figure 10. dlog versus b. Numerical parameters: J/k̄ = 0.7, k̄ = 5.0, L = 3,
Mmax = 41.

energy in the Floquet basis. These distributions are well described by a model of
anomalous random matrices.

Future directions of research include the application of the anomalous random
matrix model to subdiffusion in ergodic systems near the MBL transition [50, 51, 56,
57, 58]. It would be also worth investigating the nature of the intermediate region: by
exploiting the mapping between the rotors model and the disordered Anderson one,
a possible way would be analyzing the possible multi-fractal structure of the Floquet
states.
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