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Abstract

The discovery of the FOXP2 transcription factor, and its implica-
tion in a rare severe human speech and language disorder, has led
to two decades of empirical studies focused on uncovering its
roles in the brain using a range of in vitro and in vivo methods.
Here, we discuss what we have learned about the regulation of
FOXP2, its downstream effectors, and its modes of action as a
transcription factor in brain development and function, providing
an integrated overview of what is currently known about the criti-
cal molecular networks.
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Introduction

FOXP2 was the first gene to be clearly linked to speech and

language development. The initial finding was made through stud-

ies of a large multi-generational family (the KE family) with a

severe dominantly inherited developmental speech and language

disorder (MIM #602081) (Lai et al, 2001). All fifteen affected family

members carried a heterozygous missense mutation (p.R553H)

disrupting FOXP2. In the two decades since then, additional cases

of FOXP2-related speech and language disorders have been discov-

ered, both inherited and de novo (MacDermot et al, 2005; Feuk

et al, 2006; Reuter et al, 2017), with childhood apraxia of speech

(also called developmental verbal dyspraxia) as a core phenotypic

feature, characterized by difficulties in coordinating sequences of

articulatory movements underlying proficient speech. In a subset of

individuals, broader phenotypes are observed including oral motor

deficits, global developmental delays, and/or autism spectrum

disorder (Morgan et al, 2016). Beyond the well-documented conse-

quences of rare highly penetrant genetic disruptions, studies have

investigated contributions of common variation in FOXP2 to geneti-

cally complex traits. For example, some studies of small samples

proposed that single nucleotide polymorphisms (SNPs) in the

FOXP2 gene are associated with schizophrenia risk (Spaniel et al,

2011; Li et al, 2013; Rao et al, 2017), but there is little evidence of

replication (Yin et al, 2018). Large-scale systematic genome-wide

association studies have identified significant associations of

intronic FOXP2 SNPs with several traits, including attention-deficit/

hyperactivity disorder (ADHD) (Demontis et al, 2019) and risk-

taking behaviors (Clifton et al, 2018). Although rare disruptions in

FOXP2 have been associated with changes in brain activity

(Li�egeois et al, 2003) and structure (Watkins et al, 2002; Li�egeois

et al, 2016; Argyropoulos et al, 2019), common variation could not

be linked to task-based neural activations on language tasks

(Udd�en et al, 2019) or neuroanatomical differences between indi-

viduals (Hoogman et al, 2014).

FOXP2 belongs to the forkhead box/winged-helix (FOX) family

of proteins, a large group of transcription factors that share a highly

conserved DNA-binding domain of ~ 80–100 amino acids, called the

forkhead box (Weigel & Jackle, 1990; Hannenhalli & Kaestner,

2009) (following nomenclature guidelines, we use FOXP2 for

humans, Foxp2 for mice, and FoxP2 for other species). There are 19

subclasses of FOX proteins, from FOXA to FOXS (Kaestner et al,

2000; Hannenhalli & Kaestner, 2009), with important roles in vari-

ous biological processes, including cell differentiation, proliferation,

and development (Hannenhalli & Kaestner, 2009; Zhang et al,

2017). Although they all share a characteristic DNA-binding

domain, different FOX proteins have distinct expression patterns

and are involved in diverse mechanisms (Benayoun et al, 2011).

The FOXP subclass comprises four members, FOXP1–4 (Shu

et al, 2001; Li et al, 2004). As well as the DNA-binding domain,

FOXP proteins share a zinc finger and leucine zipper motif (Fig 1A)

(Wang et al, 2003; Li et al, 2004). Moreover, FOXP1, FOXP2, and

FOXP4 contain long N-terminal glutamine-rich regions of unknown

function (Wang et al, 2003; Li et al, 2004). A unique feature of the

FOXP subclass is that they form homo- and heterodimers via the

conserved leucine zipper, which appears essential for DNA binding

and transcription regulation (Li et al, 2004). They may even form

oligomer complexes, as detected for FoxP1, FoxP2, and FoxP4 in

studies of zebra finch brain (Mendoza & Scharff, 2017). Formation

of FOXP homo- and heterodimers in any particular tissue/cell type
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is likely mediated by expression and availability of the different

FOXP proteins, providing potential for more complex regulation of

downstream pathways.

While FOXP3 expression and function is largely limited to the

immune system (Fontenot et al, 2003), FOXP1, FOXP2, and FOXP4

are expressed in various tissues throughout the body, including the

brain, where they show distinctive, yet partially overlapping,

expression patterns (human fetal and post-natal expression of

FOXP1, FOXP2, and FOXP4 based on BrainSpan expression data:

Fig 1B and C. For a detailed review on the expression patterns of

FOXP genes in the brain, see (Co et al, 2020)). FOXP1 expression is

enriched in layers III-IV of the cerebral cortex (Ferland et al, 2003;

Hisaoka et al, 2010), as well as the thalamus, striatum, and CA1

subregion of the hippocampus (Ferland et al, 2003). Main sites of

FOXP2 expression include layers IV-VI of the cerebral cortex (Fer-

land et al, 2003; Lai et al, 2003; Campbell et al, 2009; Hisaoka et al,

2010), the striatum (Ferland et al, 2003; Lai et al, 2003; Campbell

et al, 2009; Garcia-Calero et al, 2016), the posterior and lateral thala-

mic nuclei (Ferland et al, 2003; Lai et al, 2003; Campbell et al,

2009), the Purkinje cells in the cerebellum (Lai et al, 2003; Campbell

et al, 2009), and the inferior olive (Ferland et al, 2003; Lai et al,

2003; Campbell et al, 2009). FOXP4 has been less well studied than

the other FOXP proteins, but is expressed in the subventricular

zone, throughout the cortical plate and in the striatum during

embryonic development (Takahashi et al, 2008), and in Purkinje

cells (Tam et al, 2011).

The roles of FOXP2 have been investigated by studying its ortho-

logues in an array of animal models. Mice that lack both alleles of

Foxp2 have severe motor impairments, developmental delays, and

typically die by post-natal day 21 (Shu et al, 2005), while heterozy-

gous animals show no obvious differences compared to wild-type

littermates, but display some altered vocal behaviors (Castellucci

et al, 2016). Mice that are heterozygous for the mutation originally

identified in the KE family display reduced motor-skill learning

(Groszer et al, 2008) and produce shorter sequences of ultrasonic

vocalizations with less complex syntax (Chabout et al, 2016), as

compared to wild-type littermates. Foxp2 expression in the mouse

cortex, striatum, and cerebellum modulates different aspects of

motor function, as demonstrated by conditional homozygous knock-

outs targeting these structures (French et al, 2019). However, selec-

tive deletion of the gene in each of these brain regions does not

significantly alter production of ultrasonic vocalizations (Urbanus

et al, 2020). Interestingly, while selective deletion of Foxp2 in the

mouse cortex does not appear to impact development of cortical

structures during embryogenesis (Co et al, 2019; Kast et al, 2019),

cortical-specific knockouts are reported to nonetheless show altered

social behaviors (Co et al, 2019; Medvedeva et al, 2019). When

mouse Foxp2 is constitutively replaced by a partially humanized

version, medium spiny neurons in the striatum show increases in

dendrite length and synaptic plasticity (Enard et al, 2009), consis-

tent with multiple studies implicating the gene in development and

function of corticostriatal circuitry (Vernes et al, 2011; French et al,

2012; Chen et al, 2016; Hachigian et al, 2017; van Rhijn et al, 2018;

French et al, 2019). Moreover, knockdown and overexpression stud-

ies in the brains of zebra finches suggest that avian FoxP2 is impor-

tant not only in auditory-guided vocal learning during development,

but also for maintenance of vocal behaviors in adulthood (Haesler

et al, 2004; Heston & White, 2015; Day et al, 2019; Norton et al,

2019; Xiao et al, 2021).

Notably, in humans, heterozygous disruptions of FOXP1 and

FOXP4 have also been linked to neurodevelopmental disorders: an

intellectual disability syndrome, frequently accompanied with autis-

tic features and language impairment (MIM #613670) (Hamdan

et al, 2010; O’Roak et al, 2011; Srivastava et al, 2014; Lozano et al,

Glossary

ADHD attention-deficit/hyperactivity disorder
BCL11B B-cell lymphoma/leukemia 11B
BRET bioluminescence resonance energy transfer
CASK calcium/calmodulin-dependent serine protein

kinase 3
CHD chromodomain-helicase-DNA-binding protein
ChIP chromatin immunoprecipitation
CNTNAP2/CASPR2 contactin-associated protein-like 2
CTBP C-terminal-binding protein
DISC1 disrupted in schizophrenia 1
FOXP forkhead box/winged-helix protein
GATAD2B GATA zinc finger domain-containing 2B
GRIN2A glutamate ionotropic receptor NMDA type

subunit 2A
GSK3b glycogen-synthase kinase 3 beta
HDAC histone deacetylase
Int. protein interactors
LZ leucine zipper
MET MET proto-oncogene, receptor tyrosine kinase
MRI magnetic resonance imaging
MTA metastasis-associated protein
NEDD9 neural precursor cell expressed developmentally

downregulated protein 9
NEUROD neurogenic differentiation 1
NFI nuclear factor 1
NGN2 neurogenin 2

NR2F nuclear receptor subfamily 2, group F
NuRD nucleosome remodeling and histone deacetylase
PAX6 paired box protein 6
pcw post-conception week
PIAS protein inhibitor of activated STAT
POU3F2 POU class 3 homeobox 2
PTM post-translational modification
RAR retinoic acid receptor
RELN reelin
ROR RAR-related orphan receptor
SATB special AT-rich binding protein
SNP single nucleotide polymorphism
SOX5 SRY (sex determining region Y)-box 5
SRPX2 sushi repeat-containing protein X-linked 2
SUMO small ubiquitin-like modifier
TBR T-box, brain
TCF/LEF T-cell factor/lymphoid enhancer-binding factor
TF transcription factor
VLDLR very-low-density lipoprotein receptor
WNT wingless-related MMTV integration site 1
WNT3 wnt family member 3
YY1 yin yang 1
ZBTB20 zinc finger and BTB domain-containing 20
ZF zinc finger
ZMYM2 zinc finger MYM-type protein 2
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2015; Sollis et al, 2016), and a milder developmental disorder with

speech/language delays and congenital abnormalities (Snijders Blok

et al, 2021), respectively. Some of the etiological variants affect

equivalent residues in the DNA-binding domain of these genes (Sol-

lis et al, 2017; Snijders Blok et al, 2021). While differences in the

associated phenotypes are likely explained by the distinct
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Figure 1. FOXP expression in the brain.

(A) Schematic representation of the FOXP family of proteins. The polyglutamine-rich region is shaded in light gray (Q-rich), the zinc finger domain in light blue
(ZF), the leucine zipper in regular gray (LZ), and the forkhead domain in dark gray (FOX). (B) Expression patterns of FOXP1, FOXP2, and FOXP4 in the brain, based
on the developmental human RNA sequencing dataset of BrainSpan (http://www.brainspan.org/). (C) Expression patterns of FOXP2 in a selection of cortical regions.
These regions were selected based on structural MRI studies with KE family members carrying a FOXP2 mutation (Vargha-Khadem et al, 1998; Watkins et al, 2002;
Belton et al, 2003): Gray matter differences were found in the cortical motor-related areas, the inferior frontal gyrus and the superior temporal gyrus, among other
regions. While the expression in the primary motor cortex (M1C) and the primary sensory cortex (S1C) peaks during development, the expression of FOXP2 in the
superior temporal cortex (STC) and the ventromedial prefrontal cortex (VFC) seems to be maintained during adulthood. (B, C) Each individual dot represents a
brain sample, and the lines are loess curves fitted through the data points. The dashed vertical line represents time of birth. Abbreviations for the analyzed brain
regions are A1C, primary auditory cortex; CB, cerebellum; CBC, cerebellar cortex; DFC, dorsolateral prefrontal cortex; DTH, dorsal thalamic nucleus; HIP,
hippocampus; IPC, inferior parietal cortex; ITC, inferior temporal cortex; M1C, primary motor cortex; MD, mediodorsal thalamic nucleus; MFC, medial frontal cortex;
OFC, orbitofrontal; S1C, primary sensory cortex; STR, striatum; TC, superior temporal cortex; V1C, primary visual cortex; VFC, ventromedial prefrontal cortex. Other
abbreviations are mos, months; pcw, post-conception week.
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expression patterns of the FOXP proteins, there are also regions of

overlap where they can potentially form heterodimers. More thor-

ough phenotypic comparison studies between these distinct

neurodevelopmental disorders and functional follow-up would be

required to uncover whether equivalent variants in FOXP1 and

FOXP4 directly impact speech and language or whether they have

an indirect effect on the function of FOXP2.

In-depth studies of the functions of FOXP2 and its orthologues in

brain development have involved not only mice and zebra finches

(as noted above), but also other models such as zebrafish and cell-

based systems. These investigations have uncovered upstream regu-

lators of its expression, downstream targets that it regulates, and

protein interactions that modulate its functions. Here, we give an

up-to-date overview of the molecular networks of FOXP2 in the

brain, highlighting how this information promises to deliver novel

insights into roles of the gene in cognition and behavior.

Regulation of FOXP2 expression

Although the specific spatiotemporal expression patterns of FOXP2

in the brain imply tight regulation, little is known about the

upstream mechanisms involved. Only a few transcription factors

have been shown to bind to the genomic locus and/or to directly

regulate its expression.

Tbr1 activates Foxp2 expression in the developing cortex
TBR1 is a neural transcription factor with high expression in deep

layers of the cortex, where it promotes a layer-VI identity, largely

via repression of layer-V genes (Han et al, 2011; McKenna et al,

2011). In adult mice, almost 70% of FOXP2-positive cells in layer VI

express TBR1 (Medvedeva et al, 2019), and cell-based assays have

demonstrated that TBR1, in complex with its co-regulator CASK,

can activate FOXP2 expression (Fig 2A) (Becker et al, 2018; Fazel

Darbandi et al, 2018). Conditional deletion of Tbr1 in layer-VI

neurons of mice leads to reduced Foxp2 expression in these

neurons, which shift to a layer-V-like identity (Fazel Darbandi et al,

2018). Although the role of FOXP2 in cortical lamination is limited,

based on studies with cortical-specific knockout mice (Kast et al,

2019), the gene may be part of the regulatory program involved in

formation, maintenance, and connectivity of corticothalamic

neurons in layer VI (Druart et al, 2020), under control of TBR1.

People with heterozygous FOXP2 disruptions have been reported to

show subtle differences in gray matter density in several parts of the

cortex (Watkins et al, 2002), based on voxel-based morphometry of

MRI scans, although it is not known whether this involves altered

connectivity and/or function of layer-VI neurons in those regions.

Recurrent de novo mutations of TBR1 have been linked to a

neurodevelopmental syndrome involving intellectual disability and/

or autism spectrum disorder, and sometimes language impairments

(MIM #606053), suggesting some phenotypic overlaps with FOXP2-

related disorder (Deriziotis et al, 2014).

Regulation of FOXP2 by the canonical WNT/b-catenin
signaling pathway
The genomic region upstream of the FOXP2 locus contains six

highly conserved binding regions for TCF/LEF transcription factors

(Hallikas et al, 2006; Bonkowsky et al, 2008), regulatory proteins

that are activated by canonical WNT/b-catenin signaling, and

involved in proliferation and direction of cell fate (Bonkowsky et al,

2008). Binding of WNT to its receptor, Frizzled, leads to inhibition

of GSK3b and accumulation of b-catenin, which translocates to the

nucleus and activates transcription via TCF/LEF transcription

factors (Ciani & Salinas, 2005). One such TCF/LEF transcription

factor is LEF1. FoxP2 and Lef1 are co-expressed in the developing

zebrafish brain, where knockdown of Lef1 expression yields loss of

FoxP2 expression (Bonkowsky et al, 2008). Chromatin immunopre-

cipitation (ChIP) against Lef1 showed enrichment of the predicted

Tcf/Lef binding regions upstream of FoxP2, suggesting that Lef1

directly binds to these enhancers to activate FoxP2 expression

(Bonkowsky et al, 2008).

The FOXP2 locus also includes multiple highly conserved binding

sites for PAX6, a key regulator of central nervous system develop-

ment (Coutinho et al, 2011). Knockdown of Pax6 in developing

zebrafish embryos disrupts FoxP2 expression, while for knockout

mice lacking Pax6, expression of Foxp2 is absent in the dorsolateral

telencephalon (Coutinho et al, 2011). ChIP against Pax6 in zebrafish

embryos showed enrichment of binding sites in the FoxP2 locus,

confirming it as a direct target (Coutinho et al, 2011). In the devel-

oping neocortex, PAX6 is expressed in neural progenitor cells in the

ventricular zone, regulating the cell cycle and differentiation (Gotz

et al, 1998), while FOXP2 is expressed at low levels in progenitor

cells (Tsui et al, 2013; Garcia-Calero et al, 2016) but at higher levels

in neurons in the cortical plate (Lai et al, 2003; Garcia-Calero et al,

2016) and (as noted above) later in deep cortical layers (Hisaoka

et al, 2010). Under control of WNT3, secreted by thalamic axons

that grow into the developing neocortex, FOXP2 mRNA has been

shown to be actively translated, driving differentiation of early

neurons into deep layer neurons (Kraushar et al, 2015). Activation

of FOXP2 by PAX6 might therefore be one of the steps that lead to

differentiation of neural progenitor cells into neurons, fine-tuning

their activity and connectivity.

The middle of the FOXP2 locus contains an intronic regulatory

element with a binding site for POU3F2, a well-known neural tran-

scription factor (Maricic et al, 2013). This element drew the attention

of molecular anthropologists studying the evolution of FOXP2,

because the POU3F2-binding site contains a DNA variant that arose

specifically on the human lineage after splitting from our common

ancestor with Neanderthals/Denisovans. However, the site is not

fixed in modern human populations; analysis of next-generation

sequencing data from around the world shows that it remains poly-

morphic in southern Africa, casting doubt on the significance of this

variant for human evolution (Atkinson et al, 2018) (see (Fisher,

2019) for a recent account of how views of the relevance of FOXP2

for human evolution have shifted with the availability of comprehen-

sive genome-wide sequencing datasets and enhanced methods for

assessing signals of selection). Based on reporter gene assays with

the intronic enhancer, it has been suggested that binding of POU3F2

to this site may lead to increased FOXP2 expression (Maricic et al,

2013), although this finding has not been confirmed in a more physi-

ologically relevant model and it is possible that the element instead

regulates the expression of a different gene in the vicinity. Pou3f2

plays important roles in the formation and radial migration of upper-

layer cortical neurons (McEvilly et al, 2002; Sugitani et al, 2002) and

is known to drive expression of Ngn2, Tbr2, and Tbr1, facilitating the

differentiation of glutamatergic neurons (Dominguez et al, 2013).
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Figure 2. FOXP2 molecular networks.

(A) An overview of FOXP2 molecular networks in the brain, at the level of transcription regulation, function, and target regulation. This overview represents results from a
selection of separate studies using different types of model systems. TFs: transcription factors. (B) Left, a Venn diagram showing the overlap between FOXP2 target genes
identified in four FOXP2 ChIP-chip/seq studies. SH-SY5Y and SK-N-MC are human neuroblastoma cell lines, and PFSK-1 is a neuroectodermal tumor cell line. Right, a
schematic with a selection of gene ontology (GO) terms that are associated with the identified FOXP2 target genes.
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PAX6 and POU3F2 are, like FOXP2, direct downstream targets of

LEF1 (Goodall et al, 2004; Gan et al, 2014; Belinson et al, 2016).

The LEF1-b-catenin/PAX6 signaling pathway is involved in self-

renewal of neural progenitors and neurogenesis during neocortical

development, initiating the PAX6/NGN2/TBR2/NEUROD/TBR1

cascade (Gan et al, 2014). LEF1-b-catenin/POU3F2 signaling has

been found to contribute to expansion of cortical neural progenitors

and neurogenesis via the POU3F2/TBR2 and POU3F2/TBR1

cascades (Dominguez et al, 2013; Belinson et al, 2016). We specu-

late that FOXP2 and its transcriptional regulators LEF1, PAX6, and

POU3F2 may all be downstream effectors of WNT/b-catenin signal-

ing (Fig 2A), a suggestion that could be tested in future with

targeted experiments. Intriguingly, ectopic activation of Wnt signal-

ing in the chicken optic cup has been shown to lead to upregulation

of FoxP2 expression (Trimarchi et al, 2009).

FOXP2 has been reported to regulate the transcription of WNT

pathway genes and to directly interact with b-catenin (Richter et al,

2021). Moreover, the FOXP2-regulator TBR1 promotes maturation

of layer-VI cortical neurons by enhancing WNT signaling (Fazel

Darbandi et al, 2020). As both an upstream and downstream player

of this pathway, FOXP2 may potentially fulfill a central role in

WNT/b-catenin signaling in the brain, a hypothesis that would be

interesting to explore with future studies.

Zbtb20 represses Foxp2 expression in the hippocampus
To our knowledge, the only well-characterized repressor of FOXP2

identified through animal models is ZBTB20 (Fig 2A) (Nielsen et al,

2014), a transcription factor expressed in hippocampal projection

neurons, cerebellar granular cells, and gliogenic progenitors

(Mitchelmore et al, 2002). Zbtb20 was found to bind to and repress

cortical layer marker genes, including Foxp2, in the developing

mouse hippocampus, thereby directing a hippocampal fate while

repressing other neuronal identities (Nielsen et al, 2014). Consis-

tently, transgenic expression of Zbtb20 in mice results in reduced

Foxp2 expression (Nielsen et al, 2014). Mouse Zbtb20 and human

ZBTB20 proteins are highly conserved, with similar neural expres-

sion patterns (Nielsen et al, 2014), suggesting that the human ortho-

logue may be important for FOXP2 repression in the human

hippocampus.

Downstream effectors of FOXP2

Multiple studies have sought downstream neural targets of FOXP2,

yielding insights into pathways that it regulates in the context of

brain development, function, and disease.

FOXP2 targets are important for neurite outgrowth and
cell migration
In early work on identifying targets of FOXP2, three studies

performed ChIP-chip experiments on human fetal tissue (Spiteri

et al, 2007), human neuroblastoma cells (Vernes et al, 2007), and

embryonic mouse brain tissue (Vernes et al, 2011). Although no

identified targets were common to all three studies, they are

enriched for genes associated with similar gene ontology categories,

namely cell communication/migration and nervous system develop-

ment including neurogenesis, neurite development and axon guid-

ance (Spiteri et al, 2007; Vernes et al, 2007; Vernes et al, 2011)

(Fig 2B). A ChIP-sequencing study of FOXP2 in neuroectodermal

tumor cells and neuroblastoma cells identified 58 targets near high-

confidence ChIP peaks from a merged dataset, that were mostly

enriched for genes linked to transcriptional (regulatory) activity

(Nelson et al, 2013).

Follow-up experiments confirmed that Foxp2 promotes neurite

outgrowth in both mouse neuroblastoma cells and mouse striatal

primary neurons (Vernes et al, 2011). Indeed, genetic manipula-

tions of Foxp2 in an array of mouse models have been found to

have effects on dendrite length. Specifically, introducing a partially

humanized version of Foxp2 into mice results in increased dendrite

length of medium spiny neurons (Enard et al, 2009), while a loss-

of-function mutation of the gene is reported to lead to decreased

dendrite length of layer-VI excitatory neurons in the cortex (Druart

et al, 2020). The roles of Foxp2 in neuronal migration are less

clear-cut; although in vitro studies support effects of the gene on

cell migration phenotypes (Devanna et al, 2014), in vivo data from

different mouse models are somewhat inconsistent with each

other. For example, studies in which Foxp2 expression was

knocked down during embryonic development identified changes

in cortical neurogenesis (Tsui et al, 2013) and in migration of

neural progenitors out of the subventricular zone (Garcia-Calero

et al, 2016), but selective deletion of the gene was not found to

have such effects (Kast et al, 2019).

Although large ChIP-chip/sequencing datasets do not provide

detailed directional insights into regulatory mechanisms, these data

are valuable for further targeted investigations of relevant molecu-

lar pathways. In one such study, multiple targets from prior ChIP-

chip studies (Spiteri et al, 2007; Vernes et al, 2007; Vernes et al,

2011) were found to be differentially expressed in human neurob-

lastoma cells stably transfected with FOXP2, including retinoic acid

signaling genes, such as the retinoic acid receptor (RAR)-b, RAR-
related orphan receptor (ROR)-a, ROR-b, ROR-c, and NEDD9

(Devanna et al, 2014). Retinoic acid signaling is involved in fore-

brain and hindbrain development and directs the differentiation of

embryonic stem cells into neural progenitors (Rhinn & Dolle,

2012). Retinoic acid treatment of human neuroblastoma cells

induces neurite outgrowth and reduces cell migration, effects that

are enhanced by concurrent FOXP2 overexpression (Devanna et al,

2014), suggesting that the gene may modulate retinoic acid signal-

ing in the developing brain.

FOXP2 target genes are implicated in
neurodevelopmental disorders
Out of the hundreds of putative targets of FOXP2, a small subset

have received special attention through validation and follow-up in

animal or cell-based models. One of the first targets to be studied in

this way was CNTNAP2, which encodes CASPR2, a neurexin trans-

membrane protein expressed widely in the brain, with roles in nerve

conduction, neuronal migration, neurite outgrowth, and connectiv-

ity (Rodenas-Cuadrado et al, 2014). FOXP2 directly binds to regula-

tory regions of the CNTNAP2 locus to repress expression (Vernes

et al, 2008; Mendoza & Scharff, 2017). This is consistent with

complementary expression patterns reported for the two genes in

human fetal cerebral cortex (Vernes et al, 2008) and increased

Cntnap2 expression in the cerebellum of a Foxp2-R552H mouse

model (based on the human KE family mutation) (Fujita et al,

2012). However, CNTNAP2 expression changes temporally (Gordon
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et al, 2016) and expression patterns of these genes could potentially

show different relationships at distinct stages of development and/

or in different brain regions. Interestingly, a cluster of SNPs in

CNTNAP2 has been associated with reduced performance on a

nonsense-word repetition task in a cohort of children with develop-

mental language disorders (Vernes et al, 2008) and with a measure

of early communicative behavior in a general population sample

(Whitehouse et al, 2011). Furthermore, homozygous and compound

heterozygous loss-of-function variants cause a severe neurodevelop-

mental disorder with epilepsy and intellectual disability (MIM

#610042) (Strauss et al, 2006; Zweier et al, 2009; Smogavec et al,

2016). Although in prior work both common and rare CNTNAP2

variation has been linked to a range of brain-related phenotypes

(Fig 2A), including autism (MIM #612100) (Alarcon et al, 2008;

Arking et al, 2008) and schizophrenia (Friedman et al, 2008; Ji et al,

2013), data from a recent large-scale study argue that the contribu-

tions of this gene to risk of these psychiatric disorders have been

overstated (Toma et al, 2018).

Other genes that are repressed by FOXP2, and where links have

been investigated in follow-up studies, include SRPX2 (Roll et al,

2010), MET (Mukamel et al, 2011), and DISC1 (Spiteri et al, 2007;

Walker et al, 2012; Nelson et al, 2013). FOXP2 overexpression in

cell-based assays lowers the expression of SRPX2 (Roll et al, 2010),

MET (Mukamel et al, 2011), and DISC1 (Walker et al, 2012), and

FOXP2 directly binds to regulatory sequences in MET and SRPX2

(Roll et al, 2010; Mukamel et al, 2011). Cell-based assays addition-

ally suggest that the FOXP2-R553H mutation disrupts regulation of

SRPX2 and DISC1 (Roll et al, 2010; Walker et al, 2012). SRPX2 vari-

ants have been identified in people with epilepsy of the rolandic

speech area, speech apraxia, polymicrogyria, and intellectual

disability (MIM #300643) (Roll et al, 2006; Roll et al, 2010; Chen

et al, 2017), although their etiological relevance is uncertain given

subsequent discovery of GRIN2A disruptions in the affected individ-

uals (Lesca et al, 2013). Common variation in MET has been associ-

ated with autism spectrum disorder (MIM %611015) (Campbell

et al, 2006; Thanseem et al, 2010) and schizophrenia (Burdick et al,

2010), and post-mortem brain studies have shown altered MET

expression in individuals with autism (Campbell et al, 2007). The

DISC1 gene has been linked to schizophrenia (MIM #604906) (Hen-

nah et al, 2003; Hodgkinson et al, 2004; Schumacher et al, 2009).

Beyond its effects as a transcriptional repressor, noted above,

FOXP2 has been reported to be a direct activator of VLDLR expres-

sion (Spiteri et al, 2007; Vernes et al, 2007; Adam et al, 2016;

Mendoza & Scharff, 2017). VLDLR is a receptor for RELN, expressed

in the apical processes of migrating neurons in the developing

cortex, with roles in neuronal migration, dendrite and spine devel-

opment, and synaptic function (Lee & D’Arcangelo, 2016). Studies

of zebra finch brain have found that FoxP2 protein directly binds to

regulatory sequences of the Vldlr locus and that knockdown of the

former reduces expression of the latter (Adam et al, 2016). Homozy-

gous disruptions of the human VLDLR gene have been discovered in

patients with cerebellar hypoplasia, mild cerebral gyral simplifi-

cation, and intellectual disability (MIM #224050) (Boycott et al,

2005; Ozcelik et al, 2008; Dixon-Salazar et al, 2012).

Based on data thus far collected on downstream pathways,

FOXP2 and its targets belong to molecular networks that are crucial

for aspects of brain function and that are implicated in a range of

neurodevelopmental disorders with partially overlapping

phenotypes, raising the possibility that etiological variants of these

genes affect shared mechanisms (Fig 2A).

FOXP2 transcriptional regulation

Although studies of FOXP2 have probed its expression patterns,

regulation, and transcriptional targets, the molecular mechanisms

by which this regulatory protein acts as a transcription factor have

been much less explored.

FOXP2 interacts with the CTBP transcriptional co-repressors
The first proteins to be identified as putative binding partners of

FOXP2 were CTBP1 and CTBP2 (Li et al, 2004), transcriptional co-

repressors that also interact with FOXP1 via a consensus binding

site, which is lacking in FOXP4 (Li et al, 2004; Estruch et al, 2016a).

Drosophila CtBP enhances repression by directly blocking the tran-

scription initiation complex or inhibiting adjacent transcriptional

activators (Nibu et al, 2003). Moreover, CTBP1 and CTBP2 were

identified in a core protein complex that contained DNA-binding

proteins, histone-modifying enzymes, histone methyltransferases,

and chromodomain-containing proteins (Shi et al, 2003), and may

thereby aid FOXP2 in its transcriptional repressive functions

(Fig 2A). Indeed, in cell-based assays, CTBP1 is able to increase

FOXP1 and FOXP2 repression of reporter constructs (Li et al, 2004).

The FOXP2-R553H protein, which harbors an etiological substitution

disrupting the DNA-binding domain (Vernes et al, 2006), retains its

ability to bind to CTBP1 and CTBP2, suggesting that DNA binding of

FOXP2 is not essential for the CTBP-FOXP2 interaction (Estruch

et al, 2016a). Since CTBP proteins depend on their interaction part-

ners to be recruited to DNA, and FOXP2-R553H is unable to bind to

DNA, it is unlikely that this complex represses target genes.

SUMOylation of FOXP2 modulates its function
Post-translational modifications are another way to dynamically

regulate transcription factor activity. One such modification is

SUMOylation, the reversible coupling of small ubiquitin-like modi-

fiers (SUMOs), which are ubiquitously expressed polypeptides, to

specific sites in proteins. FOXP2 has a SUMOylation site at position

K674, which is SUMOylated by SUMO1/2/3 via interaction with

PIAS1/3 (Estruch et al, 2016b; Usui et al, 2017). K674 SUMOylation

is not critical for FOXP2 protein stability, dimerization, and subcel-

lular localization in human cell lines (Estruch et al, 2016b; Meredith

et al, 2016), but may alter its transcriptional activity (Meredith et al,

2016). Although one study did not detect changes in transcriptional

repression of a non-SUMOylated FOXP2 K674R mutant (Estruch

et al, 2016b), another found this mutant to be less effective in

repressing target promoters compared to wild-type protein (Mered-

ith et al, 2016). Disrupting the equivalent SUMOylation site in

FOXP1 (K670) abolishes FOXP1 repression, while K670 SUMOyla-

tion in wild-type FOXP1 enhances binding to the CTBP1 co-

repressor (Rocca et al, 2017). Studies of mice suggest that FOXP2

SUMOylation in the cerebellum is important for Purkinje cell devel-

opment and motor functions (Usui et al, 2017). In cell-based studies,

ubiquitination, another form of post-translational modification, has

been found for an alternatively spliced short isoform of unknown

significance (FOXP2.10+), while the canonical isoform was not ubiq-

uitinated (Vernes et al, 2006). Whether other post-translational
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modifications beyond SUMOylation and ubiquitination, such as

phosphorylation and acetylation, significantly contribute to regula-

tion of FOXP2 functions has yet to be elucidated.

FOXP2 interacts with other brain-expressed transcription factors
A mass spectrometry study to characterize the FOXP2 interactome

identified multiple transcription factors binding to FOXP2 in

HEK293 cells, including NR2F1, NR2F2, SATB1, SATB2, SOX5,

YY1, and ZMYM2 (Estruch et al, 2018). Foxp2 is co-expressed with

Sox5, Satb1, Satb2, and Nr2f1 in a subset of neurons in the mouse

cerebral cortex and with Nr2f2 in Purkinje cells (Estruch et al,

2018). The interactions were validated in cell lines using biolumi-

nescence resonance energy transfer (BRET) assays (Estruch et al,

2018). Additionally, the cortical transcription factor TBR1 was

identified as a putative FOXP2 interactor in a yeast-two-hybrid

assay (Sakai et al, 2011) and confirmed with BRET (Deriziotis

et al, 2014). The etiological FOXP2 p.R553H mutation disrupts the

interactions with these brain-expressed transcription factors (Der-

iziotis et al, 2014; Estruch et al, 2018). The functional importance

of these interactions for in vivo brain development has not yet

been studied, but may contribute to diversification of FOXP2 activ-

ity, guiding the protein to specific transcriptional complexes,

changing its affinity for certain targets, and/or helping to recruit

transcriptional co-factors (Fig 2A).

FOXP2 regulatory activity may be mediated via the NuRD
chromatin remodeling complex
FOXP1, FOXP2, and FOXP4 all interact with the nucleosome remod-

eling and histone deacetylase (NuRD) complex (Chokas et al,

2010), a multiprotein complex that couples two independent

chromatin-regulatory functions, (i) ATP-dependent histone remodel-

ing and (ii) histone deacetylation (Tong et al, 1998; Xue et al,

1998). The complex, involved in both activation and repression of

genes (Basta & Rauchman, 2015), is the most abundant form of

deacetylase in mammals (Torchy et al, 2015) and is linked to funda-

mental biological processes, including cell cycle progression,

genomic integrity (Lai & Wade, 2011), and differentiation of embry-

onic stem cells (Basta & Rauchman, 2015; Torchy et al, 2015).

FOXP1 interacts with NuRD complex members HDAC1/2,

GATAD2B, and MTA1 (Chokas et al, 2010), FOXP4 with HDAC1/2

and GATAD2B (Chokas et al, 2010), and FOXP2 with GATAD2B

(Chokas et al, 2010) and CHD3 (Estruch et al, 2016b). For FOXP1

and FOXP4, these interactions further reduce target gene expression

in cell-based reporter assays, suggesting that these NuRD complex

interaction partners act as co-repressors. For the FOXP2-GATAD2B

interaction however, assays found no evidence of synergistic repres-

sion (Chokas et al, 2010).

Interestingly, the NuRD complex plays an important role in the

developing brain, apparent from the links of multiple of the core

NuRD complex members with neurodevelopmental disorders that

are characterized by features that partly overlap with the FOXP2-

associated phenotypes. Mutations in the CHD4 gene result in an

intellectual disability syndrome that includes global developmental

delay and in some cases macrocephaly (MIM #617159) (Sifrim et al,

2016; Weiss et al, 2016). A mutation in CHD3 was first discovered

in a child with childhood apraxia of speech (Eising et al, 2019),

whereafter additional etiological variants were found in a number

of patients that displayed intellectual disability, accompanied by

speech/language problems and brain abnormalities including both

macrocephaly and microcephaly (MIM #618205) (Snijders Blok

et al, 2018). Furthermore, GATAD2B disruptions have been

identified in patients with intellectual disability and limited speech

(MIM #615074) (de Ligt et al, 2012; Willemsen et al, 2013; Shieh

et al, 2020).

In addition to the direct interactions of FOXPs with NuRD

complex members, there are multiple indirect links. FOXP2 and

the HDAC1/2 proteins share at least three common interaction

partners, the cortical transcription factors YY1 (Yang et al, 1996;

Yao et al, 2001; Estruch et al, 2018), SATB1 (Yasui et al, 2002;

Estruch et al, 2018), and SATB2 (Gyorgy et al, 2008; Estruch et al,

2018). In layer-IV neurons of the cortex, Satb2 has been shown to

assemble the NuRD complex upstream of Bcl11b, resulting in

Bcl11b repression, via the Satb2-Hdac1 interaction (Britanova et al,

2008). Repression of BCL11B in SATB2-positive neurons is an

essential mechanism in cortical lamination, resulting in upper-

layer neuron specification (Britanova et al, 2008). In humans, YY1

(MIM #617557), SATB1 (MIM # 619228 and #619229), and SATB2

(MIM #612313) are all implicated in neurodevelopmental disorders

(Bengani et al, 2017; den Hoed et al, 2021; Gabriele et al, 2017).

Notably, SATB2 mutations cause severe language impairments

(Zarate & Fish, 2017). Furthermore, CTBP2, a direct FOXP2 inter-

actor and co-repressor (Estruch et al, 2016a), interacts with several

NuRD complex members, namely HDAC2, MTA2, GATAD2B, and

CHD4 (Zhao et al, 2014). Whether these FOXP2 interactors interact

with FOXP2 and the NuRD complex simultaneously has not

been studied.

Most FOXP-NuRD complex interactions have only been charac-

terized in cell lines or in the context of lung function (another tissue

where FOXP proteins are expressed) (Chokas et al, 2010), and the

importance of such interactions for brain development remains to

be uncovered. The NuRD complex plays major roles in the prolifera-

tion, migration, and differentiation of neurons (Nitarska et al,

2016), and interactions with cortical transcription factors, such as

SATB2, seem to recruit it to specific targets (Britanova et al, 2008).

Hence, the FOXP proteins (as homo/heterodimers or together with

other co-factors) may guide the NuRD complex to the DNA, to

repress or activate target sequences via chromatin remodeling

(Fig 2A). FOXP2 mutations may disrupt this mechanism by abolish-

ing either DNA binding or interaction with NuRD complex

members, resulting in abnormal regulation of downstream targets.

Mutations in NuRD complex members may result in similar tran-

scriptional regulatory defects, contributing to partial overlaps in the

neurodevelopmental phenotypes that are associated with FOXP2,

GATAD2B, and SATB2 mutations.

In addition to potential chromatin remodeling functions via inter-

actions with the NuRD complex, FOXP2 has been reported to medi-

ate chromatin accessibility by interacting with transcriptional co-

factors NFIA and NFIB in neuronal cell-based models (Hickey et al,

2019). Direct interactions of FOXP2 with DNA were found to yield

repression of proliferation-promoting genes, while FOXP2-NFI

complexes activated expression of genes driving neuronal differenti-

ation via chromatin alterations (Hickey et al, 2019). Although

FOXP2-R553H in complex with NFIA was still able to open chro-

matin, it did not activate gene expression. Thus, these data suggest

the existence of distinct FOXP2 regulatory modes that together medi-

ate target gene expression.
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Future perspectives

Two decades of molecular studies on the functions of FOXP2 have

shown that it belongs to an extensive molecular network with brain-

expressed transcription factors and co-regulators, mediating

neuronal differentiation, neurite outgrowth and cell migration in

human cell-based assays, and shaping the development, plasticity

and maturation of corticostriatal and corticocerebellar circuits impor-

tant for behavioral phenotypes in animal models. Despite the atten-

tion FOXP2 has received over the years, much remains to be learned

regarding its regulatory capabilities, position in molecular pathways,

roles in cellular functions, and ultimately its effects on brain devel-

opment and human speech and language capacities (Fig 3).

New and more sophisticated models may hold special promise for

furthering our understanding of FOXP2 functions, particularly in light

of links to speech and language. Human brain organoids grown from

stem cells can model early stages of development of various parts of

the nervous system (Kelava & Lancaster, 2016; Marton & Pașca,
2020) and overcome species-specific developmental programs (Kan-

ton et al, 2019), providing the opportunity to study the human tran-

scriptome during brain development. Long-term (Gordon et al, 2021)

and slice cultures (Giandomenico et al, 2019; Qian et al, 2020) of

these brain organoids result in maturation up to late fetal and early

post-natal stages, while merging of region-specific organoids make it

possible to model early establishment of brain circuitries (Andersen

et al, 2020; Miura et al, 2020). Genetic manipulation of FOXP2 in such

model systems could reveal human-specific functions that have been

unable to be studied in traditional in vitro settings so far.

For studying FOXP2 functions in vivo, more relevant and non-

traditional animal models are also being explored (Lattenkamp &

Vernes, 2018). In addition to zebra finches, other species of birds

display auditory-guided vocal learning (Pfenning et al, 2014), as

well as bats (Knörnschild, 2014; Vernes, 2017) and ocean

mammals (Ravignani et al, 2016). The latter two are evolutionarily

closer to us, with brain structures and circuitries more similar to

human brains. Indeed, analyses of FoxP expression patterns in the

brains of bat species are already proving informative (Rodenas-

Cuadrado et al, 2018). Although the genetic tools in such species

are not yet as well established as in the traditional animal models,

optimization and validation of these in the coming years will open

up exciting new avenues for investigations of FOXP2 and its ortho-

logues, placing the critical molecular networks in their broader

evolutionary context.
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Figure 3. Open questions on the molecular aspects of FOXP2 in the brain.

Schematic with different levels of FOXP2 functioning. For each level, questions are included that have remained largely unanswered and should be focus of future
studies. The shaded brain areas in the schematic in the second left panel represent regions of expression of FOXP2 that have been main focus in current literature. Int.,
protein interactors; PTMs, post-translational modifications; TFs, transcription factors.
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