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Abstract 23 

The influences of environmental factors such as weather on the human brain are still largely unknown.  A 24 

few neuroimaging studies have demonstrated seasonal effects, but were limited by their cross-sectional 25 

design or sample sizes.  Most importantly, the stability of the MRI scanner hasn’t been taken into account, 26 

which may also be affected by environments.  In the current study, we analyzed longitudinal resting-state 27 

functional MRI (fMRI) data from eight individuals, where the participants were scanned over months to 28 

years.  We applied machine learning regression to use different resting-state parameters, including the 29 

amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and functional 30 

connectivity matrix, to predict different weather and environmental parameters.  For careful control, the 31 

raw EPI and the anatomical images were also used for predictions.  We first found that daylight length 32 

and air temperatures could be reliably predicted with cross-validation using the resting-state parameters.  33 

However, similar prediction accuracies could also be achieved by using one frame of EPI image, and even 34 

higher accuracies could be achieved by using segmented or raw anatomical images.  Finally, the signals 35 

outside of the brain in the anatomical images and signals in phantom scans could also achieve higher 36 

prediction accuracies, suggesting that the predictability may be due to the baseline signals of the MRI 37 

scanner.  After all, we did not identify detectable influences of weather on brain functions other than the 38 

influences on the baseline signals of MRI scanners.  The results highlight the difficulty of studying long-39 

term effects using MRI. 40 

 41 

Keywords: daylight length, environmental effects on the brain, machine learning regression, resting-state, 42 

scanner stability, temperature, weather. 43 
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1. Introduction 45 

Daily environmental factors such as weather and seasonality affect mood and cognitive functions (Cedeño 46 

Laurent et al., 2018; Denissen et al., 2008; IJzerman et al., 2018; Keller et al., 2005; Lim et al., 2018), and 47 

may lead to pathological affective disorder (Elseoud et al., 2014; Kurlansik and Ibay, 2012).  The effects 48 

on individuals may be small, but the collective effects may lead to broader impacts, e.g. on stock markets 49 

(Hirshleifer and Shumway, 2003; Saunders, 1993).  To better understand the effects of weather and 50 

seasonality on mood or cognition, it is critical to study their effects on brain functions.  A few human 51 

neuroimaging studies have explored this association.  Seasonal effects on brain functions as measured by 52 

functional MRI (fMRI) have been observed both in resting-state (Choe et al., 2015) and when performing 53 

cognitive tasks (Meyer et al., 2016).  Some neural transmitter activity in the striatum also showed 54 

seasonal effects, i.e. serotonin transmitter binding as measured by 11C–labeled 3-amino-4-(2-55 

dimethylaminomethyl-phenylsulfanyl)-benzonitrile ([11C]DASB) positron emission tomography (PET) 56 

(Kalbitzer et al., 2010; Mc Mahon et al., 2016; Praschak-Rieder et al., 2008) and dopamine synthesis as 57 

measured by 18F-DOPA PET (Eisenberg et al., 2010; Kaasinen et al., 2012).  A study even reported 58 

seasonal changes of hippocampal volumes in human subjects (Miller et al., 2015). 59 

 There are several limitations in these neuroimaging studies.  First, most of these studies are cross-60 

sectional, which is limited by the large individual differences in brain functions (Gordon et al., 2017).  In 61 

addition, most of the studies examined roughly defined seasonal effects or yearly periodical effects.  But 62 

the exact phase of the seasonal variations may be different from the four seasons.  Sometimes the yearly 63 

effects showed different phases (Meyer et al., 2016), suggesting more complicated relationships of 64 

environmental factors on brain functions.  Therefore, it is critical to examine which environmental 65 

parameters, such as weather, have more contributions to the seasonal effects.  Among different 66 

environmental parameters, daylight length and temperature represent the significant environmental 67 

differences in seasonal fluctuations.  Gillihan et al have explored the weather effects on brain functions 68 

using a small cross-sectional sample (Gillihan et al., 2011).  They identified a weather index related to 69 
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mood and showed that the weather index was correlated with resting-state cerebral blood flow as 70 

measured by arterial spin labeling (ASL) perfusion fMRI mainly in the insula.  But more systematic 71 

examinations of weather effects on brain functions have not been performed.  Lastly, the most commonly 72 

used neuroimaging method is fMRI based on blood-oxygen-level dependent (BOLD) signals (Ogawa et 73 

al., 1990), where the interpretation of the results should consider neuronal level, neurophysiological level, 74 

and the underlying physical level of the scanner.  Specifically, if some effects on fMRI signals were 75 

observed, they may be due to the changes in neuronal activity, which is favorable to psychologists and 76 

psychiatrists.  But the effects may also due to the changes in neurovascular coupling (Di et al., 2013; 77 

Yuan et al., 2013), in brain structures, or even the stability of the MRI scanner.  Therefore, when 78 

examining the weather effects on brain functions, alternative factors need to be considered and carefully 79 

controlled. 80 

 The purpose of the current study is to estimate to what extent resting-state brain functions were 81 

affected by the weather.  We analyzed longitudinal resting-state fMRI data from eight individuals from 82 

three datasets, where the individuals were scanned over periods of months to years (Choe et al., 2015; 83 

Filevich et al., 2017; Poldrack et al., 2015).  One challenge for estimating weather effects is that the 84 

effects may be small.  Therefore, we applied a machine learning regression approach to evaluate the 85 

effects.  Because multiple brain regions have been implicated in seasonal effects, e.g. basal ganglia 86 

(Kalbitzer et al., 2010; Mc Mahon et al., 2016; Praschak-Rieder et al., 2008), insula (Gillihan et al., 2011), 87 

and hippocampus (Miller et al., 2015), small regional effects may be aggregated into detectable effects 88 

using machine learning technique.  We performed a within-subject prediction analysis at the single-89 

subject level.  We asked what weather parameters have the most effects on resting-state brain functions, 90 

which can be represented as high prediction accuracies in predictions of these parameters.  In order to rule 91 

out possible confounding effects that might give rise to prediction, we also performed several control 92 

prediction analyses.  First, we analyzed anatomical MRI images to check whether the observed prediction 93 
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could be attributed to anatomical variations.  Second, we checked images from phantom data to examine 94 

whether the prediction could be attributed to the stability of the MRI scanner.  95 

 96 

2. Materials and methods: 97 

2.1. MRI datasets 98 

Several multi-session resting-state fMRI datasets were pooled together, where the subjects were scanned 99 

over periods of months to years.  The first subject was derived from the Kirby sample (Choe et al., 2015), 100 

where the single subject was scanned for 156 sessions over three and half years.  The second subject was 101 

from the Myconnectome sample (Poldrack et al., 2015), where the subject was scanned 90 times over one 102 

and half years.  The remaining six subjects were from the Day2day sample (Filevich et al., 2017), where 103 

the subjects were scanned over a similar span of about half a year.  The detailed subject and scan 104 

information is listed in Table 1. 105 

 106 

Table 1 Subject and MRI scan information. 107 

  Dataset 

Se

x 

Ag

e 

# of 

sessions First scan Last scan 

# of 

volumes 

TR 

(s) 

Voxel size 

(mm3) 

1 Kirby M 40 156 

2009/12/

07 

2013/06/

20 198 2 3 x 3 x 4 

2 

MyConnecto

me M 45 83 

2012/10/

23 

2014/03/

11 500 1.16 2.4 x 2.4 x 2.4 

3 Day2day F 23 50 

2013/07/

03 

2013/12/

18 148 2 3 x 3 x 3.6 

4 Day2day F 31 48 

2013/07/

03 

2014/01/

08 148 2 3 x 3 x 3.6 

5 Day2day F 29 45 

2013/07/

03 

2014/01/

27 148 2 3 x 3 x 3.6 

6 Day2day F 24 46 

2013/07/

02 

2013/12/

19 148 2 3 x 3 x 3.6 

7 Day2day M 30 39 

2013/07/

09 

2014/02/

12 148 2 3 x 3 x 3.6 

8 Day2day F 29 48 

2013/07/

03 

2014/02/

20 148 2 3 x 3 x 3.6 

 108 

The number of sessions represents the effective numbers after dropout due to missing data or large head 109 
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motions.  The numbers of volumes represent the numbers used in the analysis after removing the first 110 

several volumes. 111 

 112 

 The MRI data from the Kirby sample were scanned using a 3T Philips Achieva scanner.  The data 113 

from the Myconnectome sample were scanned using a 3T Siemens Skyra scanner using a 32-channel 114 

head coil.  And the data from the Day2day project were scanned using a 3T Siemens Magnetom Trio 115 

scanner using a 12-channel head coil.  For each subject, resting-state fMRI data with multiple sessions 116 

were acquired.  Within a subject, the resting-state fMRI were scanned using the same imaging parameters, 117 

but the parameters varied between different sites.  Some essential resting-state fMRI parameters are listed 118 

in Table 1.  For more details, we refer the readers to the original articles.   119 

 High-resolution anatomical MRI images were available for only a few sessions in the Kirby and 120 

Myconnectome datasets.  An MRI image of one session was used to register all the functional images to 121 

standard Montreal Neurological Institute (MNI) space.  For the Day2day dataset, structural MRI images 122 

were available for all the sessions.  Only the structural MRI image of the last session of each subject was 123 

used to aid preprocessing of the fMRI images.  All the structural images of the Day2day project were also 124 

used in the control prediction analysis. 125 

 Lastly, we obtained MRI scanner quality assurance agar phantom data from the Day2day site.  126 

The images were scanned between June 2013 and February 2014 on a weekly basis (37 sessions in total).  127 

One session’s data were dropped because of extreme variations in the images.  The data were acquired 128 

using a gradient echo (GRE) sequence with the same coil as the one used for the acquisition of the human 129 

data.  Two images were acquired for each session.  The parameters include: TR = 2000 ms; TE = 30 ms; 130 

FOV = 22 cm; matrix = 64 x 64; slice number = 28; slice thickness = 4 mm (1 mm gap).  131 

2.2. Environmental data 132 

The MRI data were acquired from three different cities in two continents, Baltimore USA (Kirby), Austin 133 

USA (Myconnectome), and Berlin Germany (Day2day), which reflect different types of climates.  The 134 
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latitudes of these four cities are approximately 39 oN, 30 oN, and 52 oN, respectively.  The weather data 135 

for the two US cities were downloaded from (US) National Centers for Environmental Information 136 

website (https://www.ncdc.noaa.gov/cdo-web/).  The Local Climatological Data from Maryland Science 137 

Center Station and Austin Camp Mabry Station were used to represent the weather for the Kirby and 138 

Myconnectome datasets, respectively.  We used the following measures, maximum and minimum 139 

temperatures (Tempmax and Tempmin), air pressure (Press), wind speed (Wind), humidity (Hum), and 140 

precipitation (Prcp).  For those with missing data, we also checked Daily Summaries data from the 141 

NOAA website.  The weather data for the Day2day dataset were collected by the German researchers.  142 

Daily sunshine hours were not used, because they were not available for the other datasets.   143 

 We also included daylight length (Dalgt) in the current analysis.  It was already available in the 144 

NOAA Local Climatological Data.  For the Day2day data, we calculated the daylight length in Berlin 145 

according to its geographic location through the website of the Astronomical Applications Department of 146 

the U.S. Naval Observatory computes (http://aa.usno.navy.mil/data/docs/Dur_OneYear.php).  For the 147 

Day2day dataset, there are three additional parameters that reflect local environmental variations, i.e. 148 

scanner room temperature (Temprm), humidity (Humrm), and scanner Helium level (He).  These three 149 

parameters were also used in the prediction analysis when using the Day2day data.  150 

2.3. MRI data processing 151 

2.3.1. Resting-state fMRI Preprocessing 152 

Data processing and statistical analysis were performed using MATLAB (R2017b).  SPM12 153 

(http://www.fil.ion.ucl.ac.uk/spm/; RRID:SCR_007037) was used for fMRI data preprocessing.  The first 154 

2, 18, and 2 functional images for each session were discarded for the Kirby, Myconnectome, and 155 

Day2day datasets, respectively, remaining 198, 500, and 148 images for each session.  For each subject, 156 

all the functional images were realigned to the first session.  All the prediction analysis was performed in 157 

the native space of each subject.  The anatomical images were coregistered to the mean functional image, 158 

and then segmented into gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and other 159 
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tissues.  For each subject, an intracranial volume mask was defined, and the grand mean (4-dimensional 160 

average) of the functional images was calculated for each session.  For each session, the functional 161 

images were divided by the grand mean and multiplied by 100.  At each voxel, Friston’s 24 head motion 162 

model (Friston et al., 1996), the first five principal components from WM signals and the first five 163 

principal components from CSF signals were regressed out, and then band-pass filtering was applied 164 

between 0.01 and 0.1 Hz.  The images were not spatially smoothed, because there was no voxel-wise 165 

univariate analysis involved.  166 

 The preprocessing steps were chosen to minimize potential artifacts due to physiological noises 167 

and head motion.  This may be an over-conservative choice that may compromise too many degrees of 168 

freedom of the fMRI time series (Bright et al., 2017).  We also tried to reduce the number of regressors 169 

during the linear regression step.  Specifically, we obtained the first two principal components of 170 

Friston’s 24 head motion variables.  The regression then included the first two components of the head 171 

motion model, the first component of WM signals, and the first component of the CSF signals (2 + 1 + 1 172 

regressors compared with 24 + 5 + 5 regressors from the main analysis).  The results using the reduced 173 

regression were reported in the supplementary materials.  174 

2.3.2. ALFF, ReHo, and connectivity matrices 175 

We calculated three resting-state parameters to represent resting-state brain functions, i.e. amplitude of 176 

low-frequency fluctuation (ALFF) (Zang et al., 2007) and regional homogeneity (ReHo) (Zang et al., 177 

2004) to represent regional properties, and connectivity matrix to represent inter-regional connectivity 178 

property.  ALFF and ReHo were calculated using the REST toolbox (REST: a toolkit for resting-state 179 

fMRI, RRID:SCR_009641) (Song et al., 2011).  Essentially, ALFF calculated the power of the time series 180 

signals between 0.01 to 0.08 Hz at every voxel, resulting in an ALFF map for each session.  ReHo 181 

calculated the correlations of the current voxel with the 26 neighboring voxels, which also resulted in a 182 

ReHo map for each session.  The ALFF and ReHo values for each session within the subject’s GM mask 183 

were converted to a vector for further analysis.  The subject-specific GM masks were defined as GM 184 
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intensity greater than 0.5 based on the segmentation of the subject’s anatomical image.  Because the GM 185 

masks were defined in the native spaces and the fMRI resolution varies across datasets, the number of 186 

within mask voxels also varied (from 20,780 to 55,368). 187 

 Correlation matrices were calculated among 164 regions of interest (Di and Biswal, 2019; 188 

Dosenbach et al., 2010).  Spherical ROIs were first defined in MNI space with a radius of 8 mm, and then 189 

transformed into the native space for each subject.  There were in total 13,366 connectivity values (164 x 190 

(164 - 1) / 2), which were converted to a vector for the prediction analysis.  The correlation values were 191 

transformed into Fishers’ z scores.  192 

2.3.3. Head motion and other potential confounding variables 193 

To minimize the confounding of head motion in the prediction analysis, we first removed sessions with 194 

large head motions.  We calculated frame-wise displacement in translation and rotation directions (Di and 195 

Biswal, 2015).  A session’s data with maximum frame-wise displacement greater than 1 mm or 1o were 196 

discarded.  No sessions were removed in the Kirby data, and seven sessions (7.8%) were removed for the 197 

Myconnectome data.  In the Day2day dataset, at most two sessions were removed for each subject.  198 

Secondly, we regressed out 24 motion variables using Friston’s head motion model, which has been 199 

shown to be effective to minimize the effects of head motion on resting-state measures (Yan et al., 2013).  200 

Lastly, mean frame-wise displacement of both directions were regressed out from a predicted 201 

environmental variable before it was entered into the prediction analysis.  202 

2.3.4. Global signal 203 

The resting-state fMRI data have been scaled by the grand mean (4-D average) of each session to account 204 

for the baseline signal variations across sessions.  However, a recent study has reported an association 205 

between global signal fluctuations and time of day (Orban et al., 2020).  We, therefore, examined whether 206 

the global signal fluctuations were associated with the environmental factors, and whether accounting for 207 

the global signal fluctuations could affect the predictions of these environmental factors.  We calculated 208 

the averaged ALFF value in the intracranial mask to reflect the global signal fluctuations.  The global 209 
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signal fluctuations were correlated with daylight length for each subject.  Next, we also calculated mean 210 

ALFF (mALFF) by dividing an ALFF map by the global mean.  Prediction analysis was also performed 211 

by using the mALFF maps.  212 

2.3.5. Structural MRI processing 213 

For the Day2day dataset, the MPRAGE anatomical MRI images were available for all the sessions.  214 

Therefore, we used the anatomical images as a control condition for weather prediction.  The analysis was 215 

also performed in a subject’s native space.  The anatomical images from all the sessions of a subject were 216 

realigned and resliced to the image of the first session.  Then each session’s image was segmented 217 

separately, and the segmented tissue probability maps of GM, WM, and CSF were obtained.  We defined 218 

GM, WM, and CSF masks as an averaged probability greater than 0.5 for respective tissue types.  GM, 219 

WM, and CSF probability in their masks were extracted, respectively, to be used in the prediction 220 

analysis. 221 

 We also defined an air mask to study the baseline MRI signals, which was located outside the 222 

brain (Makedonov et al., 2013).  The mask was placed at the lower left front side of the head to avoid 223 

potential objects in the area, and was consisted of 21 x 41 x 41 voxels. 224 

2.3.6. Phantom image processing 225 

For each session, the two images were realigned, and an averaged image was calculated.  Because the 226 

phantom was imaged in a similar location, no cross-session registration was performed.  We first 227 

calculated correlations between daylight length and image values in every voxel, resulting in a correlation 228 

image.  Next, a cubic mask in the center of the image was defined.  The signals within the mask were 229 

extracted for the prediction analysis. 230 

2.4. Prediction analysis 231 

2.4.1. Prediction analysis scheme 232 

The goal of the analysis is to estimate the prediction values of resting-state parameters on different 233 

weather or meteorological parameters.  The analysis was performed for each of the resting-state 234 
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parameters to predict each of the seven weather parameters.  And we asked which weather parameters 235 

could be better predicted by which resting-state parameters.  The prediction analysis was all done in a 236 

within-subject manner.  Cross-validation was used to evaluate the prediction accuracies.   237 

 In addition to use these resting-state parameters, we also performed a series of control analyses to 238 

use other potential confounding parameters to predict the environmental parameters.  First, we used the 239 

first fMRI image of each session after realignment to perform prediction analysis.  Although the single 240 

image still reflects BOLD effects, brain structures may contribute more variations.  Secondly, to future 241 

rule out the structural contribution, we used segmented tissue probabilities of GM, WM, and CSF from 242 

their respective tissue masks to perform prediction analysis.  Thirdly, we also extracted raw image values 243 

from the MPRAGE images in the three tissue masks to serve as another control condition.  In addition, a 244 

cuboid mask was defined for each subject, which was located outside the brain.  The raw image values 245 

from the MPRAGE images from the air mask were used to control for baseline MRI signals.  Finally, 246 

since all of the above-mentioned analyses indicated prediction values to predict environmental parameters, 247 

especially daylight length, we further analyzed the quality assurance phantom data, and used the signals 248 

in the agar phantom area to perform prediction analysis to predict daylight length.  249 

2.4.2. Machine learning regression analysis 250 

We used a linear machine learning regression model to perform prediction analysis.  The general form of 251 

the prediction model is a linear regression model as the following:  252 

 += Xy  253 

where y is a n x 1 vector of a predicted weather parameter, X is a n x m matrix of a resting-state parameter, 254 

β is the model parameters, and ε is the residual.  N represents the number of observations, which in the 255 

current analysis was the number of sessions for a particular subject.  M represents the number of 256 

prediction variables, which could be the number of voxels in the ALFF or ReHo maps (see Table 1) or the 257 

number of connections (13,366) in the connectivity matrices.  Here, m is much larger than n.  Therefore, 258 
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we used ridge regression to estimate the β parameters.  Briefly speaking, instead of trying to achieve the 259 

goal of minimizing the sum of square means of the model prediction: 260 

 − 2)(min 


Xy  261 

Ridge regression adds one more regularized term:  262 

 +−
22)(min 


Xy  263 

where λ represents the regularization parameter.  The regularization term can constrain the sizes of beta 264 

values, thus preventing overfitting of the model.  In the current analysis, we used the MATLAB function 265 

fitrlinear to perform the prediction analysis.  There are other methods available, such as LASSO and 266 

elastic net, but a recent study suggested that ridge regression and elastic net can yield similar prediction 267 

accuracies while LASSO might perform worse in the scenario that the number of observations is much 268 

smaller than the number of features (Cui and Gong, 2018).  269 

 There are three steps in the prediction analysis, 1) tuning the regularization parameter λ to find 270 

the optimal λ (λ tuning), 2) training the model using the training dataset and the optimal λ to obtain a 271 

prediction model β (model training), and 3) estimating prediction accuracy by calculating correlations 272 

between predicted and actual values in a separate testing sample (cross-validation).  Cross-validation was 273 

used to make sure that the estimated prediction accuracies were independent of the training data.  274 

 Because of the limited number of data in one fold (13 observations in the least case), 3-fold cross-275 

validation was adopted.  We used a nested tuning strategy to optimize the parameter λ (Cui and Gong, 276 

2018).  Specifically, we first held out one-third of the data as an independent testing dataset, and used the 277 

remaining two-thirds of the data as a training and parameter tuning dataset.  The data were first sorted 278 

according to the tested weather parameter, and the three folds were defined as the 1st, 4th, 7th, …, 2nd, 5th, 279 

8th, …, and 3rd, 6th, 9th, … sessions of the data, respectively.  Within the two-thirds training and parameter 280 

tuning dataset, we first performed a nested loop of 3-fold analysis.  Specifically, one-third of the data 281 

were holden out, and the remaining two-thirds of data were used to train the regression model using a set 282 
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of λ values, from 10-5 to 10-1 in the logarithmic scale with a total of 15 values.  The inner loop testing data 283 

was used to test the accuracy of the prediction by calculating the correlation between predicted and actual 284 

weather parameter values.  This procedure was performed three times for the three folds, and the mean 285 

accuracies were calculated for each of the λ values.  The λ value with the highest mean accuracy was used 286 

for the outer layer training data to train the model.  The model was then applied to the outer layer testing 287 

data to estimate prediction accuracies.  The three accuracy values from the 3 folds were averaged to 288 

represent an estimate of accuracy for a subject.  289 

 The prediction accuracies of different imaging parameters and environmental parameters were 290 

visualized by using notBoxPlot (https://github.com/raacampbell/notBoxPlot).  The plot shows not only 291 

the individuals’ prediction accuracies, but also the mean, standard deviation, and 95% confidence interval 292 

of the accuracies across the subjects.  False discovery rate (FDR) was used to correct for multiple 293 

comparisons of the different parameters.  294 

 295 

3. Results 296 

3.1. Predictions using the resting-state images 297 

We first performed predictions on different environmental parameters using the ALFF maps, ReHo maps, 298 

connectivity matrices, as well as using a single frame of EPI images as a control condition (Figure 1).  In 299 

general, daylight length (Dalgt) and maximum and minimum environmental temperatures (Tempmax and 300 

Tempmin) had higher prediction accuracies, with daylight length usually having the highest prediction 301 

accuracies.  The other environmental parameters had very low prediction accuracies.  In terms of the 302 

resting-state parameters, the ALFF map usually had the highest prediction values.  The average prediction 303 

accuracy of daylight length using ALFF was 0.38.  Surprisingly, however, using a single frame of EPI 304 

images could achieve comparable and even higher prediction accuracies than any resting-state parameters.  305 

The averaged prediction accuracy of daylight length using the raw EPI images was 0.42.  When using the 306 

resting-state parameters calculated from the reduced preprocessing method to perform the predictions, the 307 
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prediction accuracies slightly increased (Supplementary Figure S1).  However, they were still smaller 308 

than those using the raw EPI images. 309 

 310 

 311 

Figure 1 Prediction accuracies (correlations) of the amplitude of low-frequency fluctuations (ALFF) 312 

maps, regional homogeneity (ReHo) maps, connectivity matrices, and raw echo-planar imaging (EPI) 313 

maps on different environmental parameters.  Each dot represents one subject’s mean prediction accuracy.  314 

The center white lines, inner dark bars, and outer light bars represent the mean, 95% confidence interval, 315 

and standard deviation, respectively.  The asterisks on the top represent statistical significance at p < 0.05 316 

after false discovery rate (FDR) correction for all the 40 predictions. 317 

 318 

 It remains a question that whether the weather predictions using the resting-state parameters and 319 

single EPI images are based on similar or different information.  Since the daylight length had the highest 320 

prediction accuracies, we focused on its prediction.  We combined ALFF with EPI and ReHo with EPI to 321 

predict daylight length to check whether combining the two modalities can boost the prediction accuracies.  322 

Unfortunately, combing two modalities yielded very similar prediction accuracies as those using single 323 

EPI images or ALFF images (Figure 2).  Therefore, ALFF and ReHo did not convey more information 324 

than a single EPI image to predict daylight length.  325 

 326 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2021. ; https://doi.org/10.1101/646695doi: bioRxiv preprint 

https://doi.org/10.1101/646695
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

 327 

Figure 2 Prediction accuracies to daylight length using the amplitude of low-frequency fluctuations 328 

(ALFF), regional homogeneity (ReHo), raw echo-planar imaging (EPI) maps, and their combinations.  329 

Each dot represents one subject’s mean prediction accuracy.  The center white lines, inner dark bars, and 330 

outer light bars represent the mean, 95% confidence interval, and standard deviation, respectively. 331 

 332 

 Next, we examined whether the global signal fluctuations of the resting-state data were correlated 333 

with daylight lengths, and whether the global signal fluctuations contribute to the predictions of the 334 

environmental factors.  The correlations between global mean ALFF and daylight lengths did not show a 335 

consistent pattern across subjects (Figure 3A).  We also used the global mean scaled ALFF maps, i.e. 336 

mALFF, to predict different environmental variables, and they yielded similar prediction patterns as what 337 

using the raw ALFF maps (Figure 3B). 338 

 339 
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 340 

Figure 3  A, correlations between the global amplitude of low-frequency fluctuations (ALFF) and 341 

daylight lengths.  B, prediction accuracies (correlations) of the environmental parameters using raw ALFF 342 

and mean ALFF (mALFF).  Each dot represents one subject’s mean prediction accuracy.  The center line, 343 

inner dark bar, and outer light bar represent the mean, 95% confidence interval, and standard deviation, 344 

respectively. 345 

 346 

3.2. Predictions using the anatomical images 347 

If a single volume of EPI image can predict weather parameters like daylight length, then the question 348 

becomes whether the prediction is due to brain functional activity, structural information, or other factors.  349 

We, therefore, performed similar prediction analyses using the anatomical images, which are available in 350 

the six subjects in the Day2day dataset.  We first performed predictions using the segmented GM, WM, or 351 

CSF density images within their respective tissue masks (Figure 4).  The results showed very similar 352 

prediction patterns for different environmental parameters as what using the resting-state parameters.  353 

That is, the daylight length and environmental temperatures had the highest prediction accuracies.  The 354 

prediction accuracies using all the three tissue probability maps were above 0.5, which were higher than 355 

using any of the resting-state parameters.  However, what was more interesting was that even higher 356 

prediction accuracies could be achieved using the raw MRI signals in these tissue masks.  The prediction 357 

accuracies were higher than 0.6 when using raw MRI signals in the GM and CSF masks.  Finally, we 358 
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defined a cuboid mask outside the brain (see Figure 5A as an example), and used the raw MRI signals in 359 

the mask to perform prediction analysis.  Surprisingly, the analysis also showed a similar pattern of 360 

prediction accuracies.  The prediction accuracy on daylight length using the air mask was 0.47, which was 361 

lower than using all the other anatomical parameters but still higher than using any of the resting-state 362 

parameters. 363 

 364 

 365 

Figure 4 Prediction accuracies (correlations) of raw MRI signals and segmented densities in gray matter 366 

(GM), white matter (WM), cerebrospinal fluid (CSF), and air masks on different environmental 367 

parameters.  Each dot represents one subject’s mean prediction accuracy.  The center white lines, inner 368 

dark bars, and outer light bars represent the mean, 95% confidence interval, and standard deviation, 369 

respectively.  The asterisks on the top represent statistical significance at p < 0.05 after false discovery 370 

rate (FDR) correction for all the 70 predictions. 371 

 372 

 To further explore the baseline MRI signals conveyed in the air mask, we calculated correlations 373 

between the MRI signals and daylight length in all the voxels in the air mask for the six subjects (Figure 374 

5B).  There were small global effects of correlations between the MRI signals and daylight lengths.  375 

Moreover, the global effects of correlations were strongly correlated with the prediction accuracies across 376 

subjects (Figure 5C), indicating that the global correlation is the driving information that gave rise to the 377 

prediction accuracy.   378 
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 379 

 380 

Figure 5 A) An example of the air mask from one subject overlaid to the subject’s anatomical image.  B) 381 

Histograms of the correlations between the MRI signals and daylight length of all the voxels in the air 382 

mask.  Each line represents one subject.  C) There is an extremely high negative correlation between the 383 

mean correlations in the air mask and the prediction accuracies of using the air mask voxels to predict 384 

daylight length. 385 

 386 

3.3. Control analysis using the phantom images 387 

To further confirm the baseline signal changes, we analyzed the weekly quality control phantom data 388 

around the same period of the Day2day project.  We first calculated voxel-wise correlations between the 389 

MRI signal and daylight lengths (Figure 6A).  It clearly showed that in the phantom region, there were 390 

high negative correlations.  We defined a cubic mask in the center of the image, and the distribution of 391 

correlations of all the voxels in the mask is plotted in Figure 6B.  The mean and median correlation in the 392 

cubic mask was -0.78 and -0.79, respectively.  We also performed similar predictions of the daylight 393 

length by using the MRI signals in the mask, and the cross-validated mean accuracy was 0.70.  Lastly, we 394 

calculated the mean and spatial coefficient of variation of the MRI signals in the mask, and plotted them 395 

against scan sessions (Figure 6C and 6D).  The mean MRI signals showed a strong negative correlation 396 

with daylight lengths (r = -0.82, p < 0.001).  However, the spatial coefficient of variation showed only a 397 

marginally significant correlation (r = -0.34, p = 0.04).  The large negative correlation of daylight length 398 
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with the mean MRI signals and reduced correlation with the spatial coefficient of variation were also 399 

confirmed by using the air mask signals of the MPRAGE images (Supplementary Figure S2). 400 

 401 

 402 

Figure 6 A) Voxel-wise correlation maps between MRI image values and daylight length.  The dash-line 403 

contour indicates the location of the cubic mask.  B) Histogram of the voxel-wise correlations in the cubic 404 

mask.  C) and D) The averaged signals and spatial coefficient of variation (CV) in the cubic mask and the 405 

daylight length against scan sessions. 406 

 407 

 408 

4. Discussion 409 

By applying machine learning regression to single-subject longitudinal fMRI data that were scanned over 410 

months to years, we demonstrated that we can predict environmental parameters, especially daylight 411 

length and air temperature, by using resting-state fMRI parameters.  However, a series of controlled 412 

analyses showed that using a single EPI image, the segmented tissue density, and the raw MRI signals 413 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2021. ; https://doi.org/10.1101/646695doi: bioRxiv preprint 

https://doi.org/10.1101/646695
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

from the anatomical images in different tissue masks and even in a mask outside the brain could all 414 

predict the environmental parameters.  The resting-state parameters did not add prediction values to 415 

single-volume EPI images.  These results indicated the prediction of environmental parameters, especially 416 

daylight length, cannot be explained as the weather effects on brain functions.  Rather, the prediction may 417 

reflect MRI scanner baseline signal variations that were affected by the environmental parameters.  The 418 

analysis of the quality control phantom images supported our speculation. 419 

 Among all the environmental parameters analyzed the daylight length and air temperature had the 420 

highest prediction accuracies.  It is not surprising because daylight length and air temperature are highly 421 

correlated.  Daylight length has the highest prediction accuracy probably because it is a physical quantity 422 

that does not have measurement errors, which is in contrast to air temperature.  It’s noteworthy that 423 

although the MRI scanner room temperature and humidity could not be predicted by the functional 424 

parameters, they could be reliably predicted by the anatomical MRI parameters (Figure 4).  However, 425 

their prediction accuracies were smaller than those of daylight length and air temperature.  It indicates 426 

that the environmental effects on MRI signals are not directly caused by local temperature, but some other 427 

local factors.  A study has shown that the gaseous oxygen level in the magnet field can influence the MRI 428 

signals (Bates et al., 1995).  The oxygen level in the scanner room may fluctuate across seasons due to 429 

different ventilation conditions, which may contribute to the MRI baseline signal shifts.  In addition, the 430 

cooling systems of the scanner may be affected by either electricity supply stability or cooling water 431 

temperature.  Given that the MRI is such a sophisticated machine, there may be other factors that mediate 432 

the association between daylight length and scanner stability.   433 

 The current results highlighted the difficulty to study long-term effects such as weather on brain 434 

structures and functions using MRI.  Consistent with two previous fMRI studies (Choe et al., 2015; 435 

Meyer et al., 2016), we did find weather effects on fMRI measures.  But we demonstrated that the 436 

weather effects are likely due to the variations of MRI scanner baseline.  It is reasonable to speculate that 437 

MRI scanner stability might contribute to the reported seasonal effects (Choe et al., 2015; Meyer et al., 438 
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2016).  We also showed that tissue probability measures of GM volumes may also be affected by the 439 

scanner stability, so brain volumetric measures may also be affected by the scanner stability (Miller et al., 440 

2015).  Careful examinations of the effects of MRI scanner baseline signals are needed to confirm these 441 

reported findings. 442 

 In the current analysis, a few steps have been used to correct the MRI baseline signals.  The fMRI 443 

signals have been scaled by the grand mean of each session.  And we also compared the prediction 444 

accuracies of using ALFF and mALFF, which have yielded very few differences.  The scaling may be 445 

effective for local voxels.  But due to the spatial heterogeneity, the baseline variability may still present in 446 

some brain regions, which could be picked up by the machine learning algorithm.  ReHo and connectivity 447 

measures use correlation measures, which are insensitive or have scaled local signal variability.  This may 448 

explain why their prediction accuracies are smaller than ALFF.  These problems may arise from the fact 449 

that most of the fMRI measures are relative measures.  If absolute measures can be used, e.g. blood 450 

perfusion using arterial spin labeling (ASL) (Detre et al., 2012, 1992), then the effects from scanner 451 

stability may be minimized.   452 

 The current analysis demonstrated that machine learning is a powerful method that can pick up 453 

small effects.  The phantom data showed the correlations between baseline MRI signals and daylight 454 

length were about 0.7.  When scanning human participants, the background MRI signals outside the brain 455 

showed much smaller correlations with daylight length (Figure 5B and 5C).  However, we could still 456 

achieve a similar level as the prediction accuracies by using machine learning as the phantom data (Figure 457 

4).  Indeed, the cross-validated prediction accuracies were between 0.6 and 0.7, which are very close to 458 

the correlation in the phantom data.  Machine learning methods have become more and more popular in 459 

studying brain-behavior relationships (Cui and Gong, 2018; Finn et al., 2015) and brain alterations in 460 

mental disorders (Whelan et al., 2014).  The current analysis illustrates that comparing performance with 461 

chance level may not be sufficient to control for potential confounding variables.  Careful choice of 462 

control conditions is critical to make a proper conclusion.  When performing machine learning analysis on 463 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2021. ; https://doi.org/10.1101/646695doi: bioRxiv preprint 

https://doi.org/10.1101/646695
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

functional activations or connectivity data, the structural MRI data may be a good choice as a control 464 

condition.  The structural MRI data are usually available alongside the fMRI data, and don’t reflect the 465 

functional activity of the brain.  Adding structural MRI as a control condition could rule out potential 466 

structural variations as a source of individual differences, but could also rule out potential MRI baseline 467 

variations as shown in the current analysis.  A phantom scan may also be considered if long-term effects 468 

are of interest.  469 

 The current study did not completely rule out the potential seasonal or daylight effects on brain 470 

structures and functions.  Studies using non-human animals have provided strong evidence of seasonal 471 

and daylight effects on brain structural and functional variation in hippocampal volume (Nissilä et al., 472 

2012; Smulders et al., 1995; Tramontin and Brenowitz, 2000).  PET studies of different neural 473 

transmitters also provide evidence of seasonal effects (Eisenberg et al., 2010; Kaasinen et al., 2012; 474 

Kalbitzer et al., 2010; Mc Mahon et al., 2016; Praschak-Rieder et al., 2008).  Seasonal effects on brain 475 

functions may still exist, but it is difficult to study by using MRI due to the factors identified in the 476 

current analysis.  477 

 In conclusion, by applying machining learning on resting-state fMRI or structural MRI data, we 478 

can predict several environmental parameters, with the highest prediction accuracies to daylight length.  479 

However, the predictions were not likely due to the environmental effects on brain functions or structures, 480 

but may due to the baseline MRI signals.  The data highlight the difficulty to use fMRI/MRI data to study 481 

long-term effects, and call for cautions to control for scanner stability when studying long-term effects.  482 

 483 
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