Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Identifying the origin of local flexibility in a carbohydrate polymer

MPG-Autoren
/persons/resource/persons238081

Zhu,  Yuntao
Peter H. Seeberger - Automated Systems, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons238414

Fittolani,  Giulio
Martina Delbianco, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons217545

Yu,  Yang
Martina Delbianco, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons227007

Tyrikos-Ergas,  Theodore
Martina Delbianco, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons187996

Delbianco,  Martina
Martina Delbianco, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121849

Seeberger,  Peter H.
Peter H. Seeberger - Automated Systems, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Article.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Anggara, K., Zhu, Y., Fittolani, G., Yu, Y., Tyrikos-Ergas, T., Delbianco, M., et al. (2021). Identifying the origin of local flexibility in a carbohydrate polymer. Proceedings of the National Academy of Sciences of the United States of America, 118(23): e2102168118. doi:10.1073/pnas.2102168118.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-A82B-B
Zusammenfassung
The monomer sequence dictates the structure and properties of natural polymers. Such a structure property relationship is well known for polypeptides and polynucleotides but not for polysaccharides, the most abundant biopolymers on Earth. Here, we establish the structure property relationship for a polysaccharide at the atomic level by determining molecular flexibility of carbohydrate chains with defined sequences. The chain flexibility can be engineered one linkage at a time by chemical substitution and conformation change, highlighting how the primary and secondary structures of a carbohydrate dictate its flexibility a critical observable in the de novo design of carbohydrate materials. Our approach can be extended to establish the structure property relationship at the atomic level of any molecule that can be electrosprayed.Correlating the structures and properties of a polymer to its monomer sequence is key to understanding how its higher hierarchy structures are formed and how its macroscopic material properties emerge. Carbohydrate polymers, such as cellulose and chitin, are the most abundant materials found in nature whose structures and properties have been characterized only at the submicrometer level. Here, by imaging single-cellulose chains at the nanoscale, we determine the structure and local flexibility of cellulose as a function of its sequence (primary structure) and conformation (secondary structure). Changing the primary structure by chemical substitutions and geometrical variations in the secondary structure allow the chain flexibility to be engineered at the single-linkage level. Tuning local flexibility opens opportunities for the bottom-up design of carbohydrate materials.All data needed to evaluate the conclusion in the paper are present in the paper or SI Appendix.