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In bilayers consisting of a normal metal (N) with spin-orbit coupling and a ferromagnet (F), the combination
of the spin-Hall effect, the spin-transfer torque, and the inverse spin-Hall effect gives a small correction to the
in-plane conductivity of N, which is referred to as spin-Hall magnetoresistance (SMR). We here present a theory
of the SMR and the associated off-diagonal conductivity corrections for frequencies up to the terahertz regime.
We show that the SMR signal has pronounced singularities at the spin-wave frequencies of F, which identifies it
as a potential tool for all-electric spectroscopy of magnon modes. A systematic change of the magnitude of the
SMR at lower frequencies is associated with the onset of a longitudinal magnonic contribution to spin transport
across the F-N interface.
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I. INTRODUCTION

In recent years, it was experimentally shown that basic
spintronic effects not only operate in the DC and GHz regime
but also in the ultrafast (THz) regime [1]. Examples include
the spin-Hall effect (SHE) and its inverse (ISHE) [2,3] in
metals with strong spin-orbit coupling, spin pumping, and
spin-transfer torque (STT) [4,5] at interfaces of nonmagnetic
metals and ferromagnets, and magnon generation [6]. Fur-
thermore, ultrafast versions of the spin-Seebeck effect [7,8]
and the giant magnetoresistance in ferromagnet|normal-metal
multilayers [9] were demonstrated. Magnetoresistance effects
are important for eventual applications, because their utiliza-
tion on ultrafast time scales has the potential of increasing
speeds for the electrical readout of magnetic memories.

In this paper, we consider the ultrafast version of the
“spin-Hall magnetoresistance” (SMR) [10–15]. The SMR is
observed in current-in-plane experiments on bilayers of an
insulating or metallic ferromagnet F and a nonmagnetic metal
N with strong spin-orbit coupling, as shown in Fig. 1. It is
a small correction δσ xx to the diagonal in-plane conductivity
(i.e., for currents parallel to an applied electric field) that
results from a combination of SHE, ISHE, and STT, and that
is sensitive to the magnetization direction in the ferromagnetic
layer. Measurements of the SMR in the DC regime were found
to be in good agreement with theoretical predictions [16,17].
Lotze et al. measured the finite-frequency SMR in YIG|Pt
bilayers up to 3 GHz and observed no frequency dependence
of δσ xx within their measurement accuracy [18]. With the
present advances in the availability of THz sources [19], the
experimental investigation of the SMR in the ultrafast regime
becomes a realistic possibility.

At zero frequency, the SMR involves a combination of
key spintronic phenomena [16,17,20], shown schematically in
Fig. 1: (i) When an electric field E is applied to N, the SHE
generates a spin accumulation at the F-N interface. (ii) Via the
spin-transfer torque or, in the case of a metallic ferromagnet,

via the flow of a spin-polarized electron current, spin angular
momentum is transferred between the spin accumulation at
the interface and the F layer. (iii) The ISHE converts the
spin current through the F-N interface into a charge current
in N that flows parallel to the interface. The component of
this induced current parallel to the applied electric field corre-
sponds to a change of the diagonal in-plane conductivity δσ xx,
whereas the perpendicular current component gives a contri-
bution δσ xy to the off-diagonal conductivity. The conductivity
corrections depend on the magnetization direction, because
the amount of angular momentum transferred to F depends on
it. The SMR can be distinguished from the anisotropic mag-
netoresistance in a proximity-induced magnetic N layer by
measuring the magnetoresistance for out-of-plane directions
of the magnetization [17].

In order to adequately describe the frequency dependence
of the SMR, we must decompose the spin transport across
the F-N interface into “longitudinal” and “transverse” con-
tributions, polarized collinear with and perpendicular to the
magnetization direction m, respectively [20]. The difference
of the transverse and longitudinal contributions determines
the size of the SMR [16,17]. As we show in detail in this
paper, both contributions to the SMR depend on frequency
but in different ways. On one hand, the coherent excitation
of spin waves (magnons) causes pronounced singular features
in the frequency dependence of the transverse contribution to
the SMR, which, with sufficiently high frequency resolution,
identifies the SMR as an all-electric spectroscopic probe of
magnon modes in F. Collinear spin transport, on the other
hand, occurs via the incoherent excitation or annihilation of
thermal magnons via spin-flip scattering at the F-N interface
[20–24] and, in metallic ferromagnets, via spin-dependent
transport of conduction electrons [25]. For thin insulating F
layers with a long magnon lifetime, longitudinal spin transport
is strongly suppressed at zero frequency, as the buildup of
an excess density of magnons in F causes a backflow of
spin angular momentum from F into N. This compensation
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FIG. 1. Explanation of the SMR in a ferromagnet|normal-metal
(F|N) bilayer: Via the spin-Hall effect, an electric field applied to N
creates a spin accumulation at its boundaries. The spin accumulation
at the F-N boundary drives a spin current from N into F. This spin
current is converted into a charge current in N via the inverse spin-
Hall effect. For a time-dependent driving field, additionally magnons
(spin waves) can be excited in F. The possibility to coherently
excite magnons is what distinguishes the THz SMR from its DC
counterpart.

mechanism ceases to be effective at finite frequencies, how-
ever, which leads to an appreciable decrease of the SMR for
typical YIG|Pt devices for frequencies in the GHz range and
above.

Previous work on the finite-frequency SMR by Chiba,
Bauer, and Takahashi [26] theoretically considered transverse
spin transport across the F-N interface in a current-in-plane
version of the current-induced spin-torque ferromagnetic res-
onance (FMR) [27–29] and the nonlinear spin-torque diode
effect [30]. Chiba et al. considered frequencies close to the
FMR frequency ω0, for which only the uniform mode of
the magnetization in the F layer is excited (see also Ref. [31]).
The mechanisms governing transverse spin transport across
the F-N interface—spin torque and spin pumping—are essen-
tially the same in the THz regime as they are in the lower-GHz
regime considered in Ref. [26], which is why this part of our
theoretical analysis closely follows Ref. [26]. The main dif-
ference to Ref. [26] is that for driving frequencies in the THz
regime the magnetization mode excited by the SHE-induced
spin torque is no longer the uniform ferromagnetic-resonance
mode but an acoustic magnon mode, whose wavelength is
much shorter than the typical thickness dF of the F layer.
Such current-induced coherent magnon excitation was consid-
ered theoretically by Sluka [32] and Johansen, Skarsvåg, and
Brataas [33] for antiferromagnetic layers, in which magnon
frequencies are typically higher. We restrict our theory to the
linear-response regime and do not consider nonlinear rectifi-
cation effects responsible for a DC response of driven F|N
bilayers [26,34,35]. This is appropriate for the THz regime,
because the field amplitudes used in standard THz time-
domain spectroscopy are usually too small to induce nonlinear
effects [9].

A theory for the zero-frequency limit that includes both
the transverse and the longitudinal contribution to the SMR
was considered by Zhang, Bergeret, and Golovach [20] but
without considering the backflow of spin current resulting
from a nonequilibrium population of thermal magnons in F.
As we show in this paper, it is this backflow term that causes
a systematic frequency dependence of the SMR in bilayers
involving a ferromagnetic insulator with long magnon life-
time. Although, as we show below, the difference between

zero-frequency and high-frequency limits does not depend
on interface properties and device parameters, the character-
istic frequency separating low-frequency and high-frequency
regimes depends on these details. The authors of Ref. [18]
measured the SMR in YIG|Pt bilayers in the GHz regime and
did not observe an appreciable frequency dependence of the
SMR up to approximately 3 GHz. We attribute the apparent
absence of a frequency dependence in this experiment to the
presence of the large applied magnetic field, which effectively
pinned the magnetization direction, thus shifting the charac-
teristic frequency to a value outside the range accessible in
the experiment of Ref. [18].

Whereas the magnetic field generated by the applied AC
current played a significant role if the applied frequencies
are close to the ferromagnetic-resonance frequency [26], the
Oersted field only has a minimal effect on the SMR in the THz
regime. The reason is that the Oersted field is approximately
homogeneous in F such that it can not effectively excite
magnon modes at the frequency of the driving field. The same
applies to the magnetic field of the electromagnetic wave that
drives the SMR at high frequencies. The spin-transfer torque,
on the other hand, acts locally at the F-N interface, so that it
couples to magnon modes of all wavelengths. For this reason,
we will not consider the Oersted field in the main text and,
instead, discuss its effect in the Appendix.

This paper is organized as follows: In Sec. II we describe
the system relevant for the SMR in an F|N bilayer geometry
and introduce the necessary notation. In Sec. III, charge and
spin current densities driven by an applied time-dependent
electric field are calculated for an F|N bilayer with a thickness
dN of the N layer much larger than the spin-relaxation length
λN. This is the geometry relevant for the existing experiments
in the low-frequency regime. Following the idea of a “mag-
netoelectric circuit theory,” the result is formulated in terms
of “spin impedances” characterizing the N layer, the F layer,
and the F-N interface. Separate sets of impedances describe
the transverse and longitudinal contributions to the SMR
and the associated off-diagonal conductivity corrections. The
impedances are calculated from elementary electronic and
magnetic transport equations in Sec. IV. Specific predictions
for the SMR in bilayers of YIG|Pt and Fe|Au (as proto-
types for insulating and metallic ferromagnets) are discussed
Sec. V. We conclude in Sec. VI. A discussion of the effect
of the Oersted field, of F|N bilayers with finite thickness
dN � λN and of F|N|F trilayers, as well as a theory of the lon-
gitudinal magnonic spin transport through the F-N interface
with ballistic magnons in F can be found in the appendices.

II. SYSTEM AND NOTATION

We consider the SMR in an F|N bilayer geometry, shown
schematically in Fig. 2. (A discussion of the SMR in an F|N|F
trilayer geometry can be found in Appendix C.) Following
Ref. [16], we choose coordinates such that the z direction
is perpendicular to the thin films, the normal metal N of
thickness dN is located at 0 < z < dN, and the magnet F
at −dF < z < 0. A spatially uniform time-dependent electric
field E(t ) = E (t )ex is applied in the x direction.

We assume that the thickness dN of the N layer is much
larger than the spin-relaxation length λN. In this limit, the
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FIG. 2. F|N bilayer with a normal metal of thickness dN and a
ferromagnet of thickness dF. Coordinates are chosen such that the xy
plane is the interface between the F and N layers. The electric field
E is applied in the x direction.

small corrections δσ xx and δσ xy to the conductivity of the N
layer from the combination of SHE and ISHE are the sum
of contributions from the F-N interface at z = 0 and the N-
vacuum interface at z = dN. Since the latter does not depend
on the magnetization direction m, for a theory of the SMR it is
sufficient to consider the contribution from the F-N interface
at z = 0 only. The case dN � λN is discussed in Appendix C.

The relevant variables for the charge and spin currents in
the normal metal N are the charge current densities jx,y

c (z, t )
in the x and y directions, the spin current density jz

s(z, t )
flowing in the z direction, and the spin accumulation μs(z, t )
(0 < z < dN) as defined in the following. Throughout we use
superscripts to denote spatial directions and subscripts for
components associated with the spin direction. We define the
spin current density as jz

sz = (h̄/2e)[ jz
c↑ − jz

c↓], where jz
c↑,↓

is the charge current density carried by electrons with spin
↑,↓ projected onto the z axis, respectively. Similarly, the
spin accumulation μsz = μ↑ − μ↓, where μ↑,↓ is the (elec-
tro)chemical potential for electrons with spin ↑, ↓ projected
onto the z axis. We use analogous definitions for the compo-
nents jz

sx, jz
sy, μsx, and μsy.

The equilibrium direction e‖ of the magnetization of the
magnet F is

meq ≡ e‖ = mxex + myey + mzez, (1)

see Fig. 2. To parametrize the direction perpendicular to e‖,
we combine two orthogonal vectors spanning the plane per-
pendicular to e‖ as the real and imaginary part of a complex
unit vector e⊥ with the property

e⊥ × e‖ = +i e⊥, (2)

which defines e⊥ up to a phase factor. Anticipating that the y
direction plays a special role, as discussed in the next section,
a convenient choice is

e⊥ = 1√
2
(
m2

x + m2
z

) [(
m2

x + m2
z

)
ey − (mzmy − imx )ez

− (mxmy + imz )ex
]
. (3)

(The phase factor of the vector (3) is not defined if e‖ =
ey, which does not affect the final results.) To account for
the different response to spin excitations collinear with and
perpendicular to e‖, we separate the spin accumulation μs
and the spin current jz

s into “longitudinal” and “transverse”
components with respect to the equilibrium magnetization

direction e‖,

μs(z, t ) = μs‖(z, t )e‖ + μs⊥(z, t )e⊥ + μ∗
s⊥(z, t )e∗

⊥,

jz
s(z, t ) = jz

s‖(z, t )e‖ + jz
s⊥(z, t )e⊥ + jz∗

s⊥(z, t )e∗
⊥, (4)

where μs⊥(z, t ) and jz
s⊥(z, t ) are complex variables.

The relevant dynamical variables for the magnet F are
the magnetization direction m(z, t ), the spin current density
jz
s(z, t ) flowing in the z direction, and the spin accumulation

μs(z, t ), where −dF < z < 0. We consider small deviations
of m from the equilibrium direction e‖ only, which we
parametrize by the complex amplitude m⊥(z, t ),

m(z, t ) = e‖ + m⊥(z, t )e⊥ + m∗
⊥(z, t )e∗

⊥. (5)

As the exchange field is large, a metallic ferromagnet F can
sustain a longitudinal component of the spin accumulation
only,

μs(z, t ) = μs‖(z, t )e‖, −dF < z < 0, (6)

where we neglect the effect of the SHE in F, because the spin-
Hall conductance of common metallic ferromagnets such as
Fe, Co, and Ni is smaller than that for Pt and Au [36,37] and
does not lead to a frequency dependence.

Performing a Fourier transform to time we write

E (t ) = 1

2π

∫ +∞

−∞
dωE (ω)e−iωt , (7)

where E (−ω) = E∗(ω). The same Fourier representation will
be used for all time-dependent quantities introduced above.
Note that the transverse amplitudes js⊥, μs⊥, and m⊥ at
frequencies ω and −ω need not be complex conjugates of
each other because these amplitudes are complex in the time
domain.

III. SMR FOR SINGLE F-N INTERFACE

In this section, we state the relations between charge cur-
rents, spin currents, and spin accumulations in both N and F
layers and across the F-N interface. In these relations, “spin
impedances” appear in a natural way and the results can be
formulated as equivalent magnetoelectronic circuit diagrams,
similar to electric circuit analysis. In Sec. IV, explicit expres-
sions for the impedances are derived.

To linear order in the applied field and the induced potential
gradients, the charge current densities jx,y

c and the spin current
density jz

s in the normal metal N satisfy the characteristic
response equations of the SHE and ISHE [38–41],

jx
c (z, ω) = σNE (ω) − θSH

σN

2e

∂

∂z
μsy(z, ω), (8)

jy
c (z, ω) = θSH

σN

2e

∂

∂z
μsx(z, ω), (9)

jz
s(z, ω) = − h̄σN

4e2

∂

∂z
μs(z, ω) − θSH

h̄σN

2e
E (ω)ey. (10)

Here 0 < z < dN, θSH is the spin-Hall angle and σN the con-
ductivity of the N layer. Since the thickness dN of the normal
metal is assumed to be much larger than its spin-relaxation
length λN, the spin accumulation near the F-N interface at
z = 0 does not lead to a spin current for z sufficiently far
away from the interface. Averaging Eqs. (8) and (9) over z, we
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may then express the ISHE corrections δ j̄x,y
c to the (effective)

current densities associated with the F-N interface: In terms
of the spin accumulation μs at z = 0 they read as

δ j̄x
c (ω) = θSH

σN

2edN
μsy(z ↓ 0, ω), (11)

δ j̄y
c (ω) = − θSH

σN

2edN
μsx(z ↓ 0, ω). (12)

To solve for the spin accumulation μs(z ↓ 0, ω), we ob-
serve that, within linear response, Eq. (10) implies that μs(z ↓
0, ω) must be proportional to jz

s(0, ω) + θSH h̄σNE (ω)ey/2e.
The proportionality relation may be written as

μs(z ↓ 0, ω) = ZN(ω)

[
jz
s(0, ω) + θSH

h̄σN

2e
E (ω)ey

]
, (13)

where the “spin impedance” ZN(ω) has the dimension of
“area.” We have written jz

s(0, ω) instead of jz
s(z ↓ 0, ω) be-

cause the spin current density is conserved across the F-N
interface.

In Eq. (13) we neglect a contribution from the spin-Hanle
effect to the magnetoresistance [42,43], because the direct
effect of the applied magnetic field on the spin accumulation
in N is typically weak compared to that of the coupling to the
ferromagnet F. Inclusion of the spin-Hanle effect into our the-
ory would require the introduction of a spin impedance ZN(ω)
that differs for directions collinear with and perpendicular to
the applied magnetic field but without an additional frequency
dependence.

Equation (13) completely determines the spin accumula-
tion μs(z ↓ 0, ω) at the interface to a nonmagnetic insulator,
since jz

s(0, ω) = 0 in that case. To find μs(z ↓ 0, ω) for an
interface with an insulating or metallic magnet F, as is ap-
propriate for the geometry of Fig. 2, we now consider the
spin currents through an F-N interface and in F. In the fer-
romagnet, the spin current jz

s = jz
se + jz

sm has contributions
from magnons and conduction electrons. The spin current
jz
se = jz

se‖e‖ carried by conduction electrons has a longitudi-
nal component only. Again, within linear response there is
a simple proportionality to the (electron) spin accumulation
μs‖(z ↑ 0, ω) at the magnetic side of the interface, which can
be written in a form similar to Eq. (13),

μs‖(z ↑ 0, ω) = − Ze
F‖(ω) jz

se‖(0, ω). (14)

An additional equation for μs‖(z ↑ 0) is found by considering
the boundary conditions at the F-N interface, which also take
the simple form of a proportionality [44–46],

μs‖(z ↓ 0, ω) − μs‖(z ↑ 0, ω) = − Ze
FN‖(ω) jz

se‖(0, ω). (15)

As in Eq. (13), the proportionality constants Ze
F‖ and Ze

FN‖ have
the dimension of “area.”

The magnonic spin current jz
sm has a coherent transverse

component related to the magnetization dynamics as well
as an incoherent longitudinal component carried by thermal
magnons. In linear response, the equations for the longitudinal
magnonic spin current are analogous to Eqs. (14) and (15) for
the electronic spin current [21,23],

μm(0, ω) = − Zm
F‖(ω) jz

sm‖(0, ω), (16)

μs‖(z ↓ 0, ω) − μm(0, ω) = − Zm
FN‖(ω) jz

sm‖(0, ω), (17)

where μm(0, ω) is the chemical potential describing the
distribution of thermal magnons in F [24]. The transverse
component jz

sm⊥ is proportional to the time derivative of the
magnetization,

−h̄ωm⊥(0, ω) = − ZF⊥(ω) jz
sm⊥(0, ω), (18)

and satisfies the boundary condition [47,48]

μs⊥(z ↓ 0, ω) + h̄ωm⊥(0, ω) = − ZFN⊥(ω) jz
sm⊥(0, ω) (19)

at the interface. Again, the proportionality constants Zm
FN‖, Zm

F‖,
ZF⊥, and ZFN⊥ have the dimension of “area.” The interface
impedances Ze

FN‖, Zm
FN‖, and ZFN⊥ may be expressed in terms

of the spin-dependent interface conductances g↑↑, g↓↓ and the
spin-mixing conductance g↑↓ that are used in the theory of
Refs. [16,17], see Secs. IV C, IV E, and IV F.

In the next section we show that of the seven “spin
impedances” defined in Eqs. (13)–(19) only ZF⊥(ω) and
Zm

F‖(ω)—associated with the coherent magnon excitation and
the nonequilibrium accumulation of magnons, respectively—
have a non-negligible frequency dependence in the THz
regime and below. Anticipating this result, we retain the fre-
quency argument for ZF⊥(ω) and Zm

F‖(ω) but drop it for the
five other spin impedances.

Solving the coupled equations (13)–(19) for the longitudi-
nal and transverse components of the spin current density jz

s is
straightforward and one finds

jz
s‖(0, ω) = − ZN

Z‖(ω)
θSH

h̄σN

2e
E (ω)e‖ · ey,

jz
s⊥(0, ω) = − ZN

Z⊥(ω)
θSH

h̄σN

2e
E (ω)e∗

⊥ · ey, (20)

where we defined

Z‖(ω) = ZN +
[

1

Zm
FN‖ + Zm

F‖(ω)
+ 1

Ze
FN‖ + Ze

F‖

]−1

,

Z⊥(ω) = ZN + ZFN⊥ + ZF⊥(ω). (21)

Using Eq. (13) to calculate μs(z ↓ 0, ω), Eqs. (1) and (3)
for the unit vectors e‖ and e⊥, and Eqs. (11) and (12), one
can calculate the SMR corrections δ jx

c and δ jy
c to the current

densities parallel and perpendicular to the applied electric
field as

δ j̄x
c (ω) = δσ xx(ω)E (ω),

δ j̄y
c (ω) = δσ xy(ω)E (ω), (22)

with

δσ xx(ω) = θ2
SH h̄σ 2

N

4e2dN
ZN

{
1 − m2

y

ZN

Z‖(ω)

− 1 − m2
y

2

[
ZN

Z⊥(ω)
+ ZN

Z∗
⊥(−ω)

]}
, (23)

δσ xy(ω) = θ2
SH h̄σ 2

N

4e2dN
ZN

×
{

mxmy

[
ZN

Z‖(ω)
− ZN

2Z⊥(ω)
− ZN

2Z∗
⊥(−ω)

]

− imz

2

[
ZN

Z⊥(ω)
− ZN

Z∗
⊥(−ω)

]}
. (24)
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These two equations are the central results of this paper.
They describe the longitudinal and transverse contributions
to the SMR. The term “1” between the curly brackets in
Eq. (23), which does not depend on the interface properties,
is the ISHE correction to the diagonal conductivity from a
single nonmagnetic insulating interface. The remaining terms,
which depend on the properties of the F-N interface and on
the magnetization direction meq, describe the change of the
conductivity corrections δσ xx and δσ xy due to the presence of
the magnet F. The contribution to the off-diagonal conductiv-
ity δσ xy in Eq. (24) proportional to mxmy can be identified
with a spin-Hall version of the planar Hall effect (PHE),
which is symmetric under magnetization reversal. The terms
proportional to mz correspond to a spin-Hall version of the
anomalous Hall effect (AHE), which is antisymmetric under
magnetization reversal.

The interface to the vacuum at z = dN, which is not con-
sidered here, gives an additional correction to σ xx. In the limit
of large dN this correction is given by the term “1” between
the curly brackets in Eq. (23).

The particular combination of impedances appearing in
Eq. (23) can be illustrated with the equivalent magnetoelec-
tronic circuit diagrams in Fig. 3, which shows the corrections
to δσ xx from transverse and longitudinal spin currents and spin
accumulations on the left and right, respectively. The currents
and spin accumulations in the magnetoelectronic circuits of
Fig. 3 are related via spin versions of Ohm’s law and Kir-
choff’s circuit laws and thus fulfill Eqs. (11)–(19) (cf. also
Ref. [49]).

In Sec. IV we find that in the DC limit ω = 0 one has
ZF⊥(0) = 0. Additionally, for a typical thickness dF of the F
layer, Zm

F‖(0) is much larger than all other impedances, so that
it is a very good approximation to not consider the contribu-
tion from the longitudinal magnon spin current. This is the
approach taken in Refs. [15–17]. In this limit the contributions
inversely proportional to Z⊥ in Eqs. (23) and (24) agree with
the DC theory of the SMR in an F|N bilayer for a ferromag-
netic insulator of Refs. [15–17]. The contributions inversely
proportional to Z‖ are consistent with previous results for an
F|N bilayer with a metallic ferromagnet [25].

IV. IMPEDANCES

As shown below, the spin impedances defined in Eqs. (13)–
(19) characterize different physical processes that affect spin
transport:

(i) ZN the relaxation of the diffusing spin accumulation in
N (due to magnetic and nonmagnetic impurities, phonons via
spin-orbit coupling, and other spin-flip mechanisms);

(ii) Ze
F‖ the same as ZN, but for a ferromagnetic metal F;

(iii) Ze
FN‖ the spin current carried by electrons transported

across an F-N interface;
(iv) ZF⊥ the transport and relaxation of spin currents by

coherent magnons in F;
(v) ZFN⊥ the spin-transfer torque and spin pumping at an

F-N interface;
(vi) Zm

FN‖ the incoherent creation and annihilation of ther-
mal magnons in F by spin-flip scattering of conduction
electrons at an F-N interface;

σN

E

δjx
c⊥

dN
�

jz
SH⊥

ZN

jz
sN

ZFN⊥

ZF⊥

jz
s⊥(0)

μs⊥(z ↓0)

−�ωm⊥(0)

σ
S
H
⊥

σ
S
H
⊥

σN

δjx
c‖

dN
�

jz
SH‖

ZN

jz
sN

Ze
FN‖

Ze
F‖

jz
se‖(0)

Zm
FN‖

Zm
F‖

jz
sm‖(0)

E

μs‖(z ↓0)

μs‖(z ↑0) μm(0)

σ
S
H
‖

σ
S
H
‖

FIG. 3. Equivalent AC magnetoelectronic circuit diagrams for
δσ xx . The left circuit shows the correction from the transverse spin
accumulation at the F-N interface; the right one shows the correction
from the longitudinal spin accumulation. The dashed lines in the
upper part indicate the transport of charge, while the solid lines
in the lower part indicate the transport of spin angular momentum.
Spin currents and spin accumulations are related via (spin versions
of) Ohm’s law and Kirchoff’s circuit laws, see Eqs. (11)–(19). The
impedances with labels σSH and arrows indicate the conversion
between charge and spin currents due to the SHE and ISHE, see
Eqs. (8)–(10). The magnetization direction enters via the projection
on longitudinal and transverse components, σSH‖ = θSH h̄σNmy/2e
and σSH⊥ = θSH h̄σN(1 − m2

y )1/2/2e. The spin currents jz
SH‖ and jz

SH⊥
generated via the SHE are given by jz

SH‖ = θSH h̄σNEey · e‖/2e =
σSH‖E and jz

SH⊥ = θSH h̄σNEey · e⊥/2e = σSH⊥E . The fact that spin
is not a conserved quantity—neither in N due to flips of electron
spins, nor in F due to Gilbert damping—is reflected by the presence
of “spin sinks” in N and F, represented as dissipation channels to the
“ground” in the circuit diagram.

(vii) Zm
F‖ the buildup and relaxation of a chemical potential

for magnons in F (a “magnon capacitance” effect).
In the following we describe the calculation of each of

these spin impedances separately.

A. Normal metal

The continuity equation for spin currents and accumula-
tions, including spin flips at a rate 1/τsf,N due to spin-orbit
coupling and magnetic impurities, reads

2

h̄

∂

∂z
jz
s + νNμ̇s = −νNμs

τsf,N
, (25)

where νN is the density of states per spin direction. Combining
this equation with the transport equation (10) and Fourier
transforming to time, it follows that the spin accumulation μs
satisfies the spin-diffusion equation,

∂2

∂z2
μs(z, ω) = μs(z, ω)

λ2
N

. (26)
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The spin-relaxation length λN is given by

λ2
N = σNτsf,N/2e2νN

1 − iωτsf,N
. (27)

The frequency dependence of λN can be neglected up to fre-
quencies in the THz regime, because spin-flip rates 1/τsf,N in
heavy metals with significant spin-Hall angle θSH are typically
much higher due to the strong spin-orbit coupling. For exam-
ple, in Pt one has 1/τsf,N ∼ 102 THz, see Ref. [50].

For dN � λN, the solution of Eq. (26) decays exponentially
away from the F-N interface at z = 0. Integration over z im-
mediately yields Eq. (13), with

ZN = 4e2λN

h̄σN
. (28)

The impedance ZN is the resistance (normalized to cross-
sectional area) for a normal-metal slab of thickness λN.

B. Ferromagnet: Longitudinal contribution from electrons

In a metallic ferromagnet, conduction electrons can carry
a spin current parallel to the magnetization direction e‖.
The calculation of this spin current component proceeds
in the same manner as the calculation of the spin current
density in the normal metal. Hereto, we introduce (elec-
tro)chemical potentials μ↑,↓ and charge current densities jz

c↑,↓
carried by electrons with spin ↑,↓, where now the arrows
“↑” and “↓” indicate spin polarization parallel or antiparal-
lel to e‖, respectively. From the transport equations jz

c↑,↓ =
−(σ↑,↓/e)∂μ↑,↓/∂z for a metallic ferromagnet we derive that
the charge current density jz

c and spin current density jz
se‖ are

jz
c = − σc

e

∂

∂z
μc − σs

2e

∂

∂z
μs‖, (29)

jz
se‖ = − h̄σc

4e2

∂

∂z
μs‖ − h̄σs

2e2

∂

∂z
μc, (30)

where μc = (1/2)(μ↑ + μ↓), σc = σ↑ + σ↓, and σs = σ↑ −
σ↓. Since charge density fluctuations are strongly suppressed
by the long-range Coulomb interactions, we require that jz

c =
0, so that

jz
se‖ = − h̄σF

4e2

∂

∂z
μs‖, σF = σ 2

c − σ 2
s

σc
. (31)

The continuity equations for charge and spin read

1

e

∂

∂z
jz
c + 2νcμ̇c + νs

2
μ̇s‖ = 0, (32)

2

h̄

∂

∂z
jz
se‖ + νcμ̇s‖ + νsμ̇c = − νF

τsf,F
μs‖, (33)

where τsf,F is the phenomenological spin-flip time in the fer-
romagnet; νc = (ν↑ + ν↓)/2 and νs = ν↑ − ν↓ are densities of
states, and

νF = 4ν2
c − ν2

s

4νc
. (34)

Again, using the absence of charge currents in the z direction
we eliminate μ̇c from these equations and find

2

h̄

∂

∂z
jz
se‖ + νFμ̇s‖ = − νF

τsf,F
μs‖. (35)

Combining Eqs. (35) and (31) and performing a Fourier trans-
form to frequency, we obtain the spin-diffusion equation

∂2

∂z2
μs‖(z, ω) = μs‖(z, ω)

λ2
F

, (36)

with the spin-relaxation length λF of F given by

λ2
F = σFτsf,F/2e2νF

1 − iωτsf,F
. (37)

As in the case of the normal metal N, spin flip rates 1/τsf,F

in metallic ferromagnets are assumed to be large, so that we
may safely ignore the frequency dependence of λF for the
frequencies of interest in the THz range and below.

Solving Eq. (37) with the boundary condition
jz
se‖(−dF, ω) = 0, one finds

μs‖(z, ω) = μs‖(z ↑ 0, ω)
cosh[(z + dF)/λF]

cosh(dF/λF)
. (38)

The spin current jz
se‖ at the F-N interface is

jz
se‖(0, ω) = − h̄σF

4e2λF
tanh

(
dF

λF

)
μs‖(z ↑ 0, ω). (39)

Comparing with Eq. (14) we conclude that

Ze
F‖ = 4e2λF

h̄σF
coth

(
dF

λF

)
. (40)

C. F-N interface: Longitudinal contribution from electrons

The linearized charge and spin currents through the F-N
interface at z = 0 collinear with m are given by the equations
[46]

jz
c (0, ω) = − e

h
gc�μc(ω) − e

2h
gs�μs‖(ω), (41)

jz
se‖(0, ω) = − gs

4π
�μc(ω) − gc

8π
�μs‖(ω), (42)

where �μc(ω) = μc(z ↓ 0, ω) − μc(z ↑ 0, ω), �μs‖(ω) =
μs‖(z ↓ 0, ω) − μs‖(z ↑ 0, ω) are the drops of potential and
spin accumulation over the F-N interface, gc = g↑↑ + g↓↓ is
the total dimensionless interface conductance per unit area,
and gs = g↑↑ − g↓↓. For a ferromagnetic insulator g↑↑ =
g↓↓ = 0 and, hence, gc = gs = 0.

As before, we require that there be no charge current
through the interface, which gives

jse‖(0, ω) = −gFN

8π
�μs‖(ω), (43)

with

gFN = g2
c − g2

s

gc
. (44)

Comparing Eq. (43) with Eq. (15), we conclude that

Ze
FN‖ = 8π

gFN
. (45)

Since the reflection at the F-N interface is effectively in-
stantaneous, the frequency dependence Ze

FN‖ may be safely
neglected for frequencies in the THz range and below.
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D. Ferromagnet: Transverse contribution

For both insulating and metallic ferromagnets, to linear
order in the applied fields, spin currents transverse to the
magnetization direction e‖ are carried by magnons. Up the
THz frequency range, the resulting magnetization dynamics
may be calculated from the Landau-Lifshitz-Gilbert equation.
This approximation is valid as long as the frequency of the
applied fields is far below the excitation threshold of optical
and zone-boundary magnons, which, for YIG, holds for fre-
quencies up to ω/2π ≈ 5 THz [51].

The Landau-Lifshitz-Gilbert equation reads [52,53]

ṁ =ω0e‖ × m + αm × ṁ − Dexm × ∂2m
∂z2

. (46)

Here ω0 is the ferromagnetic-resonance frequency, which
includes effects of static external magnetic fields, demagne-
tization field, and anisotropies; α is the bulk Gilbert damping
coefficient, and Dex the spin stiffness. The spin current density
from the magnetization dynamics is [54]

jz
s = −DexMs

γ
m × ∂m

∂z
, (47)

where Ms is the magnetic moment per unit volume and γ =
μBg/h̄ the gyromagnetic ratio.

Inserting the parametrization (5) and keeping terms to
linear order in m⊥ only, one gets the linearized Landau-
Lifshitz-Gilbert equation

−Dex
∂2

∂z2
m⊥(z, ω) = (ω + iαω − ω0)m⊥(z, ω). (48)

With the boundary condition that the spin currents must vanish
at the boundary of the F layer at z = −dF, the solution of this
equation is

m⊥(z, ω) = cos[K (ω)(z + dF)]

cos[K (ω)dF]
m⊥(0, ω), (49)

where K (ω) is the solution of

ω0 + DexK2 = ω(1 + iα). (50)

For the transverse spin current through the F-N interface at
z = 0 we then find

jz
s⊥(0, ω) = − iDexMs

γ
K (ω) tan[K (ω)dF]m⊥(0, ω), (51)

so that

ZF⊥(ω) = i
h̄γω

DexMsK (ω)
cot[K (ω)dF]. (52)

To further analyze this expression, we separate real and
imaginary parts of the complex wave number K (ω),

K (ω) = k(ω) + iκ (ω). (53)

For frequencies ω > ω0 magnon modes exist in F. For small
Gilbert damping α, the complex wave number K (ω) is close
to being real if ω > ω0, with small imaginary part

κ (ω) ≈ αω

v(ω)
, ω � ω0, (54)

where v(ω) = dω/dk is the magnon velocity. For ω < ω0,
which includes negative frequencies, the complex wave num-
ber K (ω) is close to being purely imaginary, with imaginary
part

κ (ω) ≈
√

ω0 − ω

Dex
, ω � ω0, (55)

reflecting the absence of magnon modes at these frequencies.
In the limit of large dF, such that κ (ω)dF � 1, one has

cot[k(ω)dF] → −i, so that

ZF⊥(ω) → Z∞
F⊥(ω) ≡ h̄γω

DexMsK (ω)
. (56)

For |ω| � ω0, the limiting impedance Z∞
F⊥(ω) may be approx-

imated as

Z∞
F⊥(ω) ≈ h̄γ

Ms

√
|ω|
Dex

×
{

1 if ω � ω0,

−i if ω � −ω0.
(57)

Upon going to smaller thicknesses dF of the ferromagnetic
layer, the approximation κ (ω)dF � 1 first breaks down for
frequencies ω � ω0, because the imaginary part κ (ω) is small-
est in that case, see Eqs. (54) and (55). To analyze the
impedance ZF⊥(ω) in the regime κ (ω)dF � 1 for frequencies
ω � ω0, we note that

ZF⊥(ω)

Z∞
F⊥(ω)

≈ i cot[k(ω)dF]

+
∑

n

κ (ω)dF

(k(ω)dF − nπ )2 + κ (ω)2d2
F

, (58)

where the summation is over the integers n. The real part of
ZF⊥(ω)/Z∞

F⊥(ω) exhibits a resonance structure with resonance
spacing �ω ≈ πv/dF and a Lorentzian line shape with height
1/κ (ω)dF ≈ v/αωdF and full width at half maximum ≈2αω.
It averages to one if averaged over a frequency window of
width much larger than the resonance spacing �ω but smaller
than ω − ω0. The imaginary part of ZF⊥(ω)/Z∞

F⊥(ω) shows
large oscillations with period �ω that average to zero if av-
eraged over frequency.

The magnetic field of the driving field and the (Oersted)
field of the alternating charge current give an additional cor-
rection to the transverse impedance discussed here and, hence,
to the SMR. Since these fields are spatially uniform, they
mainly couple to the uniform precession mode. Their effect
on the SMR is strongest for frequencies in the vicinity of
the ferromagnetic-resonance frequency, but it is negligible for
other frequencies. We refer to Appendix B for a more detailed
discussion.

E. F-N interface: Transverse contribution

The transverse spin current across the F-N interface cou-
ples to the magnetization dynamics via the spin transfer torque
and spin pumping [46],

jz
s⊥(0, ω) = − g↑↓

4π
[μs⊥(z ↓ 0, ω) + h̄ωm⊥(0, ω)], (59)

where g↑↓ is the dimensionless spin-mixing conductance
per unit area. Using the Landauer-Büttiker approach, g↑↓ is
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defined as [44]

gσσ ′ = 1

A
tr (1 − rσ r†

σ ′ ), σ, σ ′ =↑,↓, (60)

with A the total area of the F-N interface and r↑ and r↓ the
reflection matrix for majority and minority electrons, respec-
tively. Comparing Eqs. (59) with Eq. (19), we obtain

ZFN⊥ = 4π

g↑↓
. (61)

F. F-N interface: Longitudinal magnon contribution

As described in Sec. IV D, a spin wave at frequency �/2π

carries an alternating spin current jz
s⊥ with spin polarization

perpendicular to the magnetization direction e‖. The mag-
nitude of this transverse spin current is proportional to the
amplitude m⊥ of the spin wave, see Eq. (47). Additionally,
a spin wave carries a nonoscillating (i.e., steady-state) spin
current jz

sm‖ with spin polarization collinear with the mag-
netization direction. The magnitude of this longitudinal spin
current is proportional to the difference of the densities of
magnons moving in the positive and negative z direction,
which is quadratic in m⊥. The net longitudinal magnon current
across the F-N interface is nonzero if the F and N layers are
brought out of equilibrium, which occurs, e.g., if the spin
accumulation μs‖(z ↓ 0) in N is nonzero [21]. In Refs. [23,24]
the longitudinal spin current is calculated to leading order in
the spin-mixing conductance g↑↓ of the F-N interface (see also
Refs. [55,56])

jz
sm‖(0) = − h̄γ

πMs
Re(g↑↓)

∫
d�νm(�)�

(
−df 0

d�

)

× [μs‖(z ↓ 0) − μm(0)], (62)

where f 0(�) = 1/(eh̄�/kBT − 1) is the Planck function, i.e„
a Bose-Einstein distribution with zero chemical potential,
and νm(�) = (� − ω0)1/2/(4π2D3/2

ex ) the magnon density of
states. Equation (62) assumes that the temperatures on both
sides of the F-N interface are the same.

Since in our system the spin accumulation μs‖(z ↓ 0) oscil-
lates at frequency ω/2π due to the applied alternating electric
field and the SHE, the associated longitudinal magnon cur-
rent jz

sm‖ in F oscillates at the same frequency. For driving
frequencies ω � kBT/h̄, this alternating longitudinal magnon
spin current can be obtained from the steady-state result (62).
For the spin impedance Zm

FN‖ it follows that

1

Zm
FN‖

= h̄γ

πMs
Re(g↑↓)

∫
d�νm(�)�

(
−df 0

d�

)
. (63)

Corrections to Eq. (63) from the breakdown of the adia-
batic approximation will become relevant at frequencies ω �
kBT/h̄. At room temperature this is at ω/2π � 6 THz.

Equation (63) may be further simplified in the limit h̄ω0 �
kBT , which is applicable at room temperature. In this limit one
finds [24]

1

Zm
FN‖

≈ 3h̄γ ζ (3/2)

16Msπ5/2
k3

T Re g↑↓, (64)

where kT = √
kBT/h̄Dex is the thermal magnon wave number

and ζ (3/2) ≈ 2.61.

G. Ferromagnet: Longitudinal magnon contribution

If the thickness dF of the F layer is so small and the magnon
lifetime in F so long that the excess magnons excited at the F-
N interface cannot be transported away from the interface and
dissipated in the bulk F efficiently enough, a finite magnon
chemical potential μm(ω) in F builds up—the magnet acts like
a “magnon capacitor.” We here describe this effect in the limit
of small dF, assuming that relaxation processes conserving the
magnon number are fast enough that the magnon distribution
can be characterized by a uniform magnon chemical potential
across the F layer. (The opposite limit, in which magnons
propagate ballistically in F and do not relax, is discussed in
Appendix A.)

Balancing the influx of magnons through the F-N inter-
face and the decay of excess magnons with lifetime τ (�) =
1/2α� due to the phenomenological Gilbert damping, we
find, to linear order in μm,

jz
sm‖(0) = − dF

∫ ∞

ω0

d�νm(�)

(
−df 0(�)

d�

)[
μ̇m − μm

τ (�)

]
.

(65)

Fourier transforming and comparing to Eq. (16) results in an
impedance of the form

Zm
F‖(ω) = 1

Cm(−iω + 1/τm )
. (66)

In the limit h̄ω0 � kBT , the expressions for the “magnon
capacitance” Cm per unit area and the effective magnon life
time τm are

Cm = dF

8π
√

ω0Dex
k2

T, (67)

τm =
√

π

3ζ (3/2)αkT
√

ω0Dex
, (68)

where the thermal magnon wave number kT is defined below
Eq. (64). The effective magnon lifetime τm is significant in the
low-frequency regime ωτm � 1 only and may be effectively
set to infinity for frequencies in the THz regime.

H. Numerical estimates for the impedances

To obtain an understanding of the order of magnitude of
the spin impedances ZN, Ze

F‖, Zm
F‖, ZF⊥, Ze

FN‖, Zm
FN‖, and ZFN⊥,

we calculate numerical values using typical parameters for an
F|N bilayer consisting of the ferromagnetic insulator YIG and
the normal metal Pt, as well as for a bilayer consisting of the
ferromagnetic metal Fe and the normal metal Au. Numerical
values for the relevant material and device parameters are
collected in Table I, together with experimental references.
(We note, however, that there is a large variation in litera-
ture values for the spin-Hall angle [12–15,36,57–63] θSH, the
spin-relaxation lengths [12,14,15,57–59,64,65] λN,F, and the
interface conductances [12–15,57–59] gσσ ′ . Different values
for these quantities lead to different quantitative predictions
but do not affect our qualitative conclusions.)
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TABLE I. Typical values for the relevant material and device
parameters of the F|N bilayers considered in this paper. The last
column states the references used for our estimates.

Material and device parameters Ref.

Pt σN = 9 × 106 �−1 m−1, [66]
θSH = 0.1, λN = 2 × 10−9 m, [15,18,67]

dN = 4 × 10−9 m [18]
Au σN = 4 × 107 �−1 m−1, [68]

θSH = 0.08, λN = 6 × 10−8 m, [58]
dN = 6 × 10−8 m [69]

YIG ω0/2π = 8 × 109 Hz, α = 2 × 10−4, [13]
Dex = 8 × 10−6 m2 s−1, Ms = 1 × 105 A m−1, [67]

dF = 6 × 10−8 m [18]
Fe ω0/2π = 8 × 109 Hz, α = 5 × 10−3, a [69]

Dex = 4 × 10−6 m2 s−1, Ms = 2 × 106 A m−1, [70]
σF = 1 × 107 �−1 m−1, [71]

λF = 9 × 10−9 m, [65]
dF = 2 × 10−8 m [69]

YIG|Pt (e2/h)Re g↑↓ = 6 × 1013 �−1 m−2, [13,59]
YIG|Pt (e2/h)Im g↑↓ = 0.3 × 1013 �−1 m−2 b

Fe|Au (e2/h)Re g↑↓ = 1 × 1014 �−1 m−2 [58]
(clean) (e2/h)Im g↑↓ = 0.05 × 1014 �−1 m−2, [73]

(e2/h)g↑↑ = 4 × 1014 �−1 m−2, [73]
(e2/h)g↓↓ = 0.8 × 1014 �−1 m−2 [73]

aThe resonance frequency ω0 depends strongly on the external mag-
netic field applied in experiments. To make a comparison possible,
we assume a magnetic field which results in the same resonance
frequency as for the YIG|Pt bilayers of Ref. [13].
bAccording to Refs. [15,72], Im g↑↓/Re g↑↓ ≈ 0.05, which is also
used here to estimate Im g↑↓.

Estimates for the frequency-independent impedances as
well as the “magnon capacitance” Cm and the effective
magnon lifetime τm obtained this way can be found in
Table II. Since the spin-relaxation lengths λN and λF are
smaller than typical layer thicknesses dN and dF used in
experiments, we list ZN and Ze

F‖ for the limit of large dN

TABLE II. Estimates for the impedances of the F|N bilayers
considered in this paper. Parameter values are taken from Table I. All
impedances are given in 10−12 � m2; the “magnon capacitance” Cm

is in 103 Fm−2 and the effective magnon lifetime in 10−9 s. The in-
terface impedance Zm

FN‖, Cm, and τm are evaluated at T = 300 K. The
estimates for Zm

F‖ and Z∞
F⊥ are at ω/2π = 1 GHz and ω/2π = 1 THz,

respectively. The full frequency dependence of ZF⊥(ω) and Zm
F‖(ω) is

shown in Fig. 4 for YIG|Pt.

F|N YIG|Pt Fe|Au

(h/e2 )ZN 0.0055 0.038
(h/e2 )ZFN⊥ 0.21–0.01i 0.13–0.006i
(h/e2 )Zm

FN‖ 0.30 1.3
(h/e2 )Ze

FN‖ 0.096
(h/e2 )Ze

F‖ 0.023
(e2/h)Cm

F‖ 0.72 0.68
τm 0.81 0.032
(h/e2 )Zm

F‖(2π GHz) 0.043 + 0.21i 0.045 + 0.009i
(h/e2 )Z∞

F⊥(2π THz) 0.0043–4.3 × 10−7i 0.0003–7.6 × 10−7i

FIG. 4. Numerical estimates for the spin impedances of a YIG|Pt
bilayer as a function of the frequency ω/2π . For the impedance
ZN the large-dN limit is shown; for |ZF⊥(ω)| both the large-dF limit
(solid red line) and the finite-dF case (dotted red line) are shown, as
discussed in the main text. Parameter values are taken from Table I.
The inset shows the same impedances on a logarithmic scale in
the GHz frequency regime. The horizontal lines indicate ZN (blue
dashes, main panel and inset), ZFN⊥ (green dot-dashes, inset), and
Zm

FN‖ (light-purple dots, inset).

and dF, respectively. For the impedances ZF⊥ and Zm
F‖, as

well as Cm, we take values for dF typical for recent experi-
ments, see Table I. Figure 4 shows the frequency-dependent
spin impedances ZF⊥(ω) and Zm

F‖(ω) for a YIG|Pt bilayer.
For a comparison of numerical values, the transverse spin
impedance Z∞

F⊥(ω) at ω/2π = 1 THz and the longitudinal
spin impedance Zm

F‖(ω) for ω/2π = 1 GHz are also included
in Table II. The impedance ZF⊥(ω) for a Fe|Au bilayer has
a similar frequency dependence as in Fig. 4 but a value that
is a factor ∼10 smaller (not shown). The smallness of ZF⊥(ω)
in comparison to the transverse interface impedance ZFN⊥ for
YIG|Pt and Fe|Au bilayers means that in both YIG and Fe
spin angular momentum is efficiently transported away from
the F-N interface for frequencies well into the THz regime.

For both YIG|Pt and Fe|Au, the longitudinal and trans-
verse interface impedances are of comparable magnitude at
T = 300 K. Since |ZF⊥(ω)| is typically much smaller than
|ZFN⊥|, except in the immediate vicinity of resonances, the
transverse spin current through the interface is dominated by
the interfacial impedance. The same applies to the longitu-
dinal spin current carried by conduction electrons if F is a
metallic ferromagnet. The situation is different for the lon-
gitudinal magnonic spin current which depends strongly on
frequency. In the zero-frequency limit, the longitudinal spin
impedance Zm

F‖ is much larger than the corresponding inter-
facial spin impedance, so that the longitudinal spin current
carried by magnons is strongly suppressed. At high frequen-
cies, Zm

F‖ becomes small, and magnons can carry a sizable
longitudinal spin current. The crossover between these two
regimes depends on the thickness dF of the F layer and the
ferromagnetic-resonance frequency ω0. For the parameters
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listed in Table I, the longitudinal magnon current sets in at
ω/2π � 1 GHz for YIG|Pt.

Taking typical values for ω0, α, and Dex from Table I, one
finds that at a frequency ω/2π ∼ 1 THz the asymptotic large-
dF regime κ (ω)dF � 1 for the transverse spin impedance
ZF⊥(ω) sets in at dF � 1 × 10−5 m for YIG and dF � 3 ×
10−7 m for Fe. (The difference is caused by the smallness of
the Gilbert damping in YIG.) Both values are larger than the
typical thickness dF ∼ 10−8 m of thin magnetic films used in
experiments, see Table I. At these smaller thicknesses, ZF⊥(ω)
develops a resonance structure, which may be measurable in
experiments, if variations in dF and frequency resolution are
small enough. For example, at a thickness dF ∼ 6 × 10−8 m
of a YIG layer, the resonance spacing �ω/2π at frequency
ω/2π ∼ 1 THz is �ω/2π ∼ 1 × 10−1 THz, and for dF ∼ 2 ×
10−8 m of an Fe layer �ω/2π ∼ 2 × 10−1 THz, whereas the
typical frequency resolution of THz time-domain experiments
is larger than 100 GHz, owing to the <10 ps wide time window
that is sampled [9].

V. NUMERICAL ESTIMATES OF THE SMR

The conductivity corrections δσ xx and δσ xy depend on
the magnetization direction meq = e‖, see Eq. (1). We char-
acterize the conductivity corrections δσ xx(e‖) and δσ xy(e‖)
corresponding to the spin-Hall magnetoresistance (SMR), pla-
nar Hall effect (PHE), and anomalous Hall effect (AHE) using
the three complex dimensionless quantities

�SMR = [δσ xx(ey) − δσ xx(ex )]/σN,

�PHE = − δσ xy(exy)/σN,

�AHE = − δσ xy(ez )/σN, (69)

where we abbreviated exy = (ex + ey)/
√

2. The planar Hall
effect and spin-Hall magnetoresistance characteristics are re-
lated, see Eqs. (23) and (24),

�PHE = 1
2�SMR. (70)

Experimentally, the real part of �SMR is a magnetization
direction-dependent correction to the magnitude of the current
density j̄x

c (ω) averaged over the thickness dN of the N layer,
whereas the imaginary part of �SMR is the magnetization
direction-dependent part of the phase shift between j̄x

c (ω) and
the applied electric field E (ω). The modulus and phase of the
complex coefficients �PHE and �AHE describe magnitude and
phase of the transverse current j̄y

c (ω).
Below we discuss the full frequency-resolved characteris-

tics �SMR and �AHE, which contain a contribution from the
sharp magnon resonances in F, as well as from the asymp-
totic characteristics �̄SMR and �̄AHE, which are obtained by
replacing the transverse spin impedance ZF⊥(ω) with Z∞

F⊥(ω)
of Eq. (56). For definiteness, we take experiment-motivated
sample thicknesses dN and dF as listed in Table I. Numerical
estimates for �SMR and �AHE are shown in Figs. 5 and 6 for
YIG|Pt and Fe|Au bilayers, respectively. No separate results
are shown for �PHE, since �PHE = (1/2)�SMR, see Eq. (70).

In both figures the frequency dependence of �SMR at low
frequencies (ω/2π � 1 GHz) mainly results from the fre-
quency dependence of Zm

F‖(ω), while above ω0 it stems from
the resonance structure of ZF⊥(ω). Comparing Re �SMR(ω)

FIG. 5. Real and imaginary parts of the dimensionless charac-
teristics �SMR of the spin-Hall magnetoresistance (top) and �AHE

of the anomalous Hall effect (bottom) for a YIG|Pt bilayer. The
thick solid lines use the asymptotic value Z∞

F⊥(ω) of Eq. (56); thin
dashed lines use the full expression for ZF⊥(ω), which includes the
effect of spin-wave resonances in the YIG layer. Material and device
parameters are taken from Table I.

at ω = 0 and ω/2π = 1 THz, there is a decrease of the size
of the SMR by 68% for YIG|Pt and an increase by ca.
3% for Fe|Au, which mainly has its origin in the frequency
range below 1 GHz. The net frequency dependence of �SMR

for Fe|Au is weaker than for YIG|Pt, because for Fe|Au
the frequency-independent electronic spin impedances Ze

FN‖ +
Ze

F‖ shunt the frequency-dependent magnon spin impedances
Zm

FN‖ + Zm
F‖(ω) (cf. Fig. 3). For Fe|Au, �SMR is negative, as

the longitudinal contributions dominate over the transverse
one. In Fig. 5, the imaginary part Im �SMR exhibits a peak
for frequencies ω/2π in the GHz range, where the (almost
purely imaginary) longitudinal spin impedance Zm

F‖ matches
the corresponding interface impedance Zm

FN‖.
The discussion of Z∞

F⊥(ω) in Sec. IV D implies that
the asymptotic characteristic �̄SMR describes the SMR for
the case that the frequency resolution is larger than the
spacing between spin-wave resonances in F. Although the
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FIG. 6. Same as Fig. 5 but for an Fe|Au bilayer. Parameter values
are taken from Table I.

spin impedance Z∞
F⊥(ω) depends strongly on frequency, see

Sec. IV D, for both material combinations the transverse con-
tribution to �̄SMR depends only very weakly on frequency, as
the spin impedance Z∞

F⊥(ω) appears in series with the much
larger interface spin impedance ZFN⊥, which is frequency
independent. The same applies to the PHE and AHE correc-
tions to the conductivity, characterized by �̄PHE and �̄AHE,
respectively.

If the effect of a finite thickness dF is taken into ac-
count, the SMR response acquires sharp resonances, reflecting
the resonance structure of ZF⊥(ω). The real part of �SMR

shows narrow symmetric features for frequencies around the
standing spin-wave modes in F. For a quantitative discussion
we notice that the transverse contribution to the conductiv-
ity correction δσ xx(ω) is a sum of contributions involving
impedances at frequencies ω and −ω. Of these, it is only
the positive-frequency contribution that is affected by the
resonances in ZF⊥(ω). Neglecting the small imaginary part of
ZFN⊥ and taking into account that |Z∞

F⊥(ω)| � |ZFN⊥| for both
material combinations we consider, one finds that at the res-
onance center the transverse contribution to �SMR is reduced
by a factor ≈[1 − dc

F/2(dF + dc
F )], with dc

F = 2γ h̄/αMs(ZN +

ZFN⊥). The full width at half maximum of the resonant fea-
tures in Re �SMR is δω ≈ 2αω(1 + dc

F/dF). The crossover
scale dc

F separates the low-dF regime [47,48], in which the life-
time of spin waves is limited by decay into N, and the large-dF

regime, in which intrinsic Gilbert damping determines the
magnon lifetime. Taking material parameters from Table I,
we find that dc

F ≈ 0.2 μm for YIG|Pt and dc
F ≈ 0.6 nm for

Fe|Au. The imaginary part of �SMR has abrupt jumps at the
spin-wave frequencies and is a smooth function of frequency
otherwise. The same discussion applies to �PHE and to �AHE

but with the roles of real and imaginary parts reversed for the
latter.

Lotze et al. [18] performed a measurement of the spin-
Hall magnetoresistance of a YIG|Pt bilayer for frequencies
up to ω/2π = 3 GHz. The magnetic field in this experiment
was 0.6 T, resulting in a ferromagnetic-resonance frequency
ω0/2π ≈ 17 GHz, which is an order of magnitude larger
than what we used for our numerical evaluation. The in-
creased value of ω0 shifts the lowest magnon resonances to
higher frequencies and it lowers the “magnon capacitance”
Cm, see Eq. (67). As a result, the low-frequency regime,
in which Zm

F‖(ω) dominates the longitudinal spin current,
is extended to higher frequencies. Setting ω0/2π = 17 GHz
and taking the other material parameters from Table I, we
find that Re �SMR decreases by approximately 10% between
ω = 0 and ω/2π = 3 GHz, consistent with the observation
of Ref. [18], who found that the magnitude of the spin-Hall
magnetoresistance does not change within the experimental
uncertainty of ∼10%.

VI. CONCLUSION AND OUTLOOK

The main difference between the zero-frequency and finite-
frequency versions of the spin-Hall magnetoresistance (SMR)
results from the onset of spin transport by incoherent magnons
and the resonant coherent excitation of magnetization modes
in F for frequencies in the GHz range and above. Extend-
ing the work of Chiba et al. [26], who developed a theory
of the finite-frequency SMR that accounted for the uniform
precession mode at the ferromagnetic-resonance frequency,
we here present a theory that includes acoustic spin waves of
arbitrary wavelength, accounting for their role in incoherent
longitudinal as well as coherent transverse spin transport, thus
allowing for an extension to the GHz and THz frequency
range. Our theory is a general linear response theory, in which
the relevant response functions of the normal metal, the fer-
romagnet, and the interface are lumped together into “spin
impedances,” see Fig. 3. These spin impedances relate spin
current and spin accumulation in the same way as standard
impedances relate charge current and voltage. This allows for
an efficient description of F|N bilayers and F|N|F trilayers,
in which the thickness dN exceeds the spin-relaxation length
λN, so that the SMR is the sum of contributions from the two
interfaces of the normal-metal layer, as well as of bilayers of
a smaller thickness.

The SMR corrections δσ xx and δσ xy to the diagonal and
off-diagonal conductivity—see Eqs. (23) and (24) and Figs. 5,
6—are the difference of contributions associated with the flow
of spin angular momentum collinear (“longitudinal”) and per-
pendicular (“transverse”) to the magnetization direction. The

024415-11



REISS, KAMPFRATH, AND BROUWER PHYSICAL REVIEW B 104, 024415 (2021)

longitudinal contribution is carried by conduction electrons
and thermal magnons inside the ferromagnet. The magnonic
longitudinal contribution to the SMR, which is the sole lon-
gitudinal contribution if F is insulating, has a systematic
frequency dependence, with a characteristic frequency scale
in the GHz range for magnetic layer thickness dF ∼ 10 nm.
The origin of this frequency dependence is the buildup of a
magnon chemical potential in F, which effectively blocks a
longitudinal magnonic spin current in the DC limit but not
for high frequencies. The transverse contribution, which is
carried by coherent magnons, features sharp resonances at the
spin-wave frequencies of the F|N bilayer but otherwise has
only a small systematic frequency dependence. With sufficient
frequency resolution the THz-SMR may be an interesting tool
for all-electric spectroscopy of magnon modes. Furthermore,
our analysis has shown that the excitation and propagation of
coherent magnons is as efficient at THz frequencies as in the
GHz range.

The combination of the longitudinal and transverse con-
tributions leads to a significant decrease of the SMR for
YIG|Pt by 68% between ω = 0 to ω/2π = 1 THz. The SMR
decreases so strongly, because for bilayers involving YIG
as a ferromagnetic insulator, the transverse and longitudinal
contributions to the SMR are of comparable magnitude at
high frequencies at room temperature, with the transverse
contribution dominating, whereas the longitudinal contribu-
tion is suppressed at low frequencies. The thickness dF of
the ferromagnetic layer, the applied magnetic field, and the
choice of the normal metal affect the characteristic crossover
frequency but not the overall change of the SMR between the
low and high frequency limits. Since the ratio of longitudinal
to transverse spin impedances of the F-N interface system-
atically decreases with temperature [23,24,74,75], we expect
that the longitudinal and transverse contributions for bilayers
involving YIG as a ferromagnetic insulator eventually cancel
each other and, hence, that the SMR vanishes, upon raising the
temperature above room temperature. Further, whereas for the
thicknesses typically used in experiments the characteristic
frequency for the onset of the longitudinal contribution to the
SMR is comparable to the ferromagnetic-resonance frequency
ω0, the two frequency scales can be pushed apart by consider-
ing smaller or larger layer thicknesses. In particular, for large
dF we predict that the frequency-dependent suppression of the
SMR can set in significantly below 1 GHz, so that it is mea-
surable by conventional high-frequency electronic techniques.

An upper limit for the applicability of our theory is the
maximum frequency ωmax of acoustic magnons. For the mag-
nets we consider here, one has ωmax/2π ∼ 5 THz [51,76]. At
this frequency, both the description of the F-N interface as a
mere “boundary condition” and the description of magnetiza-
tion dynamics by the Landau-Lifshitz-Gilbert equation (46)
cease to be valid. Approximately the same frequency restricts
the use of the quasiadiabatic approximation for longitudinal
spin transport by thermal magnons at room temperature. Both
frequency limits are below frequency scales at which other
assumptions of our theory cease to be valid, such as neglecting
frequency-dependent corrections to the Drude scattering rates
in N and F (valid for ω/2π � 10 THz).

Apart from the appearance of sharp resonances at spin
wave frequencies, the transverse contribution to the SMR

has no appreciable systematic frequency dependence for the
material combinations YIG|Pt and Fe|Au for frequencies well
into the THz regime. Within our formalism, the reason is that
the transverse contribution to the SMR is dominated by the
frequency-independent spin impedance ZFN⊥ of the interface,
which obscures the strong frequency dependence of ZF⊥(ω)
in the THz regime. We have also considered other materials
that are used in spintronics experiments, such as Cu, Co,
CoFe(B), Py (permalloy), GdFe(Co), GdIG (gadolinium iron
garnet), Fe3O4 (magnetite), NiFe2O4, EuS [77], and EuO [78]
in combination with different nonmagnetic heavy metals as N
layers and arrived at the same qualitative conclusion: In all
cases, the transverse impedance Z∞

F⊥(ω), which describes the
frequency-averaged part of magnon-mediated spin transport
in F, is much smaller than ZFN⊥, ruling out a substantiative
effect of the magnon spin impedance Z∞

F⊥ on the SMR.
This leads to the question, whether there are other, less-

explored material combinations, for which the transverse
contribution to the SMR has a stronger systematic frequency
dependence. To address this question, we find it instructive
to consider ZF⊥(ω) at the highest frequency ωmax for which
our long-wavelength theory is valid, which is at the boundary
of the (magnetic) Brillouin zone. Using Ms/h̄γ = S/ax

Say
Saz

S ,
where S and ax,y,z

S are the spin and linear dimensions of the
magnetic unit cell, respectively, and ωmax ≈ Dex(π/az )2, we
estimate that ∣∣Z∞

F⊥(ω)
∣∣ � |ZF⊥(ωmax)| ∼ πax

Say
S

S
. (71)

A lower limit for the interface impedance ZFN⊥ is obtained
using the Sharvin resistance of the F-N interface [44,73],

ZFN⊥ � 4πλ2
e, (72)

where λe is the Fermi wavelength in N. The fact that for most
material combinations λe and ax,y

S are comparable, whereas S
is of order unity or larger, explains why material combinations
with ZF⊥(ω) larger than ZFN⊥ are hard to find.

As a guiding principle for the search for material combina-
tions in which ZF⊥(ω) is large and ZFN⊥ is small, Eqs. (71) and
(72) suggest to consider materials with a large magnetic unit
cell, small S, and a spin-mixing conductance that approaches
the Sharvin limit as closely as possible. The spin stiffness
Dex does not directly enter into the comparison of ZF⊥(ωmax)
and ZFN⊥, but a small Dex lowers the frequency scale ωmax,
making it easier to reach this frequency scale experimentally.
A promising class of materials in this regard are half-metallic
(fully) compensated ferrimagnetic Heusler compounds, such
as Mn3Al or Mn1.5FeV0.5Al. The former compound has a
band gap ∼0.5 eV for minority carriers [79] and a magne-
tization Ms ≈ 2 × 104 Am−1 [80], which is almost an order
of magnitude below the corresponding value for YIG. The
small value of Ms should result in a relatively large value of
ZF⊥, consistent with the expectation that acoustic magnons do
not efficiently transport spin angular momentum in an almost
compensated ferrimagnet, whereas the half-metallic charac-
ter ensures a large spin-mixing conductance. Indeed, the
related half-metallic ferromagnetic Heusler compounds such
as Co2MnSi [81–85], Co2FeAl [86], and Co2Fe0.4Mn0.6Si
[87] are reported to have spin-mixing conductances around
or above the spin-mixing conductance of YIG|Pt. For a
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more complete answer to this question, however, a detailed
calculation of the spin-mixing conductances for the almost
compensated ferrimagnetic compounds is necessary, as well
as a description of the F-N interface that accounts for the
effect of the finite penetration of minority electrons into F on
the coupling to short-wavelength acoustic magnons.
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APPENDIX A: LONGITUDINAL SPIN CURRENT FOR
BALLISTIC MAGNON DYNAMICS

In this Appendix we describe the longitudinal magnonic
spin current through the F-N interface if the magnon dynamics
in F is ballistic, with specular reflection at the interface of the
F layer to the vacuum at z = −dF. Magnons at the F-N inter-
face are described by their distribution function f (�, kx, ky),
explicitly accounting for the wave-vector components kx and
ky parallel to the F-N interface. We distinguish the distribution
functions fin(�, kx, ky) of magnons incident on the F-N inter-
face and fout (�, kx, ky) of magnons moving away from the
interface. With ballistic magnon transport in F and specular
reflection of magnons at the ferromagnet-vacuum interface at
z = −dF, we obtain the relation

fin(�, kx, ky; t ) = fout (�, Kx, Ky; t − 2dF/vz ), (A1)

where vz(�, kx, ky) = 2Dexkz(�, kx, ky) is the magnon veloc-
ity perpendicular to the interface.

Magnons incident on the F-N interface are reflected into F
with probability Rm(�, kx, ky). The difference Tm = 1 − Rm

is the probability that a magnon is annihilated at the interface
and transfers its angular momentum to the conduction elec-
trons in N. It is [56,88]

Tm(�, kx, ky) = MsDexkz�/π h̄γ

|MsDexkz/h̄γ + �g↑↓/4π |2 Re g↑↓, (A2)

where

kz =
√

� − ω0

Dex
− k2

x − k2
y . (A3)

The magnon distribution at the interface then satisfies the
additional boundary condition [88]

fout (�, kx, ky; t ) = Rm(�, kx, ky) fin(�, kx, ky; t )

+ Tm(�, kx, ky) f 0(� − μs‖(z ↓ 0, t )/h̄),
(A4)

where f 0 is the Planck distribution. The second term in
Eq. (A4) ensures that fout = fin if the temperatures in F and
N are the same and the magnon chemical potential in F equals
the spin accumulation in N [24].

FIG. 7. Real part (top) and imaginary part (bottom) of the com-
bined impedance Zm

‖ (ω) from Eq. (A7) for a ballistic F layer (dashed
and dot-dashed curve) and of the impedance sum Zm

FN‖ + Zm
F‖(ω)

(solid curves) of Secs. III and IV F, IV G. Material and device pa-
rameters are taken from Table I.

In linear response, the distribution functions fin and fout

may be expanded as

fin,out (�, kx, ky; t )

= f 0(�) +
(

−df 0(�)

d�

)
φin,out (�, kx, ky; t ). (A5)

Setting μs‖(t ) = μs‖(ω)e−iωt + μs‖(−ω)e+iωt and solving for
the linear-response corrections φin,out (�, kx, ky; t ) to the dis-
tribution functions, we find that the spin current through the
F-N interface is

jsm‖(0, ω) = − 1

Zm
‖ (ω)

μs‖(z ↓ 0, ω), (A6)

with

1

Zm
‖ (ω)

= 1

(2π )3

∫
dkxdky

∫
d�

(
−df 0

d�

)
Tm(�, kx, ky)

×
[

1 − Tm(�, kx, ky)e2iωdF/vz

1 − Rm(�, kx, ky)e2iωdF/vz

]
. (A7)

The first term between the square brackets is identical to the
(inverse) longitudinal interfacial spin impedance ZFN‖. The
correction term accounts for the magnon accumulation in F. In
the limit of zero frequency, the correction term imposes that
jsm‖ → 0, i.e., Zm

‖ → ∞. For frequencies large enough such
that ωdF � vz for thermal magnons, the integrand in the cor-
rection term is a fast-oscillating function of frequency, so that
Zm

‖ (ω) → Zm
FN‖. Figure 7 compares the ballistic impedance

Zm
‖ (ω) of Eq. (A7) with the corresponding sum impedance

Zm
FN‖ + Zm

F‖(ω) of a YIG|Pt interface calculated using the ef-
fective magnetoelectronic circuit theory of the main text. The
plot illustrates this limiting behavior of Zm

‖ (ω).
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APPENDIX B: RESPONSE TO OERSTED FIELD

The (Oersted) magnetic field of the alternating charge cur-
rent jc(t ) drives a magnetization precession which, via spin
pumping and the ISHE, results in an additional correction
to the charge current. Since the SMR correction δjc to the
charge current density in N is small, we may neglect it when
calculating the magnetic field B(t ) in F and set [89]

B(t ) = By(t )ey, By(t ) = μ0
E (t )σNdN

2
. (B1)

The magnetization response is found by inclusion of the mag-
netic field into the Landau-Lifshitz-Gilbert equation (46),

ṁ = ω0 e‖ × m + α m × ṁ − Dex m × ∂

∂z2
m + γ m × B.

(B2)

Linearizing Eq. (B2) and performing a Fourier transformation
to frequency as in Sec. IV D, we find that only the transverse
component

B⊥(ω) = e∗
⊥ · B(ω) (B3)

of the Oersted field affects the magnetization dynamics,

−Dex
∂2

∂z2
m⊥(z, ω) = (ω + iαω − ω0)m⊥(z, ω) − γ B⊥(ω).

(B4)

With the boundary condition that the spin currents must vanish
at the boundary of the F layer at z = −dF, the solution of this
equation is

m⊥(z, ω) = m⊥(0, ω)
cos[K (ω)(z + dF)]

cos[K (ω)dF]
+ χ⊥(ω)B⊥(ω),

(B5)

where

χ⊥(ω) = γ

ω + iαω − ω0
. (B6)

The uniform magnetization precession driven by the Oersted
field does not carry a spin current inside F, but it does lead to
an additional contribution to the spin current through the F-N
interface via spin pumping. Hence, Eqs. (13) and (14) remain
unchanged, whereas the transverse part of Eqs. (19) has to be
modified,

μs⊥(z ↓ 0, ω) + h̄ωm⊥(0, ω)

= −ZFN⊥(ω) jz
s⊥(0, ω) − χ⊥(ω)h̄ωB⊥(ω). (B7)

Repeating the calculations of Sec. III, we then find that the
corrections δσ xx and δσ xy to the in-plane conductivity are still
given by Eqs. (23) and (24) but with the replacement

1

Z⊥(ω)
→ 1

Z⊥(ω)

[
1 + eωμ0χ⊥(ω)dN

ZNθSH

]
. (B8)

For the material and device parameters used in Secs. IV H
and V, see Table I, inclusion of the Oersted field only affects
the conductivity correction for frequencies in the immediate
vicinity of the ferromagnetic-resonance frequency ω0, where
the transverse susceptibility χ⊥(ω) is maximal. This is illus-
trated in Fig. 8 for the case of a YIG|Pt bilayer. Inclusion

FIG. 8. Comparison of the characteristics �SMR (dashed and dot-
dashed curve) and �̄SMR (solid curves) with and without inclusion of
the Oersted field. Thick (colored) curves are for the case with Oersted
field; thin (black) curves are for the case without it. The left and right
panels show real and imaginary parts, respectively. Parameter values
are taken from Table I.

of the Oersted field has a much larger effect on the SMR
in the limit of large dF (solid curves in Fig. 8) than in the
limit of small dF (dashed and dash-dotted curves). Also, upon
inclusion of the Oersted field, the form of the lineshape of
the resonance near ω0 is switched between imaginary and real
parts of �SMR—something that can be understood noting that
the correction factor in Eq. (B8) is almost purely imaginary
for ω = ω0. Since the Oersted field only drives a uniform
precession mode of the magnetization, it does not couple to
the magnon modes at higher frequencies.

APPENDIX C: SMR FOR F|N BILAYERS AND F|N|F
TRILAYERS

The results of Sec. III describe the corrections to the charge
current densities jx

c and jy
c associated with a single interface

for the case that the normal layer has a thickness dN much
larger than the spin-relaxation length λN. In this limit, the total
correction to the current density from the combination of the
SHE and ISHE is the sum of the corrections associated with
the F-N interface at z = 0 and the N-vacuum interface at z =
dN, which is independent of the magnetization direction m. In
this section we consider F|N bilayers and F|N|F trilayers with
dN � λN, for which the contributions from the two interfaces
no longer add up.

For a normal layer of finite thickness dN, the ISHE cor-
rection δj̄c to the (effective) current densities follows by
integration of Eqs. (11) and (12) over the entire cross section
of the normal metal,

δj̄c(ω) = θSHσN

2edN
ez × [μs(z ↑ dN, ω) − μs(z ↓ 0, ω)]. (C1)
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The z dependence of the spin accumulation μs is found from
the solution of the spin-diffusion equation (26),

μs(z) = 1

sinh(dN/λN)

[
μs(z ↓ 0) sinh

(
dN − z

λN

)

+ μs(z ↑ dN) sinh

(
z

λN

)]
. (C2)

For the spin current densities jz
s(z) at the normal-metal inter-

faces at z = 0 and z = dN one thus obtains, see Eq. (10),

jz
s(0) = 1

ZN

[
μs(z ↓ 0)

tanh(dN/λN)
− μs(z ↑ dN)

sinh(dN/λN)

]
− θSH

h̄σN

2e
Eey,

jz
s(dN) = 1

ZN

[
μs(z ↓ 0)

sinh(dN/λN)
− μs(z ↑ dN)

tanh(dN/λN)

]
− θSH

h̄σN

2e
Eey,

(C3)

where the impedance ZN is defined in Eq. (28).
In the limit dN � λN, the terms proportional to

1/ sinh(dN/λN) can be neglected and the spin accumulations
at the two interfaces at z = 0 and z = dN can be calculated
separately. The resulting current correction is the sum of
contributions from the two interfaces, as discussed above.
To calculate the spin accumulations for finite dN, we now
consider the cases of an F|N bilayer and an F|N|F trilayer
separately.

1. SMR for F|N bilayer

The boundary condition for the insulating interface at z =
dN is that of zero spin current density,

jz
s(dN) = 0. (C4)

With the help of this boundary condition, the spin accumula-
tion μs(z ↑ dN) at the insulating surface may be eliminated
from Eq. (C3). This allows us to express the spin current
density jz

s(0) at the ferromagnet interface at z = 0 in terms
of the spin accumulation μs(z ↓ 0) at that interface,

jz
s(0) = μs(z ↓ 0)

ZN
tanh(dN/λN)

− θSH
h̄σN

2e
Eey

[
1 − 1

cosh(dN/λN)

]
. (C5)

This is the same expression as Eq. (13) but with the replace-
ments

ZN → Z̃N ≡ ZN coth(dN/λN),

E → Ẽ = E

[
1 − 1

cosh(dN/λN)

]
. (C6)

When these replacements are made, the calculation of μs(z ↓
0) then follows that of Sec. III. Compared to Sec. III, the
calculation of the charge currents involves the replacement of
the spin accumulation μs(z ↓ 0) at the F-N interface by the
difference μs(z ↓ 0) − μs(z ↑ dN), see Eq. (C1). Using that
jz
s (dN) = 0, the spin accumulation μs(z ↑ dN) at the insulat-

ing surface can be easily obtained from Eq. (C3) and one finds
that, up to a constant term that does not depend on the magne-
tization orientation, μs(z ↓ 0) − μs(z ↑ dN) = (Ẽ/E )μs(z ↓
0). As a consequence, the resulting charge currents δ j̄x

c and

δ j̄y
c are still given by Eqs. (23) and (24), respectively, but

with the substitution (C6) for ZN, the substitution E → Ẽ2/E
for E , and with the corresponding substitutions Z‖ → Z̃‖ and
Z⊥ → Z̃⊥ for the sum impedances Z̃‖ and Z̃⊥, see Eq. (21).

In the limit dN � λN, the results of Sec. III are recovered,
because then Z̃N → ZN and Ẽ → E . The leading correction
term is an overall factor (1 − 4e−dN/λN ) for the charge current
δj̄c, which comes from the substitution E → Ẽ2/E . In the op-
posite limit dN � λN, we note that the prefactor Z̃NẼ2/dNE =
(ZNE/dN) tanh2(dN/2λN) tanh(dN/λN) in Eqs. (23) and (24)
is proportional to (dN/λN)2, so that the SMR is strongly sup-
pressed. A further suppression of the SMR occurs once dN

is so small that both sum impedances Z‖ and Z⊥ of Eq. (21)
are dominated by Z̃N. In this limit longitudinal and trans-
verse contributions cancel and no observable SMR remains.
This effect is not relevant for YIG|Pt, since it would require
an unrealistically small layer thickness dN for that material
combination, but is relevant for Fe|Au, where this asymptotic
small-dN behavior sets in for dN � 6 × 10−8 m.

2. SMR for F|N|F trilayer

To describe the SMR in an F|N|F trilayer, we introduce
two sets of spin impedances Ze( j)

F‖ , Zm( j)
F‖ , Z ( j)

F⊥, Ze( j)
FN‖, Zm( j)

FN‖ , and

Z ( j)
FN⊥ with j = 1, 2, where the superscripts j = 1 and j = 2

refer to the ferromagnet and the F-N interface at z = 0 and
z = dN, respectively, and the corresponding sum impedances
Z ( j)

‖ and Z ( j)
⊥ are defined as in Eq. (21). The longitudinal and

transverse components of the spin impedances are defined
with respect to the unit vectors e(1)

‖ and e(2)
‖ pointing along

the magnetization direction in the two magnets. Restoring the
vector notation for the spin current density jz

s(z) and the spin
accumulation μs(z), the boundary conditions (14) and (19) for
spin currents and spin accumulations at the interfaces at x = 0
and x = dN can be summarized as

μs(z ↓ 0) = −(Z (1) − ZN)jz
s(0),

μs(z ↑ dN) = +(Z (2) − ZN)jz
s(dN), (C7)

where, for j = 1, 2,

Z ( j) = Z ( j)
‖ e( j)

‖ e( j)T
‖ + Z ( j)

⊥ (ω)e( j)
⊥ e( j)T∗

⊥ + Z ( j)∗
⊥ (−ω)e( j)∗

⊥ e( j)T
⊥ ,

(C8)

with T denoting the transpose vector and ∗ complex conju-
gation. The system of equations is closed by the boundary
condition (C3). Solving for the spin accumulations μs(z ↓ 0)
and μs(z ↑ dN), one finds the charge current densities δ j̄x,y

c

from Eq. (C1),

δj̄c(ω) = − θ2
SH h̄σ 2

N

4e2dN
E (ω)Z2

N tanh2 dN

2λN

×
2∑

j=1

[ez × Z ( j)(ω)−1C(ω)−1ey]. (C9)

Here

Ẑ ( j) = ZN coth
dN

2λN
I + Z ( j), j = 1, 2, (C10)
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with I the identity matrix, and

C = 1

2

∑
j

Ž ( j)Ẑ ( j)−1, (C11)

with

Ž ( j) = ZN tanh
dN

2λN
I + Z ( j), j = 1, 2. (C12)

In Eq. (C9) we subtracted a constant term that does not depend
on the magnetization direction. One verifies that C(ω) → 1 in
the limit dN � λN, so that the result for the charge current
correction δj̄c is the sum of contributions from the two in-
terfaces separately. The case of an F|N bilayer discussed in
Sec. C 1 can be obtained from Eq. (C9) upon taking the limit
Z (2)

FN → ∞.
In the limit dN � λN, one may approximate

C−1 ≈ I + 2ZNe−dN/λN

2∑
j=1

Ẑ ( j)−1. (C13)

In this limit, we find that Eq. (C9) gives δj̄c as the sum of
separate contributions from the two F layers in the form of
Eqs. (23) and (24) and a weak interaction between the current
corrections from the two interfaces,

δj̄c(ω) = [
δj̄(1)

c (ω) + δj̄(2)
c (ω)

]
(1 − 4e−dN/λN )

− θ2
SH h̄σ 2

N

2e2dN
E (ω)Z3

NedN/λN ez

× [Ẑ (1)−1(ω)Ẑ (2)−1(ω) + Ẑ (2)−1(ω)Ẑ (1)−1(ω)]ey,

(C14)

where δj̄( j)
c is the correction to the charge current for a single

F-N interface, j = 1, 2, and the factor (1 − 4e−dN/λN ) is the
leading correction factor for a finite-width interface, see the
discussion below Eq. (C6).

In the opposite limit dN � λN, one has

C−1 ≈ 4λNZN

dN
Z−1

� − 2ZNZ−1
� (2ZN − Z ′

� )Z−1
� , (C15)

where we abbreviated

Z� =
2∑

j=1

(
Z ( j)

FN + Z ( j)
F

)
, Z ′

� = 1

ZN

2∑
j=1

(
Z ( j)

FN + Z ( j)
F

)2
.

(C16)

In the same manner, the sum of inverses∑
j

Z ( j)−1 ≈ dN

λNZN
I − d2

N

4λ2
NZ2

N

Z�. (C17)

Combining these results, we find that for small dN/λN one has

δj̄c(ω) = 4e2θ2
SHdN

h̄
E (ω)ez

×
[
Z−1

� − dN

2λN
Z−1

� (2ZN − Z ′
� )Z−1

�

]
ey, (C18)

where we omitted a constant term that does not depend on the
magnetization direction.

In the limit of a small layer width dN, the charge current
correction δj̄c of Eq. (C18) for an F|N|F trilayer is a factor

(dN/λN)2 smaller than the SMR for two independent F-N
interfaces. To understand why, note that for small dN/λN the
coupled equations (C3) imply that both the spin currents jz

s
and the spin accumulations at the interfaces are proportional
to dN/λN. This reflects the fact that the interface spin accumu-
lation generated by the spin-Hall effect is proportional to the
layer thickness dN for small dN. However, to this order in the
layer thickness dN, the difference μs(z ↓ 0) − μs(z ↑ dN) of
the spin accumulations, which is what determines the charge
current correction, see Eq. (C1), depends on the driving field
E and the spin-Hall angle θSH but not on the orientations of the
magnetizations of the two F layers. This can be seen, e.g., by
taking the sum of the two equations in Eq. (C3), which gives
μs(z ↓ 0) − μs(z ↑ dN) = 2edNθSHEey to leading (first) order
in dN. The dependence on the magnetization direction, which
is what constitutes the SMR, occurs to subleading (second)
order in dN/λN, which explains the smallness of the charge
current by a factor (dN/λN)2 in the small-dN limit.

In spite of its smallness, the charge current correction δjc

for an F|N|F trilayer is a factor ∼λN/dN larger than the charge
current correction for an F|N bilayer, which was discussed in
Sec. C 1. The reason is that for the F|N bilayer the spin current
jz
s(dN) is strictly zero, whereas for the F|N|F trilayer one ferro-

magnet can serve as a “sink” for the spin current generated by
the other ferromagnet and vice versa, so that both spin currents
jz
s(0) and jz

s(dN) can be nonzero. This observation was made
by Chen et al. for the DC limit [16]. Our calculation shows that
the same mechanism also applies at finite driving frequency.

Figure 9 shows the characteristic �̄SMR of the spin-Hall
magnetoresistance in an Fe|Au bilayer and an Fe|Au|Fe

FIG. 9. Dimensionless characteristic �̄SMR, see Eq. (69), of a
Fe|Au|Fe trilayer (dashed blue line) and a Fe|Au bilayer (solid red
line) as function of the thickness of the Au layer. The Fe|Au|Fe
trilayer has identical F layers with parallel magnetization directions
and a thickness dN, while the thickness of the Au layer in the Fe|Au
bilayer is dN/2. (This ensures that the magnetic interface/volume
ratio in both geometries is same.) Parameter values are taken from
Tables I and II. The two curves are for ω/2π = 0 Hz. For compari-
son, d (0)

N = 6 × 10−8 m is the thickness of the N layer of Ref. [69],
which is also the reference thickness used for the numerical estimates
of Sec. V.
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trilayer with Au layers of thickness dN/2 and dN, respectively,
as a function of dN for ω = 0. The magnetization directions
e(1)
‖ and e(2)

‖ in the F|N|F trilayer are parallel. In the large-dN

limit, �̄SMR is the same for both configurations, because in
this limit the two F layers of the F|N|F trilayer are inde-
pendent and their identical contributions simply add up. For
large dN, the characteristic �∞

SMR is inversely proportional to
dN, since the magnetization-direction dependent contribution
to the conductivity exists on top of a large background cur-
rent independent of the magnetization direction. For small
dN, �̄SMR differs for a bilayer and a trilayer because of the
interplay between the two ferromagnetic layers; �̄SMR ∝ d2

N
for the F|N bilayer, which is the asymptotic dependence

discussed in Sec. C 1, whereas �̄SMR ∝ dN for the F|N|F
trilayer.

3. F|N|F trilayer with collinear magnetization directions

If the magnetization directions e(1)
‖ and e(2)

‖ are collinear,

i.e., e(1)
‖ = ±e(2)

‖ , there exists a basis in which the matrices
Z (1) and Z (2) can be diagonalized simultaneously. In this
limit, it is possible to directly express the charge current com-
ponents δ j̄x

c and δ j̄y
c in terms of the scalar impedances Z ( j)

N ,
Z ( j)

FN, and Z ( j)
F , j = 1, 2. For the case of parallel magnetization

directions, e(1)
‖ = e(2)

‖ , one finds (up to constant terms that do
not depend on the magnetization direction)

δ j̄x
c (ω) = − θ2

SH h̄σ 2
N

2e2dN
E (ω)Z2

N tanh2 dN

2λN

[
1

2

(
1 − m2

y

) Ẑ (1)∗
⊥ (−ω) + Ẑ (2)∗

⊥ (−ω)

Ž (1)∗
⊥ (−ω)Ẑ (2)∗

⊥ (−ω) + Ž (2)∗
⊥ (−ω)Ẑ (1)∗

⊥ (−ω)

+1

2

(
1 − m2

y

) Ẑ (1)
⊥ (ω) + Ẑ (2)

⊥ (ω)

Ž (1)
⊥ (ω)Ẑ (2)

⊥ (ω) + Ž (2)
⊥ (ω)Ẑ (1)

⊥ (ω)
+ m2

y

Ẑ (1)
‖ + Ẑ (2)

‖
Ž (1)

‖ Ẑ (2)
‖ + Ž (2)

‖ Ẑ (1)
‖

]
, (C19)

δ j̄y
c (ω) = − θ2

SH h̄σ 2
N

2e2dN
E (ω)Z2

N tanh2 dN

2λN

[
1

2
(mxmy − imz )

Ẑ (1)∗
⊥ (−ω) + Ẑ (2)∗

⊥ (−ω)

Ž (1)∗
⊥ (−ω)Ẑ (2)∗

⊥ (−ω) + Ž (2)∗
⊥ (−ω)Ẑ (1)∗

⊥ (−ω)

+ 1

2
(mxmy + imz )

Ẑ (1)
⊥ (ω) + Ẑ (2)

⊥ (ω)

Ž (1)
⊥ (ω)Ẑ (2)

⊥ (ω) + Ž (2)
⊥ (ω)Ẑ (1)

⊥ (ω)
− mxmy

Ẑ (1)
‖ + Ẑ (2)

‖
Ž (1)

‖ Ẑ (2)
‖ + Ž (2)

‖ Ẑ (1)
‖

]
. (C20)

Here Ẑ ( j)
⊥,‖(ω) and Ž ( j)

⊥,‖(ω) are the sum impedances of layer j, j = 1, 2, see Eq. (21), with ZN replaced by ZN coth(dN/2λN)

and ZN tanh(dN/2λN), respectively [compare with Eqs. (C10) and (C12)]. For the antiparallel configuration e(1)
‖ = −e(2)

‖ the

charge current correction δ j̄x,y
c can be obtained from Eqs. (C19) and (C20) by exchanging the impedances Ž (2)

⊥ (ω) and Ẑ (2)
⊥ (ω)

by Ž (2)∗
⊥ (−ω) and Ẑ (2)∗

⊥ (−ω), respectively, and vice versa. This substitution rule follows from the observation that the roles of
the vectors e(2)

⊥ and e(2)∗
⊥ are interchanged upon inverting the magnetization direction e(2)

‖ .
In the DC limit and neglecting the imaginary part of the spin-mixing conductances at the F-N interfaces, the current correction

δj̄c in an F|N|F trilayer is the same for the parallel and antiparallel magnetization configuration [16]. At finite frequencies, the
resonant features of δj̄c at the magnon frequencies are different for the parallel and antiparallel magnetization configuration:
Upon inverting the magnetization direction of one of the magnets, the polarization vector of a propagating magnon mode in that
magnet changes from e⊥ to e∗

⊥ or vice versa, which affects the interaction term involving both magnets. (Mathematically, the
difference between parallel and antiparallel magnetization configurations at large frequencies follows, because ZF⊥(ω) shows
resonant features for positive frequencies but not for negative frequencies.)

4. SMR in the perpendicular F|N|F configuration

When the spin valve is in the perpendicular configuration, e(1)
‖ · e(2)

‖ = 0, a simultaneous diagonalization of the matrices Z (1)

and Z (2) is possible only in the DC limit ω → 0 and neglecting the imaginary part of the spin-mixing conductance at the F-N
interfaces. In this limit, all impedances are real and one finds

δ j̄x
c (0) = − θ2

SH h̄σ 2
N

2e2dN
E (ω)Z2

N tanh2 dN

2λN

[
m(1)2

y

Ẑ (1)
‖ + Ẑ (2)

⊥
Ž (1)

‖ Ẑ (2)
⊥ + Ž (2)

⊥ Ẑ (1)
‖

+ m(2)2
y

Ẑ (1)
⊥ + Ẑ (2)

‖
Ž (1)

⊥ Ẑ (2)
‖ + Ž (2)

‖ Ẑ (1)
⊥

+ (
1 − m(1)2

y − m(2)2
y

) Ẑ (1)
⊥ + Ẑ (2)

⊥
Ž (1)

⊥ Ẑ (2)
⊥ + Ž (2)

⊥ Ẑ (1)
⊥

]
, (C21)

δ j̄y
c (0) = θ2

SH h̄σ 2
N

2e2dN
E (ω)Z2

N tanh2 dN

2λN

[
m(1)

x m(1)
y

Ẑ (1)
‖ + Ẑ (2)

⊥
Ž (1)

‖ Ẑ (2)
⊥ + Ž (2)

⊥ Ẑ (1)
‖

+ m(2)
x m(2)

y

Ẑ (1)
⊥ + Ẑ (2)

‖
Ž (1)

⊥ Ẑ (2)
‖ + Ž (2)

‖ Ẑ (1)
⊥

− (
m(1)

x m(1)
y + m(2)

x m(2)
y

) Ẑ (1)
⊥ + Ẑ (2)

⊥
Ž (1)

⊥ Ẑ (2)
⊥ + Ž (2)

⊥ Ẑ (1)
⊥

]
. (C22)
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This result generalizes an expression obtained in Ref. [16],
which considers the case of two insulating ferromagnets and a
perpendicular magnetization configuration with both magne-
tizations in the xy plane. In this case the third terms between
the square brackets in Eqs. (C21) and (C22) are independent
of the magnetization direction. Moreover, since Z ( j)

‖ (ω) �
Z ( j)

⊥ (ω) for insulating ferromagnets at frequency ω → 0, each
of the two remaining terms in the expressions for δ j̄x

c and δ j̄y
c

depends on properties of a single magnet only. Indeed, if the
magnetization directions e(1)

‖ and e(2)
‖ are both in the xy plane

and if the spin-mixing conductance of the F-N interface is real,
there is nothing in the system that rotates spin currents jz

s out
of the xy plane in the DC limit ω = 0. Since each ferromagnet
drives only spin currents that are transverse to its magnetiza-
tion direction, spin currents driven by one magnet are longi-

tudinal for the other magnet and vice versa. Longitudinal spin
currents are fully reflected by insulating ferromagnets in the
DC limit, which explains why there is no “interaction” con-
tribution to δjc in this case. Our full result of Eqs. (C21) and
(C22) shows that this is a special property of the case that both
magnetizations are in the xy plane and that the magnets are
insulating. If either of these conditions is lifted, δj̄c contains
interaction terms which depend on properties of both magnets.

At finite frequencies or if the imaginary part of the interface
impedances is taken into account, it is no longer possible to
simultaneously diagonalize Z (1) and Z (2). In this case, no
simple closed-form expressions for the charge current correc-
tion δjc could be obtained and one has to resort to the matrix
expression (C9) or its asymptotic limits (C14) and (C18) for
large and small dN/λN.
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