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Fig. S1. Weighted permutation entropy reflects amplitude and frequency variation that remains 
undetected when considering only pattern diversity or signal variance alone. (A) Simulated sinusoid 
signal with constant frequency in the range of real BOLD signals (0.02 Hz) and with systematically increasing 
amplitude variation that results in changes of weighted permutation entropy (WPE) and amplitude variance, 
whereas pattern diversity alone (permutation entropy, PE) remains identical. (B) Simulated sinusoid signal 
with constant amplitude and systematically increasing frequency variation that results in changes of 
weighted permutation entropy (WPE) and pattern diversity (PE), while signal variance remains unchanged. 
Note that WPE values monotonically increase with the higher frequency content, reaching about 0.42 
normalized bits at 0.1 Hz (identical to the applied low-pass filter settings in BOLD preprocessing), consistent 
with the empirically observed upper limit of the complexity timeseries derived from real BOLD signals (Fig. 
1A, online repository https://osf.io/mr8f7, and Fig. S3 and S4). 



Fig. S2. Weighted permutation entropy tracks BOLD signal dynamics that remain undetected when 
considering only pattern diversity or signal variance alone. (A) BOLD signals with identical amplitude 
variance but varying pattern diversity (permutation entropy, PE). (B) BOLD signals with identical pattern 
diversity but varying amplitude variance. All signal snippets correspond to non-overlapping BOLD windows 
from the right postcentral gyrus of a representative resting-state recording. Columns show BOLD signals 
(left), the associated variance-weighted pattern distributions (middle), and the change in signal metrics 
(right). 



Fig. S3. Upper-frequency content scales the distribution of weighted permutation entropy. The upper 
left panel shows the 95th percentile of weighted permutation entropy (WPE) values from five randomly 
selected ROIs over different bandpass filter settings in a representative resting-state dataset. Brainnetome 
IDs of regions are given in brackets. In line with the frequency-sensitivity in pure sine signals (Fig. S1), 
systematic variation of the high-frequency cutoff gradually scales the upper limits of WPE values, which 
becomes apparent as a significant monotonic upward trend in nonparametric Mann-Kendall tests and a 
systematic right-shift of the WPE distributions for individual regions. Note, however, that the heavy left tails 
(corresponding to complexity drops, see Fig. 6A) are unaffected by the scaling of the distributions. For the 
applied low-pass cutoff of 0.1 Hz in the main text (dashed lines), maximum WPE values converge around 
0.42 normalized bits in both simulated and real signals, in line with the empirically observed upper limit of 
individual complexity timeseries (Fig. 1A and 6A, online repository https://osf.io/mr8f7, and Fig. S4). 



Fig. S4. Resting-state complexity dynamics are robust across functional parcellation granularity, 
windowing parameters, and timeseries extraction methods. Time-resolved weighted permutation 
entropy (WPE) from an exemplary HCP scan (see Fig. 1A). The data were parcellated with three common 
volumetric brain atlases of varying spatial granularity —after Fan et al. (63), after Shen et al. (64), and after 
Shirer et al. (65)— as well as with the MMP atlas after Glasser et al. (66), in which subcortical timeseries 
are extracted volumetrically but extraction of cortical signals is surface-based. Furthermore, different 
windowing parameters for computing WPE timeseries are applied (60 TRs sliding by 3 TRs, and 90 TRs 
sliding by 4TRs). Spatial reliability is calculated as the correlation over time points for every combination of 
functional atlases, and temporal reliability is computed as the correlation of mean WPE values of every ROI 
for the two windowing parameters. Results in the main text are based on the Brainnetome atlas (BNA) after 
Fan et al. (63) and 60 TR windows sliding to the next window by 3 TRs (upper left panel here). 



Fig. S5. The spatial topology of signal complexity is robust across functional parcellation granularity 
and timeseries extraction methods. Spatial distribution of weighted permutation entropy averaged across 
participants. The same four functional brain atlases as in Fig. S4 were used: the Brainnetome atlas after 
Fan et al. (63), the atlases after Shen et al. (64) and Shirer et al. (65), and the MMP atlas after Glasser et 
al. (66). The results from the main text are based on the Brainnetome atlas (gray background). The 
divergence between subcortical regions (high complexity) and cortex, especially in pericentral areas (low 
complexity), is equivalently observed with two volume-based atlases of higher (Shen) and lower (Shirer) 
spatial granularity as well as in surface-based extraction of cortical timeseries (Glasser). 



Fig. S6. Complexity dynamics are distinct from BOLD signal cofluctuations derived from edge 
timeseries. (A) Exemplary BOLD timeseries of two brain regions. (B) The corresponding complexity 
timeseries of these signals over BOLD windows, as in Fig. 1A. Illustration of a drop coincidence between 
these regions (see Fig. 1C). (C) Cofluctuation of the BOLD timeseries in panel A, as defined by Esfahlani 
et al. (30). Illustration of high-amplitude cofluctuation events. Following Esfahlani and colleagues, the event 
threshold was set to the 95th percentile of the root sum square (RSS) timeseries. (D) Cofluctuation of the 
complexity timeseries in panel B, computed in analogy to BOLD cofluctuations. (E) Mean BOLD 
cofluctuation amplitude in panel C over windows. Continuous correlation between BOLD cofluctuation 
amplitude and complexity cofluctuation amplitude. (F) Binary event timeseries showing if a drop coincidence 
was present in a given window (upper row) and if a high-amplitude BOLD cofluctuation was present in a 
given window (lower row). Biserial correlation between the two event timeseries. (G) Continuous and biserial 
correlations between BOLD cofluctuations and complexity cofluctuations over the whole dataset. 



Fig. S7. Spatial, temporal, and interindividual effects of complexity dynamics are dissolved under a 
null model of temporal dependency. (A) Illustration of the null model estimation. BOLD timeseries were 
subjected to a temporal permutation approach that preserves signal means, amplitude variance, and 
functional connectivity but dissolves the temporal structure of the timeseries. The permutation was applied 
homogeneously over regions and scans.  (B) Distribution of signal complexity in the empirical and the 
surrogate data. Note that since complexity drops are defined as instances below the first percentile of this 
distribution, the absolute number of drops are identical in empirical and surrogate data. (C) The spatial 
distribution of signal complexity across brain regions in surrogate vs. empirical data. Points represent the z-
scored average signal complexity of individual brain regions for each scan in the main dataset (n=684). (D) 
Participant-wise affinity for complexity drops in empirical vs. surrogate data (left) and over age groups (right), 
as in Fig. 1B. (E) Drop coincidences between brain regions in empirical and surrogate data. The left panel 
compares the number of coincidences per scan (rank sum test). The right panels show the distribution of 
drop coincidence among brain regions, where the matrix for the empirical data corresponds to the points 
displayed in Fig. 1C. While these matrices display average values across all scans, spatial drop coincidence 
patterns were also strongly dissolved on the level of individual scans (correlation in empirical vs. surrogate 
data: ρ = 0.04 ± 0.03, n=684 scans).  
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Fig. S8. Validation analyses for k=3 expected complexity states. (A) State-wise distributions of 
occupancy, signal complexity, FC strength, network modularity, and global efficiency. (B) Age-related 
reduction of state exploration. (C) Spatial topology, heterogeneity, and state-wise drop distribution over 
complexity states. (D) Spatial topology, and spatial reliability of the distance across complexity states 
(DACS) compared to k=4 expected complexity states. (E) Partial correlation between the DACS, myelin, 
and the unimodal-to-transmodal connectivity gradient loadings. (F) Hierarchical regression on the gradient 
loadings with myelin content and the DACS as explanatory variables. All results closely follow the findings 
reported in Fig. 3 and 4 of the main text. 



Fig. S9. Validation analyses for k=5 expected complexity states. (A) State-wise distributions of 
occupancy, signal complexity, FC strength, network modularity, and global efficiency. (B) Age-related 
reduction of state exploration. (C) Spatial topology, heterogeneity, and state-wise drop distribution over 
complexity states. (D) Spatial topology, and spatial reliability of the distance across complexity states 
(DACS) compared to k=4 and k=3 expected complexity states. (E) Partial correlation between the DACS, 
myelin, and the unimodal-to-transmodal connectivity gradient loadings. (F) Hierarchical regression on the 
gradient loadings with myelin content and the DACS as explanatory variables. As for k=3 expected 
complexity states (Fig. S8), results closely follow the findings reported in Fig. 3 and 4 of the main text.  



Fig. S10. Distribution of signal complexity by participant and brain region across complexity states. 
The carpet plots show the mean weighted permutation entropy (WPE) values for a brain region (columns, 
ordered by resting-state networks) of individual participants (rows) in each of the four identified states.     



Fig. S11. Quantile-quantile plot of complexity distributions in main and holdout data. The plot shows 
the close correspondence between the distributions of weighted permutation entropy in the main and 
holdout data with ~64 million instances each (scans x windows x regions), as shown in Figure 6A of the 
main text. 



Fig. S12. Univariate complexity-behavior associations over individual scores. (A) Manhattan plot of 
negative log p-values for nonparametric correlation tests between behavioral variables and regional WPE 
values (dashed line: unadjusted alpha-level of 0.05; dotted line: critical alpha-level after FDR-correction over 
all tests). (B) Test outcomes over the individual scores of age, cognition, motor function, and sensory task 
performance. To extract general behavioral features, dimensionality reduction through principal component 
analysis was applied to individual task performance metrics for the PLS analysis in the main text. 



Fig. S13. Additional Partial Least Squares validation analyses. (A) Unthresholded maps of the bootstrap 
ratios (BSR) in Figure 7 for the main and holdout data. Non-parametric correlation of the BSR values in 
main and holdout dataset. (B) Complexity-behavior effect estimates over each of the four individual 
scanning sessions. As in Figure 7, error bars correspond to bootstrapped confidence intervals, and asterisks 
indicate significant effects. The right panel shows the correlation matrix of BSR values over the averaged 
data in the main and holdout set in Figure 7 as well as for individual scanning sessions.    



Fig. S14. Drop propagation networks over different peak thresholds. Matrices represent the 
unthresholded transition weights of drop propagations (see Figure 2). Note that these matrices are not 
perfectly symmetrical, as they encode the temporal direction of the propagations (from rows to columns). 
Increasing the peak threshold (i.e., the minimum number of regions showing complexity drops in the peak 
window) results in gradually lower number of cascades in total, as expected. In contrast, the structure of the 
spatiotemporal propagation pathways is highly consistent across the different peak thresholds. The upper 
left panel corresponds to the propagation network in Fig. 2E. 



Movie S1. Visualizing complexity drops. The clip shows the first 50 windows of regional complexity 
timeseries (cf., Fig. 1A), corresponding to ~2.5 minutes of resting-state fMRI activity from an exemplary 
recording (participant 22). White indicates high-complexity activity of a given region, while colors indicate 
moderate (brown) to strong (blue) drops in complexity over the current window. Note the spread of 
complexity drops to increasingly more regions around window 10 (~1 min) and 40 (~2.1 mins), 
corresponding to individual drop cascades (Fig. 2A). These spreads are modelled with directed graphs (Fig. 
2B) that underlie the reported propagation analyses (Fig. 2C-G).  

The movie file is available from https://osf.io/mr8f7. 
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