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1. Introduction 

 

Climate-energy-economy models are a fundamental tool to evaluate mitigation strategies and assess their 

economic costs. These models include a representation of socio-economic processes, such as economic 

growth and the dynamics of consumption and investment. Energy is usually regarded as a production factor, 

alongside capital and labor. Energy, in turn, is generated through conversion processes from primary energy 

sources, such as fossil fuels, uranium, wind, solar radiation, hydropower, or biomass. To link energy use to 

climate impacts, carbon emissions from the combustion of fossil fuels are computed and their effects on 

atmospheric concentrations and temperatures are assessed using a coupled climate module. To account for the 

fact that climate change is a global and long-term challenge, climate-energy-economy models are required to 

represent the entire world economy and carry out simulations over the period of a century. 

 

Different models may generate very different sets of scenarios, depending on the view of the world they 

represent regarding e. g. assumptions on future technological developments in the energy sector, inertia in the 

deployment of new technologies, and how economic agents form expectations. Some models surprisingly 

conclude – in direct contradiction of the urgency expressed in the scientific literature – that rapid, 

comprehensive emissions abatement is both economically unsound and unnecessary. And some models seem 

to ignore (and implicitly endorse the continuation of) gross regional imbalances of both emissions and 

income. 

 

In case of most of the existing climate-energy-economy models, their results are driven by conjectures and 

assumptions that do not rest on empirical data and often cannot be tested against data until after the fact. 

Better-informed climate policy decisions might be possible if the effects of controversial economic 

assumptions and judgments were visible, and were subjected to sensitivity analyses and validation. 

 

Existing climate-energy-economy models fully rely on the neoclassical abstractions of narrowly rational 

individuals, fully optimizing firms, and perfectly functioning markets have attractive mathematical properties, 

but as scientific hypotheses they do not withstand decisive tests against the evidence. It should come as no 

surprise that the forecasts derived from such inadequate models are uncertain and unreliable. 

 

Successful modeling “must reflect what people and organizations actually do” (Laitner et al., 2000). 

Unfortunately, the majority of models appear to mischaracterize the behavior of economic agents with 

“unsubstantiated assumptions about the characteristics of consumers and firms” (ibid., p. 1). Among other 

things, the models depict the behavior of all consumers and businesses as a group, distilling the literally 

millions of decisions made by millions of individuals into a few “representative agents” that do not interact 

with each other, except very indirectly and only in response to price signals. 

 

The models have improved over the years, including expanded treatment of externalities, technological 

innovation, and regional disaggregation. But there is still tremendous scope for further improvement, 

including the difficulty to represent pervasive technological developments, the difficulty to represent non-

linearities, thresholds and irreversibility, and the insufficiently developed representation of economic sectors 

with a significant potential for mitigation and resource efficiency. COMPLEX aims to improve the present 

state-of-the-art in Climate-Energy-Economy impact assessment modeling by tackling these relevant 

limitations.  

 

In order to that Working Package 5 of COMPLEX  project develops a system of integrated complex models 

combining insights from different field of research and modeling approaches: integrated assessment modeling 

(IAM), System Dynamic (SD) models, Computational General Equilibrium (CGE) modeling and agent-base 

modeling (ABM). The main emphasizes are on utilizing the non-linear climate responses and regime-shifts of 

economic-ecological systems, modeling non-linear processes of diffusion and pervasive technical change and 

its implication, and representation of economic sectors with a significant potential for mitigation and resource 

efficiency. 
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This report identifies a set of modeling tools that have been applied to relevant socio-economic aspects of the 

assessments of the impact of climate change and relevant energy and environmental measures and policies. 

The focus here is on the modeling approaches that will be utilized in the WP5 system of economic-energy-

environmental models: the review covers both more traditional modeling techniques such as Computational 

General Equilibrium (CGE) model and Integrated Impact Assessment model (IAM) as well as more recent 

innovative approaches to model complex systems including agent-based modeling (ABM) and system 

dynamics SD) modeling.  

 

The review is conducted based on some general and modeling approach specific criteria. The general review 

criteria are designed in a broad sense, however, emphasizes more on the relevant aspects of COMPLEX 

project and specifically WP5 objectives, which were discussed above.  

 

2. Overview of Climate Integrated Assessment Modeling 

 

2.1 Introduction 

 

Integrated Assessment Modeling (IAM) is an interdisciplinary process which combines, explains, and 

communicates knowledge from a range of disciplines in order to weigh up an entire chain of causes and 

effects. Integrated Assessment (IA) is neither a new concept nor an activity restricted to Climate Change, 

although the proliferation of models in the last two decades is due mainly to its application to climatic 

research (Tol, 2006). The central element in IAM of climate change is the climate cantered economy-energy-

environment (E3) IA model, although the whole IAM process should not be reduced to the model, since IAM 

includes problem definition, formulation of the policy questions, and interpretation and communication of the 

results (IPCC SRES, 2000; Kriegler et al., 2012; MEA, 2005; Schwartz, 2003; Tol, 2006; Weyant et al., 

1995). 

 

The development of IA models consists of the construction of dynamic models that integrate multiple 

disciplines (economy, natural sciences, engineering, etc.), trying to capture interactions between human and 

natural systems, and with the aim of providing useful information for policy making. The relationships 

analysed by IA models tend to be very complex, dynamic and often highly nonlinear. Nevertheless, IA models 

should not be identified as an oracle: the results they provide depend on the assumptions and methods 

considered for their construction, and are subject to high scientific and social-response uncertainties. One 

approach for dealing with uncertainty is through developing scenarios that provide plausible descriptions of 

how the future might unfold in different socioeconomic, technological and environmental conditions. In this 

sense, the interpretation of the results is in tight relation with the set of hypothesis and conditions considered. 

The combination of the multidisciplinary and the scenario approaches allows IA models to offer a strategic 

and comprehensive view of the whole phenomenon studied and its uncertainties.  

 

IAM applied to climate change is typically oriented to inform policy-makers on the feasibility and costs of 

meeting alternative climate stabilization targets under a range of salient long-term uncertainties. Since climate 

change is an anthropogenic phenomenon characterised by complex feedbacks between socioeconomic an 

ecological systems, IA models attempt to integrate the human (economic, behavioural, institutional, lifestyle, 

etc.) and biophysical (land-use, climate, ecosystems, etc.) spheres. Different climate mitigation pathways are 

then explored assuming that the climate problem will be internalized by the economy in the future. IA models 

are generally focused on “insights about the nature and structure of the climate problem, about what matters, 

and about what we still need to learn” (Morgan and Dowlatabadi, 1996, p. 337) and face questions such as: 

 Which set of policies and technologies would be able to mitigate the adverse effects of climate 

change at a minimum cost?” 

 “What are the costs of non-action as well as mitigation/adaptation opportunities?” 

 “What are the links and feedbacks between the different human sectors (socioeconomic, 

agriculture, forestry, energy, etc.) and between them and the natural subsystems (climate, 

ecosystems, coastal zones, etc.)?” 
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 Etc. 

 

Dozens of climatic E3 currently exist: a review in 1995 already identified more than 30 models (Weyant et al., 

1995); nowadays most of them continue to be developed and many more have been created (e.g. (Stanton et 

al., 2009; Tol, 2006)). Appendix A includes a selection of 26 representative IA models currently used in 

climate assessment, sorted by chronologically order of creation. Model diversity is directly related with 

critical uncertainties in climate science and analysis methodologies. Thus a multi-model approach is usually 

adopted at the policy level (e.g. IPCC assessments).  

 

Formally,  modern IA models sink their roots in the global models developed in the 1970s by the pioneer The 

Club of Rome’s reports (Meadows et al., 1972; Mesarović and Pestel, 1974), which studied the world 

evolution of human societies focusing on resources availability, biosphere limits and sustainability. In spite of 

the avalanche of criticism received, a new discipline was born, and before the end of that decade the first IAM 

integrating energy conversion, emissions and atmospheric CO2 concentration appeared (Nordhaus, 1979). 

 

In the 80s, the capacity of human societies to create ecological problems at regional and global scale became 

obvious (e.g. ozone depletion, chemical pollution, acid rain, etc.), stimulating concerns of people, 

governments and therefore research
1
. In fact, the first IA model to extend fully from emissions to impacts did 

not address climate change but the more analytically tractable issue of acid rain. The RAINS (Regional Air 

Pollution INformation and Simulation) model of acidification in Europe was developed at IIASA (Alcamo et 

al., 1990) and the project also pioneered a close relationship between the modeling team and policymakers. 

 

The first model to attempt a fully integrated representation of climate from sources to impacts was IMAGE 

1.0 (Rotmans, 1990), which subsequently became the basis for the integrated European model ESCAPE 

(Hulme and Raper, 1995). In those years, the number of projects in IA modeling of global climate change 

expanded rapidly altogether with the recognition of Climate Change as a Humankind problem at the Río 

Declaration of United Nations in 1992
2
. The Intergovernmental Panel on Climate Change (IPCC) was also 

created within the UN framework in 1988,
3
 with the role of leading the assessment “on a comprehensive, 

objective, open and transparent basis the scientific, of the technical and socio-economic information relevant 

to understanding the scientific basis of risk of human-induced climate change, its potential impacts and 

options for adaptation and mitigation”
4
. The IPCC published its first report in 1990 (IPCC, 1990) and since 

then, three other reports have been published (IPCC, 2007a, 2001a, 1995); the 5th is intended to be published 

in 2014. The IPCC adopted the “multi-model approach” in order to capture uncertainties related to model 

structure. For example, the 6 reference models for building Special Report on Emissions Scenarios (SRES) 

were AIM, ASF, IMAGE 2.1, MARIA, MESSAGE and MiniCAM (see Annex IV in IPCC SRES, 2000). In 

fact, climate science and therefore climate IA models have evolved closely with the IPCC process in the last 2 

decades due to the adoption of the “consensus approach” by the IPCC as the strategy to deal with scientific 

uncertainties in interfacing science and policy (Tol, 2011; van der Sluijs et al., 2010).
5
 

 

 

2.2 IAM review 

 

In the last 25 years a great number of IA models have been established, many of which are currently being 

developed. In addition, these models have been built following a diversity of approaches. Both circumstances 

make it difficult to make a comprehensive and comparative review of the literature. However, in the last 

decades different authors have attempted to survey the field. (Weyant et al., 1995) review the early steps in the 

discipline of IAMs, when it was a novel and thus still inexperienced scientific approach (in fact, some of those 

                                                      
1 e.g. the development of IIASA energy project (IIASA, 1981) and the precursor of current GCAM 
(Edmonds and Reilly, 1985). 
2 Full text: <http://www.un.org/documents/ga/conf151/aconf15126-1annex1.htm> 
3 History of IPCC < http://www.ipcc.ch/organization/organization_history.shtml#.UQ-a1fJ_6Ag > 
4 < http://www.ipcc.ch/organization/organization_procedures.shtml#.UQ_lR_J_6Ah > 
 

http://www.ipcc.ch/organization/organization_history.shtml#.UQ-a1fJ_6Ag
http://www.ipcc.ch/organization/organization_procedures.shtml#.UQ_lR_J_6Ah
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models were one the pillars of the IPCC 2
nd

 Assessment (IPCC, 1996b)). (Tol, 2006) reviews the field 10 

years later, assessing its evolution and development in different methodologies and models. By then, IAM  

“has become an accepted tool in many circles” (Tol, 2006). (Schneider and Lane, 2005) present a history of 

IAM of climate change, discussing many relevant modeling studies produced over the last few decades. The 

paper then pinpoints challenges and initiatives in IAM, both in terms of the models themselves (focusing into 

uncertainty analysis) and in terms of communicating model results to policy makers and the general public. 

 

Finally, (Stanton et al., 2009) assess 30 existing climatic IA models focusing on four key areas: i) the 

connection between model structure and the type of results produced; ii) uncertainty in climate outcomes and 

projection of future damages; iii) equity across time and space; and iv) abatement costs and the endogeneity of 

technological change.” 

 

In this survey, Section 2.2.1 examines 8 general review aspects and Section 2.2.2 discusses the specific topic 

of the discount rate and equity concerns in IAM. Finally, Appendix A includes a selection of 26 representative 

IA models currently used in climate assessment, sorted by chronologically order of creation. 

 

2.2.1 General review aspects 

 

As noted there is a great diversity of climatic IA models due to the different approaches used by the modeling 

teams to capture the complex interactions and high uncertainties involved in the climatic-economic-social 

interface. IA models vary in many different dimensions such as the level of integration among subsystems, the 

mitigation policies available, the geographic level, the economic and technological representation, the 

sophistication of the climate sector and the GHG gases considered, the economic assumptions, the 

consideration of equity across time and space, the degree of foresight, the treatment of uncertainty, the 

responsiveness of agents within the model to climate change policies, etc. The reason behind this variety is 

simple: the complexity of the socioeconomic-climatic system makes it impossible to specify the criteria for 

the “best” modeling approach. In fact, climatic IA models are in general based upon a combination of 

(different) frameworks and a set of unavoidable judgment calls in the extrapolation of the future. The result is 

a rich diversity of models most of which provide useful information about selected aspects of the problem. In 

essence, each model structure asks a different question and that question sets the context for the results it 

produces. Given the characteristics of the problem and the diversity of associated policy dilemmas, it is 

difficult to conceive any one IA model able to provide the best answers to all the questions, which have been 

colloquially referred to as the “Holy Grail”. The different types of model structures provide results that inform 

climate and development policy in very different ways, and each has strengths and weaknesses that are vital to 

know when applying them (Hourcade et al., 2006; Latif, 2011; Stanton et al., 2009; Sterman, 1991; Toth, 

2005). 

 

This section overviews the climate IA models in 8 different significant dimensions. 

 

1) Links between Energy-Climate-Economy 

The core of the IAM process is the fully-integrated IA model. The climatic IA model represents the linkages 

and feedbacks between a series of different sub-models: human activities impact on the climate, atmosphere 

and ecosystems, which in turn are impacted by the disturbance of natural cycles and ecosystem services 

degradation. Also, humans have the capacity to adapt to these changes in the environment.  
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a) 

 
 

b) 

 
Figure 1: a) Full-scale Integrated Assessment Model as an element of IA Modeling process; b) Sequential 
characterization of IAMs. 
 
However, in reality, until now the sequential approach has been extensively used instead of the full-scale 

integration models. Different causes leading to this simplification are indicated in the literature: climate 

science knowledge gaps, technical and methodological difficulties in the practical integration, uncertainties on 

the dynamics climate change impacts (e.g. high uncertainty of the damage functions in IA models (Arigoni 

and Markandya, 2009)), delays between the IA model calculations and the impact and adaptation assessments, 

dominant perceptions (e.g. idealized assumptions about the resilience of ecosystems (Cumming et al., 2005)), 

etc. (Hibbard et al., 2010; Moss et al., 2010; Schneider and Lane, 2005; Stanton et al., 2009; Tol, 2006). 

 

In practice, IA models usually focus on the interactions between processes and systems within the “Human 

Activities” box of Figure 1 (b), including the energy system, the agriculture, livestock and forestry system, the 

coastal system, and the other human systems, interactions that would not have been available through a purely 

discipline-based approach. Then, the effects of human activities on the atmospheric composition are analysed 

and the subsequent repercussions on climate and sea levels.
6
 Finally, the impacts of the climatic change on 

human and ecological system and the different adaptation strategies as well as climate feedbacks are assessed.  

A crucial problem with climate IA models is that our present-day knowledge and understanding of the 

modelled system of cause–effect chains and the feedbacks between them is incomplete and is characterised by 

                                                      
6 (Vuuren et al., 2011c) survey how well IA models simulate climate change, concluding that although in most cases 
the outcomes of IAMs are within the range of the outcomes of complex models, differences are large enough to matter 
for policy advice. 
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large uncertainties, knowledge gaps, unresolved scientific puzzles and limits to predictability. In each stage of 

the causal chain there are both potentially reducible and probably irreducible uncertainties affecting the 

estimates of future states of key variables and the future behaviour of system constituents. The potentially 

reducible parts stem from incomplete information, incomplete understanding, and low quality of input data 

and parameter estimates, weakly underpinned or artificial model assumptions, and disagreement between 

experts. The probably irreducible parts stem from ignorance, epistemological limits of science, in 

deterministic system elements, practical unpredictability of chaotic system components, limits to our ability to 

know and understand, limits to our ability to handle complexity, the ‘unmodellability’ of surprise, non-smooth 

phenomena, and from intransitive system components due to multiple equilibrium (van der Sluijs, 2002). 

Thus, the uncertainties in climate science and impacts translate into uncertainties in the modeling exercise. 

On-going research is being directed towards constraining climate models, in terms of carbon cycle feedbacks 

(Frank et al., 2010; Knorr, 2009; Mahecha et al., 2010), climate sensitivity (Annan and Hargreaves, 2011; 

Schmittner et al., 2011; Zickfeld et al., 2010), and appropriate model selection/ rejection (Kiem and Verdon-

Kidd, 2011; Knutti, 2010). 

 

Climate -> Economy feedbacks 

Most IA models have two avenues of communication between their climate and economic sub-models: a 

damage function and an abatement function. The damage function translates the climate model’s output of 

temperature – and sometimes other climate characteristics, such as sea-level rise – into positive or negative 

impacts to the economy. 

 

(Arigoni and Markandya, 2009) reviewed the literature on the damage functions currently used in IA models 

concluding that their uncertainty is inevitably high. They also observed that the estimation of damages was 

based on a small number of studies.
7
 Damage functions are mostly based on damage estimates related to 

doubling the CO2 concentration from the pre-industrial level that are usually below the 2% of global GDP. 

Some models distinguish between economic impacts and non-economic impacts; only the former are included 

directly in GDP (e.g. FUND, PAGE-09). However, many valuable goods and services (e.g. human health 

effects, losses of ecosystems and species) are then not included in conventional national income, which 

suggests that usual damage functions may underestimate the damage costs of climate change. In fact, a similar 

review carried out a decade before (Tol R.S.J. and Fankhauser S., 1998) reached similar conclusions. 

 

Other recent reviews of IAM (Ackerman et al., 2009a; Stanton et al., 2009) have highlighted additional 

concerns regarding damage functions such as: i) the degree of arbitrariness in the choice of parameters; ii) the 

functional form used in damage functions, which can limit models´ ability to portray discontinuities (the 

threshold temperature at which damages are potentially catastrophic); and iii) the fact that damages are 

represented in terms of losses of income and not capital. As an example, DICE, and a majority of its 

descendants, assumes that the exponent in the damage function is 2 –that is, damages are a quadratic function 

of temperature change: no damages exist at 0 ºC temperature increase, and damages equal to 1.8% of gross 

world output at 2.5 ºC (Nordhaus and Boyer, 2000; Nordhaus, 2008). On the contrary, (Stanton et al., 2009) 

review of the literature uncovered no rationale, whether empirical or theoretical, for adopting a quadratic form 

for the damage function. However, this practice is endemic in IA models, especially in those that optimize 

welfare (e.g. DICE-family, MERGE, WITCH but also from other disciplines such as System Dynamics: 

ANEMI)
8
. This is a key issue in IAM, since the results are significantly sensitive to this parameter (Dietz et 

al., 2007; Roughgarden and Schneider, 1999). 

 

FUND (Anthoff and Tol, 2012) is unusual among welfare optimizing IAMs in that it models damages as one-

time reductions to both consumption and investment, where damages have lingering ‘memory’ effects 

determined by the rate of change of temperature increase. 

 

                                                      
7
 Of course, modelers are aware of these limitations: e.g. MERGE: “We stress the rudimentary nature of the state of the 

art of damage assessment” (Manne and Richels, 2004). 
8 PAGE2009 (Hope, 2011) uses a damage function calibrated to match DICE, but makes the exponent an 
uncertain (Monte Carlo) parameter. 
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(Schneider and Lane, 2005) recalls a study that could help to understand the origin of this bias. In order to 

face the critics of the DICE model that claimed that its damage function underestimated the impacts of climate 

change on non-market entities, Nordhaus conducted a survey of conventional economists, environmental 

economists, atmospheric scientists, and ecologists to assess expert opinion on estimated climate damages 

(Nordhaus, 1994). Interestingly, the survey revealed a striking cultural divide between natural and social 

scientists, the latter believing that even extreme climate change  would not impose severe economic losses and 

hence considered it cheaper to emit more in the near term and worry about cutting back later, using the extra 

wealth generated from delayed abatement to adapt later on. On the other hand, natural scientists estimated the 

economic impact of extreme climate change to be 20 to 30 times higher than conventional economists did and 

often advocated immediate actions to abate emissions.  

 

Climate -> Ecosystem feedbacks 

Very few models assess the relationship between climate and ecosystem services explicitly, although 

modellers and policy makers have recognized that climate change problems have to be solved in harmony 

with other policy objectives such as economic development or environmental conservation. Among the most 

prominent models, we highlight IMAGE and AIM, which display a great spatial resolution in their ecosystem 

modules and have participated in all the IPCC Assessments and in the Millennium Ecosystem Assessment 

(MEA, 2005). In the case of IMAGE 2.4 (Bouwman et al., 2006), it includes the Nitrogen cycle and a 

Biodiversity module as well as changes in climate (precipitation and temperature) impacting crop and grass 

yields. Also, the Carbon cycle model includes different climate feedback processes that modify Net Primary 

Productivity (NPP) and soil decomposition (and thus NEP) in each grid cell (0.5 by 0.5 degree resolution).
9
 

 

However, even in these models climate feedbacks to ecosystem services have a partial scope since they do not 

consider explicitly fundamental impact feedbacks related with the albedo-effect, the increase in climate 

extremes or sea-rise impact in coastal zones, for example. 

 

Climate -> socioeconomic feedbacks 

Despite considerable efforts in the integrated assessment modeling community to link socioeconomic and 

biogeochemical dynamics with each other, coupling is weak and simplified at best, and the demographic 

components rarely interact bi-directionally with the rest of the model (Ruth et al., 2011). For example, 

population evolution is usually exogenously projected through demographic transitions to equilibrium. 

Adaptation, too, is rarely studied (exceptions are AD-RICE, PAGE-09 or AD-WITCH). 

 

2) Potential to represent non-linearities, thresholds and irreversibilities 

Since the climate is a complex system, characterized by non-linear behaviour and feedback processes (Rial et 

al., 2004), the effects of climate change are likely to be non-marginal displacements. There is a risk of large-

scale discontinuities, such as the Greenland ice sheet melting and other slow feedbacks (Hansen et al., 2008), 

that might put us outside the realm of historical human experience. We know that the Earth’s climate is a 

strongly nonlinear system that may be characterized by tipping points and chaotic dynamics (Barnosky et al., 

2012). Under such conditions, forecasts are necessarily indeterminate.  

 

IA models, for the most part, do not incorporate this approach to uncertainty, but instead adopt best guesses 

about likely outcomes (Ackerman et al., 2009a; Kelly and Kolstad, 1998; Lomborg, 2010; Nordhaus, 2007; 

Tol, 2002; Webster et al., 2012). IPCC focus in this issue has also being decisive: a review of the history of 

the treatment of uncertainty by the IPCC assessed that most visibly attention has been given to the 

communication of uncertainties by the natural scientists in the areas of climate science and impacts, and to a 

lesser extent, or at least very differently, by social scientists in the assessment of vulnerability, sources of 

greenhouse gas emissions, and adaptation and mitigation options (Swart et al., 2009). The Stern Review 

(Stern, 2006) using the model PAGE-02 represents a step forward over the standard practice in this respect, 

employing a Monte Carlo analysis to estimate the effects of uncertainty in many climate parameters. As a 

                                                      
9 Also, the IIASA Integrated Assessment Modeling Framework (including MESSAGE-MACRO model) 
includes some feedbacks in terms of changes in agricultural production (Tubiello and Fischer, 2007) or 
in the corresponding changing water needs for agricultural production (Fischer et al., 2007). 
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result, the Stern Review finds a substantially greater benefit from mitigation than if it had simply used “best 

guesses”.
10

 A Monte Carlo simulation applied to the MIT-IGSM model (Sokolov et al., 2005) illustrated three 

insights not obtainable from deterministic
11

 analyses: i) that the reduction of extreme temperature changes 

under emissions constraints is greater than the  median reduction; ii) that the incremental gain from tighter 

constraints is not linear and depends on the target to be avoided; iii) comparing median results across models 

can greatly understate the uncertainty in any single model (Webster et al., 2012). However, (Stanton et al., 

2009) review did not identify any model assuming fat-tailed distributions that reliably samples the low 

probability tails, thus failing into providing an adequate representation of worst case extreme outcomes. 

 

(Stanton et al., 2009) finds that in only a few IA models damages are treated as discontinuous, with 

temperature thresholds at which damages turn to be catastrophic. For example, DICE-2007 (Nordhaus, 2008) 

models catastrophe in the form of a specified (moderately large) loss of income, which is multiplied by a 

probability of occurrence (an increasing function of temperature), to produce an expected value of 

catastrophic losses. This expected value is combined with estimates of non-catastrophic losses to create the 

DICE damage function (i.e. it is included in the quadratic damage function discussed above).
12

  

 

In the PAGE-2009 model (Hope, 2011), the probability of a catastrophe increases as temperature rises above a 

specified temperature threshold (3 ºC above pre-industrial levels). For every 1°C rise in temperature beyond 

this, the chance of a large-scale discontinuity occurring rises by 20%, so that with modal values it is 20% if 

the temperature is 4°C above pre-industrial levels, 40% at 5°C, and so on. The upper ends of the ranges imply 

that a discontinuity will certainly occur if the temperature rises by about 6 °C. The threshold at which 

catastrophe first becomes possible, the rate at which the probability increases as temperature rises above the 

threshold, and the magnitude of the catastrophe when it occurs, are all Monte Carlo parameters with ranges of 

possible values. PAGE-2009 assumes that only one discontinuity occurs, and if it occurs it is permanent, 

aggregating long-term discontinuities as ice-sheets loss with short-term ones such as monsoon disruption and 

thermohaline circulation. In fact, Nicholas Stern selected this model (PAGE-2002 version) for his Review 

“guided by our desire to analyse risks explicitly - this is one of the very few models that would allow that 

exercise” (Stern, 2006). However, still, climate feedbacks are poorly represented in this model in particular
13

 

an in climate IA models in general (Whiteman et al., 2013). 

 

(Mastrandrea and Schneider, 2001) coupled DICE to come up with a model capable of one type of abrupt 

change confirming the potential significance of abrupt climate change to economically optimal IAM policies 

.
14

 Finally, in welfare optimization models, the inclusion of non-linearities is in close relationship with the 

discount rate used (see footnote 24). 

                                                      
10 Stern Review found that “without action, the overall costs of climate change will be equivalent to losing at least 5% 

of global gross domestic product (GDP) each year, now and forever.” Including a wider range of risks and impacts 

could increase this to 20% of GDP or more, also indefinitely. 
11 Although the use of deterministic models and the (only) consideration of likely outputs (i.e. taking the central 

values of the probabilistic distribution) is not the same, both approaches lead to the same results and thus to the 

same considerations. 
12 MERGE (Manne and Richels, 2004) assumes all incomes fall to zero when the change in temperature 
reaches 17.7 ºC – which is the implication of the quadratic damage function in MERGE, fit to its 
assumption that rich countries would be willing to give up 2% of output to avoid 2.5 ºC of temperature 
rise. This formulation deduces an implicit level of catastrophic temperature increase, but maintains the 
damage function’s continuity. 
13 Better models are needed to incorporate feedbacks that are not included in PAGE09, such as linking the extent of 

Arctic ice to increases in Arctic mean temperature, global sea-level rise and ocean acidification,” (Whiteman et al., 

2013) 
14 One of the most controversial conclusions to emerge from many of the first generation of climate IA 
models was the perceived economic optimality of negligible near-term abatement of greenhouse gases. 
Typically, such studies were conducted using smoothly varying climate change scenarios or impact 
responses. Abrupt changes observed in the climatic record and documented in current models could 
substantially alter the stringency of economically optimal IAM policies. Such abrupt climatic changes—
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Damages are usually modelled in IA models as losses to economic output, or GDP, and therefore losses to 

income (GDP per capita) or consumption, leaving the productive capacity of the economy (the capital stock) 

and the level of productivity undiminished for future use. When damages are subtracted from output, the 

underlying unrealistic assumption is that these are one-time costs that are taken from current consumption and 

investment, with no effects on capital, production or consumption in the next period (Stanton et al., 2009). 

FUND is unusual among welfare optimizing IA models in that it models damages as one-time reductions to 

both consumption and investment, where damages have lingering ‘memory’ effects determined by the rate of 

change of temperature increase. ICAM (Dowlatabadi, 1998) also presents the characteristic of allowing for 

damages that last longer than the period in which they were caused. 

 

Among IA models, those modelled in System Dynamics (SD) constitute an exception to the dominant 

sequential structure. SD has a methodological advantage due to its ability to explicitly represent rich 

feedbacks between subsystems since they are not rigidly determined in their structure by mathematical 

limitations as optimization models often are (Sterman, 1991).
15

 Moreover, SD gives support to the view that in 

fact, it is the interaction between human activities and natural feedbacks which causes climate change. 

Essentially, causes lead to effects, which then become causes in turn: the world system is thus characterized 

by feedback-loops (Davies and Simonovic, 2010; Meadows et al., 2004, 1972). This recognition entails a 

profound shift in the modeling paradigm from a one-way to a circular causality: “In effect, it is a shift from 

viewing the world as a set of static, stimulus-response relations to viewing it as an on-going, interdependent, 

self-sustaining, dynamic process” (Richmond, 1993). On the other hand, while most of climate IA models are 

quite varied in scope, most share a common core of economic optimization and equilibrium assumptions. By 

contrast, climatic SD IA models focus on disequilibrium dynamics and consider the potential of non-

linearities, thresholds and irreversibilities in the system. 

 

Thus, SD IA models such as FREE (Fiddaman, 2002), ANEMI (Akhtar et al., 2013; Davies and Simonovic, 

2010)
16

 and Threshold-21 (Bassi and Shilling, 2010) study climate issues (together with other sustainability 

concerns) following this systemic approach; the majority of their structure is endogenous. These models 

inherit from the pioneer WORLD3 model (Meadows et al., 2004, 1972), which although does not focus 

specifically into the climate issue, it also models damages related to pollution as losses in stocks (capital) 

rather than into flows (GDP).  

 

Summarizing, the ability of current climate IA models to represent potential non-linearities, thresholds and 

irreversibilities is very limited. The dominant sequential construction in IA modeling strongly restricts the 

modeling of non-linearities, since these are often the result of the complex integration of different variables.  

 

3) Representation of pervasive technological developments 
Technological change, especially in the energy system, is a key issue in climate scenarios and, consequently in 

climatic IA models. As stated in (Nakicenovic and Riahi, 2001), technological change in energy scenarios is 

of two kinds, one in which technologies change incrementally over the time horizon (cost reductions, 

efficiency improvements, etc.) and the other is the more radical introduction of completely new technologies 

at some points in the future. Both types of technological change usually co-exist in energy systems as well as 

in IA models. However the models differ with respect to the type of representation of technological change. 

There are basically two major ways in which technological change is treated in the energy system of IA 

models:  

 

1. The first is a so-called ‘static’ approach that treats the costs and technological parameters of a given 

technology (or technologies) as constant, i.e., it does not include any improvements in cost or performance. 

                                                                                                                                                                                  

or consequent impacts—would be less foreseeable and provide less time to adapt, and thus would have 
far greater economic or environmental impacts than gradual warming (Mastrandrea and Schneider, 
2001). 
15 Weak points of the SD approach are common to the policy-evaluation models (see Section 2.3  “IAM 
Classification” for further information). 
16 Interestingly, FREE and ANEMI models combine neoclassical growth modules with the SD approach. 
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No climate IA model follows this approach due to its inflexibility with regard to switching between 

technologies which is at odds with both historical and current experience in the energy sector. 

2. The second represents technological change ‘exogenously’, whereby costs declines and technical 

performance improvements are exogenously predefined over time. The rates of improvement of the 

technology are usually determined depending on the basis of the scenario being analysed and the state of the 

future world in such a scenario. Thus, different sectoral efficiency improvements (typically Autonomous 

Energy Efficiency Improvements, AEEI) and different exogenous learning-curves of specific technologies are 

set. This is the most common treatment of technical change in IA models in which the energy systems is 

defined from a bottom-up approach (e.g. POLES, GCAM, MESSAGE, MARKAL, IMAGE). The main 

critique of such an approach (see for example (Grübler and Messner, 1998)) is that it ignores the fact that 

early investments in expensive technologies are necessary in the first place in order to enable the system to 

adopt these technologies (i.e. cost declines do not happen automatically but depend on the accumulated 

investments in previous periods). 

 

3. The third approach is the most sophisticated and involves an explicit treatment of elements of ‘endogenous’ 

technological change models. However, the rate of technological change responds to policy initiatives. 

Climate change policies, in particular, by raising the prices of conventional, carbon-based fuels, can create 

economic incentives to engage in more extensive Research and Development (R&D) oriented towards the 

discovery of new production techniques that involve a reduced reliance on conventional fuels. In addition, 

such policies may lead to increased R&D aimed at discovering new ways to produce alternative, non-carbon-

based fuels. Thus, climate policies, R&D, and technological progress are connected: there is an induced 

component to technological change (Goulder and Schneider, 1999). For instance, the link between 

technological change and investments is explored via a learning curve approach in which technological 

improvement rates are modelled as a function of accumulated experience. This is the commonly referred to 

‘learning by doing’ approach. This method has successfully been applied and tested in many types of models. 

In energy systems models, the cumulative capacity of a technology is usually taken as an explanatory variable 

of experience and cost reductions (e.g. (Messner, 1997)). Compared to the case of exogenous technological 

progress, endogenous technological progress typically leads to earlier investments in energy technologies, a 

different mix of technologies and a lower level of overall discounted investments (Messner, 1997; van der 

Zwaan et al., 2002).  

 

ICAM (Dowlatabadi and Morgan, 1993; Dowlatabadi, 1998) is an example of an early model including 

simple representation of endogenous and induced technical change. This model has been used to explore the 

sensitivity of mitigation cost estimates to how technical change is represented in energy economics models. 

There have been rapid advances in recent years in this area. The review by (Kahouli-Brahmi, 2008) offers a 

thorough description of the most recent attempts to model endogeneity and induced technological innovation 

(e.g. MESSAGE-MACRO, ENTICE-BR, FREE, WIAGEM). We highlight the E3MG model (Barker et al., 

2006) where, in addition to the application of global carbon prices, a major driver of the mitigation strategy is 

the recycling of revenues raised from the full auctioning of carbon permits to the energy sector and applying 

carbon taxes for non-energy activities. Key assumptions are that 40% of the revenues collected are recycled 

and used for R&D investments in renewables as well as for investments in energy savings and conversion of 

energy intensive sectors towards low-carbon production methods. The increase in investment induced by 

climate policy can even achieve net GDP gains (Edenhofer et al., 2010). In addition, more stringent actions 

can lead to higher benefits (Barker and Scrieciu, 2010). 

 

4) Positive feedbacks 

The review of the climatic IA models reveals that positive feedbacks between different energy sources driven 

by climatic variables are not implemented in most models, excepting the ones that model climate-agriculture 

feedbacks affecting the land productivity, precipitation, etc. such as AIM, MESSAGE and IMAGE. 

 

5) Representation of economic sectors  

The traditional classification of Energy-Economy models differentiates between bottom-up (BU) energy 

detailed models and top-down (TD) models of the broader economy. These models coexist with the so-called 

hybrid models, which can be considered as in-between BU and TD approaches. TD models evaluate the 

system from aggregate economic variables, whereas BU models consider technological options or project-
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specific climate change mitigation policies. The differences between their results in fact are rooted in a 

complex interplay among the differences in purpose, model structure, and input assumptions. We summarize 

below the main characteristics of both (Böhringer and Rutherford, 2008; Hourcade et al., 2006; IPCC, 2001b; 

Weyant et al., 1995): 

 

- Conventional BU models are partial equilibrium representations of the energy sector. They describe 

the current and prospective competition of discrete energy technologies in detail, both on the supply-

side (substitution possibilities between primary forms of energy) and on the demand-side (the 

potential for end-use energy efficiency and fuel substitution) to capture substitution of energy carriers 

on the primary and final energy level, process substitution, or efficiency improvements. These models 

are typically cast as optimization problems which compute the least-cost combination of energy 

activities to meet a given demand for final energy or energy services subject to some technical 

restrictions and policy constraints. Although they are very helpful in illustrating the possibility for 

radically different technology futures with significantly different environmental impacts, they 

typically incorporate relatively little detail on non-energy consumer behaviour and interactions with 

other sectors of the economy, neglecting the macroeconomic impacts of energy policies. For this 

reason, they tend to suggest that the efforts to substitute away from specific forms of energy or reduce 

greenhouse gas emissions would be relatively inexpensive and in some cases even profitable. AIM 

and IMAGE models belong to this category. 

 

- Conventional TD models, on the other hand, start with a detailed description of the macro (and 

international) economy and then derive the output of different economic sectors and, on the basis of 

highly aggregated production or cost functions, the corresponding demand for energy inputs. These 

models draw on the analysis of historical trends and relationships to predict the large-scale 

interactions between the sectors of the economy, especially the interactions between the energy sector 

and the rest of the economy. Thus, they address the consequences of policies in terms of public 

finances (taxes, subsidies, etc.); trade, economic competitiveness and employment. Since the late 

1980's, TD energy-economy policy modeling has been dominated by Ramsey growth models with an 

environmental sector (e.g. DICE family) and the Computable General Equilibrium (CGE) models 

(e.g. SGM, MIT-EPPA, etc.), reflecting the decline in the influence of other macroeconomic 

paradigms, such as disequilibrium models. In opposition to the BU models, TD models lack of 

technological flexibility due to the extrapolation of past substitution elasticities and inducing higher 

efforts (policies, costs, etc.) for achieving the transitions comparing to the BU models. They also lack 

of technological explicitness due to the difficulties in assessing the effect of price-based policies 

(taxes, subsidies, regulations, information programs, etc.) with technology-specific policies. For these 

reasons, at the extreme, for very long term scenarios and in case of large departures from baseline 

projections, conventional TD models cannot guarantee that their economic projections are 

underpinned by a feasible technical system. 

 
Figure 2: (Hourcade et al., 2006): Three-dimensional Assessment of Energy-Economy models. 
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A number of modeling teams are developing hybrid models seeking to incorporate the advantages and 

compensate for the limitations of both approaches. Different methodologies exist, such as linking 

independently developed bottom-up and top-down  (e.g. BU MARKAL and TD MIT-EPPA or BU 

MESSAGE and TD MACRO) or directly building original hybrid models (e.g. IMACLIM models
17

, WITCH 

(Bosetti et al., 2006), E3MG (Barker et al., 2006)) (Böhringer and Rutherford, 2008; Hourcade et al., 2006). 

Finally, another methodology is to modify former conventional BU or TD models in order to “hybridize” 

them i) coupling a BU macroeconomic model with an energy model (e.g. MIT-EPPA, MERGE), ii) coupling 

an energy model with a partial representation of the economy (e.g. MiniCAM/GCAM, POLES). 

 

6) Energy sources considered 
As stated before, conventional TD models tend to describe the energy system as highly aggregated, while 

conventional BU models tend to describe the current and prospective competition of discrete energy 

technologies in detail, both on the supply and on the demand-side. Thus, in the latter, energy sources are often 

highly disaggregated considering individually all current and potential important sources of energy: fossil 

fuels (oil, gas and coal, including conventional and non-conventional), uranium, and renewable (hydro, solar, 

wind, geothermal, oceanic, etc.).  

 

Greenhouse gas emissions scenarios most commonly used in climate projections are derived from the Special 

Report on Emissions Scenarios (IPCC SRES, 2000), published by the Intergovernmental Panel on Climate 

Change. The original 40 scenarios reported in SRES have recently been rationalized into 4 Representative 

Concentration Pathways (RCPs) (Moss et al., 2010; Vuuren et al., 2011a) which are fundamentally driven by 

similar socio-economic models and cover a similarly wide range of future fossil fuel consumption scenarios as 

those in the SRES (IPCC SRES, 2000). Energy resources estimations in most climatic IA models are based on 

(IPCC SRES, 2000), which main sources were (Gregory and Rogner, 1998; Rogner, 1997) assessments. 

However, recent historical data and analysis suggest that this estimations might be out of date (for a review 

see for example (Höök and Tang, 2013; Ward et al., 2012)). 

 

Uranium resources are usually estimated not to limit the expansion of nuclear power (e.g. GCAM (Calvin et 

al., 2009)), although in some models such as MERGE and REMIND nuclear expansion can be constrained by 

the depletion of uranium after the middle of this century (Edenhofer et al., 2010). 

 

Renewable energies are also assumed to have large potentials. As reviewed in the “Special Report on 

Renewable Energy Sources and Climate Change Mitigation” (IPCC, 2011): “all scenarios assessed confirm 

that technical potentials will not be the limiting factors for the expansion of RE [renewable energies] at a 

global scale”. 

 

In general, models try to predict which technologies will dominate in a carbon-constrained future (and which 

ones will stay negligible), and the reasons and speed for it. In power sector, capital and M&O costs (through 

learning curves estimations), fuel use, lifetime, capacity factors, etc. are considered for each technology, as 

well as specific characteristics such as penalties to renewable due to their intermittent generation. 

 

Due to the long-term scope of the analysis (100 years and more) IA models consider technologies that are 

currently in R&D stages and that might be developed over some decades or, on the contrary they also might 

never deploy at significant level. Costs, efficiencies and appearance date of them are thus highly speculative. 

Examples are Carbon Storage and Sequestration (CCS), further bioenergy technologies (e.g. cellulosic crops, 

algae), nuclear IV generation (e.g. fast breeder), hydrogen, etc. These technology options can even be 

combined as for example bioenergy and CCS (also known as BECCS) enabling the removal of CO2 from the 

atmosphere (e.g. (Edmonds et al., 2013)). In order to dealing with uncertainties related with these technology 

developments, different methodologies are applied. One approach is to combine their effects aggregating them 

as generic technology improvements. Another approach is to analyse the sensitivity of each model to different 

technology availability scenarios (e.g. (Edenhofer et al., 2010; Edmonds et al., 2013)). 

 

7) Mitigation strategies/policies considered 

                                                      
17 Description of IMACLIM models < http://www.imaclim.centre-cired.fr/spip.php?rubrique1&lang=en > 

http://www.imaclim.centre-cired.fr/spip.php?rubrique1&lang=en
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Policy-makers widely agree at the international annual Climate Change Conferences on the need of stabilizing 

climate “at a level that would prevent dangerous anthropogenic interference with the climate system” 

(UNFCCC, 1992). According to (IPCC, 2007b), “an upper limit beyond which the risks of grave damage to 

ecosystems, and of nonlinear responses, are expected to increase rapidly” would be a 2ºC global mean 

temperature increase above pre-industrial levels at equilibrium, i.e. 450 ppm CO2-equivalent.
18

 This level has 

recently been related with a radiative forcing of 2.6 W/m
2
 in the new RCP process (Vuuren et al., 2011a).

 

 

All mitigation strategies in IA models require setting a price on carbon (explicitly through a carbon tax or 

implicitly through a carbon cap applying inverse methods). Without it, the required structural shifts and 

technological developments of current R&D technologies would never happen at a significant level. 

Moreover, climate stabilization feasibility depends critically on the early and full participation of all countries 

(e.g. (Clarke et al., 2009; Luderer et al., 2009)). 

 

In the IPCC 4th Assessment Report (IPCC, 2007b), only three models containing 6 out of a total of the 177 

mitigation scenarios presented results for the lowest category of a radiative forcing (2.5 – 3.0 W/m²). Since 

costs generally increase non-linearly (exponentially) with the stringency of the concentration target, low 

concentration targets are challenging. However, exploring low stabilization targets has become increasingly 

relevant in the last years due to the increasing awareness of potential large impacts(Barnosky et al., 2012; 

Edenhofer et al., 2010; Hansen et al., 2007; Lenton et al., 2008; Smith et al., 2009; Stern, 2006). This has 

stimulated the interest in the most challenging scenarios and how to achieve them in the short-term.  

 

The “EMF 22 International Scenarios” (Clarke et al., 2009) focused into low targets feasibility comparing the 

results of 14 model: roughly half of them achieved 450 CO2-equivalent targets with full and immediate 

participation due to the large and rapid changes required in energy and related systems to meet this ambitious 

target (only 2 models, ETSAP-TIAM and MiniCAM-Base solved for the delayed scenario). 

 

 

 
 
Figure 3: (Clarke et al., 2009): The scenarios submitted by the participating modeling teams. The “+” means that 
the team was able to produce the scenario; darkened cells with an “X” mean that the team was not able to produce 
the scenario. “N/A” means that the scenario was not attempted with the given model or model version. 

                                                      
18 However, others studies have reached conclusions that point that global warming of more than 1°C relative to 

2000, will constitute “dangerous” climate change as judged from likely effects on sea level and extermination of 

species’ (Hansen et al., 2006). (Hansen et al., 2008) concluded that CO2 concentrations should not trespass 350 ppm 

in order to avoid slow climate feedbacks. Probabilistic assessments have also been made that demonstrate how 

scientific uncertainties and different normative judgments on acceptable risks determine these assessments 

(Mastrandrea and Schneider, 2004). 
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More recently, numerous studies using a wide range of models such as AIM, IMAGE, MESSAGE, GCAM, 

GET, MERGE, REMIND, POLES, TIMER (Azar et al., 2010; Calvin et al., 2009; Edenhofer et al., 2010; 

Luderer et al., 2012; Masui et al., 2011; Rao et al., 2008; Riahi et al., 2011; Thomson et al., 2011; Vuuren et 

al., 2011b, 2007) have shown that it is technically possible and economically viable to limit radiative forcing 

(RF) to 2.6 W/m², if the full suite of technologies is available, all regions participate in emission reduction and 

effective policy instruments are applied. A comprehensive review of these studies, however, shows that a 

“magic bullet” does not exist: the mitigation strategies consist of a portfolio of measures. Although, different 

models project many different pathways for evolving to a low-carbon energy system, all follow overshoot 

mitigation trajectories, i.e. scenarios where the concentration is allowed to temporally increase over the final 

target attained at the end of the simulation period.
19

 Also, land-use is found to be an important player and 

modern bioenergy could contribute substantially to the mitigation targets. For an illustrative example of the 

different mitigation strategies and carbon reduction paths. Therefore, these studies regularly conclude that 

creating the right socio-economic and institutional conditions for stabilization (i.e. conditions for full and 

immediate participation) will represent the most important step in any strategy towards GHG concentration 

stabilization. 

 

 
a) 

 
b)  
Figure 4 : (a) (IPCC, 2007b) Cumulative emissions reductions for alternative mitigation measures for 2000-2030 
(left-hand panel) and for 2000-2100 (right-hand panel). The figure shows illustrative scenarios from four models 
(AIM, IMAGE, IPAC and MESSAGE) aiming at the stabilization at low (490 to 540ppm CO2-eq) and intermediate 
levels (650ppm CO2-eq) respectively. Dark bars denote reductions for a target of 650ppm CO2-eq and light bars 

                                                      
19 This overshoot trajectory might be a problem in models considering non-linearities and climate thresholds. 
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denote the additional reductions to achieve 490 to 540ppm CO2-eq. Note that some models do not consider 
mitigation through forest sink enhancement (AIM and IPAC) or CCS (AIM) and that the share of low-carbon energy 
options in total energy supply is also determined by inclusion of these options in the baseline. CCS includes CO2 
capture and storage from biomass. Forest sinks include reducing emissions from deforestation. The figure shows 
emissions reductions from baseline scenarios with cumulative emissions between 6000 to 7000 GtCO2-eq (2000-
2100). {WGIII Figure SPM.9}; (b) (Clarke et al., 2009) Global CO2 emissions and CO2-e concentrations in the 
overshoot 450 CO2-e scenarios with full participation. 
 
Model comparison analysis can help identify a range of pathways to a low carbon economy and shed light on the 
robustness of the associated cost estimates and technology options; for an overview of this literature see 
(Edenhofer et al., 2010, 2006). Thus, model results comparison enlighten some critical features (Clarke et al., 
2009; Edenhofer et al., 2010): 
 

- Without the availability of Carbon Capture and Storage (CCS) or the considerable extension of 

renewables, the most ambitious mitigation pathway is not feasible.  

- Bioenergy with CCS (BEECS) plays a crucial role due to its capacity to concur for negative emissions 

(compulsory in overshoot scenarios): generally, models that consider it allow for low stabilization 

scenarios while the ones that do not, are not able to reach the target (e.g. FUND (Tol, 2009)). In order 

for BEECS to be a significant mitigation technology, bioenergy must deploy at large scale (150–

350EJ/yr primary energy toward the end of the century). Also, the assumed biomass potential 

determines to a large extent the mitigation costs. 

- Without any CCS, low stabilization is not possible and with a level of CCS that is low but sufficient 

(120 GtC) to meet the low stabilization target, costs are still very high. 

- (Edenhofer et al., 2010) found that nuclear power does not play an important additional role in 

mitigation scenarios in most of the models compared. However, other models consider that this 

energy source could become crucial in some scenarios (e.g. GCAM (Calvin et al., 2009)).  

 

Despite the different mitigation portfolios in the models, model comparisons have commonly estimated 

relatively modest mitigation costs in a range of 1.5 - 5.5% decrease of global GDP for 2050 (Edenhofer et al., 

2010; IPCC, 2007b) and 4 – 4.5 % to 2100 (Riahi et al., 2007).
20

 Unlike the other models, E3MG (Barker et 

al., 2006) reports clearly different results concerning the mitigation costs, showing gains due to mitigation of 

up to 2.1% for stabilization pathways (Edenhofer et al., 2010). 

 

Although the sign of mitigation costs or benefices is not clear, in fact, a 5.5% reduction of world GDP to 2050 

means less than 0.12% decrease in annual GDP. Losses of 4.5% to 2100 GDP translate into a loss of just 

about two years of economic output or, in other words, the stabilization scenarios would achieve similar levels 

of GDP as their corresponding baselines by 2102 instead of 2100. As argued by (Rosen and Guenther, 2013) 

“Yet given all the uncertainties and variability in the economic results of the IAMs, […], the claimed high 

degree of accuracy in GDP loss projections seems highly implausible. After all, economists cannot usually 

forecast the GDP of a single country for one year into the future with such a high accuracy, never mind for the 

entire world for 10 years, or more.”
21

  

 

Summarizing, the projected macroeconomic costs of climate mitigation reported by the different IA models 

are relatively modest, particularly compared to the scenario's underlying economic growth assumptions. 

 

8) Temporal and spatial scales 

Most of climate IA models have long and very long temporal scales because climate change is by nature a 

long-term issue due to the huge inertia of global climate (Hansen et al., 2008). The time scale for climate 

                                                      
20 Other studies have reported higher costs in the order of 11% of 2100 GDP with PAGE model (Ackerman et al., 
2009b). 
21 Some simulation models recognize this shortcoming focusing into uncertainty and risk analysis (e.g. 
PAGE, ICAM, FUND). 
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policy analysis is usually 100 years (IPCC, 2007a, 1990), although models can even go further in order to 

reach climate stabilization conditions (e.g. MERGE and PAGE-09 (2200), MIND (2300) or FUND (3000)). 

The temporal scale of a model defines the viewpoint of the represented system determining the relationships 

between the variables considered. When doing short-term projections, variables as technology, population 

evolution and capital stocks are roughly constant, although at medium and longer term demographic 

transitions and innovations could induce changes in the economic structure and technological choices. 

 

The study of the gas concentrations in the atmosphere usually requires a global spatial scope in IAM models, 

although some national or regional levels are also used to analyse the efficacy and economic impacts of local 

mitigation policies (for example, although AIM is a world model, it focus in the Asia-Pacific region). In 

relation to the aggregation level, a high diversity exists from global-aggregated to regional-rich models, 

although the majority of IA models consist on between 5 and 20 regions: 

- Global-aggregated models (1 world region): e.g. DICE, ENTICE-BR, MIND, ANEMI. 

- Medium-disaggregation (5-20 regions): e.g. MERGE, MESSAGE-MACRO, WITCH, GCAM, 

ICAM, PAGE-09, FUND, MIT-EPPA, REMIND. 

- High-disaggregation (>20 regions): e.g. POLES, WIAGEM, IM
22

. 

 

In fact, modeling trade-offs always exist between simplicity (aggregation) and complexity (disaggregation). 

Thus, although highly regional disaggregated models would be in theory able to face more specific issues at 

regional level, they also face an increasing number of assumptions and uncertainties. On the other hand, 

global-aggregated models might face inconsistencies when considering that the world system evolves as a 

homogenous unique entity. Also, models with high regional disaggregation are constrained to have lower 

projection horizon (e.g. POLES and WIAGEM to 2050). The correct approach is to select the model which 

assumptions are the most acceptable depending on the problem to study. 

 

2.2.2 Specific review: the discount rate and quality concerns 

 

Controversies involving the discount rate have been central to global welfare optimization climate models and 

policy for many years (e.g. (Nordhaus, 2008)); a detailed overview of these issues can be found in Chapter 9 

of the Stern Review (Stern, 2006). 

 

Welfare
23

 optimization models maximize the discounted present value of welfare (which grows with 

consumption, although at an ever diminishing rate) across all time periods simultaneously (as if decisions 

could be made with perfect foresight) by choosing how many emissions to abate in each time period, where 

abatement costs reduce economic output. Discounting is a method used in economic models to aggregate costs 

and benefits over a long time horizon by summing net costs (or benefits), which have been subjected to a 

discount rate typically greater than zero, across future time periods. This process also requires imputing 

speculative values to non-market ‘goods’ like ecosystems or human lives. If the discount rate equals zero, then 

each time period is valued equally (case of infinite patience). If the discount rate is infinite, then only the 

current period is valued (case of extreme myopia). The discount rate chosen in IA models is critical, since 

abatement costs will typically be incurred in the relatively near term, but the brunt of climate damages will be 

realized primarily in the long term. Thus, if the future is sufficiently discounted, present abatement costs, by 

construction, will outweigh discounted future climate damages, as discounting will eventually reduce future 

damage costs to negligible present values (e.g. (Nordhaus, 2008; Schneider and Lane, 2005; Stanton et al., 

2009)). Considering a climate impact that would cost 1 billion dollars 200 years from now, a discount rate of 

5% per year (a conventional value, e.g. DICE-07 (Nordhaus, 2008)) would make the present value of that 

future cost equal to $58,000. And at a discount rate of 10% per year, the present value would only be $5.  

 

                                                      
22 Models are continuously in evolution. For example, IMAGE 1.0 model that was developed in the 80s, 
was a global (single-region) model to capture major cause–effect relationships making up the complex 
greenhouse problem (Bouwman et al., 2006).  
23 “Welfare”, or ‘utility’, which is treated as a synonym for welfare in most models. 
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Thus, in cost-benefit analysis models, mitigation decisions in the near-term to reduce future damages are 

critically dependent on the discount rate. In models where non-linearities are considered, the discount rate is 

even the parameter that most influences the 22nd century behaviour of the modelled climate (Schneider and 

Lane, 2005).
24

 

 

Thus, together with the common assumption that the world will grow richer over time, discounting gives 

greater weight to earlier, poorer generations relative to later, wealthier generations. In their review, (Stanton et 

al., 2009) conclude that equity between regions of the world at any time (thus at inter and intra-generational 

level) is excluded from most IA models, even from those which explicitly treat the regional distribution of 

impacts (that are projected to be worse in developing countries). In fact, in regionally disaggregated models, 

any simple, unconstrained attempt to maximize human welfare would generate solutions that include large 

transfers from rich to poor regions. To prevent this “problem” from dominating their results, IA models 

employ “Negishi welfare weights” (based on theoretical analysis in (Negishi, 1972), which constrain possible 

solutions to those which are consistent with the existing distribution of income. In effect, the Negishi 

procedure imposes an assumption that human welfare is more valuable in richer parts of the world (Stanton et 

al., 2009). 

 

Few exceptions exist to these trends. For example, the FREE model (Fiddaman, 2002) uses a discount rate set 

to 0 (so that the welfare of all generations is weighted equally) and the inequality aversion rate to 2.5 (instead 

of lower common values of “1”), so that the needs of current (poorer) generations are of greater urgency. The 

Stern Review (Stern, 2006) uses almost zero, hyperbolic discounting (0.001 yr
-1

) and explore diverse 

assumptions about the equity weighting attached to the valuation of impacts in poor countries. 

 

Summarizing, current welfare optimization IA models typically discount future impacts from climate change 

at relatively high rates. This practice may be appropriate for short-term financial decisions but its extension to 

intergenerational environmental issues rests on several empirically and philosophically controversial 

hypotheses. 

 

2.3 Classification of climate IA models 

 

Different classifications for IA models have been proposed in the literature depending on the focused 

characteristics in the categorization. Also, after more than 20 years of development, there is a trend of model 

hybridization that make that most classifications of IA models found in the literature allow for some overlap 

between sub-groups of IA models (Arigoni and Markandya, 2009; Hourcade et al., 2006; Stanton et al., 2009). 

In Section 2.2 we already presented an overview of the climatic IA models following the traditional BU vs. 

TD classification of Energy-Economy models (Böhringer and Rutherford, 2008; Hourcade et al., 2006; IPCC, 

2001b; Weyant et al., 1995). The economics module of IA models can also be used to distinguish between  

Computable General Equilibrium models (CGE), Optimization models or Simulation models (Dowlatabadi, 

1998). 

 

The III Working Group of the IPCC (Weyant et al., 1995) used a two-dimensional classification for climate 

IA models between policy-optimization and policy-evaluation models which has been extensively followed 

thereafter in the literature (e.g. (Kelly and Kolstad, 1998; Tol, 2006; Toth, 2005)).
25

 

 

                                                      
24 For example, in the E-DICE model, a modified version of Nordhaus’ DICE which contains an enhanced 
damage function that reflects the likely higher damages that would result when abrupt climate changes 
occur, (Mastrandrea and Schneider, 2001) find that, for low discount rates, the present value of future 
damages creates a carbon tax large enough to keep emissions below the trigger level for the abrupt 
non-linear collapse of the THC a century later. A higher discount rate sufficiently reduces the present 
value of even catastrophic long-term damages so that abrupt non-linear THC collapse becomes an 
emergent property of the coupled socio-natural system.  
 
25

 In fact this classification is generic to computer models and thus prior to climate IA models (Sterman, 1991). 
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- Policy-evaluation models take a small set of policies and policy proposals, and the consequences of 

these policies are evaluated in a “what-if” exercise. Consequences are assessed with a more or less 

formalized set of indicators of environmental quality and economic welfare, representing usually 

impacts in great detail. There are many different simulation techniques, including stochastic 

modeling, system dynamics, discrete simulation, and role-playing games. Classical representatives of 

this family are AIM and IMAGE. Policy-evaluation models tend to be developed by natural scientists; 

the models tend to be large, with considerable spatial and temporal details, and use to picture the 

world as a strongly non-linear system with potential catastrophes. In fact, they can easily incorporate 

feedback effects, non-linearities and dynamics since they are not rigidly determined in their structure 

by mathematical limitations as optimization models often are. 

 

- Policy-optimization models include a strictly formal, uni-dimensional assessment of “better” and 

“worse” outcomes, and use this to select the “optimal” policy. Analytically, they optimise key policy 

control variables such as carbon emission control rates or carbon taxes, given formulated policy goals 

(e.g. maximising welfare or minimising the costs of meeting a carbon emissions or concentration 

target). However, impacts are generally estimated in a more aggregated way. Different approaches are 

used, such as cost-benefit analysis and cost-efficiency analysis. Examples of this category are: the 

DICE family (RICE, SLICE, etc.), MiniCAM/GCAM, MERGE, MIT-EPPA, GTAP, etc. For a more 

detailed discussion about these models see (Tol, 2006; Toth, 2005). Policy-optimization models tend 

to be developed by economists, who often tend to normative solutions to policy problems 

(optimization models are prescriptive, but simulation models are descriptive). These models are 

usually small, with little spatial or temporal resolution, and depict the world as smooth and robust. 

 

Different issues need different approaches to be faced. Optimization techniques should be always considered 

whenever the meaning of best is well defined, and if the system to be optimized is relatively static and free of 

feedback. Unfortunately, these conditions are rarely true for the social, economic, and ecological systems. 

Thus, limitations of these models are: (i) difficulties with the specification of the objective function, (ii) 

unrealistic linearity, (iii) lack of feedback and (iv) lack of dynamics  (Sterman, 1991). Indeed, one of the main 

uses of simulation models is to identify how feedback, nonlinearity, and delays interact to produce troubling 

dynamics that persistently resist solution. (For examples see (Forrester, 1969; Sterman, 1985)). These models 

do not calculate what should be done to reach a particular goal, but clarifies what would happen in a given 

situation. The purpose of simulations may be foresight or policy design. Simulation models do have their 

weak points, however. Most problems occur in the description of the decision rules, the quantification of soft 

variables, and the choice of the model boundary (Sterman, 1991). 

 

Tabel 1 classifies some of the most used IA models following the categories described before: BU vs. TD and 

policy-optimization vs. policy-evaluation. In order to represent the hybrid characteristics of many models we 

have avoided the representation in boxes, sorting them qualitatively along the axe BU vs. TD.  

Finally, we briefly mention the classification proposed by (Stanton et al., 2009) who reviewed 30 significant 

climate-economics models classifying them into 5 categories with some overlap: welfare maximization (e.g. 

DICE family, AIM, MERGE, MIND, FUND), general equilibrium (e.g. MIT-EPPA, AIM, SGM, IMACLIM, 

WIAGEM), partial equilibrium (e.g. MiniCAM), simulation (e.g. PAGE) and cost minimization (e.g. MIND, 

MESSAGE). For a classification in relation to the level of integration, (Schneider and Lane, 2005) distinguish 

between different “IAM generations”. 
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Top-Down 

 

 

(Macroeconomic model coupled 

with an energy model) 

Hybrid  

(Energy model coupled with a 

partial depiction of the economy) 

Bottom-Up 

Policy-

evaluation 

AIM/Dynamic global 

(Masui et al., 2006) 

GTEM (Pant, 2007) 

ANEMI (Akhtar et al., 

2013) 

FREE (Fiddaman, 2002) 

 

AIM/Emission- Linkage 

(Morita et al., 2003) 

E3MG (Barker et al., 2006) 

 

AIM/Enduse (Kainuma, 

2003) 

IMAGE (Bouwman et 

al., 2006) 

  

PAGE
c
 (Hope, 2011) 

ICAM
c
 (Dowlatabadi, 

1998) 

  

Policy-

optimization 

DICE family
a
 

GEM-E3 (Capros et al., 

2010) 

GTAP-E (Burniaux and 

Truong, 2002) 

SGM (Edmonds et al., 

2004) 

Phoenix (Fisher-Vanden 

et al., 2012) 

WIAGEM (Kemfert, 

2005) 

MERGE (Manne and Richels, 

2004) 

MIT-EPPA 4 (Paltsev et al., 

2005) 

 

REMIND-R (Leimbach et 

al., 2010) 

IMACLIM-R (Sassi et al., 

2010) 

MIND (Edenhofer et al., 

2005) 

MARKAL-MACRO 

(Loulou et al., 2004) 

MESSAGE-MACRO (Rao 

et al., 2006) 

WITCH (Bosetti et al., 

2006) 

GCAM/MiniCAM (Clarke et al., 

2007) 

POLES (JCR EC, 2010) 

MARKAL (Seebregts et 

al., 2002) 

MESSAGE (Messner and 

Strubegger, 1995) 

 FUND
b
 (Anthoff and Tol, 2012)  

Tabel 1: Representative Climatic IAM model classification following the axes policy-optimization vs. policy evaluation and bottom-up vs. top-down. 
aDICE family includes: DICE (Nordhaus, 2008), RICE (Nordhaus, 2010), ENTICE (Popp, 2006), AD-RICE  among others; bFUND can run different optimization modes, among them: 
top-down vs. bottom-up; c Stochastical evaluation models PAGE and ICAM does not focus into energy neither economy, but on risk and uncertainties. Thus, it cannot be classified 
following the conventional axes for Energy-Economy models BU vs. TD. 
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2.4 Discussion on the state of the art of IAM 

 

After 25 years of development, climatic IAM now represents a fundamental tool when assessing mitigation 

strategies, estimating the costs and informing decision makers in order to prevent anthropogenic climate 

change. It is even beginning to be used to evaluate the mitigation-adaptation trade-offs. Significant 

improvements have been done since early 90s, when IAM was inexpert and subject to severe and pertinent 

critics (e.g. (Risbey et al., 1996; Weyant et al., 1995)). In the words of (Tol, 2006): “IAM is now an 

accepted way of doing research and advising policy, in climate change, in acidification, and increasingly in 

other areas. IA models have developed from crude and clumsy tools to sophisticated frameworks that can 

answer many of the questions that stakeholders may have.” 

 

The overview of the development of IAM shows that the field has evolved in close relation with the IPCC 

process and Assessments due to the adoption of the “consensus approach” as the strategy to deal with 

scientific uncertainties in the interface between science and policy (e.g. (van der Sluijs et al., 2010)). 

However, IA models still face different challenges. IA models are limited by the weaknesses in their 

underlying knowledge and by the simplifications required for efficient modeling and simulation. Critics 

point out that many models suffer from a lack of transparency in terms of both policy relevance and 

credibility, since building these models inevitably involves numerous judgment calls, debatable arguments 

and untestable hypothesis that turn out to be of great importance in determining the policy 

recommendations of these models. Some controversial characteristics include: the dominant sequential 

approach, the difficulty to represent pervasive technological developments and non-linearities, thresholds 

and irreversibilities, the treatment of climate change damages, the omission of other human-disturbances, 

the discount rate values, the consideration of equity across time and space, structural shifts in socio-

economic systems, etc.  

 

Although since 90s climate IA models have improved their policy-relevance
26

 (the assessment part), the 

coupling of natural and social science models (the integration part) has largely stalled. The sequential 

approach has been used extensively in spite of really integrated structures as the full-integrated scheme 

showed in the Figure 4 (a). Also, climate IA models generally omit other human-disturbances such as the 

biodiversity loss, the alteration of other natural cycles (e.g. nitrogen, phosphorus, water), etc. that are in 

reality tightly coupled between them and with the climate system (e.g. (MEA, 2005; Rockström et al., 

2009)). 

 

Models that traditionally include rich couplings among the natural subsystems are known as Earth System 

Models (ESM). Although their focus was originally on the physical climate system, more recently the 

carbon cycle and dynamic vegetation have been added. On the other hand, the IAM approach comes largely 

from a tradition of modeling the interaction of human activities, decision making and the environment, 

focusing on economic production and consumption, energy systems, emissions and climate change.
27

 Thus, 

although there is a significant overlap in the systems modelled, there are also components that are unique to 

each group (Hibbard et al., 2010; Tol, 2006; Vuuren et al., 2011c). As (Tol, 2006; Vuuren et al., 2012, 

2011c) argue, one of the main challenges to future IAM developments is the full-coupling with the Earth 

System Models (ESM): “[…] if ESM want to truly describe and predict the earth system, they would need 

to include the major agent of global change, namely homo sapiens sapiens” (Tol, 2006) pointing out the 

difficulties of mapping from natural to economic space and back (down-scaling and up-scaling in a 

mismatch of scales
28

), and relating mental models of the economic agents (generally operating in the short-

term) with the natural agents “reactions” (characterized by big inertias of decades and centuries). 

 

                                                      
26 Indeed, the IPCC has reached a great level of reputation, trust, and network for both the scientists and policy-
makers, which culminated with the award of the 2007 Peace Nobel Price. 
27 (Tol, 2006) indicates that integrated assessment models “may be classified as simple earth system models”.  
28 For example, how to downscale climate change from grids that are usually in the order of hundreds 
of kilometers when studying the impacts in biodiversity in the mosaic of “small” ecosystems of the 
planet? How can a climate modeler scale up knowledge of evapotranspiration through the sub-
millimeter-sized stomata of forest leaves into the hydrological cycle of the climate model, resolved in 
this hundreds of kilometers grids? 
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Because this interplay between natural and socio-economic systems determines the entire system’s 

evolution, the representation of the corresponding feedbacks is critical to the development of appropriate 

climate change adaptation and mitigation strategies, the potential to represent non-linearities, thresholds, 

irreversibilities and positive feedbacks. That is why the latest developments focus on these issues:  

 

- Heightened collaboration between impacts, adaptation and vulnerability research, and climate and 

integrated assessment modeling (Calvin et al., 2013; Hibbard et al., 2010; Moss et al., 2010).  

- Coupling of IAMs with models that include rich couplings among the natural subsystems as Earth 

System Models (ESM) (Tol, 2006; Vuuren et al., 2011c), e.g. GCAM with CESM (Jones et al., 

2011), MIT-EPPA as a module of MIT-IGSM (Sokolov et al., 2005), GISMO project (PBL, 2008). 

 

Feedbacks between the subsystems remain as a scarce, partial and constrained by critical uncertainties 

characteristic of the current development of IA models, as revealed by the survey of damage functions 

(Arigoni and Markandya, 2009). Although some evolution exists, recent surveys conclude that it has been 

significantly slow in the last decade.  

 

The choice of the discount rate in welfare optimization models has a very large effect on policy 

recommendations, because most impacts of climate change occur in the future while mitigation takes place 

in the near term. Higher discount rates lead to lower present values of future damages. The choice of the 

discount rate was one of the main controversies in the (Stern, 2006) Report. This is an issue inherent to the 

economics of climate change and not just to IAM, though the longer time horizons in these models make 

this issue more important. Another sensitive assumption is the way to weight impacts in different regions, 

when aggregating global values  

 

Uncertainty and risk aversion analysis (when considered by the model) is crucial in IAM, and related to 

this, whether best guess / central values are used or not. A key issue here regards to climate sensitivity, i.e. 

the equilibrium warming expected with a doubling of CO2 concentrations, and the risk of low probability-

high consequence events
29

.  

 

There have been rapid advances in recent years in the area of including endogenous technological change; 

the review by (Kahouli-Brahmi, 2008) offers a thorough description of the most recent attempts to model 

endogeneity and induced technological innovation. 

 

A review of the recent literature on IAM shows that most models agree that low climate stabilization (below 

2ºC) is technically and economically viable if the full suite of technologies is available, all regions 

participate in emission reduction and effective policy instruments are applied. However, comparing the 

results of the different models we find that there is not one single mitigation strategy. On the contrary, there 

are different mitigation strategies consisting of a portfolio of measures, which may vary depending on the 

specific model used. However, without the availability of CCS or the considerable extension of renewable 

energies, the most ambitious mitigation pathways are not feasible. Thus, the conditions of global 

participation in climate policy in the near-term and shift technology transfer across regions remain as the 

greatest challenge for low stabilization targets. 

 

The utility of the climate IAM based on Cost-Benefit Analysis has been greatly disputed since its start due 

to the number of “empirically and philosophically controversial hypotheses”, as discussed in the text. 

Several authors argue that climate change policy should be reframed as “buying insurance against 

catastrophic, low-probability events”, i.e. assuming the critical uncertainties and plaid to adopt the 

Precautionary Principle for policy decisions (e.g. (Ackerman et al., 2009a; Rosen and Guenther, 2013; 

Weitzman, 2009)), arguing that “the appropriate role for economists would then be to determine the least-

cost global strategy to achieve the stabilization target” (Ackerman et al., 2009a). Finally, Climatic IAM 

must be seen as a science in continuous evolution, in which new dimensions of the problem have to be 

incorporated by using new methodologies and scopes, and models have to integrate continuously new 

scientific knowledge and deepen and diversify the assessments. 

 

                                                      
29 This is especially relevant due to the limited ability of current climate IA models to represent potential non-
linearities, thresholds and irreversibilities. 
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Appendix A: Climate IA models 

 

Model 

 

Predecessor/first version Current last version (up 

to September 2013) 

Developing institution/authors. Webpage 

MiniCAM/GCAM 

 

ERB (Edmonds and Reilly, 

1985), MiniCAM (Edmonds 

et al., 1997) 

GCAM 3.1 (Clarke et al., 

2007; Wise et al., 2009) 

Joint Global Change Research Institute (Pacific Northwest National Laboratory) at 

the University of Maryland (USA). 

http://www.globalchange.umd.edu/models/gcam  

IMAGE  

 

IMAGE 1.0 (Rotmans, 

1990) 

IMAGE 2.4 (Bouwman et 

al., 2006) 

Netherlands Environmental Assessment Agency (MNP). 

http://themasites.pbl.nl/tridion/en/themasites/image 

AIM AIM (Matsuoka, 1992; 

Morita et al., 1994) 

AIM (Masui et al., 2006) National Institute for Environmental Studies (NIES), Kyoto University. 

http://www-iam.nies.go.jp/aim/index.htm  

MARKAL-

MACRO 

MARKAL-MACRO 

(Manne and Wene, 1992) 

MARKAL (Loulou et al., 

2004) 

cooperative multinational project by the Energy Technology Systems Analysis 

Programme (ETSAP) of the IEA. 

http://www.iea-etsap.org/web/MARKAL.asp  

DICE Family DICE-92 (Nordhaus, 1993, 

1992) 

DICE-2007
a
 (Nordhaus, 

2008), RICE-2010 

(Nordhaus, 2010) 

Yale University by W. Nordhaus, D. Popp, Z. Yang, J. Boyer. 

http://www.econ.yale.edu/~nordhaus/homepage  

PAGE 

 

PAGE-92 (Hope et al., 

1993) 

PAGE-09 (Hope, 2011) Commission of European Communities, Directorate General for Environment, 

Nuclear Safety and Civil Protection. 

 

ICAM (Dowlatabadi and Morgan, 

1993) 

(Dowlatabadi, 1998) Dowlatabadi. Center for Integrated Study of the Human Dimensions of Global 

Change (Carnegie Mellon University) 

http://chicagoclimateonline.org/topics/iams-icam-3 

http://hdgc.epp.cmu.edu/models-icam/models-icam.html 

(last version from 2000) 

MESSAGE MESSAGE III (Messner and 

Strubegger, 1995) 

MESSAGE IV 

(Nakicenovic and Riahi, 

2003) 

IIASA (Austria) 

http://www.iiasa.ac.at/web/home/research/modelsData/MESSAGE/MESSAGE.en.

html  

MERGE MERGE (Manne et al., 

1995) 

MERGE (Manne and 

Richels, 2004) 

EPRI & PNNL/Univ. Maryland, USA. 

http://www.stanford.edu/group/MERGE  

SGM SGM (Edmonds et al., 1995) SGM-2004 (Edmonds et 

al., 2004) 

PNNL/Univ. Maryland and EPA, USA. 

http://www.globalchange.umd.edu/models/sgm  

POLES POLES (EC, 1996) POLES (JCR EC, 2010) LEPII-EPE & ENERDATA (UE). 

http://webu2.upmf-grenoble.fr/iepe/Recherche/Recha5.html  

FUND FUND 1.5 (Tol, 1996) FUND 3.6 (Anthoff and R. S. J. Tol (University of Sussex, United Kingdom and Vrije Universiteit, 

http://www.globalchange.umd.edu/models/gcam
http://themasites.pbl.nl/tridion/en/themasites/image
http://www-iam.nies.go.jp/aim/index.htm
http://www.iea-etsap.org/web/MARKAL.asp
http://www.econ.yale.edu/~nordhaus/homepage
http://chicagoclimateonline.org/topics/iams-icam-3
http://hdgc.epp.cmu.edu/models-icam/models-icam.html
http://www.iiasa.ac.at/web/home/research/modelsData/MESSAGE/MESSAGE.en.html
http://www.iiasa.ac.at/web/home/research/modelsData/MESSAGE/MESSAGE.en.html
http://www.stanford.edu/group/MERGE
http://www.globalchange.umd.edu/models/sgm
http://webu2.upmf-grenoble.fr/iepe/Recherche/Recha5.html
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Tol, 2012) Netherlands) and D. Anthoff (University of Michigan, USA). 

http://www.fund-model.org  

GTEM MEGABARE (Hinchy and 

Hanslow, 1996) 

GTEM (Pant, 2007) Australian Bureau of Agricultural and Resource Economics and Science 

(ABARES). 

http://www.daff.gov.au/abares/models  

GEM-E3 GEM-E3 (Capros et al., 

1998) 

GEM-E3 (Capros et al., 

2010) 

http://ipts.jrc.ec.europa.eu/activities/energy-and-transport/gem-e3  

WIAGEM WIAGEM (Kemfert, 2002) WIAGEM (Kemfert, 2005) Humboldt University and DIW Berlin, Germany. 

GTAP-E GTAP-E (Burniaux and 

Truong, 2002) 

GTAP-E (McDougall and 

Golub, 2007) 

Global network administered by the Center for Global Trade Analysis in Purdue 

University (USA). 

https://www.gtap.agecon.purdue.edu/models/energy/default.asp  

FREE FREE (Fiddaman, 2002) Thomas Fiddaman. 

http://www.metasd.com/models/#Climate 

MIND MIND (Edenhofer et al., 

2005)  

MIND (Held et al., 2009) Esto parece que lo lleva edenhofer et al del PIK. 

http://www.pik-potsdam.de/research/sustainable-solutions/models/ 

WITCH WITCH (Bosetti et al., 2006) Fondazione Eni Enrico Mattei (FEEM) Italy. 

http://www.witchmodel.org/ 

E3MG E3MG (Barker et al., 2006) E3MG (Barker et al., 2006) UK Tyndall Centre for Climate Change Research 

http://www.4cmr.group.cam.ac.uk/e3mg  

REMIND REMIND (Leimbach et al., 

2010) 

REMIND 1.5 (Luderer et 

al., 2013) 

PIK, Germany. 

http://www.pik-potsdam.de/research/sustainable-solutions/models/remind/remind-

code 

IMCALIM-R IMACLIM-R (Sassi et al., 2010) Centre International de Recherche sur l’Environnement et le Développement 

(CIRED), France. 

http://www.imaclim.centre-cired.fr  

ANEMI ANEMI_1 (Davies and 

Simonovic, 2010) 

ANEMI_2 (Akhtar et al., 

2013) 

University of Western Ontario, Canada. 

MIT-EPPA MIT-EPPA 1.6 (Yang et al., 

1996) 

MIT-EPPA 4.1 (Paltsev et 

al., 2005) 

MIT, USA. 

http://globalchange.mit.edu/research/IGSM/eppadl  

Phoenix
b
 Phoenix (Fisher-Vanden et al., 2012) PNNL/Univ. Maryland and EPA, USA. 

www.globalchange.umd.edu/models/phoenix/  

Tabel 2: The majority of IAM projects are independent efforts; however, there is much collaboration within the IAM field. For example, model developers frequently meet at 
conferences and workshops to discuss their results and share information (e.g. EMF).  
aDICE-2013 is in beta-version (http://www.econ.yale.edu/~nordhaus/homepage/Web-DICE-2013-April.htm).  
bIn fact, the Phoenix model replaces the Second Generation Model (SGM) that was formerly used for general equilibrium analysis at JGCR 
 

 

http://www.fund-model.org/
http://www.daff.gov.au/abares/models
http://ipts.jrc.ec.europa.eu/activities/energy-and-transport/gem-e3
https://www.gtap.agecon.purdue.edu/models/energy/default.asp
http://www.witchmodel.org/
http://www.4cmr.group.cam.ac.uk/e3mg
http://www.imaclim.centre-cired.fr/
http://globalchange.mit.edu/research/IGSM/eppadl
http://www.globalchange.umd.edu/models/phoenix/
http://www.econ.yale.edu/~nordhaus/homepage/Web-DICE-2013-April.htm
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3. Overview of Environmental Computational General Equilibrium Models 

 

3.1 Introduction 

 

CGE models are based on Walrasian general equilibrium theory. This theory prevails when supply and 

demand are equalized across all of the interconnected markets in the economy. These models are 

simulations that combine the general equilibrium structure with realistic economic data to solve numerically 

for the levels of supply, demand and price that support equilibrium across a specified set of markets. CGE 

have become increasingly popular over the last couple of decades and are now the dominating model type 

for economic policy analysis. Main CGE applications are in fiscal reform and development planning, 

environmental analysis and, international trade. However, as discussed above CGEs, like other traditional 

models, suffer from some strong (even wrong) assumptions, which can lead to unwarranted conclusions for 

policy making. 

 

In the literature a clear definition of CGE models is missing, i.e. there is still much discussion about a 

definition. In the literature also different names can be found for CGE models, such as Transaction Value 

models, Applied General Equilibrium models and SAM-based general equilibrium, see e.g. Thissen (1998). 

Borges (1986) defines CGE-models as models that “describe the allocation of resources in a market 

economy as the result of the interaction of supply and demand, leading to equilibrium prices. The building 

blocks of these models are equations representing the behavior of the relevant economic agents- consumers, 

producers, the government, etc. Each of these agents’ demands or supplies goods, services and factors of 

production, as a function of their prices.” This definition does not exclude models that are generally not 

seen as CGE models.  

 

Thissen (1998), following Bergman (1990), tries to solve this by narrowing the definition of CGE models 

by describing their common and distinct characteristics, such as aggregation of households and the 

modeling of all links within the economy that represent a transaction of money or goods, opposite to partial 

equilibrium models that analyze the different sectors separately under ceteris paribus assumptions. The idea 

of CGE models is to compare the base equilibrium with the new equilibrium that arises after t exogenous 

shocks or the policy measures arise. Bergman and Henrekson (2003) also state that a precise definition of a 

CGE model does not exist. Whenever the CGE model “label” is used “the model in question tends to have 

certain specific features”, they state. One of these (very basic) features is that the model should be “a multi-

sector model based on real world data of one or several national economies.” For a thorough discussion on 

the definition of CGE models we refer to the mentioned papers above. 

 

A standard CGE model is characterized by flexible disaggregation and pre-programmed alternative rules for 

clearing factor markets and macro accounts. Fig. 3 provides a simplified picture of building blocks of a 

standard CGE and the links between the major them. The disaggregation of activities, (representative) 

households, factors, and commodities – the blocks on the left side of the figure – is determined by the 

disaggregation of the SAM. The arrows represent payment flows. With the exception of taxes, transfers and 

savings, the model also includes “real” flows (for a factor service or a commodity) that go in the opposite 

direction. The activities (which carry out production) allocate their income, earned from output sales, to 

intermediate inputs and factors. 

 

Since the beginning of the 1990´s CGE modeling has also become a widely used tool for analysis of 

environmental policy and natural resource management issues. The main purpose of this chapter is to 

review this branch of CGE modeling. 
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Figure 5: (Strzepek et al 2008) Links between building blocks of a standard CGE  
 

3.2 Classification of CGE models 

 

In spite of these basic similarities or characteristics that are used to define CGE models, there are also 

significant differences between individual CGE models, and a number of categories of CGE models can be 

distinguished. In the literature there are several ways to classify CGE models. Thissen (1998) describes 

three different ways to classify CGE models. The first classification is based on historical development, 

where two types can be distinguished. The first type of this historical classification is evolved from macro 

models (or multisector models) in the 1970s, commonly used for policy analysis in developing countries. 

The second type  of this historical classification, Walrasian CGE models, are develop from the general 

equilibrium framework of Walras and the numerical solution of these systems by Scarf (1967). The second 

classification by Thissen (1998) deals with the choice of so called “closure rules”, here the distinction is 

between Walrasian CGE models, that are considered a subgroup of all CGE models with a neoclassical 

closure and other CGE models that have other “closures” (e.g. Johansen closure, Keynes closure etc.). The 

third classification of CGE models is based on the techniques used to determine the parameter values. Here 

we have to different types, the first based on calibration techniques also knows and SAM-based and second 

models with parameters based on econometric estimation.  

 

An alternative classification is static and dynamic CGE models. Several static CGE models have been used 

for multi-period analyses in which prices are set in each time period and then this solution is used as the 

initial point for the next period. In a dynamic economic model, forward looking behavior on the part of 

households and firms is assumed and stock accumulation relations are explicitly included, however, CGE’s 

assuming no foresight at all. Therefore dynamic CGE models are better described as ‘quasi dynamic’ or 

‘recursive dynamic’ models. This brings us also to the downside of these models as no transaction takes 

place in dis-equilibrium that is all economic agents have to wait until equilibrium is found before they make 

any decision.  

 

In addition to the static-dynamic dimension it is useful to distinguish between single-country, multi-country 

and global models. Single-country models tend to be more detailed in terms of sectors and household types, 

and they are in general used for analyses of country-specific policy issues and proposals. Multi-country and 

global models, on the other hand, tend to have less sector detail and to be designed for analysis of proposed 

multi-lateral policies such as free-trade agreements. In the case of environmental CGE models the multi-

country and global models in most cases are designed for analysis of trans-boundary pollution problems.  

Finally CGE can also differ in number of production sectors, number of primary factors and specification of 

international trade relations. 

The specification of international trade relations is an important aspect of all open-economy CGE models, 

but seems particularly important in environmental CGE models. The most widely used approach is to adopt 

the “Armington assumption”, which implies that goods with the same statistical classification but different 

countries of origin are treated as non-perfect substitutes. This is done to overcome extreme patterns of 
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specialization that occurs since in most CGE models there are more sectors than factors.  Another way to 

overcome overspecialization in CGE models is to retain the assumption about exogenously given terms of 

trade, while relative-price dependent export supply functions are added. These functions usually are derived 

from constant elasticity of transformation (CET) functions defining the output of a given sector as a 

revenue-maximizing aggregate of goods for the domestic market and goods for foreign markets. 

 

3.3 Environmental CGE review 

 

Using a CGE model for policy analysis is conditional on whether the proposed policy measures are likely to 

have general equilibrium effects. Some environmental problems may be quite costly for some firms and 

households, the repercussions to the rest of the economy often are small or close to zero. However, there are 

indeed major environmental problems with a much wider geographic and economic scope. A prime 

example is “climate change”, which is related to emissions of carbon dioxide and other greenhouse gases. 

Many CGE models are widely used for evaluation of climate related policies. The CGE models analyzed 

may be all classified as energy–economy–environment models since they are all concerned with linkages 

between economic activities, energy transformation, and associated environmental impacts. We find that 

operational versions of E3–CGE models have a good coverage of central economic indicators. 

Environmental indicators such as energy related emissions with simple direct links to economic activities 

are widely covered, whereas indicators with complex natural science background such as water stress or 

biodiversity loss are hardly represented. Social indicators stand out for very weak coverage, mainly because 

they are vaguely defined or incommensurable. 

 

Despite this heavy usage of CGE models in policy analysis, these models are often criticized as being 

insufficiently validated. Key parameters are often not econometrically estimated, and the performance of 

the model as a whole is rarely checked against historical outcomes. As a consequence, questions frequently 

arise as to how much faith one can put in CGE results. In the literature there exist several ways to validate 

CGE models. One way to validate a policy model is to test it against historical data, and examine how well 

the model explains past events. By doing so, any deficiencies in the model can be better understood, and 

work can be done to improve them. If CGE models are capable of capturing the impact of important policy 

events, then confidence would be built in applying a model with the same theoretical structure to later 

experiments. Special attention goes to (energy-related) elasticities, most CGE models derived the value of 

these elasticities based on the literature, however some use econometric estimation.   

 

Within the class of environmental CGE models two other classification can be found. The first one is 

externality CGE Models, i.e. CGE models focused on climate change which deal with externalities and 

policies aimed at internalizing externalities. And the second deals with resource management CGE Models, 

i.e. climate change or environmental problems which reflect any kind of market failure leading to poor 

management of natural resources and losses of environmental amenities. Thus in economies highly 

dependent on natural resources like forests, fisheries, agricultural land or grazing land changes in the natural 

resource management regime may have economy-wide effects, and CGE models may be able to quantify 

these effects.   

 

3.3.1 General review aspects 

 

There are several criteria that can be used to review environmental CGE model, such as the level of dis-

aggregation (both sectorial and geographical), modeling of technological progress, modeling of 

environmental damages, the abatement measures.  

 

1) CGE and environmental damages 

Most environmental CGE models are designed to elucidate various aspects of climate change or, in some 

cases, acid rain policies. To a large extent climate change and acid rain problems are caused by emissions 

from the combustion of fossil fuels. In both cases the environmental damage depends on the accumulated 

stock rather than the current flow of pollutants. Moreover, the stocks of the pollutants in question 

accumulate slowly so there is a considerable time lag, particularly in the case of climate change, between 

the emission of pollutants and the resulting impact on the environment. These observations have several 

implications for the design of CGE models intended for policy analysis.  
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Another implication of the nature of the environmental problems in question is that the model should take 

stock accumulation over very long periods of time into account. However, in the models reviewed here, 

none of the CGE models considers the stock of the pollutants, only the physical flow of pollutants in taken 

into consideration.  

 

Another implication for CGE modeling is related to the fact that the benefits of environmental policy 

measures are “non-economic”, i.e. that they come in the form of better environmental quality. Quantifying 

benefits or losses of environmental policy measures is not modeled within CGE environmental models. This 

is typically a topic within Impact Assessment models, such as DICE (and related models), MERGE, PAGE 

and FUND, where physical damage function are defined that convert emissions and other environmental 

effect of production and consumption. The focus is on how impacts are translated into monetary damages 

and how these damages can be reduced via adaptation, for a good overview we refer to Döll (2009). 

 

Many environmental CGE models lack a module for environmental benefit calculation, or have an 

environmental module that is based on shaky data and/or very bold assumptions. Basically two types of 

approaches have been adopted. One is to focus on feedback effects. Examples of CGE models with explicit 

feedback effects are EPPA, where environmental feedbacks on the economy arise, through changes in the 

productivity of crops and forests and impact on the human capital. This is mediated through the impact on 

physical systems. Something similar holds for EXIOMOD, GEMINI-E3 and GTEM. Another approach is 

to assume that politically determined environmental goals, or international agreements on emission 

reductions, represent an efficient trade-off between the relevant costs and benefits. Given this assumption 

the parameters of an environmental benefit function can be determined.  

 

2) Elaborated treatment of the supply and demand for energy 

One obvious implication is that the model should have an elaborated treatment of the supply and demand 

for energy. In particular it should have an elaborated treatment of the possibilities to substitute other forms 

of energy, or other factors of production, for fossil fuels. It should also have an explicit treatment of the 

relation between the use of fossil fuels and the emission of various pollutants. In the EPPA, EXIOMOD, 

GEM-E3 and WORLDSCAN model an elaborated treatment of supply and demand for energy exists. All 

environmental CGE models that include emission, link the use of fossil fuels and the emissions of various 

pollutants (both Green House Gasses (GHGs) as non GHGs). 

 

3) Time Horizon 

Typically environmental CGE models have a time horizon of 2030 of 2050, but other such as the EPPA, 

EXIOMOD and AMIGA have a time horizon of 2100. To capture effect of the policy change within the 

model, the CGE models should incorporate several decades. Thus the development and implementation of 

new technologies might affect emissions and other impacts on the environment much more than substitution 

between currently existing technologies, more on this in section 3.6. 

  

4) Coverage of appropriate production (economic) sectors + production function structure 

Most Environmetal CGE model make use of either GTAP classification. These classifactions includes 

production sectors for electricity, transportation, metals, pulp and paper, and chemicals etc. Also sectors 

that are effected by climate change, such as forestry, agriculture and fishery are present. The EXIOMOD 

model includes a very detailed level of sectors including for instance 12 types of electricity. 

 

The sectoral production functions basically define substitution possibilities between explicitly defined input 

factors. In CGE models focused on environmental policies related to climate change it is important to 

distinguish not only between capital, labor, non-energy intermediate inputs and energy, but also between 

fossil and non-fossil energy. Often it is also convenient to distinguish between fuels and electricity. 

 

In some CGE models the production function is assumed to have a so called flexible form and the 

parameters are econometrically estimated. The use of flexible functional forms is a way to circumvent the 

strong assumptions about the elasticities of substitution between different pairs of inputs implied by the 

standard production functions. To some extent these functional forms were developed in order to properly 

deal with the substitutability of energy and other factors of production in econometric general equilibrium 

models. However, lack of data often prevents econometric estimation of the sector cost functions. Instead 

the elasticities of substitution between different inputs generally are “guesstimated”. This means that both 
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the nesting structure of the production functions and the adopted numerical values are based on literature 

surveys of relevant econometric studies.  

 

5) Capturing abatement measures 

If emission data are directly associated with the volume of output, that is abatement activities are not 

endogenously modeled, then the only way to reduce emissions is by reducing output. This is a rather 

unpleasant conclusion for countries troubled with unemployment as well as for developing countries. 

However, for an analysis of the impact of environmental regulation on international competitiveness and on 

growth, the inclusion of the operating costs of pollution control is of importance. Polluting firms can react 

to standards and/or emission taxes either by factor substitution or by abatement activities or by both. They 

have abatement cost functions and determine the level of the abatement activity by equating marginal cost 

of abatement to the uniform tax rate on emissions. Abatement activities also imply demand for intermediate 

goods, for capital and for labor. Depending on the objective of the study, several approaches to impose 

pollution control regulations on the technology can be found in the literature. The easiest way to deal with 

the problem of how to model abatement technologies is to study the economic impact of reducing carbon 

dioxide emissions. Since there are no carbon abatement technologies available at reasonable economic 

costs, this explains the popularity of modeling CO2 reduction policies. Substitution and output effects are 

the only measures to reduce CO2 emissions. 

 

There are also direct abatement possibilities. In order to capture abatement measures some environmental 

CGE models incorporate abatement cost functions, usually estimated on the basis of generic rather than 

site-specific engineering data. In representative CGE models the abatement activity is assumed to depend 

on economic incentives so that abatement takes place whenever the marginal cost of abatement is less than 

or equal to the cost to the firm, or household, of marginal emissions.  

 

6) Treatment of the impact of implementation of new technologies on the environment  

It is well-known that the outcome from an environmental policy measure in response to mitigate global 

climate change is very sensitive to the assumption made on the rate of energy efficiency improvement. 

However, technical progress is in general considered to be a noneconomic, exogenous variable in economic 

policy models. This is not very satisfactory because the neglect of induced technological progress may lead 

to an overestimation of the costs of greenhouse gas reduction or of the contribution of traffic to air 

pollution. An inadequate representation of policy driven technical change in the models will also result in 

an understatement of the advantages of market-based instruments.  

 

The technological change process is usually initiated by public or private R&D and diffuses by “learning by 

using”, “learning by doing” and by networking. These processes are not easy to capture in a neoclassical 

framework because they have evolutionary elements. In most models technological parameters, 

representing e.g. efficiency or emission reduction potentials, are treated as inputs and not as results of the 

technological change process. The impact of technological change on processes, products and on emissions 

cannot be modeled with only a few equations. Emission reduction of air pollutants can be achieved by fuel 

substitution (non-energy for energy or within energy inputs), by efficiency improvement in power 

generation, and by the energy user. The potential for emission reduction can focus on energy use per unit of 

production or on emissions per kWh.  

 

Stages of the techno-economic development have to model incentives and costs of R&D, implementation 

costs (information and operating costs), commercialization, and wide-scale diffusion, barriers to market 

penetration, the technological infrastructure and the scope for future efficiency improvement of established 

versus novel products. For reducing greenhouse gas emissions, e.g., there are many technologies or means 

which could be introduced in a model: fuel substitution to less carbon-intensive fuels, renewable energy, 

advanced power generation cycles, transmission improvements, end user efficiency improvement or carbon 

sequestration (e.g. by biomass greening). It is obvious that it is not possible to model all those measures 

within a CGE framework. Until recently, the following four main approaches were used to incorporate 

technical progress in CGE models: 

 

 a partially endogenous treatment of technical progress initiated by Jorgenson and Wilcoxen 

 autonomous energy efficiency improvement (input saving technical change) 

 the vintage composition of the capital stock 

 the transition to backstop technologies 
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In Jorgenson and Wilcoxen (1990), and later in the G-Cubed model of Wilcoxen and McKibbin (1992), 

technological development is partly endogenized by the specification of productivity growth as a function 

of the prices of all inputs of an industry. In this approach, substitution away from polluting inputs can affect 

the rate of productivity growth. A decrease in an industry’s productivity level will raise the price of its 

output relative to its input prices, i.e. the industry will become less competitive. If the bias of technical 

change is input of type i using and the price of such a pollution intensive input increases (e.g. by a tax), then 

cost reduction due to productivity growth will be reduced. EPPA models technical change in three ways. 

First, there is an exogenous augmentation of the supplies of labor and natural resources. Second, energy use 

per unit output decreases exogenously through time (the so-called autonomous energy efficiency 

improvement index, or AEEI). The AEEI is a heuristic representation of non-price driven changes in energy 

use over time. For developed countries there has been an observed improvement in energy intensity of the 

economy that is not easily explained by fuel prices. While this improvement is sometimes considered due to 

technical change, it can also result from changes in the structure of the economy. And third, included in 

EPPA are energy technologies that are currently unused (or only at very small scale), but which come into 

play as supplies of conventional energy resources deplete causing their prices to rise or as policies penalize 

the GHG emissions of conventional fossil technologies. Their time of entry in a simulation depends on their 

costs relative to those of current fuels, as they endogenously change in a forward simulation of EPPA. 

 

An alternative approach to incorporate technical change is the use of capital vintages involving different 

technologies. The differentiation of technologies can have effects on the form of the production function, on 

the input structure, or on flexibility (different elasticities of substitution for the vintages). With new vintages 

substitution possibilities among production factors are higher than with old vintages. In EPPA's dynamic 

structure, two kinds of capital goods coexist in each period, "old" capital installed in previous periods, and 

"new" capital resulting from current-period investment. This putty/semi-putty technology also implies 

different substitution possibilities by age of capital. 

 

3.3.2 Specific review of a number of existing environmental CGE models 

 

In this section a number of environmental CGE models are reviewed that are frequently used for the impact 

assessment of environmental and energy relates policies. The main characteristics of these models are 

discussed following the discussion on general review criteria in the previous section. 

 

AMIGA 

The AMIGA (All Modular Integrated Growth Assessment Modeling System) model is a recursive dynamic, 

computable general equilibrium model of the U.S. and world economies. The model runs to year 2050, with 

a special capability to extent to 2100 for climate assessment analysis.  

 

The full set of modules that make up the AMIGA system provide a comprehensive representation of more 

than 200 production sectors and the absorption of goods and services within the U.S. economy. The 

modules include additional detail on technology, 

Employment and trade. For other world regions, the accounting framework is provided by the Global Trade 

Analysis Project (GTAP) database. 

 

For production sectors, a constant elasticity of substitution (CES) aggregator function is 

Used to combine labor in efficiency units with capital services from producer durable equipment and 

structures, creating value added as the output. Capital stocks accumulate over time, with the model tracking 

vintage, energy intensity, and other characteristics. Long-run price elasticities of electricity and fuel 

demands are much greater than short-run elasticities.  

 

Regarding international trade, some goods, such as crude oil, are considered perfect substitutes whether 

they are produced domestically or abroad. However, AMIGA uses the Armington assumption that most 

final and semi-finished goods are differentiated, i.e., that these imports are close but not perfect substitutes 

for domestically produced goods. The model also uses elasticity of substitution values based on the MIT 

Emission Prediction and Policy Analysis (EPPA) model. Then demand for a sector’s product is interpreted 

as a demand for the aggregated combination of the domestic and imported goods. Again, the CES function 
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is used as the aggregator for the imported and the domestic goods. Technology improvements are 

represented over time, and advanced technologies are included. 

   

DART 

DART stands for "Dynamic Applied Regional Trade". DART is a multi-regional, multi-sectoral computable 

general equilibrium model of the world economy. It is based on the GTAP5-E (energy) data set of the 

Global Trade Projects. The economic structure of DART is fully specified for each region and covers 

production, investment and final demand. Primary factors are labor, capital and land. 

 

Producer behavior is characterized by cost minimization for a given output. All industry sectors are 

assumed to operate at constant returns to scale. For the non-fossil fuel industries, a multi-level nested 

separable constant elasticity of substitution (CES) function describes the technological possibilities in 

domestic production between intermediate inputs on the one side and a capital-labor-energy (KLE) 

aggregate on the other side. The KLE-aggregate is a CES function of energy aggregate and the primary 

factors that are linked by a Cobb-Douglas function. Inside the energy aggregate, substitution is possible 

between electricity and fossil fuels. The fossil fuels gas, coal and crude oil are each produced of specific, 

fixed resources and a macro aggregate of all other intermediate inputs and primary factors. Furthermore, an 

investment good is produced in each region using fixed shares of the different intermediate inputs. 

Investment is not sector specific and does not use primary factors. Primary factors are labor and capital. 

Both are intersectorally mobile within a region, but cannot move between regions 

 

Environmental damages are defined via politically determined environmental goals/international 

agreements on emission reductions. The model makes use of an abatement (cost) curve, where annex 

countries B (EU, USA, Japan, New Zealand, Australia, and Canada) start abatement in 2005, the year where 

the European emission trading is scheduled to start. In the following years emissions are reduced by the 

same absolute amount each year, until the target is reached in 2010. 

 

EDGE 

EDGE (Dynamic General Equilibrium Model) is a dynamic, multi-sectoral global general equilibrium 

model designed for climate policy analysis. Conceptually, the EDGE model consists of eight regional 

general equilibrium models linked by consistent interregional flows of goods and services. There is one 

model for each region, and as all markets clear simultaneously, all agents in the model correctly anticipate 

changes in all relative prices. Each regional model consists of seven production sectors and a representative 

agent, and that similar agents solve similar problems.  

 

Within a region, all goods are produced using intermediate inputs and primary factors capital and labor. All 

markets for goods and factors are perfectly competitive.  

 

The production processes are represented with nested constant elasticity of substitution (CES) functions, 

and it is assumed that all firms behave competitively and select output levels such that marginal costs equals 

the given market price.  

 

Only one good, crude oil is perfectly homogenous across all regions. All other goods are differentiated 

products according to the region in which they have been produced. Specifically, the Armington assumption 

is adopted for both imports and exports of the differentiated goods, and nested CES functions are used to 

characterize the choices between, first, the region-specific imports and, second, between the composite 

import good and the domestically produced good. 

 

The capital stock evolves via a constant depreciation rate and via new investments. New investments
30

 are 

allocated to equalize the rate of return in all sectors and regions but once installed; the new investments 

become sector-specific capital stock. 

 

Environmental damages are defined via politically determined environmental goals/international 

agreements on emission reductions.  The model makes use of an abatement (cost) curve. The cost function 

                                                      
30 It is assumed that it takes two years before new investments begin to provide capital 
services. 
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is defined such that the same percentage reduction in emissions has the same marginal costs in all Annex B 

countries, except the United States. 

 

EPPA 

The Emissions Prediction and Policy Analysis (EPPA) model is the part of the MIT Integrated Global 

Systems Model (IGSM) that represents the human systems. EPPA is a recursive-dynamic multi-regional 

general equilibrium model of the world economy, which is built on the GTAP dataset and additional data 

for the greenhouse gas and urban gas emissions. 

 

It provides long simulation horizon (through the year 2100), Comprehensive treatment of emissions of 

major greenhouse gases—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons 

(HFCs), per fluorocarbons (PFCs) and sulphur hexafluoride (SF6), Projections of emissions of substances 

with direct climatic impact such as aerosols from sulfates (SOx), black carbon (BC), and organic carbon 

(OC), Similar treatment of other substances—nitrogen oxides (NOx), carbon monoxide (CO), ammonia 

(NH3), and non-methane volatile organic compounds (NMVOCs) that are important for the atmospheric 

chemistry of greenhouse gases. Furthermore it is able to spatial disaggregation for those gases that are not 

rapidly mixed in the atmosphere; and sectoral disaggregation sufficient to identify activities that emit 

GHGs. 

 

EPPA keeps track through time of the physical flows of carbon-based fuels and resources in the economy, 

their different calorific values, and also their greenhouse gas emissions in order to identify the specific 

sectors that are most affected as a result of policies. Production functions for each sector describe the ways 

in which capital; labor, energy and intermediate inputs can be used to produce output. Consumption is 

modeled as if there were a representative consumer maximizing utility by the choice among goods. A 

fundamental feature of EPPA’s modeling is its representation of the ability of individuals to make tradeoffs 

among the inputs to both production and consumption. For producers this reflects the underlying 

technology—the extent to which labor, capital and energy can be substituted for each other. 

 

EPPA models technical change in three ways. First, there is an exogenous augmentation of the supplies of 

labor and natural resources. Second, energy use per unit output decreases exogenously through time (the so-

called autonomous energy efficiency improvement index, or AEEI). The AEEI is a heuristic representation 

of non-price driven changes in energy use over time. For developed countries there has been an observed 

improvement in energy intensity of the economy that is not easily explained by fuel prices. While this 

improvement is sometimes considered due to technical change, it can also result from changes in the 

structure of the economy. And third, included in EPPA are energy technologies that are currently unused (or 

only at very small scale), but which come into play as supplies of conventional energy resources deplete 

causing their prices to rise or as policies penalize the GHG emissions of conventional fossil technologies. 

Their time of entry in a simulation depends on their costs relative to those of current fuels, as they 

endogenously change in a forward simulation of EPPA.  

 

Environmental damages are defined via politically determined environmental goals/international 

agreements on emission reductions. Environmental feedbacks on the economy, through changes in the 

productivity of crops and forests and impacts on the human population, will be mediated through impacts 

on physical systems. The model makes use of an abatement (cost) curve. Within EPPA abatement cost for 

non-CO2 gases are estimated endogenously. Furthermore, there exists the possibility to substitute other 

energy form for fossil fuels. EPPA has an elaborated treatment of supply and demand for energy. 

 

EXIOMOD 

The CGE model EXIOMOD is a dynamic, recursive over time, model, involving dynamics of capital 

accumulation and technology progress, stock and flow relationships and adaptive expectations. The model 

incorporates the representation of 43 main countries of the world including an individual representation of 

all EU27 countries and candidate member states and the largest emitters such as US, Japan, Russia, Brazil, 

India and China. The rest of the world is represented by 6 rest-of-the-world regions. 

 

EXIOMOD combines economic, environmental and social domains in an efficient and flexible way. 

Economic effects: are captured by the model by both direct and indirect (wide-economic and rebound) 

effects of policy measures. EXIOMOD allows for calculation of detailed sector-level impacts at the level of 

163 economic sectors and 200 types of commodities. 
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The production functions are nested CES functions and the Armington assumption is adopted for trade. The 

model further includes semi-endogenous technological progress and proper treatment of unemployment and 

under-utilization of capital stock. Also it includes dynamic analysis with endogenous investment decisions 

and development of capital stock, human capital and RTD stock as well as uncertainty and irrationality 

incorporated into the behavior of economic agents via adaptive expectations. 

 

The model includes representation of environmental effects through all GHG and non-GHG emissions (28 

types), 9 different types of waste, land use, use of material resources and recycling of 14 types of material. 

The environmental quality is incorporated in the household utility function. Social effects are includes  as 

well by the representation of three education levels, ten occupation types and households grouped into five 

income classes. Also the model allows for efficient incorporation of all main resource constraints. 

 

GEM-E3 

GEM-E3 stands for General Equilibrium Model for Energy-Economy-Environment interactions. The GEM-

E3 (World and Europe versions) model is an applied general equilibrium model, simultaneously 

representing 37 World regions/24 European countries, which provides details on the macro-economy and its 

interaction with the environment and the energy system. It covers all production sectors (aggregated to 26) 

and institutional agents of the economy. It is an empirical, large-scale model, written entirely in structural 

form. The model computes the equilibrium prices of goods, services, labor and capital that simultaneously 

clear all markets under the Walras law and determines the optimum balance for energy demand/supply and 

emission/abatement. Therefore, the model follows a computable general equilibrium approach.  

 

It scope is general in two terms: it includes all simultaneously interrelated markets and represents the 

system at the appropriate level with respect to geography, the sub-system (energy, environment, economy) 

and the dynamic mechanisms of agent’s behavior.  It formulates separately the supply or demand behavior 

of the economic agents which are considered to optimize individually their objective while market derived 

prices guarantee global equilibrium, allowing the consistent evaluation of distributional effects of policies.  

It considers explicitly the market clearing mechanism and the related price formation in the energy, 

environment and economy markets: prices are computed by the model as a result of supply and demand 

interactions in the markets and different market clearing mechanisms, in addition to perfect competition, are 

allowed.  

 

The model is dynamic, recursive over time, driven by accumulation of capital and equipment. Technology 

progress is explicitly represented in the production function, either exogenous or endogenous, depending on 

R&D expenditure by private and public sector and taking into account spillovers effects. Moreover it is 

based on the backward looking expectations of the participant agents.  

The model formulates pollution permits for atmospheric pollutants and flexibility instruments allowing for a 

variety options, including: allocation (grandfathering, auctioneering, etc.), user-defined bubbles for traders, 

various systems of exemptions, various systems for revenue recycling, etc.  

 

The model formulates production technologies in an endogenous manner allowing for price-driven 

derivation of all intermediate consumption and the services from capital and labor. In the electricity sector, 

the choice of production factors can be based on the explicit modeling of technologies.  

 

Environmental damages are defined via politically determined environmental goals/international 

agreements on emission reductions. The model makes use of an abatement (cost) curve.  There exists an 

elaborated treatment of supply and demand for energy 

 

GEMINI-E3 

GEMINI-E3 (General Equilibrium Model of International-National Interactions between Economy, Energy 

and the Environment) simulates all relevant markets, domestic and international, considered as perfectly 

competitive. It contains 28 countries/regions and 18 sectors. Time periods are linked in the model through 

endogenous real rates of interest determined through the balancing of savings and investment. National and 

regional models are linked by endogenous real exchange rates resulting from constraints on foreign trade 

deficits or surpluses. There is one notable -and usual- exception to this general assumption of perfect 

competition, which concerns foreign trade. Goods of the same sector produced by the different countries are 

not supposed to be perfectly competitive. They are considered as economically different goods, more or less 



COMPLEX – State of the Art Review of Climate-Energy-Economic Modeling Approaches   

36 
 

substitutable according to an elasticity of substitution (Armington's assumption). A high value means a high 

degree of competition in the world market, a low value a small degree of competition. Compared to other 

CGE models, GEMINI-E3 has two main specificities. First, a comprehensive and detailed representation of 

indirect taxation. Second, the focus put on the measurement of the welfare cost of policies, and its analysis 

by main components, either domestic or international ("imported"). 

 

The main outputs of the GEMINI-E3 model are by country and annually: carbon taxes, marginal abatement 

costs and prices of tradable permits (when relevant), effective abatement of CO2 emissions, net sales of 

tradable permits (when relevant), total net welfare loss and components (net loss from terms of trade, pure 

deadweight loss of taxation, net purchases of tradable permits when relevant), macro-economic aggregates 

(e.g. production, imports and final demand), real exchange rates and real interest rates, and data at the 

industry-level (e.g. change in production and in factors of production, prices of goods). The nomenclature 

that has been chosen allows to individualize the main economic countries/regions and GHG emitters.  

 

The economic cost of energy and environment policies is measured comprehensively by changes in 

households' welfare since final demand of other institutional sectors is supposed unchanged in scenarios. 

The model makes use of abatement (cost) curves. 

 

G-CUBED 

G-Cubed is a multi-country, multi-sector, intertemporal general equilibrium model that has been used to 

study a variety of policies in the areas of environmental regulation, tax reform, monetary and fiscal policy, 

and international trade. It is designed to bridge the gaps between three areas of research: econometric 

general equilibrium modeling, international trade theory, and modern macroeconomics.  

 

From the trade literature, G-Cubed takes the approach of modeling the world economy as a set of 8 

autonomous regions interacting through bilateral trade flows. Following the Armington approach, goods 

produced in different regions are treated as imperfect substitutes.3 unlike most trade models, however, G-

Cubed distinguishes between financial and physical capital. Financial capital is perfectly mobile between 

sectors and from one region to another, and is driven by forward-looking investors who respond to arbitrage 

opportunities. Physical capital, in contrast, is perfectly immobile once it has been installed: it cannot be 

moved from one sector to another or from one region to another. In addition, intertemporal budget 

constraints are imposed on each region: all trade deficits must eventually be repaid by future trade 

surpluses. 

 

Drawing on the general equilibrium literature, G-Cubed represents each region by its own multi-sector 

econometric general equilibrium model. Production is broken down into 12 industries and each is 

represented by an econometrically-estimated cost function. Unlike many general equilibrium models, 

however, G-Cubed draws on macroeconomic theory by representing saving and investment as the result of 

forward-looking intertemporal optimization. Households maximize an intertemporal utility function subject 

to a lifetime budget constraint, which determines the level of saving, and firms choose investment to 

maximize the stock market value of their equity. 

 

Finally, G-Cubed also draws on the macroeconomic literature by representing international capital flows as 

the result of intertemporal optimization, and by including liquidity-constrained agents, a transactions-based 

money demand equation and slow nominal wage adjustment. Unlike typical macro models, however, G-

Cubed has substantial sector detail and is its parameters are determined by estimation rather than 

calibration. 

 

GTEM 

The global trade and environment dynamic general equilibrium model (GTEM) consists of three modules: 

the economic module, the population module and the environment module. These modules can be 

interlinked or decoupled as desired by the model user. As a default they are connected. There is two-way 

feedback between the population and economic module. Economic growth affects fertility and mortality 

patterns and thus brings changes in population structure and labor supply, which, in turn, affect economic 

growth. The economic module and the environment module have only a one way relationship. Economic 

growth consumes more fossil fuels, which release more combustion emissions and need increased 

production of commodities that release more non combustion emissions. 
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GTEM divides the world into r regions, and international waters. Each region could be a 

Country or a group of countries aggregated. The size of r depends on the database aggregation and is 

normally limited to the number and aggregation of countries covered by the GTAP database at the time of 

model application. ‘International waters’ are a hypothetical region where global traders operate and use 

international shipping services to ship goods from one region to the other. It also houses an international 

finance ‘clearing house’ that pools global savings and allocates the fund to investors located in every 

region. 

 

World regions in GTEM are connected by trade and investment. Changes in economic activities and 

incentives in one region affect the economic fortune of other regions as their demand for imports and supply 

of exports and the terms of trade will change. Therefore, in GTEM, the impacts of policy changes initiated 

in a region may not be limited to the boundaries of that nation alone.  

 

As a default, technological change is exogenous in GTEM. At the time of model application a model user 

will have to decide what sort of technological change is to be assumed and apply that accordingly.  There 

are two areas in the economic core of GTEM in which technological changes are endogenous. The first is 

infant electric power generation technologies, such as solar, are assumed to have a ‘learning by doing’ 

mechanism that lowers the primary factor input requirement per unit of output as cumulative experience 

with the technologies grows. The second area is in the natural resource extraction (mining) sector, where 

factor productivity declines with increases in the cumulative level of resource extraction. 

 

There is no damage function in GTEM linking emissions growth to economic output through climate 

change or otherwise. Even if there is no direct feedback from the environment module to the economic 

module, emission restriction policies will have impacts on the economic module and hence, in this sense, 

there is a strong link between the economic module and the environment module. It is not possible to reduce 

emissions without altering a combination of production and consumption patterns and technologies. Ad hoc 

rules have been specified to describe the trajectories of these emissions, following current international 

modeling practice (abatement curves) 

 

WORLDSCAN 

WorldScan is a recursively dynamic general equilibrium model for the world economy, developed for the 

analysis of long-term issues in international economics. The model is used both as a tool to construct long-

term scenarios and as an instrument for policy impact assessments, e.g. in the fields of climate change, 

economic integration and trade. In general, with each application WorldScan is also adapted. 

 

In order to address the economic effects of climate change policies, the WorldScan model covers several 

greenhouse gases: carbon dioxide, methane and nitrous oxide. Energy use, besides being an important 

aspect of the economy on its own, is also the main source of carbon dioxide emissions. Instruments for 

emission abatement policies are also available in the model. The WorldScan model distinguishes six energy 

carriers: coal, petroleum products, gas (including gas distribution), electricity, modern biomass and non-

fossil-fuels (nuclear, geothermal, and solar and wind energy). The demand for these energy carriers derives 

foremost from the production sectors (70-85%), which use energy as an intermediate input, but also from 

the households, who consume energy directly.  

 

Two developments in energy technology are important: more efficient use of energy due to technological 

developments and increasing availability of new, economically viable energy carriers, the so-called 

backstop technologies. Abatement cost functions (abatement curves) are used. Technological emissions 

reduction introduces the possibility of decreasing the cost of emissions for firms. However, this emissions 

reduction stemming from induced technological change does not come for free. Total Factor Productivity 

(TFP) of sectors emitting non-CO2 greenhouse gases will be lowered as a result of diverting part of the 

production resources to emissions abatement. The firm thus needs to decide how many resources to use on 

abatement. Generally, it will be optimal to abate part of the emissions, paying the emissions tax over the 

remainder. Marginal abatement costs differentials make it efficient to trade emission rights; regions with 

higher marginal costs will purchase emission rights, while regions with lower marginal costs will sell them. 

 

The following table summarizes the characteristics of the reviewed CGE models based on the general 

review aspects. 
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Model 

name 

Regions Sec

-

tor

s 

Time 

horizo

n 

Production 

function and trade 

Technical progress and 

capital. 

Environment and other 

model characteristics 

Data Source 

AMIG

A 

3 (US and 

world 

economies) 

200 2100 Constant elasticity 

of substitution 

(CES) aggregator 

function is used for 

production and 

Armington 

assumption for 

trade. 

Technology improvements 

are represented over time, 

and advanced technologies 

are included. Capital 

accumulation over time. 

 Global Trade 

Analysis 

Project 

(GTAP) 

database 

Hanson et 

al (2004) 

DART 113 57 2030 Nested CES 

function for non-

fossil fuel. CES and 

Cobb-Douglas for 

other production 

factors. 

None Environmental damage is 

exogenous to the model 

based on politically 

detemined goals of 

international agreements. 

The model uses an abatement 

(cost) curve. 

GTAP5-

E(nergy) 

database 

Klepper 

et al 

(2003) 

EDGE 8 7 100 

years 

Nested CES 

function and 

Armington 

assumption for 

trade. 

None The model makes use of an 

abatement (cost) curve. 

 Jensen 

and 

Thelle 

(2001) 

EXIO

MOD 

49 (43 

countries and 

6 rest of the 

world regions) 

200 2100 Nested CES 

function and 

Armington 

assumption for 

trade. 

Technical progress is semi-

endegenous in the model 

through innovations, 

knowledge spillovers and 

technology adoption. 

All GHG and non GHG are 

included related to different 

types of energy use (and 

other types of economic 

activities). Also land use, 

waste and recyling are 

modeled. Environmental 

quality included in utilty 

function. 

EXIOBASE 

database (200 

commodities 

by 163 sectors 

and social en 

environmental 

data) 

including 

physical flows 

TNO 
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GEM-

E3 

24/37 (Europe 

or World 

version) 

26 2050  Endogenous or exogenous 

techical progress. Backstop 

technology. 

Environmental damages are 

exogenous and abatement 

curves are used by the model. 

There is an elaborate 

treatment of supply and 

demand of energy. Pollution 

permits and related 

instruments are included, 

such as systems of 

exemptions, types of revenue 

recyling etc. 

 Capros et 

al. (1998) 

GEMI

NI-E3 

28 18 2050 Armington 

assumption is used 

for trade. 

None GHG emissions, carbon 

taxes, and tradeable permits 

are modelled. There is also 

welfare loss. The model uses 

abatement curves. 

 Bernard 

et al. 

(2004) 

G-

Cubed 

8 12  Armington 

assumption is used 

for trade. 

Technical progress is partial 

endegenous. Distinction 

between physical 

(immobile) and financial 

capital (mobile). 

International capital flows 

are subject to intertemporal 

optimization. Saving and 

investment as the result of 

forward-looking 

intertemporal optimization. 

Econometric general 

equilibrium model, meaning 

parameters are estimated 

rather than calibrated. The 

model combines CGE, 

econometrics and macro-

economics. 

 Wilcoxen 

and 

McKibbin 

(1999) 
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GTEM Regions and 

international 

waters. 

‘International 

waters’ are a 

hypothetical 

region where 

global traders 

operate and 

use 

international 

shipping 

services to 

ship goods 

from one 

region to the 

other. 

  ? Technical change is 

exogenous except for infant 

electric power generation 

technologies and natural 

resource extraction sector 

(mining). 

Population module and 

environment module 

including emissions and 

abatement curves. It also 

houses an international 

finance ‘clearing house’ that 

pools global savings and 

allocates the fund to 

investors located in every 

region. 

Can be based 

on GTAP data 

Tulpule et 

al. (1999) 

MIT-

EPPA 

16 8 2100 Nested CES 

function and 

Leontief structure 

1.Exogenous augmentation 

of labor and natural 

resources 2.Energy 

efficiency is modeled using 

an autonomous energy 

efficiency improvement 

index (AEEI) 3.endogenous 

uptake of current unused 

energy technologies 

Major GHG emissions are 

modelled including their 

direct impact. Environmental 

damages are exogenous and 

are modelled through impact 

on physical systems. An 

abatement curve is used. 

Also there is an elaborate 

treatment of energy supply 

and demand. 

GTAP 

database and 

additional 

environmental 

data on 

emissions. 

Jacoby et 

al. (2005) 

WorldS

can 

87 57 2050  Endogenous using backstop 

technologies. However TFP 

will decrease due to the 

introduction of emission 

reducing technologies. 

Three types of GHG 

emissions, mainly emitted 

due to energy use by 6 types 

of energy. Abatement curves 

are used. Emission permit 

trading is modelled as well. 

 Bollen 

et.al. 

(1999) 

Tabel 3: Review of Environmental CGE models based on the criteria 
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3.4 Discussion  

 

There exist a vast number of CGE models dealing with environmental policy analysis. The models 

reviewed here give a good overview of the existing environmental CGE models. The presented models in 

this chapter have in common those they all are (recursive) dynamic and treat international trade such that 

goods with the same statistical classification but different countries of origin are treated as non-perfect 

substitutes. These presented models have been used in the literature for much policy analysis. The 

disaggregation level differs a lot between the models reviewed in this chapter. The number of regions used 

is between 8 and 113 and the number of production sectors goes from 7 to 200. In this review we looked at 

one single-country model (AMIGA) and nine multi-country/global CGE models. Single-country models 

tend to be more detailed in terms of sectors and household types, and they are in general used for analyses 

of country-specific policy issues and proposals. Multi-country and global models, on the other hand, tend to 

have less sector detail and to be designed for analysis of proposed multi-lateral policies such as free-trade 

agreements. In the case of environmental CGE models the multi-country and global models in most cases 

are designed for analysis of trans-boundary pollution problems.   

 

Typically environmental CGE models have a time horizon of 2030 of 2050, but other such as the EPPA, 

EXIOMOD and AMIGA have a time horizon of 2100. To capture effect of the policy change within the 

model, the CGE models should incorporate several decades. Thus the development and implementation of 

new technologies might affect emissions and other impacts on the environment much more than substitution 

between currently existing technologies. There exists several ways to deal with deal with technological 

changes in environmental CGE models. In AMIGA technology improvements are represented over time 

(exogenously), and advanced technologies are included. EPPA models technical change in three ways. First, 

there is an exogenous augmentation of the supplies of labor and natural resources. Second, energy use per 

unit output decreases exogenously through time (the so-called autonomous energy efficiency improvement 

index, or AEEI). The AEEI is a heuristic representation of non-price driven changes in energy use over 

time. For developed countries there has been an observed improvement in energy intensity of the economy 

that is not easily explained by fuel prices. While this improvement is sometimes considered due to technical 

change, it can also result from changes in the structure of the economy. And third, included in EPPA are 

energy technologies that are currently unused (or only at very small scale), but which come into play as 

supplies of conventional energy resources deplete causing their prices to rise or as policies penalize the 

GHG emissions of conventional fossil technologies. Their time of entry in a simulation depends on their 

costs relative to those of current fuels, as they endogenously change in a forward simulation of EPPA. 

GEM-E3 formulates production technologies in an endogenous manner allowing for price-driven derivation 

of all intermediate consumption and the services from capital and labor.  

 

In the electricity sector, the choice of production factors can be based on the explicit modeling of 

technologies. In GTEM technological change is exogenous in GTEM. At the time of model application a 

model user will have to decide what sort of technological change is to be assumed and apply that 

accordingly. There are two areas in the economic core of GTEM in which technological changes are 

endogenous. The first is infant electric power generation technologies, such as solar, are assumed to have a 

‘learning by doing’ mechanism that lowers the primary factor input requirement per unit of output as 

cumulative experience with the technologies grows. The second area is in the natural resource extraction 

(mining) sector, where factor productivity declines with increases in the cumulative level of resource 

extraction. Finally in WorldScan two developments in energy technology are important: more efficient use 

of energy due to technological developments and increasing availability of new, economically viable energy 

carriers, the so-called backstop technologies (also exists in GEM-E3 and EPPA).  

 

Most reviewed models presented here make use of abatement cost functions (abatement curves) are used. 

These can be seen as ad hoc rules to describe the trajectories of these emissions, following current 

international modeling practice. There is no damage function in environmental CGE models that links 

emissions growth to economic output through climate change or otherwise. Even if there is no direct 

feedback from the environment module to the economic module, emission restriction policies will have 

impacts on the economic module and hence, there is a strong link between the economic module and the 

environment module. 
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Appendix B: Environnemental CGE models 

 

Model  Institution  Reference 

AMIGA  

(All-ModularIntegrated 

GrowthAssessment Modeling 

System) 

Argonne National Laboratory, US; 

Environmental ProtectionAgency 

(EPA), US 

Hanson and Laitner 

(2004) 

DART  

(Dynamic Applied Regional Trade 

Model) 

Kiel Institute of WorldEconomics 

(IfW), GermanyKlepper etal. (2003) 

Klepper et al. (2003) 

EPPA  

(EmissionsProjection and Policy 

Analysis Model) 

Massachusetts Institute of Technology 

(MIT), US 

Jacoby et al. (2004) 

EXIOMOD (Environmentally 

eXtended Input-Output MODel) 

TNO – Dutch Research Organization 

for Applied Science 

TNO 

GEM-E3  

(General Equilibrium Model fo 

rEnergy– Economy–Environmen 

tInteractions) 

Catholic University of Leuven, 

Belgium; NationalTechnical 

University ofAthens, Greece; Center 

for European Economic Research 

(ZEW), Germany 

Capros et al. (1998) 

GEMINI–E3  

(GeneralEquilibrium Model of 

International National Interaction 

for Economy– Energy–

Environment) 

Ministry of Equipment, France; 

Atomic Energy Agency, France; 

University of Geneva, Switzerland 

 

Bernard et al. (in 

press) 

G-Cubed  

(Global General Eq. Growth 

Model) 

Australian Nationa lUniversity, 

Australia; Syracuse University, US  

Wilcoxen and 

McKibbin (1999) 

GTEM  

(Global Trade andEnvironment 

Model) 

Australian Bureau of Agriculture and 

Resources Economics (ABARE), 

Australia 

Tulpule et al. (1999) 

WORLDSCAN  Central Planning Bureau (CPB), 

Netherlands 

Bollen et al. (1999) 

MIT-EPPA  

(EmissionsProjection and Policy 

Analysis Model) 

Massachusetts Institute of Technology 

(MIT), US 

Jacoby et al. (2004) 

Tabel 4: Reviewed Environmental CGE models  
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4. Overview of Climate-Energy-Economic Agent-Base Modeling 

 

4.1 Introduction 

 

Agent Based Modeling (ABM) has evolved from a strand of computer science (artificial intelligence or 

A.I.) focused with describing and mimicking human behavior (as opposed to other streams in A.I. 

concerned with developing intelligent systems). In 1987 Prof Herbert Simon – a pioneer in A.I. - was 

awarded the Nobel Prize in Economics for his work in microeconomics. After the 1990’s that applications 

within social science started appearing under the heading of Distributed Artificial Intelligence (DAI) and 

Multi-Agent Systems (MAS) (Franklin & Graesser, 1997). ABM was particularly apt to model real-world 

business problems (e.g. transport logistics’, organizational management and epidemiology); ever since, 

ABM has been gaining increased attention within environmental and economic fields (Grimm, 1999; 

Kohler, 2000; Gimblett, 2001; Parker et al., 2002, 2003; Filatova 2013). Nonetheless, ABM is a very work 

intensive methodology (in comparison to conventional methods) and far from being considered a main 

stream method in the positivist or hermeneutic social sciences and engineering (Richardi 2006). 

  

ABM is the computational study of systems of interacting autonomous entities, each with dynamic behavior 

and heterogeneous characteristics. (Heckbert 2010)  An agent-based simulation model may be defined as “a 

collection of heterogeneous, intelligent, and interacting agents, which operate and exist in an environment, 

which in turn is made up of agents” (Axelrod 1997, Epstein 1996, c.f. Chappin 2009). Specifically meant 

by “agents” are computational entities composed of autonomy, sociability (interaction), reactivity 

(evaluation of environment), and proactivity (goal-directed behavior exogenous to the environment) 

(Wooldbrige and Jennings 1995, c.f. Gilbert 2005). “In this regard, ABMs can capture human variability, 

or other non-linear processes providing a range of possibilities, rather than locking into a single pathway 

which may later prove misleading.” (Tran 2012)  However not all ABM’s have to have this characteristics 

(Graesser 1997, c.f. Richardi 2006). 

  

By modeling a system at higher resolution ABM 

allows to compare regularities between different 

levels of aggregation; which inexorably produces a 

range of scenarios, e.g. in the case of electricity 

markets this means to model “asymmetric 

information, imperfect competition, strategic 

interaction, collective learning, and the 

possibility of multiple equilibria” (Tesfatsion 

2006). This is fundamentally achieved by going 

beyond numerical methods and implementing 

computational functions at lower scales (see table 1, 

taken from a comparison of ABM vs traditional 

models made by Jackson 2010:3774)  The 

applications of ABM consist of a broad range 

which makes it hard to discern the beginning and 

limits of ABM. Some examples include: the 

optimization of a pricing strategy in a market 

where heterogeneous firms engage in strategic 

behavior (Tesfatsion 2001, Weidlich 2008); the 

likelihood of adoption of certain technologies 

given heterogeneous consumer preferences and 

network structures (Sopha 2009, Chappin 2009); the 

evolution of risk perceptions/climate change in 

spatially explicit models (Shafiei 2012). Often 

ABMs combine different applications/techniques; Ann 

(2012) suggests the following typology of ABM 

Tabel 5: Jackson’s 2010 comparison of ABM vs. 
traditional models of energy demand. Notice the 
treatment of households. 
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types based on their application and methodological approach: 

 

 

1) Microeconomic models (e.g. ACE) 

2) Space theory based models (e.g., GIS) 

3) Psychosocial and cognitive models (e.g. TSi agents) 

A. Actor-centered structuration theory (ST) 

B. Integrative agent-centered (IAC) framework 

C. Fuzzy cognitive maps (FCM) 

D. Computational organization theory (networks) 

4) Institution-based models  

5) Experience- or preference-based decision models (rules of thumb) 

6) Participatory agent-based modeling 

7) Empirical- or heuristic rules (e.g. cluster analysis, econometric estimation) 

8) Evolutionary programming 

9) Assumption and/or calibration-based rules 

 

 

4.2 Climate-Energy-Economic ABM review 

 

UNESCO’s World Social Science Report of 2010 ( Kaldor 2010:11) makes a clear case, that research as 

usual will not suffice to deal with the complexity of problems we face: “Global environmental change is a 

challenge to traditional  disciplinary research practices. The scale, rate, magnitude and significance of 

changes to the global environment have made it clear that ‘research as usual’ will not suffice to help 

individuals and groups understand and respond  to the multiple, interacting changes that are now 

occurring.” In the context of resource depletion, climate change and biological extinctions, ABM’s fills in a 

very salient task: developing the capacity to realistically disaggregate highly abstract forecast scenarios 

produced by other methods (e.g. what does global warming of 2 degree mean for Amsterdam, given 

positive and negative social and environmental feedbacks?). In addition, to do this to a point where the 

science can inform discrete and adaptive management strategies at the level where policies are 

implemented. E.g. Balbi 2012.  

 

Therefore, the application of ABM in this context promises to fill the gap between what is required and 

what is possible for heterogeneous stakeholders in emergent contexts, e.g. between emission targets of the 

EU and policy implementation details. (See Natarajan 2010, e.g. Balbi 2012) For example Jackson 2010 

notes: “It is increasingly difficult to separate electricity use impacts of individual utility programs from the 

impacts of increasingly stringent appliance and building efficiency standards, increasing electricity prices, 

appliance manufacturer efficiency improvements, energy program interactions and other factors…Without 

careful scrutiny, utility programs are prone to the same kinds of inefficiencies often found in other 

programs designed to elicit certain consumer and firm responses”.  We see the consequences of this failure 

already in the analyses of existing climate change policies that for example do not analyze any 

implementation details of particular policy instruments. Furthermore, there is a consistent and growing 

‘emissions gap’ between the GHG reductions targets and the level scientifically correlated to stabilization 

of the global climate. (den Elzen et al., 2011; Höhne et al., 2012; Kartha and Erickson, 2011; Rogelj et al., 

2011; UNEP, 2010b, 2011; c.f. Wiseman 2013) ABM therefore forwards the ultimate goal of 

science/policy: which is to have the capacity to analyze strategies being forwarded (see Wiseman 2013 for a 

meta-analysis) at a higher resolution; to do it within relevant time-frames; and to elaborate the specific 

tactics of specific agents which will achieve specific targets. This requires a scalable and high fidelity 

analysis of the non-linear transitions caused by purposive behavior of social agent/specific contexts vis-à-

vis the stochastic feedbacks of natural systems.  

 

A case in point is the incapacity of current methods to study the effects of information provision, or of 

exemplary reward and punishment. (Nannen 2010) Furthemore,  Tol 2013 is the only one to do a cost 

benefit analysis per EU country for the EU 20/20/2020 package, however the abatement cost might be 

better informed if non-linearities in the climate, energy and economic system where included. ABM in this 

context therefore means solving a complex strategic problem, without reducing it to a simple problem with 

a single solution. It is not yet clear if ABM is the only method capable of doing this, but is one of with no 
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intrinsic limitations to the task. Natarajan 2011 argues: “that a radically different, integrated, approach is 

required to tackle these challenges and ensure that the modeling remains robust and able to meet future 

demands. We suggest that Agent Based Modeling (ABM) is a suitable candidate modeling paradigm to 

achieve an integrated modeling framework.” 

 

In this review, it is clear that while there much advancement in the field there is only one application (Balbi 

2013) that actually modeled emergent responses to climate change. However, this was done for Alpine 

Tourism, which is only a small part of one of many sectors, which are of relevance. Other models that deal 

with feedbacks across systems do so in very stylized way (Gerst 2012), e.g. homogenous demand, of 

homogenous goods and stylized electricity types. ABM’s that deal with MBI such a emissions trading 

(Chappin 2012, Weidlich 2013, Sun 2007, Bunn 2007), focus on the supply side and on markets 

specifically, which means they do not treat climate or energy demand in a dynamic and adaptive way. In 

fact no model reviewed here treats climate as a complex adaptive system or even dynamically. Furthermore 

there is a lot of ambiguity in terms of both validation and treatment of the model outputs. In both regards, 

there are also specific attempts to fix these issues (Muller 2013 and Gerst 2012 respectively). It is also 

evident that the development of a model which can address all these issues vis-à-vis be formulated and 

applied in a way which is of relevance to the stakeholders is not an easy task.  

 

 

4.2.1 General review aspects 

 

The application of ABM models to climate-economy-energy systems reviewed here consisted mostly of 

microeconomic, empirical- or heuristic rules, evolutionary programming and assumption and/or calibration-

based rules. Most cases at most consist of one link with descriptive reference to another system, e.g. 

Economy-to-energy: economic cost of stylized energy types based on their GHG emission profiles. 

Indigenizing energy economy and environment feedbacks with robust representations of each respective 

system (integrative modeling of EEC systems) is clearly yet to achieved within ABM, e.g. modeling 

(micro) economy-to-energy-to-climate-to-economy. There is also a general ambiguity in terms of justifying 

the numbers of agents, integration step, time period, validation technique and treatment of simulation 

outputs; all these apparent flaws or lack of methodological rigor are however often justified in terms of the 

ABM’s purpose, and i.e. the quality of an ABM depends on the application or formulation of the problem. 

In general terms however it is clear that much of the promise or potential of ABM’s to address the scientific 

gaps in energy-economy-climate systems has yet to be realized. Only one ABM (Balbi 2013) actually 

modeled emergent responses to climate change. However this was done for Alpine Tourism, which is only a 

small part of one of many sectors which are of relevance. 
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SPACE THEORY BASED  ABM

EVOLUTIONARY PROGRAMMING ABM 
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ASSUMPTION AND/OR CALIBRATION-
BASED ABM

PSYCHOSOCIAL OR COGNITIVE ABM 

PARTICIPATORY  ABM

INSTITUTION BASED ABM 

 

Tabel 6: Overview of ABM models over ABM types . * = strong level of correlation,  =correlation 
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1) Link between climate and energy  

The application of the ABM is often nested in a larger system. This larger system is often treated 

differently; therefore it is crucial to understand the link and order between subject-to-subject (energy, 

climate, economy). This is necessary as in ABM, often one part of the model is treated as a complex 

adaptive system and the part(s) of the model are simplified (treated the same as in GE, SD, e.g. single 

representative agents or stocks). Furthermore it is necessary to understand what type of link or feedback 

there is between the two (see 1.4.5.A Feedback Type). The order of integration (or hierarchy, within one 

step), the treatment of subsystems and the type of link (signal passing or passing of a complex data 

structure
31

) have non-marginal implications in the outputs of the model. There are no comparative 

sensibility studies done in this regard, so it is hard to draw conclusions or discern clear patterns. None of the 

ABM’s reviewed here, expects for Balbi 2013, went beyond representing two links (see Figure 6 ). A 

majority focuses on economic and/or energy and none model climate-to-climate links (e.g. fluctuation in 

ecosystem services as a result of climate change). 
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Tabel 7: matrix of link types between systems per run step 
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Figure 6: Overview of ABM models over LINK TYPES. * = strong level of correlation,  =correlation 
 

                                                      
31 Signal passing is the passing of a variable state, there can also be a interaction where a complex data structure is 
passed which would consist of a series of structured variable states (i.e. a structured composition of  letters or 
numbers). 
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2) Mitigation Strategies  

There are two type of mitigation strategies, the ABM models reviewed here did not focus on command and 

control instruments (e.g. 1987 Montreal Protocol) but instead focus on the following market-based 

instruments (MBI): cap and trade (CT); public research and development expenditures; and taxes. MBI that 

were not modeled include: voluntary green power programs; renewable portfolio standards and quotas; 

tendering; net metering; system benefits charges, and; tradable certificates and guarantees of origin (all 

which are policy instruments often considered, by the European Energy Agency (see McEency 2013)).  

There are also a broad range of theoretical mitigation strategies that could be considered but where not.  

 

3) Non-linear or emergent responses to climate change  
The only ABM explicitly model a non-linear response to climate change, meaning was able to model 

emergent behavior in response to climate change was Balbi 2013. It should be said however that here are 

many definitions of non-linearities, often the terms is equivalent to emergent phenomena. “Emergent 

phenomena result from the interactions of individual entities. By definition, they cannot be reduced to the 

system's parts: the whole is more than the sum of its parts because of the interactions between the 

parts.”(Bonabeau 2000). Non-linearities are often manifest when a model has thresholds, irreversibility and 

non-linearities (non-linear inputs and/or implementation, resulting in non-linear outputs) which we describe 

in the table per ABM. However that an ABM may have all three qualities doesn’t not necessarily mean that 

it captures emergent behavior; since it is fundamentally a question to which degree are these features 

affecting the model outputs. All ABM reviewed here have non-linearity and irreversibilities but none had 

thresholds in the output (clear bifurcations into stable states).  

 

As Tabel 8 shows, having these qualities will not necessarily produce any non-linear response at any level 

(see Tabel 8 for an explanation on these relationships), i.e. a model can have non-linear inputs and non-

linear implantation and still produce no emergent or non-linear response. In the end it is a matter of to 

which degree and which part of the model is non-linear; to this effect however we see that very few ABM’s 

run sensibility analysis on the adaptive traits of the agents (some exception being: Weidlich 2008, Chappin 

2012, Sopha 2013). Furthermore it should be noted that there is a tradeoff between models capacity to 

represent emergent behavior and that models capacity to be validated empirically. In this regard ABM 

provides a way to mitigate but not solve the practical problem that is a lack of good data and limits of 

individual researchers. In the context of non-linear responses to climate change, we see of course very few 

sources of good data, which result in either an ad-hoc or experimental parameterization of such responses.   

 

It should also be noted that while ABM is the best method to model non-linearities or emergent behavior, 

the fact remains that unless there is a high level multi-threading interface
32

 or event based hierarchy in the 

end, an ABM -as complex as it may be- will effectively run like a linear program, e.g. System Dynamics or 

Spatial Econometrics.  From the ABM’s reviewed here, we see that the models are sensitive to prices more 

than to implementations of bounded rationality or expectation formations.  

 
 

 

 

                                                      
32 Multi-threading is a widespread programming and execution model that allows multiple threads (functions) to 
exist within the context of a single process (time step). These threads share the process' resources, but are able to 
execute independently. 

Tabel 8: relationship between data, ABM implementation, outputs and emergent behavior 
  

Non-linear Inputs + Non-linear 
Implementation + 

Non-linear  Outputs = Emergent behaviour? 

x  x x 
 x   
 x x x 

x x    

Threshold(s) in 
Inputs+ 

 

Threshold(s)  in 
Implementation+ 

 

Threshold(s)  in 
Outputs= 

 

 

x  x x 



COMPLEX – State of the Art Review of Climate-Energy-Economic Modeling Approaches   

48 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4) Nonlinearity, threshold and irreversibility  

All of the ABM’s reviewed here are non-linear in their implementation, but only Balbi 2012 models a non-

linear or emergent response to climate change. None of the ABM models reviewed here had explicit 

thresholds (at a global level, i.e. outside of the agent). However most learning algorithms function by using 

a updating a threshold/function related to the mix, max or average of previous state variables; but this 

should not be considered, as it is fundamentally a technique to model memory or strategic behavior of 

agents, more than a technique to model a non-linearity or  power law.  

 

All ABMs are allow for irreversibility, in that the model has at least two elements (agents) whose parameter 

space or behavior is locked-in, path dependent and process specific. Therefore the sequence of previous 

states constraint future states.   

 

5) Technological development 

No ABM reviewed here included endogenous technological development. Meaning that no ABM reviewed 

here has modeled an explicit mechanism and/or dynamics for technological innovation. However, some 

ABM model investment and divestment into stylized electricity production technologies, e.g. Gerst, 

Chappin 2012. Other ABM’s model transitions in terms of market share of theoretical technologies such as 

Clean Coal, e.g. Chappin 2009. Other ABM’s model technological end-use and market-share forecasts, e.g. 

Sopha 2013, Shafiei 2012, and Nannen 2010.  

 

6) Feedback mechanisms 

 

 

  

Subsystem 

reference or 

link /  Step 

 

System-to-

system link / 

Step 

 

 

Two-System-to-

system link / Step 

 

 

n-order Feedback / 

Step 

 

 

 

Exempel: 

 

Economy-to-

economy 

 

Economy-to-

climate 

 

Economy-to-

economy-to-climate 

 

Economy-to-

economy-to-energy-

to-energy 

 
     Figure 7: feedback types  
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Most ABMs reviewed here consist of a subsystem reference (e.g., economy-to-economy or energy-to-

energy and none had explicit 2
nd

 order feedbacks
33

 (while sometimes the aggregated distributions show 

evidence that it is in all a second order system, e.g. Balbi 2013). Only one ABM reviewed here had 

feedbacks consisting of more than signal passing. Deissenber (2008) was the only ABM in which the 

feedback is a complex data structure or string. None of the ABM’s reviewed endogenized all three systems 

(energy, economy and climate) as complex adaptive systems. In most cases climate systems where treated 

only in terms of reference or heterogeneity within the economic and energy sector, e.g. preferences for 

carbon heavy, carbon light, carbon free. No ABM modeled the climate as an agent -in the ABM tradition- 

or even modeled different scenarios based on climate change scenarios (again except for Balbi 2013). No 

ABM modeled positive feedbacks in climate change. 
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Figure 8: Summary per ABM of link or feedback type 

 

7) Representation of the key economic sectors  

The majority of the ABMs reviewed here deal with either the electricity, technology  or end use of 

electricity and technology from an economic Perspective (Gerst 2012, Weidlich 2008, Sopha 2013, 

Kempener 2009, Nannen 2012, Sun 2007, Nicolaisen 2011, Chappin 2009, 2012, Tran 2012, Wittmann, 

Brunn 2001, Zhang 2011, Matsumoto 2008, Jackson 2010, Natarajan 2011). Tran 2012 and Shafei 2012 

deal with wholesale and retail of motor vehicles. One model deals with tourism (Balbi 2012) and a couple 

are macroeconomic (representing more than one sector at a national or EU level) (Deissenberg 2008 and 

Gerst 2012). Deissenberg 2008 while claiming to have model the whole economy, only presents results 

from employment dynamics (searching for and hiring of employees). Natarajan 2011 models energy 

consumption and emission based on construction of households. 

 

8) Representation of energy sources  

There is a difference between energy and electricity. For example the energy consumption of a household 

could include food and electricity consumption could not. The majority of the ABMs reviewed here given 

that ABMs often deal with future events, focus on electricity production and do so in a stylized manner. For 

example Gerst 2012 treats electricity as ‘carbon-heavy’, ‘carbon-light’, and ‘carbon-free’, each with a 

respective cost and for which agents will have specific utility and welfare functions. This is the case as there 

is no data on what new technologies could produce and at what cost. However, some models endogenize the 

theoretical parameters of non-existent technologies and parameterize them with projections, e.g. clean coal / 

Chappin 2012. Some authors who do not produce forecasts, use vintage data to represent the energy 

generation of for example wind mills, which is highly variable (Li 2012). From which they make inferences 

about the market structure / MBI’s.  Tran 2012 and Shafei 2012, given that they are doing technology 

market share forecasting of motor vehicles parameterize their models at a higher resolution and use 

multicriterion optimization. ABM’s concerned with end-use of appliances such as Sopha 2012 also 

parameterizes their models with higher resolution. 

  

                                                      
33 A feedback of a feedback or second order derivative, e.g. a state triggers a signal from the economic system to the 
energy system, which in turns triggers a response in climate system.  
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9) Spatial Scales  

 

 

19

8 1 10

4 4 -6 3 7

MESO LEVEL 

MICRO 

LEVEL

MACRO LEVEL 

 
Figure 9: Scale resolution.  This distinction is valuable as ignoring the variance of a variable especially in 
discrete systems could result in erroneous estimations. Therefore it is most desirable to model a system from 
the lowest (micro) to the highest (macro) level of aggregation.  
 
 

 

Micro-meso-macro Meso-

macro 

Micro-meso Macro-micro Macro 

 

   

 

 

The utility of ABM is often in disaggregating a particular spatial or temporal scale. For example taking 

available data on electricity production, market structure and transaction prices and developing an ABM to 

model the microeconomic behavior of the firms involved (Weidlich 2008). This is valuable as ignoring the 

variance of a variable especially in discrete systems could result in erroneous estimations. This point was 

made in economics by Anscombe (1973) and well understood in mathematics and natural science’s 

concerned with modeling.  However many ABM reviewed here does not have this variance in scale, but 

model a particular instance. Below you see Anscombe’s Quartet (cf. Tabel 9 and Figure 10: Anscombe’s 

Quartet (1973) , there is a graphical description of possible spatial domains. The actual borders of the model 

domain or environment (mix, max, and sector) are specific to the author, i.e. what is macro or micro is 

determined by the author or rather is not general but ABM case specific. Notice in Tabel 9 and Figure 10, 

the disaggregation of the patterns from macro to micro.   
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SET A: X1=[10 8 13 9 11 14 6 

4 12 7 5]; 

SET B: X2=[10 8 13 9 11 14 6 

4 12 7 5]; 

SET C: X3=[10 8 13 9 11 14 6 

4 12 7 5]; 

SET D: X4=[8 8 8 8 8 8 8 19 8 

8 8]; 

Y1=[8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 

4.82 5.68]; 

Y2=[9.14 8.14 8.74 8.77 9.26 8.1 6.13 3.1 9.13 7.26 

4.74]; 

Y3=[7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 

6.42 5.73]; 

Y4=[6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.5 5.56 7.91 

6.89]; 
Tabel 9: Anscombe’s Quartet (1973) dataset 
 

 All the mean of the x values = 9.0  

 All the mean of the y values = 7.5  

 All the least-squared regressions are: y =  

0.5 x + 3 

 All the sums of squared errors (about the 

mean)  = 110.0  

 All regression sums of squared errors 

(variance accounted for by x) = 27.5  

 All residual sums of squared errors 

(about the regression line) = 13.75  

 All the correlaten coefficient = 0.82  

 All coefficient of determination = 0.67  

 

In Anscombe’s Quartet (1973) we see that different 

data sets result in the same correlation, error, and 

linear trajectory, yet clearly they are differences, i.e., 

statistical methods have intrinsic limitations as a 

proxy for estimating the validity of even linear 

systems. This means that there could be hundreds of 

parameter variations of a model derived solely from 

statistical rigor/metrics; and that deciding the 

validity of model would base solely on this would 

not be enough. This means that it is impossible to 

validate or falsify a discrete and dynamic system 

with statistical methods/vintage data set 

(quantitative empiricism) alone. Conversely it is 

rather simple to statistically fit a model to any data 

set. This explains why the capacity for flexibility 

and micro level foundations of ABM is of particular 

interest for integrated EEC models. Table 5 in the 

next page summarized the spatial domains per 

article. Ideally an ABM capable of modeling micro-

meso-macro would be preferred. 

  

Figure 10: Anscombe’s Quartet (1973) 
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Tabel 10: Summary of ABM spatial scales 
 

 Micro-meso-

macro 

Meso-macro Micro-meso Macro-micro Micro 

 

 

 

 

 

 

  
 

 

 

Author      

Gerst 2012   x   

Weidlich 2008   x   

Sopha 2013     x 

Kempener 2009  x    

Nannen 2012     x 

Sun 2007     x 

Nicolaisen 2001     x 

Chappin 2009  x    

Chappin 2012  x    

Tran 2012   x   

Wittmann 2006     x 

Bunn 2001     x 

Li 2012     x 

Shafei 2012     x 

Deissenberg 2008     x 

Balbi 2013    x  

Nataraj 2011  x    

Zhang 2013     x 

Matsumoto 2008     x 

Jackson 2010     x 

 

10) Time scales 

There is a huge amount of variance in the ABM applications, ranging from hourly to yearly, from 31 steps 

to 4000. The time range is often an ad-hoc choice which no author so far has cared to justify. Therefore, 

there is no discernible rigor or patterns in this regard. There is also no sensibility analysis applied to the 

integration sequence-order. Unlike regression models, the quality of an ABM model will not necessarily 

dependent on the amount of data used. Furthermore, for both ABM and regression models having too many 

integration steps, will result in a loss of numerical precision given the computational limitations of current 

computers (16-64 bits). This is perhaps why no authors care to justify the integration step or scale; in that it 

is may well be a more complex problem to formulate and solve that the problem at hand. For example it 

would require that the model be implemented in different computers and software’s. Such level of 

replication is basically non-existent in either conventional or ABM. One possible pattern in the literature is 

that microeconomic models and specifically those of the ACE tradition might limit the time domain and 

scale to the availability of data from electricity production and transaction prices. They do this in order to 

estimate the effect of strategic behavior and market structure. For the rest of ABM’s there is no clear 

relationship between the time scale and quality or application domain. 

 

12) Representation of Market  

ABM which follow the Agent-Based Computational Economics (ACE) tradition (Weidlich 2008 Nicolaisen 

et al. 2000, 2001, Lane et al. 2000, Bunn and Oliveira 2001, 2003, Bower and Bunn 200, 2001, Bower et al. 

2001, Bunn and Oliveira 2006,  Visudhiphan and Llie 2002, Sun and Tesfatsion 2007, Ruperes, Michola et. 

Al 2004, Cincotti et. Al 2006, Weidlich and Veit 2006, Krause et al 2005,Naghibi-Sistani et al. 2006, Xiong 

et al. 2004, Bakirtzis and Tellidou 2006,) model electricity market as a complex adaptive system. Most 
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other ABM’s who do not, if the market is modeled at all will have one side of the supply or demand drive 

the other without any clearing mechanism or transaction control or constraints.   

 

11) Representation of demand and supply in energy market 

Most ABM’s reviewed here are focused in the representation of electricity production, in which demand or 

actual transaction data is used as a static or empirical variable. However we also see in Gerst 2012 a 

representation of demand which is endogenously driven by socioeconomic conditions. However, in Gerst 

2012 demand is not represented as heterogeneous agents but as homogenous function of employment (Total 

Household Normalized Energy Expenditure Division (‘thneed’) (Geisel, 1971).  Other ABM which model 

energy demand do so in a narrow sense, e.g. modeling the end use of energy based on office management 

and technology (Zhang 2013); or end use of heating appliances in Norway (Sopha 2013). While current 

ABM forward the capacity toward modeling energy consumption behavior. There is a clear gap of the 

ABMs in their modeling systems (non-linear negative feedbacks in response to climate change) at any rate 

that might be relevant for environmental public policy. For example: what kind of system flip can we 

expect from changes in a sector which is less 4.5%-9% of total energy consumption/GHG (household 

electricity use); of which appliances are less than 15% of household energy consumption; and whose 

efficiencies with green appliances might at best be at best 20%-80% in the next 40 years. Clearly less than 

one percent aggregate change in the best scenario.  Fisher and Irvine 2010 empirically document the level 

of reductions in electricity, gas, water and waste achieved at the household level by different groups (British 

and Dutch ECO teams, Grag’s and Green Streets). In order to model emergent or non-linear responses to 

climate change it is clear that an ABM would have to be applied in a nature similar to the work of Fisher 

and Irvine 2010 in a way that is relevant to policies being proposed (Wiseman 2013).    

 

The supply of energy is presented in various ways, Weidlich 2008, present the most robust model however 

it is still for an analysis of a specific process. Weidlich 2008 as well as Bunn and Oliveira 2006,  Li 2012, 

and Sun and Tesfatsion 2007 all focus on the strategic behavior of liberalized energy markets. Gerst 2012 

and Chapin 2009 model investment and divestment in electricity generation technologies. No ABM has 

modeled the electricity technologies with dynamic values over time, this would be relevant as most ABM 

deal with forecasting future trends. Therefore there would be value in informing the Energy Invested on 

Energy Returned (EIOER) ratios vis-à-vis projection in terms of end-use efficiency in the representation of 

electricity supply.  

 

12) Validation 

Amid clear attempt to standardize ABM model verification (“ODD Protocol for Describing Three Agent-

Based Social Simulation Models”
34

, Volker Grimm et al. 2006, and “Describing human decisions in agent-

based models – ODD + D, an extension of the ODD protocol”
35

 Muller 2013). In the ABM reviewed here 

there is absolute ambiguity in terms how to treat the outputs of the models, e.g. should the outputs of a 

specific scenario be averaged, or picked, or should cluster analysis be implemented to discover scenarios 

(Gerst 2012), or should there some kind of process listener-control at run time, etc. There is also ambiguity 

in terms of what “sensitivity analysis” means, e.g. random seed variation, or temporal model variation, or 

variation in the level of data aggregation, or variation of sample size, or variation in the decision processes 

and capabilities of the agents, etc. (Richardi 2006). There is also no standard in terms of the integration 

period, sequence, range, etc. which has severe implications given the finite precision of computers 

(McCullough 2009:53). So it is often a series of ad hoc choices with non-marginal results that constrain the 

complexity/application of ABMs. It is for this reasons that most ABMs often do not stray too far from the 

minimalism problem formulation /application of conventional models, e.g. Nannen 2010. However this 

limitations are a sign of the relative novelty of ABM and not precluding factor of ABMs capacity. 

 

Most ABM’s have at least one subsystem parameters derived from empirical data. Some had several parts 

of the ABM informed by a combination of survey data, empirical data, secondary data, panel data, or 

experimental data. Given the large domain that ABMs cover, it is almost impossible to expect that every 

parameter and function in a ABM is derived from empirically validated data; ABM is an exploratory not 

descriptive technique. In fact ABM that constrain the functions and parameters of the agents exclusively to 

empirical data, often results in very static models (e.g., Sopha 2013). 

 

                                                      
34 http://www.sciencedirect.com/science/article/pii/S030438001000414X  
35 http://www.sciencedirect.com/science/article/pii/S1364815213001394 

http://www.sciencedirect.com/science/article/pii/S030438001000414X
http://www.sciencedirect.com/science/article/pii/S030438001000414X
http://www.sciencedirect.com/science/article/pii/S1364815213001394
http://www.sciencedirect.com/science/article/pii/S1364815213001394
http://www.sciencedirect.com/science/article/pii/S030438001000414X
http://www.sciencedirect.com/science/article/pii/S1364815213001394
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4.2.2 ABM specific review aspects 

 

1) Theoretical framework for agents behavior  

ABM in itself presents a theoretical and epistemological paradigm, which fundamentally aims to represent a 

complex system in as much detail as possible. This is not always the case for other methodologies applied 

in the same context. Beyond this, there is a huge variance in terms of which specific theories the author’s 

use to justify the epistemological and methodological choices. For example Gerst 2012 bases his ABM on 

the work of the DRF model by Dosi, Fagiolo et al. (2010). This model is then based on Schumpeter’s 

business cycles, and adds a simplified energy system (3 types of energy based on their emission profiles) . 

Other ABM’s use more general theoretical frameworks such as Wittmann 2006 who uses Social Miliues 

(SINUS-Milieu-Typology ) and rationality types. Sopha 2013 uses Theory of Planned Behavior, Diffusion 

of Innovation Theory, Meta-Theory of Planned Behavior, Utility Theory. Most other authors do not frame 

their ABM within a theoretical framework but simply disclose the interaction structure and sequence, which 

in itself is a theory.  

 

2) Heterogeneity  

Most ABM’s have heterogeneity in terms of the initial and run time state parameters of at least one class of 

agents. However, this is not true for all ABM’s; in Diessenberg 2008, all agents consist of two states and 

only two agent classes. However, the Authors do not describe what the transition functions are so it is hard 

to draw conclusion about their ABM. Most ABM’s will have more than one type of agents treated within 

the ABM tradition, however it is also the case that ABM’s will sometimes use representative agents to 

model climate, ISO, Demand or governments. 

 

3) Bounded Rationality 
Bounded rationality is a hypothesis: “rational agents experience limits in formulating and solving complex 

problems and in processing (receiving, storing, retrieving, transmitting) information". (Simon 1957) These 

include: limiting the types of utility functions,   recognizing the costs of gathering and processing 

information, and possibility of having a "vector" or "multi-valued" utility function.  

 

All ABM’s implement bounded rationality through an internal maximization function, the rest use of both 

behavior satisfaction and maximization (Wittmann 2006). The later means that the internal maximization is 

activated by a response to another agent or environment. That is to say that bounded rationality is limited by 

the heterogeneous characteristic/functions of the agents. It would be very hard to call a ABM an ABM 

without a clear implementation of bounded rationality. In the case of Agent-Based Computational 

Economics (ACE) tradition or microeconomic ABM’s (Weidlich 2008 Nicolaisen et al. 2000, 2001, Lane et 

al. 2000, Bunn and Oliveira 2001, 2003, Bower and Bunn 200, 2001, Bower et al. 2001, Bunn and Oliveira 

2006,  Visudhiphan and Llie 2002, Sun and Tesfatsion 2007, Ruperes, Michola et. Al 2004, Cincotti et. Al 

2006, Weidlich and Veit 2006, Krause et al 2005,Naghibi-Sistani et al. 2006, Xiong et al. 2004, Bakirtzis 

and Tellidou 2006,) we see the rationality of the agents is constrained internally, and further by the ISO 

which clears the market. Only one ABM consisted of only purely behavior satisfaction (Diessenberg 2008). 

 

4) Adaptive expectation formation 

Adaptive expectation formation is commonly implemented through a learning algorithm. For example this 

will be implemented in a way that each agent is assigned one out of a number strategies for setting their 

response (e.g. bidding or buying). Specifically: These can be set equal to (i) the maximum, (ii) the mean, or 

(iii) the minimum of historic prices, to (iv) the sum of weighted historic prices, (v) the last bid price plus the 

difference between the last market price and the last bid price, weighted by a constant β, or to (vi) a target 

price plus the absolute value of the difference between the last market price and this target price, weighted 

by a constant β; the value of β depends on the success in the previous round.“ (Weidlich 2008)   

Weilich 2008 and Sopha 2008 are the only ABM’s reviewed here to have sensibility analysis or a 

comparison of different types of adaptive expectation formations. Specifically Weidlich 2008 compares 

reinforced learning: Erev & Roth and Q-learning algorithms. Sopha 2008 compares small world networks 

and random networks. Evolutionary algorithm’s is another technique used to represent and agents adaptive 

response to and environment as well as mutation, e.g. Nannen 2010. Chappin 2012, implements what he 

calls a memetic function as well as network influence.  
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5) Interaction  

Wittmann 2002006 is the only ABM to have a variation of interaction hierarchies. His ABM is 

implemented in an operational, structural and scenario hierarchy. Diessenberg 2008 is the only ABM to 

have a purely event driven interaction hierarchy. For the rest of the ABM the interaction is fundamentally 

linear, i.e. arranged by the order of computation between the agents and the state variables, e.g. Chappin 

2009:  update exogenous scenario parameters electricity trading  emission trading  fuel trading  

investment and divestment.  It is also important to understand the ABM’s output will be sensitive to the 

interaction sequence/implementation. However, no ABM has so far done sensitivity analysis by variation of 

the interaction structure, which would clear value to the discipline. 

 

6) Macro Metric Output  

There is a huge range in terms of the metrics used, however the one discernible pattern is that none of the 

ABMs reviewed here treated emissions from economic activity or energy consumption beyond stylized 

ways, i.e. no ABM here had methane + CO2 + particles, etc. The lack of such metrics for which there is 

ample data elucidates the fact that he feedbacks between economic/energy systems and climate systems are 

very weak. It could also be said that perhaps the representation of climate at a higher fidelity would add no 

analytical value to the comparison of MBI’s. However no author justifies this point.  

1.4.10.C) Structural Validation? (ABM specific criterion) 

 

Very few ABMs perform some kind of Structural validation. When it is  performed, it is only for one aspect 

of the model (e.g. energy generation, in an energy market). ABMs are in theory capable of having a 1:1 

ratio of data granularity, e.g. each survey or data point, can be represented fully as an aspect on an agent’s 

heterogeneity. However it is often the case that ABM’s actually go beyond that and produce experimental 

data which cannot be validated in any rigorous way. 

 

7) Statistical Test 

There is a broad range of statistical test perform as well as a large number of ABM’s which do not perform 

any at all. Chappin 2009, 2012 is the only author to perform test in reference to the complexity science 

literature. However the results are not explicit in the paper. Some authors apply Monte Carlo methods and 

others (Gest 2012) suggest cluster analysis as a scenario discovery tool. There is allot of variance in terms 

of what tests are necessary to validate the model and further where in the ABM should this test be 

implemented. For example Sopha 2012 validated the input parameters, others restrict the run state constants 

to empirical data (Weidlich 2008), and other compare the outputs of the ABM with the empirical data 

(structural validation).  

 

8) Sensitivity analysis 

Almost all ABM that are developed with high level programing languages (e.g., Net Logo, Anylogic, 

Repast) will be developed vis-à-vis a graphic user interface that allows for the variation of initial 

parameters. However there is absolute ambiguity as established by Richardi (2006) in terms of how and 

where in the ABM to perform sensibility analysis. Richardi 2006 elaborates: “”…the term is currently used 

as a general catch all for diverse techniques: there is no precise definition and no special methodology 

currently associated with this term. We define sensitivity analysis as a collection of tools and methods used 

for investigating how sensitive the output values of a model are to changes in the input values (see Chattoe 

et a. 2000). A "good" simulation model (or a "significant" result) is believed to occur when the output 

values of interest remain within an interval (which has to be defined ), despite "significant" changes in the 

input values (which also have to be defined).” 

 

9) United Modeling Language Diagram (UML) 

Most ABM come with some sort of descriptive diagram. Weidlich 2012, Chappin 2012, Balbi 2013, Shafiei 

2012, Deissenberg 2008, Zhang 2013 had a  UML diagram. In the next page there are two types of UML 

(class and sequence) from Weidlich 2008. The UML diagrams when done properly can easily explain 

complex interaction and class structures.  
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Figure 11: UML class diagram of agents in the simulation model (Weidlich 2008) 

 

  

 
Figure 12: UML Sequence diagram of the daily trading process on the day ahead market (Weidlich 2008) 

 

4.3  Summary of reviewed ABMs characteristics 

 

Table below summarizes the characteristics of the ABMs that were reviewed in Section 4.2.1. 

 

 



COMPLEX – State of the Art Review of Climate-Energy-Economic Modeling Approaches   

57 
 

 

Autho
r, year 

1. A) 
Issues? 

2. A) 
Links 
Betwee
n 
Climate 
And 
Energy? 
B) MBI?  

3. A) 
Non-
Linearity?  
3. B) 
Threshold
s, 3.C) 
Irreversib
ility? 

4. A) 
Endogenou
s Tech 
Developme
nt? 
 
 

5. A) 
Feedba
ck or 
link 
Type?  
 

6. A) 
Econ 
Sectors? 
B) 
Energy 
Sources
? 

7. A.) 
Spatial 
Scales? 
10. B) 
Time 
Scales? 
 

8.Representati
on of A) 
Demand 
B) Supply 
C) Market 

9. Agent Design 
A)Theory 
B)Heterogeneity 
C)Bounded Rationality 
D)Expectation Formation 
E)Interaction 
 

10. A) Empirical 
Parameterization? 
B)Macro Metric Output 
C) Structural 
Validation? 
D) Statistical Test? 
E) Sensitivity analysis? 
f) UML? 

Gerst 
2012 

Proof of 
concept, 
ABM for 
scenario 
discovery 
and 
discovery 
of 
enhancin
g or 
retarding 
factors of 
policy. 
Microeco
nomic 
models 
 
 

E

C E €
 

C

€ 

A)Stylize
d energy 
types 
B) NO 
C) BAU, 
Tax, 
R&D,  
Tax+R&
D and 
R&D 
Shift 
 

3. no 
emergent 
response 
to climate 
change  
A) yes  
B) no 
 C) yes 

A) No   
 ECONO

MYE
NERGY 
PRODU
CTION 
 
ENERGY 
CONSU
MPTION
. Signal 
passing. 

A) 
Energy 
B) three 
stylized 
energy 
technol
ogies: 
‘carbon-
heavy’, 
‘carbon-
light’, 
and 
‘carbon-
free’ 

A)MICRO 
(level 
1),MACRO
/ Based 
on 
Putnam 
(1988) 
two-level 
game. For 
spatial 
domain 
reference 
to 
Nordhous 
(2008) 
and 
Sissine 
(2011) 
B) 50 
simulatio
ns 1 step 
per year: 
2000 to 
2300 

A)Static/ Total 
Household 
Normalized 
Energy 
Expenditure 
Division 
(‘thneed’) 
(Geisel, 1971). 
demand of 
homogenous 
capital goods, 
consumer 
goods, 
laborers-
consumers 
B) different 
investment 
rules based on 
energy carbon 
heavy, carbon 
light and 
carbon free 
C) No market 
clearing 
mechanism, 
income from 

A) Schumpeter: business 
cycles, + adding a 
simplified energy system 
and  energy as an input 
and cost factor in the 
production and use of 
goods and machines to 
the DRF model Dosi, 
Fagiolo et al. (2010) 
B) 250,000 Households, 
50 capital good firms, 200 
consumer good firms, 1 
energy production firms, 
3 energy technology 
firms. Prices, wages, 
energy use, and 
technological change are 
determined 
endogenously. . 
C) maximization problem  
D) households, firms 
(capital good, consumer, 
energy production and 
energy technology) no 
learning: static 
parameters + stochastic / 

A) Thaler (1985), Heath 
and Soll (1996), and 
Gigerenzer and Brighton 
(2009) for consumers, 
Dosi, Fagiolo et al. 
(2010) for firms,  and Lai 
and Sycara (2009) for 
negotiators).WHAT IT IS 
B) Co2 emission per 
household, market 
share, Normalized 
cumulative emissions, % 
GDP per household 
average, % Energy use 
per household average, 
% Labor productivity 
average, Renewable 
R&D efficiency 
C)No 
D) Cluster analysis as 
mean to discover 
scenarios. Dosi (2010) 
do Monte-Carlo analysis 
on the average of 100 
simulations.  
E)No 
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labor sale = 
demand of 
homogenous 
goods. There is 
a market share 
limit 75%.  

max note 
e) Three energy 
technology firms and one 
energy production firm. 
Each energy technology 
firm produces one type of 
energy production 
technology and 
undertakes R&D in order 
to improve the unit costs 
of building its technology. 
The energy production 
firm buys energy 
technologies and uses 
them to produce and sell 
energy to all other firms 
and households 

F)No  

Weidli
ch 
2008 

Energy 
Market 
structure 
effect of 
prices. 
Day 
ahead 
market, 
balancing 
power 
market 
and CTM. 
Germany 
2006 
(economi
c ABM) 

E

C E €
 

C

€ 

A) yes 
B) no 
C) Yes, 
CT 

3. no 
emergent 
response 
to climate 
change  
A) yes  
B) no 
 C) yes 

A) No 
 Subsyst

em ref: 
Econom
y/ 
electrici
ty 
GHG. 
Signal 
passing. 

A) 
Electricit
y 
markets 
and 
carbon 
trading,  
B) Based 
on real 
data 
2006/Ge
rmany 

A) 
Germany 
B) per 
hour, 
7,300 
iterations(
average 
of 
simulatio
ns) 

A) demand is 
statics (based 
on actual data) 
B) 4 firms 
based on real 
data  
C) 3 markets, 
Day ahead, 
power balance 
and carbon. 

A) standard economic 
theory, ACE, reinforced 
learningmaximize bid 
payoff 
B) Trader and market 
operator. Different 
structural asymmetries of 
firms and comparative 
implementation of 
reinforcement 
algorithms. 
C) Maximization problem 
D) reinforced learning 
(Erev&Roth and Q-
learning)  
E) Day ahead market, 
power balance market, 
then carbon trading 

A) Yes energy price / 
demand from Germany 
2006http://www.ucte.o
rg/services/onlinedatab
ase/consumption/ E.ON 
AG, RWE Power AG, 
Vattenfall Europe AG 
and EnBW Kraftwerke 
AG 
B)electricity price/hr;  
C)No 
D) Monte Carlo and 
microvalidation  
E)yes, Variation of 
action domain, variation 
of parameters, variation 
of learning algorithms, 
Monte Carlo 
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market. per hour, 7,300 
iteration (average of 
simulations) 
 

distribution for each 
test.  
F) yes 

Sopha 
2013 

Adoption 
of clean 
heating 
systems 
in Norway 
/policy 
(Empirical
- rules + 
computat
ional 
organizati
on ABM) 
 

E
C E €

 

C

€ 

A) No 
(evolutio
n of 
market 
under 3 
value 
systems) 
B) NO 
C) NO 

3. no 
emergent 
response 
to climate 
change  
A) yes  
B) no 
 C) yes 

A) No 
 subsyst

em 
referen
ce: One 
way 
househ
old 
decision 
making, 
econom
yGHG  

A)House
hold 
heating  
B) No 
energy 
types 

A) Micro 
level 
based on 
survey in 
Norway 
5/year 
2001-
2009 
B)30 
simulatio
ns, 3 
month 
step 
2000-
2020 (20 
years) 

A) Probabilistic 
choice based 
on 3 types of 
value system + 
network 
effects. 
B) STATIC 

A) Not modeled  
 

a) Theory Of Planned 
Behavior, Diffusion Of 
Innovation Theory, Meta-
Theory Of Planned 
Behavior, Utility Theory. 
b) 3 types of household 
with 4 decision strategies 
and 5 value systems for 
probability of adoption.  
(+ comparison with 
implementations of small 
world network, random 
network and spatial 
network ) 
c) behavior satisfaction (3 
rule/probabilistic model + 
network influence)  
d) Network interaction 
(spatial, small world and 
random), strategy 
selection, selection of 
energy type, installation 
of heating system. 
 

A) All parameters are 
based on survey. 
B) fractions of adoption 
/ time 
C) Distributional 
equivalence with data, 
but it doesn’t fit fully.  
D)  Yes (but), boundary 
adequacy, 3rd party 
programmer validation, 
sensitivity to @ 0 
parameterization  
E) distributional 
equivalence with 
benchmark, goodness of 
fit 
F) No UML, but 
conceptual diagram 
with parameters 

Kemp
ener 
2009 

Personal 
carbon 
trading 
UK / 
evolution 
of CM 
(Microeco

E

C E €
 

C

€ 

No 
(evolutio
n of 

3. no 
emergent 
response 
to climate 
change  
A) yes  
B) no 

a)No 
 One 

way, 
econom
y 
energ
y 

A) 
Electricit
y, 
carbon 
trading,  
B) 
Stylized 

A)UK 
(ONS 
2008 The 
FES 2005-
2006)  
B)10 

A) demand in 
terms of 
adoption rates 
(relaxation of 
utilitarian 
rationality) 
B) static 

A)general economic 
theory 
B) quintiles based on 
income profiles  
C) maximization (only for 
the firms who have 
different investment 

A) Static decision 
rules/multi-criterion 
optimization. 
B) Carbon Price, Ton 
Co2, allocations and 
emissions, fuel poverty, 
average technology 
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nomic + 
empirical-
rules 
ABM) 
 

market 
under 3 
behavior
al rules)  
B)NO 
C) Yes, 
CT 

C) yes consum
ption 

based 
on GHG 
profile 

years C) perfect 
market/neocla
ssical theory  

criterion, demand is 
homogenous, goods are 
homogenous, 
D) Probabilistic rules 
E) ~10/year for 10 years 

uptake 
C)No 
D)No 
E)No 
F)No 

Nanne
n, Veb 
Den 
Berg 
2010 

Comparis
on of tax 
on fossil 
fuels, 
prize 
policy and 
advertise
ment 
policy in 
terms of 
the  
evolution 
of energy 
market 
shares.  
(microeco
nomic 
ABM) 
 

E

C E €
 

C

€ 

A)Climat
e change 
(emissio
n/energ
y type) 
as part 
of utility 
function 
B) at Int 
and 
compara
tively 
but no 
interacti
on of 
MBI 
during 
run 
time.   

3. no 
emergent 
response 
to climate 
change  
A) yes  
B) no 
C) yes 
 

A) (Tech 
Dev) Only 
In Terms Of 
Market 
Share  
 

One 
way, 
PUBLIC 
POLICY
energ
y type 
as 
constrai
n in 
econom
ic 
maximiz
ation 

A) 
electricit
y 
B) 
Stylized 
Electricit
y 
producti
on: 
Fossil 
energy 
and 
renewa
ble 

A)No 
spatial 
domain 
B) 400 
time 
steps, 
simulating 
400 
quarters 
or 100 
years 

A) demand is 
exogenous 
B) Investment 
and 
divestment 
based of  
C) Not fully 
modeled 

A) Evolutionary 
economics, network 
theory, general economic 
theory (Each agent’s 
controls internal supply 
and production, via 
standard economic 
growth and production 
functions. Some 
allocations receive higher 
yield and the agent 
optimizes such strategy. 
There is mutation and 
crossover (neighborhood 
effect). 
B) maximization problem 
(heterogeneous 
strategies determined by 
welfare maximization and 
network influence  (small 
world). 
400(int)200(end) 
agents, heterogeneous in 
terms of the intimal 
parameters(3d vector in 
Boolean matrix) 
C)  Random mutation and 
neighborhood imitation  

A) No 
B) GROWTH EFFECT, 
INCOME , TEMP (NOT 
QUANTITATIVE 
METRICS BUT RATE OF 
CHANGE?) Income , 
Growth Rate And 
Temperature As 
Functions Of Taxes 
C) No 
D) No 
E) No  
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effect 
D) agent imitate (past or 
neighbor) prize relative to 
welfare. 
E) 100 800 steps, first 400 
agents evolve at 400 
policy is applied (200 
agents)  

Sun 
and 
Tesfat
sion 
2007 

Energy 
market 
design 
(structure
, protocol 
and 
learning) 
(Microeco
nomic 
ABM) 

E

C E €
 

C

€ 

2.A) no 
2.B) no  
 

3. no 
emergent 
response 
to climate 
change  
A) yes  
B) no 
C) yes 

4.A) No 
4.B) No Subsyst

em 
Referen
ce 
No Link 
Or 
Feedbac
k 
 

A) 
Experim
ental 
Electricit
y 
Market  
(B) 
Electricit
y  

A.) no 
spatial 
domain, 
(electricit
y supply 
from 
empirical: 
USA 
Midwest 
data) 
B) per 
hour, 
422+ 
simulated 
days 

8. A) not 
modeled (only 
demand of 
electricity at 
firm level) 
B) Bid-based 
DC optimal 
power flow 
problem,  
C) ACE, day-
ahead market 
and real-time 
market,  
midpoint 
pricing, fixed 
inelastic 
demand 

A) ACE, buyers and sellers 
of electricity  (agents) + 
ISO/ 5 node AC 
transmission grid. Agents 
set supply functions. 
B) Parameters + 2 types 
of agents and 1 controller 
which clear the market-
sets demand 
C) maximization 
D) Even and Roth 
reinforcement learning. 
E)Interaction 
 

10. A) No 
B)selection of specific 
days (e.g. day 422)SD, 
Mean, SI, of power 
production/hour; 
ordinate coefficients 
and slope coefficients, 
for linear marginal cost 
functions reported to 
the ISO/runs; power 
production /hour; 
minimum total variable 
cost ($/h); 
REPORTED/true 
Marginal cost 
C)No 
D)No 
E) Variation Of Seed 
Values 
F) No 

Nicolai
sen  
2001 

Analysis 
of 
structural 
market 
power 
and 
market 

E

C E €
 

C

€ 

 A)no 
 B)no 
 

3. no 
emergent 
response 
to climate 
change  
A) yes  
B) no 

4.A) No 
 Subsyst

em 
Referen
ce, 
Signal 
Passing 

6.A) 
Experim
ental 
Electricit
y 
Markets 
B) 

A.) Spatial 
Scales?  
B) 1000 
and 
10000 
round 

8. A) not 
modeled 
B) adaptive 
demand from 
buyers and 
sellers of 
electricity 

A)Agent-Based 
Computational Economics 
(ACE), agents set bid 
prices 
B) Mutation in their 
bidding strategy under 
different market 

A) no 
B)ask price/time, 
price/MWh,  relative 
market capacity / 
relative market 
concentration  
C)no 
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power 
due to 
agent 
strategy 
(learning)
(microeco
nomic 
ABM) 

 C) yes  Electricit
y  

cases. 
 

C) BILATERAL, 
DOUBLE 
DIB/CLEARING 
HOUSE 

concentration and 
capacities  
C) maximization (set 
bidding price, if its 
cleared reinforced the 
probability of setting the 
same price again subject 
to constraints 
D) MRE algorithm with 
Softmax modified Roth-
Erev individual 
reinforcement learning 
algorithm to determine 
their price and quantity 
offers in each auction 
round. For the 10 000 
auction rounds per run 
case, possible price offers 
were randomly selected 
within each feasible price 
offer range, implying that 
each trader could in 
principle sample each 
price 100 times during 
the course of each run 
E)Interaction 
 

D)no 
E) no, (or if variation 
and comparison of 
variation in the 
environmental variables 
can be it?) 
f) no 

Chappi
n 2009 

effect of 
CET on 
the 
decisions 
of power 
companie
s in an 
oligopolis

E

C E €
 

C

€ 

A)effect 
of 
carbon 
trading 

3. no 
emergent 
response 
to climate 
change  
A) yes  
B) no 
 C) yes 

4.A) 
Depends, 
See Note: 
 

Link, 
MbiE
nergy 
Tech, 
Signal 
Passing 
 

6.A) 
Electricit
y 
Producti
on B) 
Nuclear, 
Natural 
Gas 

7.A.) 
Netherlan
ds 10.B) 
75 years, 
1 year 
step 

8.Representati
on of A) static  
B) Supply is 
driven by 
demand and 
constraint by 
evolution of 
model 

9. A) 7 electricity firms, 1 
markets for electricity, 1 
CO2 emission rights, 1 
government, 1  market 
for fuels and electricity 
import, 1 aggregate 
consumer agent and  1 
environment agent.  

10.  
A) Data used collected 
by Chappin 2006 
B) market share /  3 
electricity producers; 
emission reductions by 
energy type/time; 
market share / time 
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tic 
market.(
microeco
nomic 
ABM) 

on 
electricit
y 
producti
on firms 
decision
s 
B)CET 

(Ccgt), 
Coal(Cfs
tp), 
Wind, 
Clean 
Coal, 
Biomass 

C) ACE, Spot 
market 

long term behavior: 
•investment 
•divestment •choice of 
technology  
short term behavior: 
•selling of electricity 
•acquisition of fuel 
•acquisition of co2 rights 
E) energy providers in the 
short-term they adjust 
their operation, long-
term they decide on 
(dis)investment in power 
generation facilities and 
technology selection. 
B) Short-term they adjust 
their operation, long-
term they decide on 
(dis)investment in power 
generation facilities and 
technology selection. 
C)Behavior 
satisfaction/maximization 
D) At each step: •update 
exogenous scenario 
parameters• electricity 
trading• emission trading 
•fuel trading •investment 
and divestment  

step; 
C)no 
D)Yes but not explicit: 
reference to SD 
verification test Qudrat-
Ullah (2005) and Barlas 
(1996) (source  
empirical structure and 
parameters, direct 
extreme conditions, 
boundary adequacy of 
structure, dimension 
analysis,  face 
validation, extreme 
conditions, qualitative 
future analysis, 
comparison with 
accepted theory and an 
extensive sensitivity 
analysis 
E) Parameter variation 
and 900 simulations, no 
cluster analysis or 
discussion on how 
scenarios where chosen 
or averaged. Model was 
sensitive to fuel prices 
not management 
decisions. 
f) conceptual diagram 
not UML 
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Chappi
n 2012 

Adoption 
of 
renewabl
e 
appliance
(light 
bulbs) 
(microeco
nomic, 
empirical-
based 
rules, 
computat
ional 
organizati
on ABM) 

E

C E €
 

C

€ 

A)yes 
B)Yes, 
ban of 
incandes
cent 
bulbs, 
subsidy 
of LED 
and tax 
on 
incandes
cent 
bulbs 

3. no 
emergent 
response 
to climate 
change  
A) yes  
B) no 
 C) yes 

A)Tech 
Adoption 
Not 
Developme
nt 
 

LINK, 
MBI 
Energy 
Tech, 
Signal 
Passing 
 

A)Light 
Bulbs/ 
Applianc
es Not 
Energy 
B)Sourc
e Is 
Exogeno
us To 
Model 

A)survey 
data in 
Netherlan
ds/EU 
policy  
B)40 
years 

A)yes 
B) static from 
survey data 
c) simple 
market: max 
muticriterion 
of demand / 
available 
supply 

A) agents check if they 
need a lamp, then multi 
criterion max/ reinforced 
learning and network 
influence  
B)50-250 agents  
C) Multicriterion 
maximization problem + 
behavior satisfaction: 
Households check 
whether they need to 
replace lamps that failed. 
If so, they use 
information on the lamps 
for sale, their criteria, 
their memory and 
perceptions to choose 
the best lamps that can 
replace the broken lamp 
D) Development of 
preferences depends on 
memory and perceptions, 
as well as interaction in a 
social network structure: 
memetic function 
pj,memory*=0.5×(pj,mem
ory+pj,experience) for 
failed lamps, and network 
min of 15 other agents  if 
> 50% of the friend has a 
certain type 
pother*=0.5×(pother+pm
e) 
E) 

A) secondary sources 
for the agents, but the 
lamps where primary in 
Netherlands 
B)Market share / 
scenarios (baseline, ban, 
subsidy, tax) ;money 
spent/time; electricity 
intensity/time; 
perceptions/utility type; 
C)no 
D)no, only variation of 
weight factor for the 
purchase decisions per 
simulation scenario. “fit 
for purpose” (e.g., 
Holling, 1978, Barlas 
and Carpenter, 1990 
and Qudrat-Ullah, 
2005), direct empirical 
validation of the 
model's outcomes is not 
possible as some 
policies have not and 
will not be implemented 
in reality. A number of 
verification and 
validation checks were 
done as a proxy of such 
a validation. These 
included a range of 
structure–behavior 
tests that focused on 
the outcomes of 
purchase decisions by 
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consumer agents. 
E)Activity UML + 
conceptual diagrams  

Tran 
2012 

Adoption 
Of 
Technolo
gy:   Gas, 
Diesel, 
Full 
Battery 
Electric 
(Bev) ,  
Hybrid 
Electric 
Vehicle ( 
Hev ), 
Plug-In 
Hybrid 
Vehicle 
(Phv)  
And H2 
Fuel Cell 
(Fc) 
(empirical 
rules 
ABM) 

E

C E €
 

C

€ 

A)techn
ology 
adoption 
based 
on 
environ
mental 
criterion 
B)No 
C)no 

3. no 
emergent 
response 
to climate 
change  
A) yes  
B) no 
 C) yes 

A) No 
 Link 

Consum
ption
Tech 
Diffusio
n, Signal 
Passing 
 

A)Trans
port  
B)Only 
In 
Referen
ce 
To(E.G. 
Gas Car) 

A) No 
Focus, 
Use Of 
Secondary 
Sources 
From DE, 
UK, USA, 
Etc. 
B) 30 
Steps 

A) Dynamic, 
Network, 
Probability 
Constrained By 
Preferences 
B)Exogenous 
C)Not Modeled 

A) combining individual 
choice behavior and 
network influence. ( 
DETAILS ) 
B)100 agents, 
heterogeneity simulated 
by variation of 
parameters (β|θ)) 
C)behavior satisfaction 
D)probabilistic + small 
world network influence,  
E) mathematical 
estimation of individual 
choice preferences (Pij) 
for BEVs used to derive 
index, then applied to 
ABM  framework: 
Prob(t)=1−(1−[1R∗∑Rr=1Li
j(βr)])∗(1−[nk/n])∧(∑wijyi
/∑wi) 

A) secondary sources, 
journals and company 
info: Although we 
parameterize the model 
with empirical data 
where possible, the 
analysis is mostly based 
on synthetic output 
data from 
the model. 
B)Cumulative adoption 
patterns/time; 
probability of 
adoption/time ; 
sensitivity analysis and 
cluster analysis of P, K 
and Q. 
C) agent choice uses 
Monte Carlo, cluster 
analysis of adoption 
curves under different 
scenarios, validation of 
inputs, for probabilities 
and 3 agent types 
(secondary sources) 
D) sensibility analysis of 
constants (P, K, Q) 
E)No 

Wittm
ann 
2006 

Energy 
investme
nt and 
market 

E

C E €
 

C

€ 

3. no 
emergent 
response 
to climate 

A) No 

Tech 
Investm
ent In 

A)Reside
ntial 
Building 
Owner 

A) no 
spatial 
domain / 

A) bounded 
rationality 
(typology of 
agents with 

A) Social Miliues (SINUS-
Milieu-Typology ) and 
rationality types. 4 
objective functions 

A)Ad-Hoc, social milieu 
typology taken from 
private company SINUS-
Sociovision 
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structure 
(evolution
ary, 
heuristic, 
microeco
nomics 
ABM) 

A)yes, 
energy 
tech 
diffusion 
with link 
to CO2 
B)No 
C)No 
 

change  
a)quantit
ative: 
search 
rules/mat
rix and 
only one 
scenario 
B)no 
C)no 

Specific 
Domain
, Signal 
Passing 
 

Investm
ent In 
Electricit
y, Hot 
Water, 
And 
Room 
Heating 
B) Gas, 
Micro 
Cogener
ation, 
Solar- 
Thermal
, Oil, 
Pellets 

building 
owner 
investme
nt 
B)  

constraints/rul
es/preferences
) (3 stylized 
types). 
B) 1step  

(find_all, 
find_by_aspects, 
find_common, find_next) 
and 3 search strategies 
over 27 options in a 
decision matrix 
B) 9 agents; variation in 
search domain, rules, 
cost, strategy and budget. 
C)behavior satisfaction 
D)Ex goals / search rules 
/environment 
E) three different 
hierarchic timeframes, 
the operational 
timeframe, the structural 
timeframe 
and the scenario 
timeframe. 

www.sociovision.com , 
decision matrix based 
on (see note 
B)Decisions Outcome 
And Parameters Table 
C)Not in paper: 
“Compared to empirical 
analysis using 
regression models, the 
outcomes of the 
different actor models 
seem to be 
reasonable (Lutzenhiser 
1993, Schuler 2000).” 
D)No 
E)No 
F)No 
 

Bunn 
and 
Oliveir
a 2001  

Assessme
nt of 
liberizatio
n policy 
New 
Electricity 
Trading 
Arrangem
ents 
(NETs) of 
England 
and 
Wales 
(microeco
nomic 
ABM) 

E

C E €
 

C

€ 

 A)no 
 B)no 

3. no 
emergent 
response 
to climate 
change  
A) yes  
B) no 
 C) yes 

4.A) No 
 Subsyst

em 
Referen
ce 
No Link 
Or 
Feedbac
k 
 

A) 
Experim
ental 
Electricit
y 
Market  
(B) 
Electricit
y  

A.) no 
spatial 
domain, 
(electricit
y supply 
from 
empirical: 
England 
and 
Wales) 
B) per 
hour, 
422+ 
simulated 
days 

8. A) Active 
demand 
B) Bid-based 
DC optimal 
power flow 
problem,  
C) ACE, 
bilateral 
forward 
market + 
balancing 
mechanism + 
imbalance 
settlement 
process 

A) ACE, buyers and sellers 
of electricity  (agents) + 
ISO/ 5 node AC 
transmission grid. Agents 
set supply functions. 
B) Parameters + 2 types 
of agents and 1 controller 
which clear the market-
sets demand 
C) maximization 
D) Even and Roth 
reinforcement learning. 
E)Interaction 
 

10. A) no 
B)selection of specific 
days (e.g. day 422)SD, 
Mean, SI, of power 
production/hour; 
ordinate coefficients 
and slope coefficients, 
for linear marginal cost 
functions reported to 
the ISO/runs; power 
production /hour; 
minimum total variable 
cost ($/h); 
REPORTED/true 
Marginal cost 
C)no 

http://www.sociovision.com/
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D)no 
E) variation of seed 
values 
F) no 

* 36 
Bakam 
2012  

Cost 
effectiven
ess 
analysis 
with 
transactio
n cost of 
MBI/GHG 
mitigation 
in 
agricultur
e 
(individua
l based 
model / 
not ABM) 

E
C E €

 

C

€ 

A)no 
B)Emissi
on tax, N 
tax, 
permit 
trading 
 

3. no 
emergent 
response 
to climate 
change  
A) no  
B) no 
 C) yes 

A)No 

MBIF
arm 
Signal 
Passing 

A)Agricu
lture 
B) 

A)MICRO, 
farm level 
B) 40 
years, 
from 100-
60% 
reduction 
in 
emission 
permits 

A) Static, from 
aggregated 
second source 
data 
B)Static, from 
aggregated 
second source 
data 
C) WTP/WTA + 
% premium 
(transaction 
cost) 

The market sets the 
permit price as the Nash 
equilibrium value 
between willingness to 
pay (WTP) and willingness 
to accept (WTA), 
weighted by supplies and 
demands. The price per 
unit permit (p) is 
calculated as: A)

 
B)no heterogeneity 
C)Maximization 
D)static + premium for 
transaction cost 
E) S/D, Each Year 
Emission Permit Is  
Decreases By 1%. Agent 
Have To Pick From 

A) Aggregation of 
secondary sources: 
Scottish executive 2003, 
IPCC 2006, Radov et al. 
(2007) and Moran et al. 
(2008) 
B)average emission 
reductions; abatement 
cost/farm; average 
abetment cost on farm 
per unit; cost 
effectiveness for a tax 
rate 
C) NO 
D) NO 
E) NO 
F) NO 

Li 
2012 

investigat
e the 
bidding 
optimizati
on of a 
wind 
generatio
n 
company 
in the 

E

C E €
 

C

€ 

 A)no 
 B)no 
 

3. no 
emergent 
response 
to climate 
change  
A) yes  
B) no 
 C) yes 

4.A)No 
 

5.A) 

 
Electrici
ty 
Generat
ionM
arket. 
Signal 
Passing 

6.A) 
Renewa
ble 
Energy 
Producti
on 
 B) Wind 

7.A.) 
Based on 
the USA 
WSCC 
10.B) 24h 
/ 31 days 

A)Static 
demand  
B) Supply and 
demand 
(static) in 
energy  
C) Single sided 
Auction, Day 
Ahead / Iso 

A)ACE, MATPOWER 4.0 
(9-bus 3-Generator 
Power System) 
B) Buyers And Sellers 
Have Different 
Preferences, Cost And 
Learning Parameters 
C) Maximization 
D) Variant Roth–Erev 
reinforcement learning 

A) Empirical 
Parameterization? 
B)forecasting 
errirs/time;energy gen 
& sold /time; Average 
LMPs/time 
C)Structural Validation? 
D)no 
E)no 
f) No, but circuit 

                                                      
36

 * On the margin of being considered an ABM, so it was not used for the summary. 
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deregulat
ed day-
ahead 
electricity 
wholesale 
market 
(microeco
nomic 
ABM) 

(VRE-RL) (Sun 2007) 
E) Earn Money, Clear 
Market, Set Bid, Accept 
Bids, Iso Match Bids, 

diagram and conceptual 
diagram. 

Shafiei 
2012 

Evolution 
of market 
shares of 
electric 
vehicles 
(heuristic 
rules, 
microecn
omic 
ABM) 

E

C E €
 

C

€ 

A)renew
able 
transpor
t 
technolo
gy 
forecasti
ng  
B)vehicl
e tax, 
economi
c 
feedbac
ks 
(future 
price of 
fuel and 
EV) 
 

3. no 
emergent 
response 
to climate 
change  
A) yes  
B) no 
 C) yes 

4.A) No 
Tech 
Developme
nt But 
Evolution 
Of 
Technology 
Based On 
Projected 
Changes  
 

5.A) 
Socioec
onomic
Tech
nology
Energ
y Use, 
Signal 
Passing 
 

6.A) 
Electric 
Vehicles 
 B) 
Electricit
y And 
Gasoline 

7.A.) 
Iceland 
car 
demand 
10.B) 
2012–
2030 

8. A) Demand 
vehicles is 
discrete 
(activated and 
not constant) 
and then 
multinomial 
logit (MNL) 
B) Supply of EV 
is based on 
explicit 
scenarios 
C) Simple 
market, no 
clearing or 
auction 
mechanism 

9. A)Consumer choice 
probability based on the 
heterogeneous 
preferences and market 
share conditions of the 
EV 
B)sico-demographic 
attributes, preferences, 
and decisions 
C) Yes, behavior 
satisfaction and heuristic 
optimization based on 
multinomial logit (MNL) 
D) adaptive expectation 
formation base don the 
response and decay of 
social exposure 
E)Interaction 
 

10. A) yes, primary for 
car attributes and 
Icelandic socio-
economic variables and 
secondary for consumer 
choice preferences 
B)Share of EV / time; 
gasoline consumption 
/time 
C) no 
D)Statistical Test? 
E)yes, consumer 
preferences 
f) yes, action UML 



COMPLEX – State of the Art Review of Climate-Energy-Economic Modeling Approaches   

69 
 

Deisse
nberg 
2008 

Modeling 
of the EU 
labor 
market 
(NUTS-2) 
www.eur
ace.org 
(Assumpti
on or 
calibratio
n based 
ABM) 

E

C E €
 

C

€ 

 A)no 
 B)no 
 

3.no 
emergent 
response 
to climate 
change 
A) yes 
B) no 
C) yes 

4.A) No 
 

5.A) 
Econom
yEcon
omy, 
Comple
x Data 
Structur
e 
(String) 

 
 

6.A) 
Labor 
Market 
 B) None 

7.A.) EU 
10.B)  
4000 days 
(step) 

8. A) demand 
only in terms 
of jobs and 
employees 
B) Supply of 
labor and jobs 
C) No market  

A)State-Transition system 
(x-machine. households 
(up to 107), firms (up to 
105 producing 
consumption goods, and 
up to 102 producing 
investment goods), and 
banks (102). Other agents, 
that is, national 
governments and the 
single central bank, 
follow simple, predefined 
decision rules, 
B) types of agents and 
initial conditions (not 
clear how) 
C)behavior satisfaction 
D) the functions are not 
described. ”reading of 
messages”(application 
and job offers) 
E)event based, message 
activatedresponse  
 

A) No 
B)Unemployment 
rate/time ; % change in 
wage/time 
C)no 
D)no 
E)no 
f) yes 

Balbi 
2012 

Assessme
nt of 3 
climate 
and 
economic 
adaptatio
n 
strategies 
to climate 
change  in 
alpine 

E

C E €
 

C

€ 

 A)no 
 B)no 

3 yes, 
emergent 
response 
to climate 
change 
.A) Yes 
3.B) No 
3.C) Yes 
 

4.A)No 
 5.A) 

Multipl
e 
Feedbac
ks 
 

6.A) EU 
Tourism 
And 
Restaur
ant In 
Alpine 
Region 
B) Only 
Energy 
Consum
ption, 

7.A.) 
winter 
tourism 
socio-
ecosyste
m of 
Auronzo 
di Cadore, 
located in 
the 

8. A) Demand 
of 
tourism/servic
es 
B) energy 
supply not 
modeled 
C) simple, but 
there is 
competition 
between firms 

9. A)stakeholder 
participatory 
B) socio-economic 
background and activity 
targets 
C)yes, maximization and 
behavior satisfaction  
D)Expectation Formation 
E) Multiple levels of 
interaction 
 

10.A) Yes, record from 
1985-2000 
B) Macro Metric Output 
C) yes, data 
fitting/calibration with 
record from 1985-2000 
D) Yes 
E) Yes 
F) Yes, Static Class UML 

http://www.eurace.org/
http://www.eurace.org/
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tourism, 
(participa
tory, 
space 
theory, 
microeco
nomic 
ABM) 

Cost / 
Efficienc
y   

Dolomites 
(Italy), 
B) 
1day/step
, 364 
steps 

Natara
jan 
2011 

Comparat
ive 
assessme
nt of 
DECarb  
model 
and 
historical 
data 
agaist 
DECarb-
ABM 
(assumpti
on or 
calibratio
n ABM) 

E

C E €
 

C

€ 

 A)  
 B) 
 

3.not 
explicitly 
and not in 
regards to 
climate 
change 
A) yes  
B) no  
C) yes 

4.A) No 
 

5.A) 
human 
building 
interacti
on on 
energy 
use 
(energy 
use/con
structio
n)  

 

6.A)  
construc
tion, 
activitie
s of 
househo
lds 
B) 
electricit
y 

7.A.) UK 
10.B) 20 
steps, 30 
years, 
1965-
1995 

8. A) The 
demand of 
energy is 
modeled but it 
is not explicit 
what function 
or variables are 
used. 
B) no supply of 
energy and not 
explicit how 
supply of 
housing is 
modeled 
C) no market 

9. A) Theoratical Behavior 
To Test The Capability Of 
ABM. Agenst As 
Marionetes (Gulyas 2005) 
B)200 Households, One 
Building Contractor: 
Household Income; 
Installation By Neighbors 
And; Government Policy.  
C) No 
D) No  
E)Interaction 
 

10. A) Comparison With 
Decarb-EBM Which Was 
Validated Using Back 
Casting From 1996-1970 
Using Data From Digest 
Of UK Energy Statistics, 
DUKES) 
B) Deviation From 
Decarb-EBM And 
DUKES. 
C) Against Decarb-EBM 
And DUKES. 
D) Mean Percentage 
Deviation / 5 Years 
E) No 
F) No 

Zhang 
2011 

Office 
energy 
consumpt
ion 
(institutio
n based 
ABM) 

E

C E €
 

C

€ 

 A)no 
 B)no 

3. No 
non-liner 
response 
to climate 
change 
A) yes  
B) no,  
C) yes 

4.A) no 
 

5.A) Sub 
system 
signal 

 
 

6.A) 
academi
a 
(office) 
B) 
electricit
y 

7.A.) 
School of 
computer 
science 
10.B) 24 
days at 
hr/step 

8.Representati
on of A) 
Demand 
B) Supply 
C) Market 

9. A)Based on previous 
studies on electricity 
consumption (Firth 2008) 
and stereotypes based 
from survey and state 
machines to represent 
the computer and light 
appliances 
B)3, 4 types of 
stereotypes 
C) no 

10.  
A)  School wise 
empirical survey of staff 
and PhD students 
B)electricity 
consumption/time 
C)no 
D)no 
E)n o 
f) Yes, state chart 
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D)no 
E) activation of lights or 
computers states. 
 

Matsu
moto 
2008 

GHG ET 
comparis
on 
between 
ABM and 
conventio
nal 
regressio
n model 
(assumpti
on and/or 
calibratio
n based 
ABM) 

E
C E €

 

C

€ 

 A)no 
B)ET 

3. No 
non-liner 
response 
to climate 
change 
A) yes  
B) no,  
C) yes 

4.A) no 
 

5.A) 
subsyst
em 
referen
ce  
(energy 
market)  

 
 

6.A) 
electricit
y 
markets  
B) 
generic 
electricit
y 
producti
on 

7.A.) 
Chicago 
Climate 
Exchange 
(CCX) 
10.B) dec 
2003,200
4, per 
week, 52 
weeks 
total. 200 
simulatio
ns. 

8.Representati
on of A) 
Demand 
B) Supply 
C) Complex 
system  

9. A)ACE tradition 
B) perception, prediction, 
strategy, determination, 
learning parameters. 
C) yes, 100 agents, 3 
strategies/constrains  
D)yes adaptive: 
perception, prediction, 
strategy, determination, 
learning steps. 
E)Interaction 
 

10.  
A) Chicago Climate 
Exchange (CCX) 
B)Macro Metric Output 
C)comparison with 
linear multiple 
regression model,  
D)ME, MAE, RMSE 
E)no 
f) no but descriptive 
diagram. 

Jackso
n 2010 

End-use 
forecast 
model to 
evaluate 
energy 
efficiency 
and 
smartgrid 
program 
targets 
over a 
fifteen-
year 
horizon. 
(microeco
nomic 
and 

E

C E €
 

C

€ 

 A)Links 
Between 
Climate 
And 
Energy 
B)yes, 
individu
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5. Overview of Climate-Energy-Economic System Dynamic Modeling 

 

5.1 Introduction 

 

Originally created in 1957 by Jay W. Forrester at MIT, system dynamics is a computer simulation paradigm 

aimed at analysis of complex nonlinear dynamic systems and their performance (Forrester, 1971; Sterman, 

2000). System dynamics describes various social, economic, technological and environmental systems as 

structures consisting of stocks and flows, positive and negative feedbacks, and limiting factors (Radzicki, 

2009). While initially system dynamics models were essentially the models of corporations that did not 

perform properly, and the ultimate goal of modeling was to design policies to improve their operation, 

rather soon the methodology was applied at macro- and global level, particularly to produce projections of 

global economic dynamics under natural resource constraints and finite capacity of pollution sinks (the 

seminal studies are “World Dynamics” (Forrester, 1971) and “Limits to Growth” (Meadows et al. 1972, 

1992, 2002)). System dynamics modeling has particularly long track record in energy economics (see e.g 

the recent reviews by Kiani et al. (2010) and Ford (2011)). Applications to economics of climate change 

include e.g. the model FREE (Fiddaman, 2002) that is currently being advanced further into the model En-

ROADS (Sterman et al., 2013), and other models some of them are reviewed below. 

 

The mathematical core of any system dynamic model is an (almost always) nonlinear dynamic system 

consisting of first-order ordinary differential equations (ODEs). It is well known that only a limited number 

of nonlinear ODEs (and even more limited number of systems of nonlinear ODEs) has exact analytical 

solutions. Therefore from the very beginning the system dynamics models were implemented through 

numeric integration of systems of ODEs. The complexity of system dynamics model varies substantially: 

the number of variables may be from the order of tens (as in simplest models) and up to tens of millions (as 

e.g. in the ASTRA transport assessment model (Fiorello et al., 2010)). 

 

5.2 Climate-Energy-Economic SD review 

 

5.2.1 Review of general criteria as applied to SD modeling 

 

1) Links between climate, energy and economy 

In many system dynamics models the links between climate, energy and economy are realized more or less 

along the same lines as in the Integrated Assessment models and CGE models (e.g. through introduction of 

emission intensities, climate damage functions etc.). However we provide below some examples of notable 

exceptions and ramifications. 

 

Robert U. Ayres, a strong proponent of matching the methodology of energy and resource economics with 

basic concepts of thermodynamics, developed the REXS system dynamics model (Resource – EXergy 

Service) in which “useful work” enters the production function instead of “raw energy” (a conventional 

approach). This led to model better fitting the historical data on growth of the US economy (Ayres and 

Warr, 2005). 

 

In an endogenous business cycle climate-economy model NEDyM (Non-Equilibrium Dynamic Model) 

(Dumas et al., forthcoming; Hallegatte and Ghil, 2008; Hallegatte et al., 2007; Hallegatte et al., 2008) which 

can be regarded as a system dynamics model, the economic impacts of natural disasters (including extreme 

weather and climate events) are modeled as instant, discontinuous shocks (instead of using a 

climate/environmental damage function of climate/environmental variables smoothly varying in time). 

Among important finings obtained with NEDyM are the revealed sensitivity of magnitude of economic 

impacts of extremes to their timing relative to the phase of the business cycle (in case of a stand-alone 

extreme event) or to their distribution function (in case of a random sequence of extreme events). 

 

In a simulation of possible western US and Canada power industry response to a carbon market (the WSU 

model) (Ford, 2008; Ford, 2011) a challenge of representing the power flows across transmission grids and 
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electricity prices in each model area – the task for which the traditional system dynamics paradigm of 

stocks and flows would not be the best choice as the model developers argue – was overcome by 

augmenting the climate-energy-economy system-dynamics model by a supplementary module developed by 

other programming tools than the model itself and based on traditional power system methods (a reduced 

version of a direct-current optimal power flow calculation ) (Ford, 2011). 

 

2) Potential to represent non-linearities, thresholds and irreversibility 

As system dynamic models may be perceived as real-world applications of formal mathematical theory of 

nonlinear dynamic systems, it is quite obvious that they are perfectly suited to represent nonlinearities (by 

definition) and threshold effects. With respect to applications to economics of climate change, nonlinearities 

and thresholds can be observed both in economic modules (e.g. economic crises, bubbles on asset markets 

etc.) and climate modules (e.g. abrupt climate change) of coupled climate–socioeconomic system dynamics 

models. 

 

As an example of a threshold effect, we would refer to bifurcation of GDP losses caused by extreme 

weather and climate events as observed in NEDyM (Hallegatte et al., 2007): GDP losses increase sharply 

beyond certain threshold value of the intensity and frequency of extremes. 

 

A question of addressing irreversibilities is slightly more subtle. Formally, dynamic systems are reversible 

by definition, as they can be run in inverse time. However the systems converging to attractors are often 

practically irreversible as the transient motion cannot be reconstructed with satisfactory accuracy by 

starting from the vicinity of the attractor and inverting the time (Lorenz, 1993). 

 

3) Pervasive technological developments 

Pervasive technological developments, such as spillovers, can be rather straightforwardly incorporated in 

system dynamics models. 

 

4) Positive feedbacks 

Positive feedbacks (as well as negative feedbacks) are, by definition, at the very core of system dynamics 

modeling paradigm. For a detailed description of positive feedbacks (e.g. related to methane emissions) in a 

system dynamics climate model C-ROADS (Climate Rapid Overview And Decision Support) which is 

currently being incorporated in a climate-energy-economy model En-ROADS, see Sterman et al. (2013). 

 

5) Representation of economic sectors 

Detailed sectoral disaggregation is a rare feature of system dynamics models, with a notable exception of 

energy sector (e.g. as in the climate-energy-economy model FREE (Fiddaman, 2002) and in the US energy 

supply and demand model FOSSIL2 (Naill, 1992) applied in an early assessment of US national climate 

mitigation policies (Naill et al., 1992)). An outstanding example of a very detailed representation of a 

particular economic sector in a system dynamics model with environmental applications is the transport 

sector in ASTRA model (Fiorello et al., 2010) that was applied to assessment of EU climate mitigation 

policies. 

 

6) Energy sources 
As mentioned before, in many system dynamics models the energy sector is represented in a fairly detailed 

manner, therefore many energy sources are considered. E.g. FOSSIL2 (Naill, 1992) includes the following 

energy sources: conventional oil (onshore/offshore), enhanced oil, shale oil, conventional gas 

(onshore/offshore), unconventional gas, LNG, underground coal, surface coal. The WSU model (Ford, 

2008) includes various energy sources for electricity generation: oil, gas, coal, hydropower, nuclear energy, 

wind, biomass etc. 

 

7) Mitigation strategies/policies 

As all climate-economy models, system dynamics models consider certain mitigation options. The WSU 

model (Ford, 2008) has been designed to assess the response of regional electricity sector to introduction of 

carbon price (regardless of whether it would have been induced by carbon taxes or tradable permits). The 

FREE model (Fiddaman, 2002) distinguishes between carbon taxes and tradable permits and suggests that 

taxes would be a more efficient mitigation instrument. Simulations with the FOSSIL2 model (Naill et al., 

1992) acknowledge reforestation as a promising mitigation alternative to carbon taxes or energy efficiency 

standards. 
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8) Temporal and spatial scales 

Usually temporal scales adopted in system dynamics models under review are typical to all climate-energy-

economy models: decades to centuries. Spatial scales differ: while some models are global, as e.g. FREE 

(Fiddaman, 2002), others are national or regional, as FOSSIL2 (Naill, 1992), ASTRA (Fiorello et al., 2010), 

DEEPS (Assuring…, 2011) and the WSU model (Ford, 2008). 

 

 

5.2.2 Review of approach-specific criteria as applied to SD modeling 

 

As mentioned before, system dynamics can be regarded as “applied theory of nonlinear dynamic systems”. 

Therefore we believe that the two following approach-specific criteria emerging from “basic theory of 

nonlinear dynamic systems” can add value to a list of general criteria reviewed in Sec. 5.2.1: 

 

1) Regular vs. chaotic dynamics 

While climate dynamics is generally believed to be regular, it has been argued that real-world economic 

dynamics might be chaotic (in a sense of deterministic chaos). Lorenz (1993) and Rosser (1997) provide, 

among others, reviews of macroeconomic models that are characterized by chaotic dynamics, as well as of 

the empirical studies revealing chaotic footprints in real-world economic data series. So is the dynamics of 

coupled climate-socioeconomic system regular or chaotic? We are unaware of any applied climate-energy-

economy model that demonstrates chaotic dynamics, however we would like to drive attention of the reader 

to a fruitful theoretical work by Chen (1997) demonstrating (within the optimization paradigm, not within 

system dynamics approach) that coupled climate-economic model in which both climate and economic 

module exert regular dynamics in stand-alone mode, can nevertheless manifest the chaotic behavior when 

mutual feedbacks between the two modules are switched on. 

 

2) Continuous vs. discrete time 

Although in “basic theory of nonlinear dynamic systems” and its theoretical economic applications both 

discrete-time and continuous-time models seem to be equally important (Lorenz, 1992), the applied system 

dynamics paradigm normally implies integration of model equations in continuous time. As a notable 

exception, we would refer to the E3MG model (Energy–Environment–Economy Model at the Global level) 

(Barker, Scrieciu, 2010) which can be regarded as a non-conventional discrete-time system dynamics model 

of high complexity. 

 

 

5.3 Discussion 

 

In an urgent need for innovative approaches to climate-energy-economy modeling (Giupponi et al., 2013) 

traditional system-dynamics models, as well as some recent advances to the approach, can certainly play a 

role in improving the assessment of climate mitigation policies. Particularly, we believe that the recently 

proposed actor-based system dynamics approach (Weber et al., 2005; Hasselmann and Kovalevsky, 2013) 

has some added value to traditional system dynamics paradigm. Actor-based system-dynamics approach 

borrows from traditional system dynamics its mathematical foundations (treatment of the climate-

socioeconomic system as a complex nonlinear dynamic system with stocks and flows, positive and negative 

feedbacks) but interprets the system under study as a system of few powerful aggregated economic actors 

interacting and evolving under a conflict of interests. The economic behavior of actors is determined by 

actor control strategies responding to the changing state of economic system. Actor-based system-dynamics 

approach (also known as multi-actor modeling) has also certain common points with agent-based modeling 

(agent-base modeling) reviewed in Chapter 4 the main differences being in a number of actors/agents (few 

actors in multi-actor models vs. a multitude of agents in agent-base models) and in their character 

(aggregated actors in multi-actor models vs. “true” individual agents in agent-base modeling). 
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6. Summary 

 

This report aimed to review the main characteristics of the existing Energy-Climate-Economic models that 

are used for the socio-economic and environmental impact assessment of climate and energy related 

policies and support decision making in this arena. The focus here was on the modeling approaches that will 

be utilized in the COMPLEX WP5 system of economic-energy-environmental models covering  both more 

traditional modeling techniques such as Computational General Equilibrium (CGE) model and Integrated 

Impact Assessment model (IAM) as well as more recent innovative approaches to model complex systems 

including agent-based modeling (ABM) and system dynamics (SD) modeling. In addition, it aimed to shed 

more light on the mode including the difficulty to represent pervasive technological developments, the 

difficulty to represent non-linearities, thresholds and irreversibility, and the insufficiently developed 

representation of economic sectors with a significant potential for mitigation and resource efficiency.  

 

In Chapter 2 Climatic IA modeling is reviewed.  Climate IA models are fundamental tools when assessing 

mitigation strategies, estimating the costs and informing decision makers in order to prevent anthropogenic 

climate change. It is even beginning to be used to evaluate the mitigation-adaptation trade-offs.  However, 

IA models are limited by the weaknesses in their underlying knowledge and by the simplifications required 

for efficient modeling and simulation. Many IA models suffer from a lack of transparency in terms of both 

policy relevance and credibility. Some other controversial characteristics include: the dominant sequential 

approach, the difficulty to represent pervasive technological developments and non-linearities, thresholds 

and irreversibilities, the treatment of climate change damages, the omission of other human-disturbances, 

the discount rate values, the consideration of equity across time and space, structural shifts in socio-

economic systems, etc. The utility of the climate IAM based on Cost-Benefit Analysis has been greatly 

disputed since its start due to the number of “empirically and philosophically controversial hypotheses”, as 

discussed in Chapter 2. 

 

As (Tol, 2006; Vuuren et al., 2012, 2011c) argue, one of the main challenges to future IAM developments is 

the full-coupling with the Earth System Models (ESM) having difficulties of mapping from natural to 

economic space and back (Tol, 2006), and relating mental models of the economic agents with the natural 

agents “reactions”. 

 

As discussed in Chapter 2, the choice of the discount rate is an issue inherent to the economics of climate 

change and not just to IAM, though the longer time horizons in these models make this issue more 

important (cf. (Stern, 2006) Report) 

There have been rapid advances in recent years in the area of including endogenous technological change; 

the review by (Kahouli-Brahmi, 2008) offers a thorough description of the most recent attempts to model 

endogeneity and induced technological innovation. 

 

Climatic IAM must be seen as a science in continuous evolution, in which new dimensions of the problem 

have to be incorporated by using new methodologies and scopes, and models have to integrate continuously 

new scientific knowledge and deepen and diversify the assessments. 

 

The Environmental CGE models which are frequently used to assess impact of environmental and energy 

relate d policies are reviewed in Chapter 3. These models are all (recursive) dynamic and treat international 

trade such that goods with the same statistical classification but different countries of origin are treated as 

non-perfect substitutes. Single-country models tend to be more detailed in terms of sectors and household 

types, and they are in general used for analyses of country-specific policy issues and proposals. Multi-

country and global models, on the other hand, tend to have less sector detail and to be designed for analysis 

of proposed multi-lateral policies such as free-trade agreements. In the case of environmental CGE models 

the multi-country and global models in most cases are designed for analysis of trans-boundary pollution 

problems.   

 

In these environmental CGE models Technological changes are modeled utilizing different approaches. In 

some models technology improvements are represented over time (exogenously), and advanced 
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technologies are included. Some models formulates production technologies in an endogenous manner 

allowing for price-driven derivation of all intermediate consumption and the services from capital and labor.  

 

Most of the models reviewed here make use of abatement cost functions (abatement curves) are used. These 

can be seen as ad hoc rules to describe the trajectories of these emissions, following current international 

modeling practice. There is no damage function in environmental CGE models, that links emissions growth 

to economic output through climate change or otherwise. Even if there is no direct feedback from the 

environment module to the economic module, emission restriction policies will have impacts on the 

economic module and hence, there is a strong link between the economic module and the environment 

module. 

 

Chapter 4 reviews the climate-energy-economy agent-based modeling. The application of ABMs to climate-

economy-energy systems reviewed in this chapter consisted mostly of microeconomic, empirical- or 

heuristic rules, evolutionary programming and assumption and/or calibration-based rules. Most cases at 

most consist of one link with descriptive reference to another system, e.g. Economy-to-energy: economic 

cost of stylized energy types based on their GHG emission profiles. Endogenizing energy economy and 

environment feedbacks with robust representations of each respective systems (integrative modeling of 

EEC systems) is clearly yet to achieved within ABM, e.g. modeling (micro) economy-to-energy-to-climate-

to-economy. There is also a general ambiguity in terms of justifying the numbers of agents, integration step, 

time period, validation technique and treatment of simulation outputs; all these apparent flaws or lack of 

methodological rigor are however often justified in terms of the ABM’s purpose, i.e. the quality of a ABM 

depends on the application or formulation of the problem. In general terms however it is clear that much of 

the promise or potential of ABM’s to address the scientific gaps in energy-economy-climate systems has yet 

to be realized.  

 

ABMs treat mitigation strategies in two ways: either by focusing on command and control instruments (e.g. 

1987 Montreal Protocol) or focusing on the following market-based instruments (MBI): cap and trade (CT); 

public research and development expenditures; and taxes. 

 

There are a few ABMs that explicitly model a non-linear response to  climate change. However, All ABM 

reviewed have non-linearity and irreversibilities but none had thresholds in the output (clear bifurcations 

into stable states). It should also be noted that while ABM is the best method to model non-linearities or 

emergent behavior, the fact remains that unless there is a high level multi-threading interface37 or event 

based hierarchy in the end, an ABM -as complex as it may be- will effectively run like a linear program, 

e.g. System Dynamics or Spatial Econometrics.  From the ABM’s reviewed here, we see that the models are 

sensitive to prices more than to implementations of bounded rationality or expectation formations.  

 

None of the ABMs reviewed here included endogenous technological development. Meaning that no ABM 

reviewed here have modeled an explicit mechanism and/or dynamics for technological innovation. 

However, some ABM model investment and divestment into stylized electricity production technologies. 

Other ABM’s model transitions in terms of market share of theoretical technologies such as Clean Coal. 

Other ABM’s technological end-use and market-share forecasts.  

 

Given the large domain that ABMs cover, it is almost impossible to expect that every parameter and 

function in a ABM is derived from empirically validated data; ABM is an exploratory not descriptive 

technique. In fact ABM that constrain the functions and parameters of the agents exclusively to empirical 

data, often results in very static models (e.g., Sopha 2013). Very few ABMs perform some kind of 

Structural validation. When it is  performed, it is only for one aspect of the model (e.g. energy generation, 

in an energy market). ABMs are in theory capable of having a 1:1 ratio of data granularity, e.g. each survey 

or data point, can be represented fully as an aspect on an agent’s heterogeneity. However it is often the case 

that ABM’s actually go beyond that and produce experimental data which cannot be validated in any 

rigorous way. 

 

                                                      
37 Multi-threading is a widespread programming and execution model that allows multiple threads (functions) to 
exist within the context of a single process (time step). These threads share the process' resources, but are able to 
execute independently. 
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Finally, in Chapter 5, the System Dynamics Modeling tool was reviewed and discussed. It was argued that, 

traditional system-dynamics models can certainly play a role in improving the assessment of climate 

mitigation policies. Particularly, the recently proposed actor-based system dynamics approach (Weber et al., 

2005; Hasselmann and Kovalevsky, 2013) has some added value to traditional system dynamics paradigm. 

Actor-based system-dynamics approach borrows from traditional system dynamics its mathematical 

foundations, however, interprets the system under study as a system of few powerful aggregated economic 

actors interacting and evolving under a conflict of interests. The economic behavior of actors is determined 

by actor control strategies responding to the changing state of economic system.  
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