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Painters are masters in replicating the visual appearance
of materials. While the perception of material
appearance is not yet fully understood, painters seem to
have acquired an implicit understanding of the key
visual cues that we need to accurately perceive material
properties. In this study, we directly compare the
perception of material properties in paintings and in
renderings by collecting professional realistic paintings
of rendered materials. From both type of images, we
collect human judgments of material properties and
compute a variety of image features that are known to
reflect material properties. Our study reveals that,
despite important visual differences between the two
types of depiction, material properties in paintings and
renderings are perceived very similarly and are linked to
the same image features. This suggests that we use
similar visual cues independently of the medium and
that the presence of such cues is sufficient to provide a
good appearance perception of the materials.

Introduction
For centuries, painters have been able to depict the

material of objects with an extreme fidelity. When
looking at paintings from the 17th century, for example,
the resemblance of the different metals, fabrics, or
fruits is striking. Looking more precisely at some of
these paintings reveals that painters do not always
exactly reproduce the full optical behavior of each
material but rather place some key image features
that give the viewer the illusion of a specific material.
For example, in the paintings shown in Figure 1a, the
painter placed bright spots of paint to suggest strong
metallic highlights. This suggests that painters have

an implicit understanding of our perception of such
materials and are able to use this knowledge to create
this illusion (Cavanagh, 2005). However, the perception
of material appearance is a long-standing problem
that is not yet fully understood, and there is no clear
consensus among vision scientists about the underlying
processes it entails.

One theory suggests that our brain solves for an
inverse optics problem to get the physical properties of
materials and disentangle them from lighting and shape
(see, e.g., the survey by Pizlo et al., 2001). However,
several studies have found that varying the shape and
illumination in a scene can induce drastic changes in the
way we perceive materials and that these changes can
be captured by specific image statistics (Marlow et al.,
2012). A second theory thus suggests that we may use
image statistics to recognize materials, matching them
with past experience (Adelson, 2008; Fleming, 2014)
or using them to encode our visual world (Fleming
& Storrs, 2019). Subsequently, a variety of works
have attempted to understand which image features
are key to perceive specific material properties such
as glossiness or metallicness (Motoyoshi et al., 2007;
Anderson & Kim, 2009; Kim et al., 2012; Marlow et al.,
2012; Todd & Norman 2018). The latest approaches
(Fleming & Storrs, 2019) argue whether our visual
system derives material perception from simple image
statistics or rather use more complex highly nonlinear
encodings of the visual input. The ability of painters to
depict materials with only a few brush strokes suggests
that they have integrated these important visual cues in
order to use them in their paintings.

Studying how people perceive materials in paintings
and which techniques are used by painters can thus
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Still Life with a Porcelain Vase, Silver-gilt Ewer, and Glasses
1643, by Willem Kalf

(a) (b)

Figure 1. Painters do not reproduce the exact optical behavior of materials. However, they can successfully reproduce the key visual
cues that lead to the perception of material appearance. In this article, we explore and analyze the perception of material properties,
correlating subjective judgments with objective image features in both paintings and renderings. (a) A painting from the 17th century:
The painter placed very bright spots over the surface, not necessarily aligning them with shape features, to hint the metallicity of the
carafe. (b) Samples of our stimuli (top: renderings, bottom: the corresponding paintings): Paintings exhibit visual differences with the
original renderings, such as differences in luminance or texture.

be a means to further understand material perception.
This has already brought vision scientists to look closer
at paintings and link painters’ techniques with human
perception (Cavanagh, 2005; Di Cicco et al., 2018;
Sayim & Cavanagh, 2011; van Zuijlen et al., 2020). For
example, to depict glossiness, painters usually place
a lighter spot of paint aligned with the curvature of
the objects (Cavanagh et al., 2008). The contrast and
sharpness of this spot provide a strong cue of the
perceived glossiness (Di Cicco et al., 2019). However,
preceding studies have been made on already painted
stimuli that (a) usually depict identifiable objects in
context and (b) prevent from comparing the material
perception between the painting and other renditions
of the same scene. Furthermore, it does not allow to
have access to the chronology of how the painting was
made.

In this work, we collect professional realistic
paintings of rendered materials on abstract shapes
devoid of semantic meaning and directly compare
the perception of material properties in the paintings
and in the rendered images. In particular, we selected
eight materials covering a wide appearance range and
rendered them on an abstract shape previously used in
various material perception studies (Bousseau et al.,
2013; Vangorp et al., 2017), thus avoiding any possible
bias relative to the shape and the semantics of the
object. We then hired a professional artist to realistically
paint the materials depicted in the renderings. We
collected subjective measures of material appearance
in these images by showing both the paintings and

the renderings to participants of a perceptual study
in which we asked them to rate high-level perceptual
properties (e.g., glossy, rough), as well as to perform a
reflectance matching task. These subjective measures
form our basis to compare material perception in
paintings and in renderings. We also extract a variety of
image features (objective measures) that reflect material
properties, such as the highlights sharpness or the
image contrast. As shown in Figure 1b, the paintings
and the renderings exhibit visual differences that we
characterize with our image features, notably the
texture of the brush strokes. Finally, we jointly analyze
these subjective and objective measures in order to
understand how these differences impact the perception
of material properties.

Our study reveals that, despite these differences,
the participants of the perceptual study perceived the
materials very similarly in the two modalities. It also
shows that images features in both modalities are linked
to material properties in the same way: The same image
features explain the same reflectance properties in both
paintings and renderings. Additionally, analyzing the
painting process revealed that these image features
correspond to the main visual cues used by the painter.
This indicates that the painter has indeed implicitly
learned this knowledge about the important visual
features for material perception. Our study thus
suggests that, despite important differences in the style
of the images, the presence of certain similar image
features that were carefully reproduced by the painter
allows us to perceive similar material properties.
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Material perception

A large body of work has been devoted to
understand how we perceive material reflectance
properties in images. Many of these works focus
on the understanding of gloss and its dimensions.
Pellacini et al. (2000) introduced a new reflection model
based on perceived surface gloss, where variations
in the dimensions of the model were perceptually
uniform. Wills et al. (2009) showed that these two main
dimensions driving gloss perception were related to the
specular reflections and the overall brightness. Later,
it was suggested that there is an additional perceptual
dimension of gloss beyond these two that is related to
the impression of hazy gloss (Vangorp et al., 2017).
Recently, Toscani et al. (2020) have identified three
dimensions for specular and diffuse reflection: gloss,
lightness, and metallicity, which seem to be key for
describing reflectance properties. For a review on the
perception of gloss, we refer the reader to the work of
Chadwick and Kentridge (2015).

Other works focus on identifying the exact image
features that are responsible for the impression of gloss.
It was initially found that simple histogram statistics,
such as skewness, have an effect on the perception
of gloss (Motoyoshi et al., 2007), but it was later
demonstrated that such simple statistics are not enough
to explain the perception of gloss in complex images
(Kim & Anderson, 2010; Anderson & Kim, 2009).
Marlow et al. (2012) showed that the perception of
gloss is correlated with the coverage, the sharpness,
and the contrast of highlights. However, such features
are difficult to extract automatically from images and
require human judgment to be studied, introducing
possible bias. We take inspiration from these works by
extracting image features that are linked to material
perception from both the paintings and renderings.
In particular, we use both local features, such as the
sharpness and contrast of the highlights, and global
features, such as the contrast and the luminance of the
image.

These simple highlights statistics are not sufficient
to explain the perception of gloss; they also need to
be properly placed on the surface, close to the most
luminous parts of the diffuse shading and elongated
according to the surface curvature (Kim et al., 2011;
Marlow et al., 2011). The lowlights, the darker specular
reflections, are also key to the perception of gloss and
need as well to be properly aligned with the shape (Kim
et al., 2012). However, apparent image features do
not solely depend on the reflectance properties of the
material but also on the shape and illumination, which
has been shown to play a major role in the perception
of gloss (Olkkonen & Brainard, 2011). Notably, it was
shown that the estimation of gloss is more accurate
under natural illuminations (Fleming et al., 2003),
which led us to use a natural illumination in our study.

Fewer works have been devoted to the study of
other dimensions of material perception, such as
distinguishing between different types of materials.
Filip and Kolafová (2019) recently performed an
analysis on perceptual attributes in real-world materials
in which they assessed several tactile and visual
attributes and evaluated the relationship between such
attributes and different material categories. They also
compared the perception of such material attributes
when viewing a computer graphics rendering to those
when viewing a physical sample of the same material
(Filip et al., 2018). They found that participants
evaluated perceptual attributes more consistently
between these two modalities for familiar materials
than for materials with random structures. Although
several studies have investigated how we perceive
different materials (e.g., wood, stone, or fabric) on
pictures of textured objects, very few have investigated
this question based solely on reflectance properties.
Todd and Norman (2018) focused on the perception of
metal and showed that the feeling of metal is due to the
predominance of specular reflections over diffuse ones:
Metals exhibit almost no diffuse reflections but strong
specular ones, causing a large coverage of reflections.
We incorporate into our study both metallic and
nonmetallic materials in order to cover a wide range of
materials. Although we do not focus on understanding
the distinction between these two types of materials,
our results suggest that the same image features can be
used similarly for both types for materials in order to
explain high-level perceptual properties.

All these works show that our perception of material
properties is an intricate mixture of various image
cues. A recent work suggests that material perception
might arise from the nonlinear encoding of our world
that our brain performs (Fleming & Storrs, 2019).
The authors build a parallelism between this encoding
and the encoding performed by deep neural networks,
suggesting that our perception of a material might
be driven by complex nonlinear statistics similar to
the ones extracted by neural networks. Related to
this, Lagunas et al. (2019) showed that a deep neural
network could be trained to learn a notion of material
appearance similarity from images. In order to compare
the perception of material properties in paintings and
renderings, we use simple image features that are easy to
compare and to relate to the painting process. Although
they may not fully represent the complexity of image
features that humans use, we show that they are enough
to explain an important part of the perception of
high-level material properties.

Perception in artistic depictions

It is well known that painters use shortcuts and
even an “alternative physics” when depicting reality
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(Cavanagh, 2005), usually in a way that is not obviously
noticeable for human eyes. Analyzing these shortcuts
can thus help us to understand how we perceive our
world. These studies cover various subjects such as our
perception of transparent objects (Sayim & Cavanagh,
2011) or of reflections (Cavanagh et al., 2008). For
example, it was shown that we are not sensitive to
inconsistencies in illumination in a scene (Ostrovsky
et al., 2005) and that many paintings exhibit such
inconsistencies in favor of visual effect (Cavanagh,
2005). In this work, we focus on the depiction of
materials and investigate which image features seem to
be key to reproduce for the painter and if they align
with previous findings about material perception.

Also focusing on material depiction, Di Cicco
et al. (2019) analyzed grapes paintings from the 17th
century and found out that the clues identified by
Marlow et al. (2012) were a good predictor of the
gloss of grapes in the paintings. They thus suggest that
material perception depends on similar image features
in paintings and natural images. Cavanagh et al. (2008)
showed that it is sufficient for highlights to be lighter
than the rest of the surface and deformed according to
the curvature of the object to look real. These works
have thus identified a few image features that may be
used implicitly by painters to convey object appearance.
However, they are based on already painted artworks
that forbid us to directly compare the perception of
material properties in paintings and in natural images.

In a recent study (Di Cicco et al., 2018, 2020), a
painter reproduced grapes depictions from the 17th
century, following both analysis of the original painting
and recipes described in a 17th-century art treatise,
in order to analyze the influence of each layer on the
perception of the grapes. However, this study does not
investigate the perception of general material properties
but rather the perception of specific properties of
the grapes with the goal to understand if the recipes
described in the art treatise were perceptually relevant.
For the case of complex textured materials, van Zuijlen
et al. (2020) studied the perception of various materials
in paintings from the 17th-century. They found out that
the properties associated with each class of material is
very similar to the ones reported with natural images.
This, again, suggests that our perception of material is
not dependent on the medium.

In our work, we seek to learn about visual features
and their influence on material appearance perception
by gathering data from coupled depictions of materials:
a rendered image and a painting for each material
sample. This direct comparison between both renditions
is, to our knowledge, novel. Similar in spirit to this, the
study from Bousseau et al. (2013) studied the influence
of various non photorealistic rendering (NPR)
algorithms on the perception of gloss. In contrast to
NPR automatic algorithms, in this work, we focus on
actual paintings that incorporate human knowledge
and artistic experience into the “stylization” process.

Stimuli generation: Renderings and
paintings

As our material samples to be painted, we selected
eight materials from the MERL data set (Matusik
et al., 2003), which contains 100 measured materials
from the real world, stored as BRDFs (bidirectional
reflectance distribution functions, which define how
light is reflected off a surface for every incoming
light direction). There are a number of analytical
BRDF models that aim at reproducing the appearance
of real-world materials, but they usually are not
able to fully reproduce the richness of visual effects
that real-world materials can exhibit. In contrast to
analytical BRDF models, so-called measured BRDFs
model the appearance of a surface as large tables
storing the amount of light reflected for every pair of
incoming and outgoing directions. Thus, measured
BRDFs allow having a fully realistic appearance, at the
cost of not providing an easy control over the properties
of the material.

Our selection contains eight materials that span a
large variety of appearances; three of them correspond
to metallic materials with a dominant specular
component (M1..3) while the others (P1..5) have a
dominant diffuse component. For simplicity, we order
the materials in each group by increasing glossiness.

These materials were rendered under a fixed
viewpoint on the blob shape used in previous perceptual
studies (Vangorp et al. 2007). This shape is simple
enough to be drawn easily by the painter while being
more effective than a sphere in conveying the right
material properties. We used a natural illumination since
this favors material perception (Fleming et al., 2003)
and chose the Eucalyptus environment (Debevec, 1998).
This illumination contains numerous bright areas
alternating with darker ones, allowing for interesting
reflection effects to be painted over the shape rather
than only a few bright points.

The renderings were all made using the Mitsuba
renderer (Wenzel, 2010) and tone-mapped using
Mantiuk et al.’s operator (Mantiuk et al., 2008), with
the predefined lcd display, and color saturation and
contrast enhancement set to 1. The renderings were
then converted to grayscale by using the luminance
channel of the Lab space to eliminate the effect of
color; background information was masked.

We then recruited a professional artist specialized
in hyperrealist painting1 to paint the material samples
on an empty background. The exact goal given to the
painter was to “paint the same material that is presented
in the rendering,” thus concentrating on giving the
right “material impression.” The renderings were shown
on an iPad and kept visible during the entire painting
process. The paintings were made using acrylic paint on
cardboards of size 18 × 24 cm. The paintings were done
over five sessions of 4 hr each; all of them were recorded
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P1 P2 P3 P4 P5 M1 M2 M3

Figure 2. Stimuli used in our perceptual study: First line shows the renderings; second line shows the paintings of the eight materials.
P1 to P5 have a dominant diffuse component;M1 toM3 correspond to metallic materials with a dominant specular component. Both
are ordered by increasing glossiness. Higher-resolution images can be found in the Appendix C.

on video. We then photographed the paintings and
treated the photographs to correct for perspective error
and mask out the paper background. The paintings
were photographed at a resolution of 1,910 × 1,910
pixels and then downscaled to a resolution of 500 × 500
pixels, the same size of the renderings, allowing us to
eliminate photography noise while keeping the texture
of the paintings. All images (paintings and renderings)
were placed on a gray background with luminance
L = 0.88, which is equivalent to the luminance of the
cardboard.

The renderings and the corresponding paintings are
shown in Figure 2. While trying to match the reflectance
properties of the material, the painter did not attempt
to match the brightness of the renderings. He reported
afterward that he did not consider this an important
parameter to convey the material properties. In the
perceptual study (see Subjective measures: User-study
methodology), users globally perceived the material
properties similarly between the paintings and the
renderings, showing that the painter succeeded in
reproducing the material appearance of the rendered
materials.

Painting process

In order to understand how the painter built his
representation of the material and which features seem
to be key for him, we analyze the painting process of
each image. Using the recording of the painting sessions,
we decompose the paintings in steps, corresponding
to changes in the color that the painter was currently
using. This allows us to separate the phases of painting
the shadows from painting the highlights, for example.
The choice of the decomposition is also guided by the
explanations given by the artist during the session. We
align the keyframes when needed by registering points
placed on salient features of the painted shape and
canvas through perspective transformation. We extract
the different layers by subtracting each step from the

next one. For visualization purposes, we then add this
difference to a mid-gray layer, allowing us to clearly see
the dark or bright brushes of the layer. The different
steps are shown in Figure 3, where each column shows
the painting at a given step (left image) as well as the
extracted layer (right image).

These steps can be categorized in four main phases,
although each one is not necessarily represented in each
painting, and their order can vary:

(1) Creating a first base layer, almost completely
constant in color.

(2) Building the volume: The painter builds the first light
contrast between luminous parts of the shape and
shadow parts, either by lightening or darkening the
base layer. This builds the main volume of the shape.
At this stage, the contrast of all paintings is similar,
showing that the material does not play a role yet.

(3) Adding highlights: The painter uses diluted white
color to add the highlights. Globally, the highlight
layer has more contrast for the metallic materials,
with the use of less diluted paint. The paintings of
P1,2 do not have a separated highlights layer because
the materials are mostly diffuse.

(4) Adding lowlights: The painter reinforces some
shadows with black or almost black paint. For
nonmetallic materials, this consists of only adding a
few shadows to adjust the volume. For metals, the
painter added lowlights in almost all the shadowed
part of the shape, producing much darker and
complex shadows than that for the nonmetals. For
the most specular metal M3, the painter added
a layer of reflections in the dark area before
reinforcing the shadows (shown in the last column
of Figure 3).

This process reveals the important visual clues that
the painter tried to reproduce:

• The sharpness, contrast, and placement of the
highlights
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reference

P1

P2

P3

P4

P5*

M1

M2*

M3

Figure 3. Main steps of the different paintings, classified by the main phases of material representation. The reference image is shown
in the first column. In each column, the left image shows the painting while the right image shows the extracted layer of paint
(difference with the previous painting). For the paintings marked with a star (P5 and M2), the lowlights were painted before the
highlights. The red outline indicates the final painting.

• The intensity of lowlights (or the contrast between
diffuse shadows and lit areas)

• The potential reflections in shadow regions

While the two first ones are influenced by how
glossy the material is perceived, the two last ones are
responsible for the metallic impression. These features
have previously been shown to be key to the perception
of several reflectance properties such as glossiness or
metallicness, suggesting that the painter indeed knows
the key features to material perception.

These clues differ substantially according to the
material to depict but provide insights as to what

features are most relevant in depicting the material.
We will look into those in Objective measures: Image
features.

Subjective measures: User-study
methodology

We aim to compare the perception of materials
on two different depictions: realistic renderings
and paintings of these renderings, provided by a
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professional artist. For this purpose, we carried out two
different experiments. For each material and depiction,
in the first experiment, we asked the participants to
rate a series of high-level perceptual attributes, and in
the second experiment, we asked them to perform a
reflectance matching task, in which they had to adjust
the parameters of a BRDF model to match a reference
image (rendering or painting). While the matching
task yielded a more accurate view of the low-level
perception of the material, the high-level perceptual
questions allowed us to measure how participants
perceived material traits overall, without a direct
image comparison. In this section, we first describe
common aspects of the experimental procedure for
both experiments, and then we describe specific aspects
of each experiment.

Common experimental procedure

Stimuli: The stimuli consist of images showing the two
different depictions (renderings and paintings) of eight
materials, generated as described in Stimuli generation:
Renderings and paintings. All the stimuli are shown in
Figure 2.
Procedure: We implemented our experiment in a web
browser. During the test, participants were shown
one reference image (a rendering or a painting) at
a time. This reference image was shown on the left
half of the screen, while the right half displayed the
questionnaire for either the rating or the matching task
(a screenshot of the experiment during the matching
task is shown in Figure 4). Both experiments were
divided in two sessions: one with the renderings, one
with the paintings. In each session, the order of the
stimuli was randomized, as well as the order of the two
sessions. In order to avoid remembering the materials
from one session to another, participants were asked to
take at least a 15-min break between the two sessions.
In the explanation of the painting session, participants
were told that they were looking at paintings.
Participants: Sixteen participants (average age 26.5
years, σ = 5.13) took part in the study. From this
participant pool, 15 had some experience in computer
graphics, and 13 had some art experience.
Training: For both experiments, participants first had
to complete a training session containing two stimuli.
They were shown explanations of the different tasks,
as well as descriptions and examples of the different
attributes they had to rate during the perceptual
questions. These explanations were also available on
demand during the whole duration of the experiment.
The training stimuli consisted, of BRDF renderings
using the same analytic model that was used during
the matching task (see Matching task). The parameters
of the model for the training examples were chosen
to depict extreme values of the different perceptual

Figure 4. Screenshot of the experiment during the matching
task. The reference image (painting or rendering) is always
shown on the left half of the screen while the right half
contains the questionnaire during the rating task or the test
image and the two sliders during the matching task.

properties to rate, such that they would clearly convey
the meaning of each property.

Attribute rating task

Participants were first asked to classify the material
in one of the following categories: “Metal,” “Plastic,”
“Fabric,” “Other.” This classification task gives a
high-level view of understanding the material by
the participants. We then asked participants to rate
five perceptual properties on a 5-point Likert scale,
following previous works (Serrano et al., 2016; Zell
et al., 2015; Du et al., 2013). In particular, our
questionnaire contains three common high-level
properties that cover various aspects of material
perception: glossiness, brightness, and roughness, as
well as two lower-level properties that relate to the
specularity of the material: sharpness of reflections and
strength of reflections.

Matching task

For the second experiment, we asked participants to
match the reflectance of a test image to the reflectance
of a reference image (one of our stimuli, painting or
rendering). The test stimuli were rendered using the
isotropic Ward model (Ward, 1992), which represents
the reflectance as the sum of a diffuse and a specular
component. This model has the advantage of being
represented with only three parameters that can easily
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be linked to the perception of the gloss of the surface
(Pellacini et al., 2000): ρD (diffuse reflectance), ρS
(energy of the specular component), and α (spread
of the specular lobe). In a pilot study, we found that
matching the three parameters of the Ward model
was very difficult, even for computer graphics experts.
Similarly to related studies in material perception
(Fleming et al., 2003; Bousseau et al., 2013; Vangorp
et al., 2017), we thus fixed the diffuse parameter (ρD),
which determines the albedo of the surface.

In order to find the fixed value for the diffuse
parameter that better approximated our stimuli, four
experienced users (two of the authors and two volunteer
participants) matched the full Ward model to each
stimulus. The average variances in their answers for the
matching task were low: 0.1 for the paintings and 0.01
for the renderings (recall that in the Ward model, each
parameter can take values between 0 and 1); therefore,
we averaged the answers to get a reference value for
ρD. Participants were thus asked to match only the
two parameters of the specular component: α (called
sharpness of reflections in the experiment) and ρS (called
strength of the reflections). The sliders were named such
that they refer to properties rated by the participants
in the perceptual ratings, making it easier for them to
understand their meaning.

The steps follow the perceptual scale defined in the
the work of Pellacini et al. (2000). Specifically, values
for α ranged from 0.001 to 0.239 with steps of 0.0125.
Although it was reported that the surface becomes
diffuse for α > 0.2 (Ward, 1992), we slightly extend, that
range to avoid ceiling effects as reported by Bousseau
et al. (2013) and chose a similar range to theirs. For the
strength of reflections (ρS), the contrast as defined in
Pellacini et al. (2000) ranged from 0 to 0.8 with steps of
0.02. The corresponding range for ρS was computed
with a fixed diffuse component of 0.2 such that the
possible values for the specular parameter were the
same for all stimuli, while ensuring that (ρS + ρD) < 1
to avoid reflecting more light than the incoming light.
In the rest of this article, we report answers for ρS using
the same non contrast scale. For both sliders, the scale
was sampled with half steps for the first 20% of the
scale as our pilot experiments show that the steps were
too big for fine adjustments at the beginning of the
range.

The test images were then rendered using the
same blob shape with a different viewpoint and same
illumination as the reference image. Using a different
viewpoint avoids pixel-to-pixel comparison between the
two images.

Participants were shown the test image on the right
with the two sliders that control the sharpness and
strength of reflections under it (Figure 4). Participants
were asked to move the slider such that the material in
the test image appeared as similar as possible to the
material of the reference image. After validating the

task, participants were asked to score how satisfied they
felt with the matching on a 5-point scale bounded by
extremely unsatisfied and extremely satisfied.

Objective measures: Image features

In order to analyze the answers of the perceptual
study, we first seek to identify which important image
features may help to convey the appearance of the
material and which ones are also reproduced in the
paintings. We thus compute a variety of features that
are either known to be linked to material appearance,
such as the highlights sharpness, or that are specific
to the paintings, such as the local perturbation in the
images.

Following the work of Di Cicco et al. (2019), we
extract the luminance profiles from both types of
images (renderings and paintings) in order to identify
the most prominent features. We choose two lines
(one vertical, one diagonal) that run through the most
luminous and sharp highlights as well as through the
shadows of the shape. These positions of the lines allow
us to compare both the luminance difference between
the most luminous and darkest parts, as well as the
contrast and sharpness of highlights. We average the
profiles over 3-pixel-wide lines. The profiles extracted
from the vertical line are shown in Figure 5, where the
orange profiles correspond to the renderings, while the
green ones correspond to the paintings. Looking at the
profiles allow us to visually appreciate the differences
between the two modalities, of images and between the
different materials, such as differences in luminance
(vertical translations), in contrast (vertical amplitude),
or in the shape of highlights. The second line (diagonal
one) that we use to compute our features is shown in
Figure 6 (top left).

In order to extract the features from the profiles,
we manually cut and label them into a “highlights
zone” (shown in purple in Figure 6, left), a “lowlights
zone” (shown in red), and transitions in between. This
labeling is made by looking simultaneously at the
luminance profiles and the input image. From these
labeled profiles, we extract five features:

• Image contrast: Michelson contrast (Michelson,
1927) obtained as (Imax − Imin)/(Imax + Imin).

• High/low contrast: difference between the average
luminance in the highlights and lowlights, shown
as the blue lines in Figure 6 (left). Contrary to the
image contrast, this measure does not account for
the shape of the highlights.

• Luminance: average luminance value.
• Highlights sharpness: width of the highlights
transition, similar to Di Cicco et al. (2019). This is
measured as the amplitude of the highlights divided
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Figure 5. Profiles extracted along the vertical black line depicted in the images, which covers both the most luminous and darker parts
of the shape. The orange line is the profile extracted from the renderings, while the green one is extracted from the paintings.

image contrast high/low contrast

highlights sharpness

luminance

local perturbation

paintings

renderings

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.8

0.6

0.4

0.2

Lu
m

in
a

n
ce

Pixel position from the top

highlights

lowlights high/low contrast

(a) (b)

Figure 6. (a) Top: The rendering of P5 with the two lines (in black) that we use in our analysis. Bottom: The profile extracted from the
bold vertical profile. We cut the profile at the dashed lines and label the different zones as the “highlights zones” (in purple) and
“lowlights zones” (in red). The difference in average luminance between these zones (in blue) is our high/low contrast. (b) Image
features that we extract from the luminance profiles, on paintings and renderings. Each measure is pooled (maximum or average)
over the different profiles.

by the maximum derivative of the highlight peaks.
We further explain the computation of this feature
in Appendix A.

• Local perturbation: standard deviation of the first
derivative from a smooth version of the profile

obtained with a bilateral filter. We do not take
into account the highlights zone in this measure to
avoid measuring the strength of the highlights. This
measures small-scale perturbations in the image,
such as brush strokes in the paintings.
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For the features that relate to a luminance amplitude
(image contrast and high/low contrast), we keep the
maximum value over the different zones and profile
lines and average the rest. The final extracted features
are shown in Figure 6.

The image features span a large range of values,
which endorses our selection of materials since we
chose them so that they would cover a wide range of
appearances. Only the luminance spans a short range of
values since we purposely chose materials with a similar
luminance in order to allow easier comparison between
them.

The image features also reflect our organization of
the materials. Both the highlights sharpness and the
image contrast are in accordance with the ordering of
the materials, increasing from P1 to P5 and from M1
to M3 in both types of images. The metallic materials
(M1..3) have much higher contrasts (both high/low
contrast and image contrast) than the nonmetallic ones
(P1..5), in accordance with their dominant specular
component.

Comparing the image features and the image profiles
between the paintings and the renderings allows
us to observe three major differences between both
modalities:

• For P1..4, both the high/low contrast and highlights
sharpness are higher in the paintings, and the
transition from shadow to light appears steeper
in the profiles. The paintings of these nonmetal
materials thus seem to exhibit exaggerated light
effects. Interestingly, the painter stated that the
nonmetals, particularly the most diffuse ones, were
the hardest to reproduce due to the subtlety of
the light effects on these surfaces. This difficulty
to reproduce subtle effects could explain the
image differences between the paintings and the
renderings for these materials.

• The local perturbation is much higher (between two
and five times higher) in the paintings than in the
renderings. This is due to the texture of the brush
strokes that is clearly visible in the paintings. This
is one of the most important visual differences
between the renderings and the paintings.

• The luminance exhibits important differences
between the paintings and the renderings and
particularly higher values in the paintings of P1,2,5.
Interviewing the painter reveals that he on purpose
did not try to match the luminance of the reference
image because, according to him, it is not what is
responsible for the impression of the material since
it is equivalent to showing the same material under
a more intense light.

In the remainder of the article, we will seek to
understand how these differences have impacted the
perception of material properties in the perceptual

P4 P5 M2 M3

Figure 7. For a subset of the materials, highlights extracted from
the renderings (top row) and from the paintings (second row).
Please refer to the text for details.

study. Note that material appearance perception may
not be fully explained by the set of image features
included here. For example, the placement and shape
of highlights have been shown to be relevant for the
impression of gloss (Kim et al., 2011; Marlow et al.,
2011) but cannot be easily measured or quantitatively
compared in our set of stimuli. We did assess
qualitatively whether the position and orientation
of highlights were consistent between paintings
and renderings by extracting the highlights of each
depiction for the materials that exhibited the clearest
highlights (P4,5 and M2,3). More precisely, we selected
the most luminous pixels of the images by manually
setting the minimum and maximum luminance values
(changing the levels). These highlights are shown in
Figure 7. Because the painter did not seek to make an
exact copy of the renderings, the exact shape, number,
and placement of the highlights are not identical
between the two modalities, but the highlights follow
the same global direction and orientation, are placed
on the same area of the shape, and reflect a similar
environment.

How do image features explain
perceptual ratings?

We seek to identify which of these image features
are the most important to convey material appearance
and can thus be used to explain users’ answers. We first
analyze the correlations between users’ answers and
image features before exploring the use of these image
features as simple predictors of high-level attributes.

Correlations between image features and
perceptual ratings

We seek to understand how perceptual ratings are
linked to our image features and which image features
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Figure 8. Correlations between our image features and the users’ answers for (a) all the images, (b) only the paintings, and (c) only the
renderings. The color scale indicates the strength and direction of the correlations (from blue to red). The most significant
correlations (r > 0.75) and p-value (p < 0.001) are indicated in bold.

better explain high-level attributes and matched
parameters. We thus look for high correlations between
such answers and our computed image features, which
would validate the expressiveness of such features. In
Figure 8, we show the Pearson correlations between
the image features and the users’ answers, pooling
together all the images, then considering paintings and
renderings separately. A blue color indicates a negative
correlation, while red indicates a positive correlation.
Saturation indicates the strength of such correlation. As
shown in this figure, painting and rendering modalities
share common patterns of correlations; therefore, we
focus mainly on describing these common behaviors in
the pooled results for all images and highlight the main
differences between paintings and renderings when
present.

The matched contrast ρS and the strength of
reflections are highly correlated with both the high/low
contrast (r = 0.93 and r = 0.82, respectively) and the
image contrast (r = 0.83 and r = 0.9, respectively),
showing that the contrast in the image is a good cue to
judge the intensity of reflections. However, while the
contrast ρS seems to be only influenced by the contrast
between shadowed and lit areas (higher correlation
with the high/low contrast), the strength of reflections is
also linked to the sharpness of the highlights (higher
correlation with image contrast and high correlation
with the highlights sharpness). This shows that users
were consistently biased by the appearance of highlights
when judging the strength of reflections without visual
reference (in the rating task), overestimating it when
sharp highlights were visible.

The local perturbation is also highly correlated with
the matched contrast ρS, particularly when taking
renderings and paintings separately (r = 0.93 and
r = 0.76, respectively). This image feature captures
not only the texture of the brush strokes but also the
reflections in the lowlights zones, which correlates
with the strength of reflections. This correlation is
particularly strong for the paintings due to the fact
that reflections in the dark areas are exaggerated in the
paintings of the metallic materials.

In accordance with previous studies that have
shown that glossiness depends on both the contrast
and the sharpness of highlights (Pellacini et al., 2000;
Marlow & Anderson, 2013; Di Cicco et al., 2019), the
glossiness attribute is highly correlated with both the
image contrast (r = 0.85) and the highlights sharpness
(r = 0.91).

Finally, all the attributes that relate to the sharpness
of the highlights (α, roughness, sharpness of reflections)
are highly correlated with the corresponding image
features (highlights sharpness, r > 0.9), and the
brightness attribute is fully explained by the luminance
of the images (r = 0.96). This shows that our image
features capture well the visual features that account for
these attributes.

A major difference between the paintings and
the renderings lies in the correlations between the
brightness or luminance and all the other attributes and
features. These correlations are higher in the paintings
than in the renderings and may reflect a bias in the
paintings where all nonmetallic materials were painted
brighter.
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Figure 9. Coefficients in the linear models that predict each user’s answers of the rating task. For each variable, the left bar shows the
coefficients for the model fitted on the paintings while the right-most one shows the coefficients of the model fitted in renderings.
The regression score for each model is displayed on top of each bar.

Using image features as predictors of high-level
attributes

The high correlations that we observe between the
image features and the users’ answers suggest that
we can use certain image features to predict some
perceptual properties of the materials. By fitting a
linear model to each user’s answers, we can better
understand which image features are key to each
perceptual attribute and compare their effect in the
renderings and in the paintings. In this section, we focus
on users’ answers to the attribute rating task since we
are interested in users’ perceptual ratings of material
appearance. Fittings for the answers to the matching
task (parameters of the Ward model) can be found in
Appendix B.2.

Since some of the image features are highly
correlated, fitting a multivariate linear model containing
all the image features would not be informative. In
order to select only the smallest number of appropriate
features for each user attribute, we use a forward
selection method: We successively add the attribute
with the lowest p-value if it is statistically significant
(p < 0.05).

We compute the linear coefficients of each variable
in the models and show their relative importance in
Figure 9. This allows us to compare the importance
of each feature when predicting a given attribute.
The coefficients confirm what we observed in the
correlations. The attributes glossiness and strength of
reflections are predicted by both the global contrast
and the highlights sharpness, the attributes that relate
to the sharpness of highlights (roughness, sharpness of
reflections) are predicted by the highlights sharpness, and
the brightness attribute is predicted by the luminance.

Interestingly, for the majority of the predicted variables,
the importance of each image feature is very similar
between the two models, fitted for paintings and
renderings, respectively.

On top of the linear coefficients in Figure 9, we also
show the regression score (R2) for each of the models.
Our models fit all the high-level perceptual attributes
with a score over 0.9, except for the roughness attribute
(R2 = 0.81), which seems harder to explain by using
only the highlights sharpness. This suggests that the
perception of material properties in our experiment
was mainly guided by simple image features that are
present in both paintings and renderings. Furthermore,
the scores are almost identical for the two models,
suggesting again that the same image features are linked
in the same way to perceptual properties of materials in
both modalities.

Our analysis suggests that perceptual properties of
materials are strongly linked to a few image features
in both modalities. These image features can thus be
used to better understand the answers of the perceptual
study.

Statistical analysis of users’
answers

In this section, we analyze in detail the answers from
the perceptual study in relation to our selected image
features. We seek to find if differences in users’ answers
between paintings and renderings are linked to actual
differences in the stimuli but also if the important visual
differences that we observed between paintings and
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renderings had an impact on the perception of material
appearance.

As a preliminary analysis, we first study the
correlations between the answers in our two
experiments, both interparticipants and interattributes.
The main conclusion of this analysis is that in general,
participants were able to consistently judge material
appearance for renderings and paintings similarly well
in the two tasks (rating and matching). Participants
were globally consistent among each other, especially
in the matching task, but some attributes were more
prone to personal interpretation (brightness and
roughness) and exhibited less consistency. Additionally,
participants were generally less consistent when judging
paintings than when judging renderings. This analysis
can be found in Appendix B.1 (Figure 13).

We then conduct a statistical analysis of these
answers by analyzing which factors have a significant
influence on the results of both task. The factors
(independent variables) we include are depiction
= {renderings, paintings}, material = {M1..3, P1..5}, and
the interaction between depiction and material.

We cannot assume that our observations are
independent, since each user is measured several times
under different conditions; therefore, we model the
potential effect of each subject as a random effect.
Additionally, none of our measurements (dependent
factors) are normally distributed (p < 0.05 for the
Shapiro-Wilk test). Therefore, in order to quantify the
effect of our factors on each of our measurements, we

use a generalized linear mixed model with a gamma
distribution (unless stated otherwise), which is well
suited for scale responses with positive values like
ours. In all our tests, we fix a significance p-value of
0.05. Finally, for the factors that present a significant
influence, we further perform pairwise comparisons
when necessary through estimated marginal means
(emmeans) with Bonferroni correction for multiple
comparisons.

For the high-level attribute rating, the dependent
variables that we analyze are the attributes glossiness,
brightness, roughness, strength of reflections, sharpness of
reflections, and time taken to answer the questionnaire.
For the matching task, the dependent variables that we
analyze are the final matched values of the model (ρS
and α), the satisfaction of the user with the matching,
and time for completing the task. The answers from
the perceptual study can be seen in Figure 10, and
the results of the analysis are described in the next
subsections. We provide additional results, such as
the results of the classification task, the time to
complete the tasks, and the impact of demographics, in
Appendix B.

Influence of material

As expected, we have found a significant effect of
the material in every measured attribute and matched
parameter (p < 0.001). This is an indication that both
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for the renderings and paintings, participants are
perceiving the different stimuli as belonging to different
materials.

Similarly to the image features, the users’ answers
reflect our choice and ordering of materials, both for
the paintings and the renderings. In the high-level
attribute rating task, materials fromM1 toM3 and from
P1 to P5 present increasing values for glossiness, strength
of reflections, and sharpness of reflections, as well as
decreasing roughness values, as can be seen in Figure 10
(left). In the matching task, the spread of the specular
reflections α follows a very similar scheme, decreasing
from M1 to M3 and from P1 to P5 (Figure 10, right).
Finally, metallic materials (M1..3) were matched with a
much higher contrast ρS (four times higher on average)
than nonmetallic materials (P1..5) and were also rated
as with slightly more glossiness and higher strength of
reflections. This indicates that the different depictions
are successful in transmitting the different material
attributes.

Influence of depiction and interactions with
material

Most attributes were, in general, well matched
between paintings and renderings, indicating that
material properties were perceived very similarly
between the two modalities. There are three notable
exceptions to this, and in the following, we look at
whether differences in our selected image features
can explain them or if other factors are involved.
In Figure 10, we indicate significant effects of the
interactions of depiction and material (p < 0.001) with
an asterisk.

Differences between paintings and renderings for P1..4
We observed a large effect size for the significant

differences in ratings for the nonmetals P1..4. The
paintings of these materials were rated with significantly
higher strength of reflections (except for P3) and were
matched with higher-contrast ρS than the renderings.
The most diffuse ones (P1 and P2) were also rated as
having more glossiness in paintings.

This corresponds with the materials that exhibit
higher high/low contrast and highlights sharpness.
The painting of P3 exhibits less difference in high/low
contrast than the other materials, which can explain
why it was not rated with significantly higher strength
of reflections. These two measures (high/low contrast
and highlights sharpness) jointly explain well the
perceived strength of reflections and glossiness: We
found high correlations between difference in these
answers (glossiness, strength of reflections, and ρS) and
the difference in high/low contrast (around r = 0.8)
and highlights sharpness (around r = 0.75). This
confirms that the difference in perception ratings can be
explained by actual differences in the stimuli.

In summary, for these particular materials (P1..4),
not only the visual cues are not same, but the final
perceived appearance is significantly different between
the renderings and the paintings, indicating that
the material depicted in the painting differs from
the rendering. However, the fact that the perceived
differences are well explained by the differences in visual
features confirms the role of these few visual features in
material appearance.

Brightness rating
The paintings of nonmetallic materials were generally

rated brighter, which is in accordance with the difference
in luminance that we observed between renderings and
paintings. We found a very high correlation (r = 0.98)
between the difference in ratings between paintings and
renderings and the difference in luminance. This shows
that the difference observed in the perception ratings
can fully be explained by actual changes in the images.

However, this difference did not impact the
perception of the other material attributes. This
seems to validate the intuition of the painter that the
luminance is not responsible for the perception of the
material, at least in this special case, where one object
is shown without context to set the luminosity of the
scene.

Roughness rating
Although we observe very few significant effects

of the interaction of materials and depictions for
the sharpness of reflections rating and the matched
spread of specular reflections α, bigger differences can
be observed in the rating of the roughness attribute.
The most specular materials (M2,3 and P3..5) were
consistently rated as more rough in the paintings than
in the renderings (particularly significant for M2,3
and P3). While the roughness is strongly linked to the
sharpness of the reflections, it seems that participants
were more sensitive to the specific visual features of
paintings (such as brush strokes) when judging the
roughness than when judging the other attributes
related to the sharpness of reflections. The fact that
this effect is visible only for the most specular materials
suggests that the brush strokes had a particular effect
on material that exhibits clear highlights, with these
highlights exhibiting more texture in the paintings than
in the renderings.

Discussion

Difference of perception between realistic
renderings and paintings

By looking simultaneously at objective (extracted
from images) and subjective (human judgments)
features, we can better understand how users perceived



Journal of Vision (2021) 21(5):16, 1–24 Delanoy, Serrano, Masia, & Gutierrez 15

the materials in the paintings. Although some of
their answers were different between paintings and
renderings, many of these differences can be explained
by actual differences in image features that are known
to be linked to material perception. This shows that
other visual differences between the two modalities
(such as brush strokes) only had a minor impact on the
perception of material appearance.

As detailed in Influence of depiction and interactions
with material, we found the most significant differences
of answers between paintings and renderings for the
brightness and strength of reflections attributes and
for the matched contrast ρS. Our analysis shows that
all these differences were due to actual differences in
the stimuli: The difference in luminance explains well
the difference in brightness rating while the difference
in high/low contrast and highlights sharpness explains
well the difference in all the answers that relate to
the perception of specularities (glossiness, strength of
reflections, and ρS). This shows that there is very little
effect of the modality (renderings or paintings) on the
perception of the low- and mid-level properties of the
material, despite their important visual differences, such
as the presence of brush strokes in the paintings.

Surprisingly, there are more differences in the answers
of the classification, which represents a higher-level
task. Users had a tendency to classify more materials as
“Other” and “Fabric” when looking at the paintings
than when looking at the renderings (mainly classified
as “Metal” or “Plastic”), showing that the texture
of the painting misled them. The full answers to the
classification are shown in Appendix B.4 (Figure 16).
Some users explained that they had the impression
that all the paintings were representing some textured
material, such as rocks. It thus seems that the brush
strokes in the paintings were interpreted by some
users as texture and influenced them in choosing
categories that are more prone to present a textured
surface. This could indicate that perceiving individual
reflectance properties, such as glossiness or sharpness
of reflections, is not sufficient to correctly identify the
material and that the texture might play a bigger role
for this task since the users were more sensitive to the
painting “artifacts,” such as brush strokes, when trying
to identify the material.

Additionally, it seems that users were not equally
sensitive to the visual differences between paintings
and renderings depending on the type of material
properties they had to judge. We have seen almost
no difference in answers for the perceptual attributes
linked to the sharpness of reflections in both the rating
and matching task. This could mean that users are
less influenced by the artifacts of the paintings when
judging the sharpness of highlights, which can be
judged more locally than the glossiness or the strength
of reflections. Interestingly, we observed a bigger effect
of the medium on the roughness attribute, which is also
supposed to be linked to the sharpness of reflections:

Users rated the most glossy materials as rougher in
the paintings than in the renderings. One should also
consider that the term “roughness” can be ambiguous,
since the resulting perceived roughness can be due to
a combination of the artist’s depiction of the material
and the roughness of the painting medium itself, not
present in the case of renderings. As such, even if the
depicted material has a very small roughness (like P5
orM3), the painting medium brings some amount of
roughness and prevents reaching a very low roughness
score. This could explain the lower consistency that we
observe between participants’ answers for this attribute
on the paintings (average interparticipant correlation of
0.59): Some participants may have been more sensitive
to the influence of the medium texture than others.

Finally, all the tasks in the perceptual study were
significantly longer to complete for paintings than for
renderings, with the participants also being less satisfied
with their matching for the paintings. The complete data
are shown in Appendix B.3 (Figure 15). The difference
in matching satisfaction could be partly explained
by the fact that the reference image in the matching
task is a rendered image. It is thus easier to match the
renderings since they are visually more similar to the
reference, especially when there is no strong highlights
to use as a guide. However, the difference in time to
complete the tasks cannot be explained in the same way,
since the rating of the attributes was also significantly
longer for the paintings. In the absence of context, the
recognition of materials thus seems to be not as fast
and natural in paintings as in natural images, as if users
need some time to abstract from the painting artifacts
and correctly judge the material properties. The fact
that participants also seemed to have more difficulties
judging the type of material that they were seeing, such
as easily recognizing a plastic or a metal, could have
played a role in this longer process to judge material
properties.

Depiction of material appearance

The results of the perceptual study show that the
painter was successful in reproducing the appearance of
the different materials, with the participants perceiving
high-level attributes similarly between the paintings
and the renderings. Although the paintings are not an
exact copy of the renderings, the painter reproduced a
number of visual features carefully, such as the intensity,
the sharpness and rough placement of highlights, the
contrast of the image, or the intensity of the shadows
and reflections. He also intentionally did not reproduce
some other features such as the luminance or the exact
shape of each highlights, which he considered of less
importance. This can indicate that the painter knew
which image features are key to material appearance
and was able to use them correctly.
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By looking at how these image features can predict
perceptual ratings, we can also identify which of these
features are key to each specific reflectance property
in each modality. Our findings fully align with what
was previously shown in perceptual studies that only
considered computer-generated images. We show in
this study that the exact same image features are linked
to the perception of material properties in realistic
paintings, similar to the observations of Di Cicco
et al. (2019). This suggests that, despite other visual
differences between paintings and renderings, the
reproduction of these key visual features by the painter
was sufficient to provide a good appearance perception
of the materials.

However, the paintings of the most diffuse materials
(P1...4) exhibit larger deviations of visual features
and were perceived significantly differently in the
paintings and in the renderings. These paintings exhibit
exaggerated light effects that led users to consider them
as more glossy or with a more important specular
component than in the renderings. Although this could
partly be due to the personal technique or ability of
this particular painter, the painting medium itself also
plays a role. The painting technique (which relies on
superposing layers of strokes) makes it difficult to create
perfectly smooth gradients but, on the contrary, favors
the creation of sharp highlights with brush strokes.
This was confirmed by the painter, who described the
most reflective materials as “requiring more work”
due to the complexity of the image, but considered
the most diffuse materials to be the most complicated
ones to depict correctly due to these subtle effects and
transitions. Aside from the personal ability or technique
of the painter, it is thus possible that such smooth
surfaces are hard to reproduce with the particular
painting medium but would be easier with others, like
charcoal. Additionally, both the realistic style used
in this study and the depicted object reinforced this
difficulty: The painter attempted to faithfully reproduce
the light gradients while he could have found ways to
abstract them with a more abstracted style, and the
depicted object exhibited very large smooth surfaces in
comparison to the scale of the paint texture, making
this problem more obvious.

Conclusion

Our study reveals that, despite their visual difference,
people perceive materials almost identically in realistic
paintings as in renderings, even when no context
is provided. This can be due to the fact that the
painter faithfully reproduced the most important key
features to material perception, such as the placement,
contrast, and sharpness of highlights, as shown in
previous studies. By intentionally reproducing these

image features, the painter confirmed his implicit
understanding of material perception. More important
we show that these image features are linked to
high-level perceptual properties in the same way in
paintings and in renderings and that they can even
be used to predict perceptual ratings. This suggests
that our perception of materials relies mostly on a few
key image features and that the reproduction of these
features allows us to transmit material appearance.
However, our study focuses on global statistics that can
easily be measured by numbers but does not use other
image features such as the placement of highlights or
their alignment with the surface curvature, grazing
angle effects, or any other light effects. Further research
should be conducted in order to develop robust
methods to measure or evaluate such features.

We also observed that the tasks were harder to
complete for the paintings than for the renderings,
showing that interpreting the material in paintings is
not as natural as with natural images and requires some
effort to abstract from the painting artifacts. Further
studies could be conducted to better understand
the process underlying this difference and study the
influence of depiction style and the material. It is, for
example, possible that the style of the painting plays
a role or that some materials are easier to interpret in
paintings.

Our study is currently limited to one medium and
one style of painting. An extended study with various
media (such as watercolor or pencil) involving different
artists would be required to see if our findings hold in
a more general context. Specifically, we focus here on
realistic painting, with a high level of detail. A further
study could also include different levels of abstraction
to further understand up to which level of abstraction
people are able to recognize material properties without
context and if the image features that are reproduced
are still the same. Additionally, the depicted object in
this study exhibits a smooth surface, without small,
high-frequency details in shape. Future studies could
also include shapes with more geometric detail in
order to see how painters depict the appearance
of these intricate parts, whether they do it with an
economy of means (see, e.g., the golden material in
the inset in Figure 1a), and how the result of the more
complex interaction between material and shape is
conveyed.

Keywords: material perception, depiction of material
appearance
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Appendix A: Computation of image
features

Computation of highlights sharpness

To measure the sharpness of the highlights, we take
inspiration from Di Cicco et al. (2019) and use the
width (measured in pixels) of the highlights transition
rather than the derivative. This measure is not biased by
the amplitude of the highlights, as shown in Figure 11.
In this figure, the width of the transition is denoted as
�x while �L denotes the amplitude of the highlights.
The first two images look similarly blurry despite the
difference of amplitude; this is well captured by �x,
whereas the maximum derivative max(d ) is different
between the two images. On the other hand, the last
two images have the same derivative but appear to have
a very different sharpness, which is well captured by the
width of the transition. In order to get a robust estimate
of the derivative, we average the local maxima of the
derivative if the profile contains peaks (derivative higher
than a threshold) and we take the average derivative if
no peaks are detected.
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Figure 11. We define the highlights amplitude as �L and the highlights blurriness as �x, the width of the transition. This last measure
reflects well the visual sharpness at various contrast: (a) and (b) have a similar sharpness (small �x) while (c) is blurrier (larger �x).
Using only the derivative biases results by contrast: (b) and (c) have the same derivative while they appear to have very different
sharpness.

The computation actually give a measure of
blurriness instead of a measure of sharpness. We thus
reverse the measure and define our final highlights
sharpness as 60 − �x.

Correlations between the image features

We analyze how varied our image features are and we
obtain their Spearman correlations, shown in Figure 12
for all the images, as well as for the paintings and
renderings separately.

When considering all the images, our measures do
not exhibit strong intercorrelations (> 0.75) except for
the two measures of contrast (image contrast and diffuse
contrast) that are very highly correlated (r = 0.94) since
both are linked to the luminance amplitude in the
image.

However, when looking at paintings and renderings
separately, the local perturbation has strong correlations
with both the diffuse contrast (r = 0.79 and r = 0.73,
respectively) and the image contrast (r = 0.9 and
r = 0.87, respectively). The local noise not only captures
the brush strokes noise in the paintings but also
partially accounts for the strength of the highlights and
lowlights reflections, leading to a higher measure for the

metallic materials, which correlates with the measures
of contrast.

Finally, the other high correlations are caused by
a bias in our selection of material. The correlation
between the luminance and the image contrast
(r = −0.73 for all images) is due to the fact that
our selection of nonmetallic materials contains only
luminous materials. This correlation is particularly
high for paintings (r = −0.86) since the nonmetallic
materials were painted brighter.

Appendix B: Additional results of
the user study

Preliminary analysis: Correlations between user
answers

Interparticipant correlations
We evaluate how consistent are the participants with

each other by computing the pairwise Spearman rank
correlations between each participants. We report in
Table 1 the median of these pairwise correlations for
each attribute or parameter of the perceptual study,
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Figure 12. Correlations between our image features for (a) all
the images, (b) only the paintings, and (c) only the renderings.
The color scale indicates the strength and direction of the
correlations (from blue to red). The most significant
correlations (r > 0.75 and p < 0.001) are indicated in bold.

for all images as well as for renderings and paintings
separately.

We first analyze the answers when pooling all
the images. Participants were the most consistent in
their answers to the matching task, which is to be
expected since there is a visual reference in this task.
For the attribute rating, participant were consistent
in their answers to glossiness, strength of reflections

All Renderings Paintings

ρs (contrast) 0.81 0.87 0.75
α (spread) 0.91 0.96 0.88
Glossiness 0.74 0.91 0.72
Roughness 0.62 0.81 0.59
Sharpness of reflections 0.78 0.81 0.82
Strength of reflections 0.73 0.82 0.75
Brightness 0.69 0.71 0.72

Table 1. Median interuser agreement computed after pairwise
Spearman correlations between our 16 users for the ratings and
parameters of the matching task (all images, renderings, and
paintings).

and sharpness of reflections (r > 0.7). They were less
consistent in their answers to roughness and brightness,
showing that these attributes are more prone to
personal interpretation and scaling. For the brightness,
the answers of three participants have particularly
low correlations with the answers of all the other
participants, while the other participants were more
consistent.

Globally, participants were less consistent in their
answers for the paintings than for the renderings,
showing that the paintings are more prone to personal
interpretation. Additionally, the interparticipant
correlations for the roughness attribute are low only for
the paintings, which might indicate that participants
were biased by the texture of the paintings when
judging the roughness of the materials.

Interattribute correlations
In our experiment, we asked participants to rate

various attributes that are known to be linked to each
other (e.g., glossiness and strength of reflections) and to
estimate similar properties through both the rating task
and the matching task. We investigate if participants
were consistent in their answers and if we retrieve
the same relationship between attributes for both the
paintings and the renderings. To do so, we compute
the Pearson correlation between all the answers given
in the experiments: the two matched values (ρS and
α) and the five rated attributes. The correlations are
shown in Figure 13, for all the images as well as for
the paintings and renderings separately. A blue color
indicates a negative correlation while red indicates a
positive correlation, with the saturation indicating the
strength of the correlation.

We observe similar patterns of correlations for both
the paintings and the renderings. The matched contrast
ρS and the rating of the strength of reflections are very
highly correlated (r = 0.87). This is to be expected
since both measures are linked to the same reflectance
property, answered within a different task (rating or
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Figure 13. Correlations between the user answers for (a) all the images, (b) only the paintings, and (c) only the renderings. The color
scale indicates the strength and direction of the correlations (from blue to red). The most significant correlations (r > 0.75 and
p < 0.001) are indicated in bold.

matching task). Similarly, the matched α value and the
rating of the sharpness of reflections are also very highly
correlated (r = 0.96). In addition, the rough attribute,
which also relates to how sharp are the reflections, is
highly correlated with these two answers (r > 0.95).
This shows that participants were consistent in the way
they perceive the sharpness of the reflections.

Finally, the rating of the glossy attribute is highly
correlated with both the strength of reflections
(r = −0.79) and all the measures that relate to the
sharpness of the reflections (r > 0.9). This is in
accordance with several studies that have shown
that glossiness depends on both the contrast and the
sharpness of highlights (Pellacini et al., 2000; Marlow
& Anderson, 2013; Di Cicco et al., 2019).

These results show that participants were able to
answer consistently for renderings and paintings, both
for the low-level representation (matching task) and for
the high-level perceptual properties (rating task).

Fittings of the linear models to matched
parameters

Figure 14 shows the linear coefficient and regression
scores of the linear models fitted to the answers of the
matching task. Similarly to the linear models fitted
on the answers to the rating task, the coefficients and
regression score are very similar between the paintings
and renderings. The only difference lies in the prediction
of the matched contrast ρS, which depends almost
only on the high/low contrast for the renderings while it
mainly depends on the image contrast for the paintings.
This might be due to an important difference between
the high/low contrast and the image contrast in the

diffuse contrast

image contrast

high. sharpness

α (spread)ρS (contrast)

0%

20%

40%

60%

80%

100%

paint. rend. paint. rend.

0.98 0.99 0.75 0.77 R2

image features:

Figure 14. Coefficients in the linear models that predict each
user’s answers of the matching task. For each variable, the left
bar shows the coefficients for the model fitted on the paintings
while the right-most one shows the coefficients of the model
fitted in renderings. The regression score for each model is
displayed on top of each bar.

painting of M3: The dark areas of the shape were
painted much brighter than the original rendering,
leading to an important loss of high/low contrast,
but had less impact on the image contrast and on the
perceived properties.

Effects of the session on time and satisfaction

Both tasks were faster to complete for the renderings
than for the paintings, as shown in Figure 15.
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Figure 15. Time for completing the matching and ratings depending on the session (left) and block order (center). The right-most plot
shows the satisfaction with the matching for each material according to the session (right). Error bars correspond to a 95% confidence
interval. Asterisks indicate significance for the comparison between paintings and renderings for each material.

Additionally, the users were consistently more satisfied
with their matchings for the renderings than for the
paintings. This effect was particularly observed for
rougher materials: M1 and P1..4 (Figure 15, fourth
column). Paintings of rough materials might be harder
to match because the effect of the brush strokes is more
important than in the specular ones.

This might be due to paintings being harder to
interpret out of context, requiring some time and effort
to judge the material properties. Moreover, since the
reference image in the matching task is a rendered
image, it may be easier for participants to match the
renderings, since they are visually more similar to the
reference.

We also have found a significant influence of the
block order in completion time of the matching
(Figure 15, third column). In particular, the second
block carried out was consistently completed faster.
We believe that users got used to the slider interface
in the first block and therefore were able to complete
the task faster in the second block. Note, however, that
this did not have an effect in the final performance of
the matching. Finally, we did not find any significant
effect of the order in which the two blocks were carried
(paintings or renderings first) on any of the parameters
or attributes.

Material classification

Figure 16 shows the choices of the different material
categories for each material, in the paintings and in the
renderings.

In general, the metallic materials M1..3 were classified
as “Metallic” the majority of the time while other
materials were classified either as “Fabric” or “Other”
(for the most diffuse ones) or as “Plastic” (for the most
glossy ones).

When looking only at the paintings, this classification
is less clear. For the materials that have very defined
reflections (M3 and P5), the answers are similar between
the two modalities. Among the other materials, the
metals were less classified as “Metal” in the paintings
while P1..4 were less classified as “Plastic,” with some
of them even being classified as “Metal.” Globally,
the paintings were more often viewed as representing
“Fabric” or an “Other” material. Some of the users
reported that they had the feeling that all the paintings
were representing some kind of textured material such
as “rocks” or “clay.”

We also analyzed the link between our image features
and these classification answers by computing their
point-biserial correlations. Most of the correlations
that we observed are small (under or around 0.5),
indicating that material classification cannot be easily
linked to individual low-level image features. However,
we observed relatively strong correlations (around or
above 0.7) between both the high/low contrast and the
image contrast and the Metallic classification. This is
in accordance with what we observed in our image
features: Metallic materials have much higher contrasts
due to their dominant specular component. Further
investigation would be needed to understand the role
of the different image clues and low-level perceptual
properties on the material classification.

Influence of demographics on user study

High-level attribute rating
Computer graphics (CG) experience had a significant

influence only in the ratings for glossiness (F(3, 233) =
8.899, p < 0.001) and brightness (F(3, 233) = 8.965, p
< 0.001). Post hoc analyses revealed that in both cases,
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Figure 16. Number of assignment of the stimuli for each category of material.

users with no experience rated those two attributes
consistently lower. Art experience only had a significant
effect on the glossiness attribute (F(2, 233) = 3.725, p
= 0.026), with users with intermediate art experience
rating glossiness higher.

Matching task
We have found a significant influence of the

experience on CG for both parameters of the model, as
well as the satisfaction and the time to completion. The
art experience was only significant for the parameter
alpha. For the contrast, users with less CG experience
in general matched lower values than users with
intermediate or professional experience (F(3, 233) =
4.397, p = 0.005). For the spreading of the specular

reflection α, both for CG experience (F(3, 233) =
370.456, p < 0.001) and art experience (F(2, 233) =
4.740, p = 0.01), users with less experience tended to
match to higher values. For the satisfaction and time
to complete the match, users with less CG experience
tended to be less satisfied with their results (F(3, 233) =
10.198, p < 0.001) but also spent less time performing
the matching (F(3, 233) = 13.808, p < 0.001).

Appendix C: High-resolution stimuli

In Figure 17, we show the stimuli (paintings and
renderings) in high resolution, following the same
ordering as in the main text (Figure 2).
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Figure 17. High-resolution version of the stimuli used in our perceptual study, including both renderings (first row of each pair) and
paintings (bottom row), of each of the eight materials.


