Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Principles of Membrane Adaptation Revealed through Environmentally Induced Bacterial Lipidome Remodeling.

MPG-Autoren
/persons/resource/persons219717

Surma,  Michal
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219205

Grosser,  Daniel
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219373

Lavrynenko,  Oksana
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219266

Jambor,  Helena
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219603

Sáenz,  James
Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chwastek, G., Surma, M., Rizk, S., Grosser, D., Lavrynenko, O., Rucińska, M., et al. (2020). Principles of Membrane Adaptation Revealed through Environmentally Induced Bacterial Lipidome Remodeling. Cell reports, 32(12): 108165. doi:10.1016/j.celrep.2020.108165.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-A320-B
Zusammenfassung
Cells, from microbes to mammals, adapt their membrane lipid composition in response to environmental changes to maintain optimal properties. Global patterns of lipidome remodeling are poorly understood, particularly in organisms with simple lipid compositions that can provide insight into fundamental principles of membrane adaptation. Using shotgun lipidomics, we examine the simple yet, as we show here, adaptive lipidome of the plant-associated Gram-negative bacterium Methylobacterium extorquens. We observe that minimally 11 lipids account for 90% of total variability, thus constraining the upper limit of variable lipids required for an adaptive living membrane. Through lipid features analysis, we reveal that acyl chain remodeling is not evenly distributed across lipid classes, resulting in headgroup-specific effects of acyl chain variability on membrane properties. Results herein implicate headgroup-specific acyl chain remodeling as a mechanism for fine-tuning the membrane's physical state and provide a resource for using M. extorquens to explore the design principles of living membranes.