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We present a quantitative analysis of two-particle interaction effects in generalized, one-dimensional Aubry-
André-Harper models with the Fermi energy placed in one of the band gaps. We investigate systems with periodic
as well as open boundary conditions, for the latter focusing on the number of edge states and the boundary
charge. Both these observables are important for the classification of noninteracting topological systems. In our
first class of models the unit cell structure stems from periodically modulated single-particle parameters. In the
second it results from the spatial modulation of the two-particle interaction. For both types of models we find
that the single-particle band gaps are renormalized by the interaction in accordance with expectations employing
general field theoretical arguments. While interaction-induced effective edge states can be found in the local
single-particle spectral function close to a boundary, the characteristics of the boundary charge are not modified
by the interaction. This indicates that our results for the Rice-Mele and Su-Schriefer-Heeger model [Phys. Rev. B
102, 085122 (2020)] are generic and can be found in lattice models with more complex unit cells as well.
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I. INTRODUCTION

In the context of topological properties of fermionic
systems, one-dimensional (1D) lattice models with a rich
structure of the unit cell have attracted a tremendous inter-
est in condensed matter physics [1–10]. Besides edge states,
i.e., bound states located at the boundary of the system, the
investigation of the boundary charge accumulated at one end
of the system together with its fluctuations also recently expe-
rienced a significant revival [11–16]. Corresponding models
are characterized by several bands which are separated by
single-particle gaps. The topological properties as well as the
presence or absence of in-gap edge states localized close to an
open boundary can be tuned by changing the single-particle
parameters, i.e., the hopping matrix elements and the on-site
energies. Comparably simple models from this class are the
Su-Schriefer-Heeger (SSH) model [17,18] and the Rice-Mele
(RM) model [18,19] with a unit cell size of Z = 2 lattice
sites. Already shortly after these models were set up in the
early 1980s effects of a complementary two-particle interac-
tion were investigated. This was mainly done using effective
low-energy field theories which are supposed to be applicable
to more complex microscopic lattice models as well [20–24].

We recently studied the spinless RM model and, as a
special limit of this, the SSH model with a homogeneous
nearest-neighbor two-particle interaction directly, i.e., without
the approximate mapping to a low-energy continuum field
theory [25]. Employing an approximate functional renormal-
ization group (RG) [26,27] approach and numerically exact
density matrix renormalization group (DMRG) [28–31] we

(1) Confirmed the low-energy power-law scaling of the
renormalized gap as a function of the bare one with an ex-
ponent which is interaction dependent.

This was revealed using general field theoretical argu-
ments in the early 1980s [20–22] and recently reinvestigated
employing continuum field theories constructed as closely
as possible to the microscopic model of interest [15,25,32].
Based on these insights one expects that the power-law renor-
malization of all band gaps is also found in microscopic
models with more complex unit cells and Z � 2.

With this sanity check passed, in Ref. [25] we went be-
yond established interaction effects. We studied the decay of
the interunit cell density oscillations of the interacting RM
model away from an open boundary for a Fermi energy placed
within the gap. From this the associated boundary charge,
accumulated close to the boundary, can be computed and was
investigated. We finally computed the local spectral function.
In Ref. [25] as well as here we focus on the limit of vanishing
temperature. We found

(1) That the density decay of the interacting gapped sys-
tem remains dominantly exponential (as it is the case for
vanishing interaction) but that the behavior of the preexpo-
nential function is altered by the two-particle interaction and

(2) That the characteristics (see below) of the fractional
part of the boundary charge [11–15,33–36] is robust against
interaction effects and can fully be understood in terms of the
(renormalized) bulk properties, while

(3) The local spectral function close to the boundary might
show an interaction-induced in-gap δ-peak associated to an
effective edge state which does not have a counterpart in the
noninteracting limit.

It is remarkable that while the number of in-gap δ-peaks of
the spectral function, indicating effective edge states, depends
on the two-particle interaction, the characteristics of the frac-
tional part of the boundary charge is robust. This is of interest
in the context of topological systems. It is known that in
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the noninteracting case topological bulk invariants are related
to the number or parity of zero-energy edge states (bulk-
boundary correspondence). These edge states are thus related
to bulk properties. We will refer to them as conventional edge
states. In the interacting RM model the additional edge states
instead originate from the local modulation of the self-energy
close to the open boundary, which goes beyond the unit cell
structure. It follows from the interplay of the boundary and
the two-particle interaction as can conveniently be illustrated
using functional RG (see below). These edge states cannot
be explained based on (renormalized) bulk properties, and we
refer to them as unconventional edge states.

The insights of Ref. [25] raise the question if properties
2 to 4 are specific to the interacting RM model or if they
can be found in other, more complex lattice models of the
above class as well—we already commented on the general
expectation concerning property 1. To investigate this in a
first step we here study the generalized Aubry-André-Harper
(AAH) model [11–15,37–42] with Z = 4 and (homogeneous)
nearest-neighbor interaction at different fillings f and the
Fermi energy falling in one of the Z − 1 = 3 single-particle
gaps. We confirm properties 1 to 4 using functional RG.

In a second step we pose another question: Is it conceiv-
able to construct a model with a homogeneous single-particle
part—thus being gapless in the noninteracting limit—which
shows a similar phenomenology as described above but rooted
in a periodically modulated, local two-particle interaction?
Considering the cases of Z = 2 and Z = 4 periodicity and
using functional RG as well as DMRG we show that this
is indeed possible. It can be understood as follows. On
the Hartree-Fock level the modulated two-particle interaction
generates a modulated on-site energy and/or modulated effec-
tive hopping, and thus Z − 1 (Hartree-Fock) gaps open. If the
Fermi energy is chosen such that it lies inside one of these
gaps, the RG procedure, which contains the Hartree-Fock
terms, but other diagrammatic contributions on top, leads to
the effects summarized in the above phenomenology. Within
functional RG and for Z = 2 this can even be shown analyti-
cally.

However, there is an exception to this for Z = 4. If one
selects the Fermi energy such that it lies in the gap associated
to half filling, the gap opening is of second order in the inter-
action. As our approximate functional RG procedure does not
contain all terms to second order we cannot use it to study this
special case. Also DMRG is not the right tool to investigate
the low-energy physics in this case. For small interactions the
gap, setting the low-energy scale, is very small (of second
order). It would thus require very large systems inaccessible
by DMRG to study the half-filled situation. We thus leave the
detailed study of this special case to future work.

The modulated interaction model was studied earlier in
Ref. [43]. Using DMRG and field theory the authors provided
evidence that due to the modulation of the two-particle in-
teraction a gap opens. However, their DMRG results for the
density of a finite system with two open boundaries were
not obtained in the ground state. The authors overlooked
that with this method it is difficult to discriminate between
states which are almost degenerate, a situation naturally aris-
ing in the presence of a zero-energy edge state (see below).
In that case the density the authors present is the one of

a linear combination of the ground and the first excited
state.

Combining the results of the present paper with the ones of
Ref. [25] provides strong evidence that the phenomenological
properties 1 to 4 hold quite generally for 1D interacting lattice
models with periodically modulated single-particle parame-
ters, and, under certain conditions, similar effects can also
be found if the underlying noninteracting model has homo-
geneous parameters but the local interaction is periodically
modulated around a finite average value.

We are not aware of any experimental realization of the
1D spinless modulated interaction model so far. However, first
steps towards the experimental realization of extended, spinful
models such as the Fermi-Hubbard model were taken. One of
the candidates is a semiconductor heterostructure leading to
a chain of gate-defined quantum dots; see Ref. [44]. Another
possibility would be a cold Fermi gas in an optical lattice. In
the bosonic case a modulated interaction model was realized
in, e.g., Ref. [45]. For possibilities to realize noninteracting
AAH models in various systems we refer to Refs. [39,40,46]

The rest of this paper is organized as follows. In the next
section we present the models we consider, give a brief ac-
count of the many-body methods employed, and introduce the
observables we study. Our results for the interacting gener-
alized AAH model are presented in Sec. III. Section IV is
devoted to the results obtained for the models with period-
ically modulated interaction (Z = 2 and Z = 4). In Sec. V
we summarize our results. The functional RG flow equations
are presented in Appendix A, while Appendix B contains the
details of the analytical solution of the flow equations for the
modulated U model with Z = 2. In Appendix C we briefly
discuss the model with Z = 4 at half filling and periodically
modulated interaction.

We emphasize that the present work should be viewed as
a follow-up of Ref. [25], while still being self contained to
an appropriate degree. We thus refrain from presenting all
the technical details and a comprehensive account of earlier
works; we here restrict ourselves to the ones which are of
direct relevance for our work. We furthermore give only a
brief summary of the behavior of the observables, i.e., the
local single-particle spectral function, the local density, and
the boundary charge, in the noninteracting limit; our focus is
on the changes due to the two-particle interaction. For further
details we refer the reader to Refs. [14,15,25].

II. MODELS, METHODS, AND OBSERVABLES

A. Models

1. The interacting generalized Aubry-André-Harper
model with Z = 4

The first model we consider is the generalized 1D spinless
AAH model with uniform nearest-neighbor two-particle inter-
action. The noninteracting model is given by the Hamiltonian

HZ
AAH =

∑
j

(Vjn j − [t jc
†
j+1c j + H.c.]), (1)

where c(†)
j is the second quantized annihilation (creation) op-

erator at the site j and nj = c†
j c j the local density operator.

The on-site potential Vj and the hopping parameters t j are

195119-2



QUANTITATIVE ANALYSIS OF INTERACTION EFFECTS … PHYSICAL REVIEW B 103, 195119 (2021)

periodic with period Z , defining the number of lattice sites
of the unit cell,

Vj = V cos

(
2π j

Z
+ ϕv

)
, (2)

t j = t + δt cos

(
2π j

Z
+ ϕt

)
. (3)

Here V and δt denote the amplitude of the modulation of the
on-site potential and hopping, respectively. Furthermore, ϕv

and ϕt are the phases of the corresponding modulation. For
generic parameters the noninteracting model has Z − 1 band
gaps of size 2�ν , with ν = 1, 2, . . . , Z − 1 [14].

We take t as our unit of energy and set t = 1. Moreover, we
use W = 2t to denote half of the bandwidth of the (gapless)
model with δt = V = 0.

The homogeneous two-particle interaction is assumed to
be of nearest-neighbor form and given by

Hint = U
∑

j

(
n j − 1

2

)(
n j+1 − 1

2

)
, (4)

with the (repulsive) interaction of strength U � 0.
We take the total number of lattice sites N to be an integer

multiple of the period Z such that all of the unit cells remain
intact. One can rewrite the index j of the Wannier basis into a
unit cell index n and intracell site index i:

j = Z (n − 1) + i. (5)

To study the bulk properties of the system we consider
periodic boundary conditions (PBCs). In this case the site
index j in the sum of Eqs. (1) and (4) runs from 1 to N , and
we identify sites N + 1 and 1. To study the boundary physics,
we take open boundary conditions (OBCs). In this case the
sum in the above equations runs from 1 to N for the diagonal
addends and from 1 to N − 1 for the off-diagonal ones.

For Z = 2, Eq. (1) is the well-known Rice-Mele model,
which is one of the basic models considered in the field of
topological Fermi systems. In particular, it shows edge-state
physics. In an earlier publication [25] we have provided a
comprehensive study of interaction effects in this model. Our
focus was on directly tackling the microscopic lattice model
using the functional RG and DMRG. In addition, we used the
mapping to field theories and methods applicable to those such
as bosonization. As an extension beyond Z = 2 we consider
the interacting generalized AAH model with period Z = 4
in the present paper. However, we already now note that our
methods are applicable for arbitrary Z .

2. A tight-binding model with periodically modulated interaction

In a second extension of our RM model study we in-
vestigate a tight-binding model with uniform hopping and
vanishing single-particle potential but a periodically modu-
lated nearest-neighbor interaction. We thus leave the class
of models in which the gap, the edge-state physics, and the
topological properties are present already in the noninter-
acting limit. Throughout the paper we consider interactions
sufficiently small such that the homogeneous part does not
lead to the opening of a correlation-induced gap [as it happens
for our interaction Eq. (4) at half filling for sufficiently large

repulsive interactions [47]]. If any of the above phenomena
1 to 4 is found for the modulated interaction model, it thus
originates from the inhomogeneous (but periodic) part of the
two-particle interaction. The noninteracting Hamiltonian is

H0 = −t
∑

j

(
c†

j+1c j + H.c.
)
. (6)

The interaction is given by

HZ
int =

∑
j

Uj

(
n j − 1

2

)(
n j+1 − 1

2

)
, (7)

with

Uj = U + δU cos

(
2π j

Z
+ ϕU

)
, (8)

where δU is the amplitude of the modulation, U � 0 is the
average value, and ϕU is the phase. We, in particular, consider
Z = 2, with Uj = Uj+2 and Z = 4 with Uj = Uj+4 for all
j. The same statements on the boundary conditions and the
related summation limits as made for the generalized AAH
model hold.

B. Many-body methods

To solve the interacting models we employ the same meth-
ods as used in our interacting RM model study [25], i.e.,
functional RG [26] and DMRG [28]. In addition, we refer
to field theoretical considerations employed to effective low-
energy models [15,20–24,32]. To avoid any doubling we refer
the reader interested in an introduction to the application of
these methods to (single-particle) gapped systems to Sec. III
of Ref. [25]. We here only summarize the individual advan-
tages and shortcomings of the three approaches.

Functional RG and DMRG can directly be applied to the
microscopic lattice models while the use of field theoretical
tools requires the mapping to a continuum model. This holds
only in the low-energy limit and for sufficiently weak two-
particle interactions. However, within the field theory one can
obtain analytical insights. In limiting cases this is also possible
within functional RG. As we use the lowest-order truncated
approach the functional RG results are controlled only for
small to intermediate two-particle interactions. If properly
executed, DMRG can be considered as numerically exact.
When being interested in boundary effects, we have to employ
finite size DMRG. Due to the growth of the entanglement
entropy it is, however, limited to system sizes of the order of
103 lattice sites. The inverse system size sets a lower bound
for the smallest accessible energy. In contrast, functional RG
can be applied for very large systems allowing one to access
the asymptotic low-energy limit. Importantly, the lowest-order
truncated functional RG was shown to be capable of capturing
the entire series of leading logarithms for ungapped [48,49] as
well as (single-particle) gapped [25] many-fermion systems.
This was crucial for the RM model [25] and will turn out to
be equally important in our present extensions.

To derive a closed set of functional RG flow equations
for the self-energy and the local density of our models we
employed the same approximations and cutoff procedure as
discussed in Ref. [25]. Due to the enlarged size of the unit cell
as compared to the Z = 2 RM model studied in this paper,
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they become more complex. For completeness we present the
RG equations in real space in Appendix A 1 and in momentum
space in A 2. Both can easily be solved on a computer and in
limiting cases even analytically; see Appendix B.

The functional RG approach truncated to lowest order
in the two-particle interaction leads to an approximate self-
energy, which is frequency independent. At the end of the
RG flow one thus has to deal with an effective Hamiltonian
with single-particle parameters (hoppings and on-site ener-
gies) which are renormalized by the two-particle interaction.
For periodic boundary conditions the periodicity with period
Z is preserved. In the presence of open boundaries the ef-
fective single-particle parameters are modulated beyond the
intra-unit cell structure. This additional structure decays from
the boundary towards the bulk and follows from the interplay
of the boundary and the two-particle interaction. For large
distances the renormalized bulk values obtained for periodic
boundary conditions are reached. The approximate effective
single-particle picture of the interacting problem helps to in-
terpret the results (see Ref. [25] and below).

To obtain the DMRG data for the spectral gap and the
local density we used the same approach and benchmarking
as described in Sec. III.C of Ref. [25].

In Ref. [25] we have shown that to capture the physics
of the microscopic lattice model beyond leading order (in
the two-particle interaction) it is advantageous to construct
a field theory directly from the model under consideration
and use additional information available, such as the exact
Bethe ansatz solution of the interacting homogeneous model.
Here we do not aim at this level of accuracy and instead use
general field theoretical arguments which do not contain any
information on the underlying microscopic model beyond the
leading order ones. For our present purposes this is sufficient.

C. Observables

We briefly introduce the observables we compute to inves-
tigate the effects of the two-particle interaction. Besides the
band gaps we study the local particle density, the boundary
charge, and the single-particle spectral function.

We note that for our purposes the details of the analytical
results which can be obtained for the noninteracting Z = 4
generalized AAH model are not crucial. We thus refer readers
to Ref. [14] for a discussion of those.

1. The gap

In the noninteracting limit the three single-particle band
gaps of size 2�ν , with index ν = 1, 2, 3, of the Z = 4 gen-
eralized AAH model are determined by the single-particle
parameters V , δt , ϕv , and ϕt . Here we are not interested in
the details of this dependence [14,15] but rather on how the
gap is modified by the two-particle interaction if the Fermi
energy is placed in one of the gaps. From field-theoretical
considerations [15,20–24,32], which are independent of the
details of the underlying lattice model, and our study of the
Z = 2 RM model [25] we expect power-law scaling of the
renormalized gap as a function of the bare one. The exponent
will depend on U . In addition, we expect a dependence on the
band filling f = ν/Z associated to the corresponding index ν

via the dependence on the Fermi momentum kF = π f where

the gap opens: quarter filling for ν = 1, half filling for ν = 2,
and three-quarter filling for ν = 3.

For the modulated interaction model the noninteracting
limit is gapless. However, the periodic modulation of the
two-particle interaction might lead to gaps. This should not
be confused with the gap which at half filling opens even
for homogeneous interactions if U becomes sufficiently large
[47]. To study the possibility of a gap opening by DMRG
we consider the difference of the energy of the first excited
state and the ground state energy for systems of up to O(103)
sites. Within lowest-order truncated functional RG we can
employ the effective single-particle picture. If the modulated
interaction will lead to modulated effective single-particle
parameters, a gap might open. We can study this using the
noninteracting formulas introducing the renormalized param-
eters. The same can be done for the Z = 4 interacting AAH
model. Significantly larger systems than in DMRG or even
the thermodynamic limit can be studied within functional RG
(see below).

2. The local spectral function

The single-particle spectral function Aj (ω) is of particular
interest if we consider a system with open boundaries. It,
on the one hand, shows the distribution of spectral weight

|ψ (α)
k ( j)|2, given by the delocalized single-particle wave func-

tions ψ
(α)
k ( j) over the band energies εα

k , with band index α

and quasimomentum k for given site j. On the other hand
possible edge states show up as in-gap δ-peaks at their en-
ergy εe with a weight |ψe( j)|2 and wave function ψe( j). In
the noninteracting limit the eigenenergies and eigenstates can
be obtained straightforwardly by numerically diagonalizing
the Hamiltonian for a large but finite system (for analytical
results, see Ref. [14]). The same can be done with the effective
Hamiltonian at the end of the RG flow leading to an approxi-
mation of the local spectral function for U > 0. This holds for
the interacting Z = 4 generalized AAH model as well as for
the modulated interaction model at Z = 2 and Z = 4.

To obtain the full spectral information from DMRG is
computationally rather challenging and suffers from certain
shortcomings [29–31], mainly a limited energy resolution due
to finite size effects, a finite bond dimension, and/or an artifi-
cial broadening. We thus refrain from using DMRG to obtain
Aj (ω).

In Ref. [25] we have shown for the Z = 2 RM model that
besides the conventional edge-states additional interaction-
induced unconventional edge states appear in certain parts
of the parameter space. They result from the spatial modu-
lation of the renormalized single-particle parameters beyond
the intra-unit cell structure which decays from the boundaries
towards the bulk. We investigate if the same happens in the
Z = 4 generalized AAH model. For the modulated interaction
model both types of edge states, conventional and unconven-
tional ones, might be induced by the interaction. In the former
case the renormalized bulk parameters are such that the corre-
sponding noninteracting model with these parameters shows
an edge state. For the unconventional edge state this is not the
case, and they follow from the interplay of the boundary and
the interaction as described above.
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3. The local density

For a noninteracting system it is straightforward to com-
pute the local density ρ( j) for a large but finite system by
exact diagonalization (for analytical insights for the Z = 4
generalized AAH model, see Ref. [14]). For models of the
present type it can have two contributions—one coming from
the filled bands ρband( j) and the other one coming from the
filled edge states ρedge( j). In the presence of an open boundary
the envelope modulating the intra-unit cell density structure of
ρband( j) from the boundary towards the bulk decays exponen-
tially if the Fermi energy lies in one of the gaps. The decay
length is given by the single-particle parameters (for analytical
results for the Z = 4 generalized AAH model, see Ref. [14]).
The same holds for ρedge( j).

To obtain the density of interacting systems by functional
RG we used two approaches. One is to employ the effective
single-particle picture and diagonalize the effective Hamilto-
nian at the end of the RG flow. However, it was earlier shown
for metallic [49] as well as single-particle gapped models [25]
that writing a flow equation for the density leads to improved
results. The corresponding flow equation is presented in Ap-
pendix A. We therefore also rely here on this approach, which
can be used for systems of up to 106 lattice sites.

Within DMRG the ground state density is directly acces-
sible, and we can thus use the numerically exact results for
systems of the order of 103 sites to compare to the approxi-
mate functional RG ones.

For the Z = 2 interacting RM model we have shown that
the decay of the envelope of the density remains exponential
with a renormalized decay length but that the preexponential
function is altered by the interaction. We investigate if the
same holds for the interacting Z = 4 generalized AAH model.

For the modulated interaction models the noninteracting
density away from the boundary decays generically as 1/ j.
This is the decay of ordinary Friedel oscillations of metallic
systems in one spatial dimension [52]. However, at half filling
the particle-hole symmetry prohibits Friedel oscillations and
the local density even in the presence of open boundaries is
homogeneous [49] (and equal to 1/2). This also holds in the
presence of the nearest-neighbor interaction. We thus inves-
tigate the density of the Z = 4 modulated interaction model
with the Fermi energy placed in the gaps with indices ν = 1, 3
corresponding to one- and three-quarter filling.

4. The boundary charge

In the presence of an open boundary, charge might be
accumulated close to it. This boundary charge QB can be
computed as

QB = lim
M→∞

lim
N→∞

∞∑
j=1

[ρ( j) − ρ̄] fN,M ( j), (9)

where the bulk averaged particle density is given as

ρ̄ = 1

Z

Z∑
i=1

ρbulk(i), (10)

with ρbulk(i) computed for periodic boundary conditions, and
fN,M = 1 − θMZ ( j − NZ ) is an envelope function which de-
fines the range of the boundary on the scale NZ and varies

smoothly from unity to zero on the scale MZ (see also Fig. 3
of Ref. [15] for a sketch). Here θδx(x) denotes some represen-
tation of the θ -function with broadening δx. One needs to take
N � M � Z for the boundary charge to become independent
of M and N . As described in the last subsection ρ( j) as well
as ρbulk (i) are accessible by functional RG and DMRG.

One of the most important universal properties of QB dis-
cussed in all detail in Refs. [11–16] is its transformation under
a shift of the lattice by one site towards the boundary, de-
scribed by a change ϕ → ϕ + 2π/Z of all modulation phases
ϕv , ϕt , and ϕU . For generalized AAH models it was shown
for the noninteracting case in Refs. [13,14] that the boundary
charge can change only by the average particle charge f or the
hole charge f − 1 moved into the boundary, with f = ν/Z .
Therefore, as a function of ϕ = ϕt = ϕv , one expects one of
the two following possibilities for the phase dependence of
QB:

QB = f (ϕ) + F (ϕ) + ϕ

2π

{
ν

ν − Z
, (11)

where f (ϕ) = f (ϕ + 2π/Z ) is some smooth and periodic
function, and F (ϕ) contains discrete jumps by unity when
edge states cross the Fermi energy. A similar result is also
expected in the presence of a modulated interaction (with
ϕ = ϕU ) since, as shown below, the gap is induced by an
effective Hartree-Fock mechanism. For the generic case (in-
cluding interactions, several channels, and random disorder) it
is expected that QB will always change by ν/Z mod(1) when
changing the phase by 2π/Z . This was motivated in Ref. [15]
based on the nearsightedness principle that charge correlations
in insulators will decay exponentially fast.

In addition, the universal properties of the boundary charge
have also been discussed within low-energy field-theoretical
models for the case of small gaps (including interactions via
bosonization methods) [15,16]. In this case it was shown that
the boundary charge can be written as

QB = γν

2π
+ ν

2Z
, (12)

where γν denotes the phase of the gap parameter in gap
ν, resulting from the resonant processes connecting the two
Fermi points ±kF = ±π f . The relation of the phase γν to the
modulation phase ϕ has been analyzed in detail in Ref. [15]
and is in general quite nontrivial for half filling f = 1/2.
Away from half filling, one obtains

γν =
{
νϕ + const for f < 1/2
(ν − Z )ϕ + const for f > 1/2 . (13)

Here the constant part can often be fixed via Eq. (12) by
special symmetry points [15]. The universal result Eq. (12)
shows that the boundary charge is only sensitive to the phase
variable γν but not to the gap size in the low-energy regime.
For Z = 2, this has been confirmed numerically via DMRG
and functional RG to hold in the interacting case as well
[16,25].
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FIG. 1. The U -dependence of the exponent of the power-law
scaling of the effective gap as a function of the bare one taken from
functional RG data of the interacting generalized AAH model with
Z = 4. Here f is the filling. The black dashed lines show the leading
order exponent according to field theory. Note that one-quarter and
three-quarter filling lead to the same leading order exponent. The
lower dashed line is for f = 1/2, the upper one for f = 1/4 and
3/4. The phases of the modulated single-particle parameters are
ϕv = ϕt = −0.45–0.25π . For quarter filling, the other parameters
are V = 0.15, δt = 0.2, for half filling, V = 0.15, δt = 0.075, and
for three-quarter filling, V = 0.15, δt = 0.1.

III. RESULTS FOR THE INTERACTING GENERALIZED
AAH MODEL WITH Z = 4

We now present explicit results for the renormalized gap,
the local spectral function close to the boundary, the local
density, and the boundary charge for the interacting gener-
alized AAH model with Z = 4. As already emphasized, we
are interested in only the cases in which the Fermi energy lies
within one of the three gaps and the (noninteracting) system
is a band insulator. Note that the Fermi energy depends on
the two-particle interaction U and must thus be chosen such
that the target gap or the corresponding band filling is reached.
There is a unique relation between the band gap index ν and
the band filling f .

From effective low-energy field theories we expect that for
all ν the dependence of the renormalized gap �ren

ν on the bare
one �ν is given by

�ren
ν

�ν

=
(

�ν

W

)β f (U )

for �ν � W, (14)

with an interaction and filling-dependent exponent
β f (U ). Bosonization predicts that to leading order in the
two-particle interaction β f (U ) = K (U, f ) − 1 with the
Tomonaga-Luttinger liquid parameter K of the underlying
homogeneous model [47,50,51]. For the present case
K (U, f ) − 1 = −U [1 − 2 cos(2kF)]/[2π sin(kF)] + O(U 2)
and kF = f π [47,49–51].

We have earlier confirmed this for the microscopic Z = 2
RM model at half filling (the single gap for Z = 2 corresponds
to half filling) directly without the approximate mapping to a
field theory [25].

Figure 1 shows the exponent β f as a function of U for the
generalized interacting Z = 4 AAH model at quarter, half,
and three-quarter filling. The values of the single-particle
parameters are given in the caption. For fixed U and filling

FIG. 2. Functional RG data of the local single-particle spectral
function Aj (ω) of the interacting, generalized, Z = 4 AAH model
with open boundaries on site j = 1 with N = 6000,V = 0.27, δt =
0.15, ϕv = −0.05, ϕt = −0.17. Data for three-quarter filling and dif-
ferent U are shown. The interaction-induced effective edge states are
indicated by vertical arrows with the heights being proportional to
the corresponding spectral weight.

the exponent was determined as follows [see Eq. (37) of
Ref. [25]]: �ren

ν was computed from numerical diagonaliza-
tion of the effective single-particle Hamiltonian in momentum
space (thermodynamic limit) at the end of the functional RG
flow (see Appendix A 2). After dividing by the bare gap
�ν logarithmic-centered differences with respect to �ν were
taken leading to a U and filling-dependent constant in the
limit of small �ν . This value corresponds to the exponent.
In Fig. 1 the numerical data (symbols) are compared to the
leading order in U prediction from field theory shown as
black dashed lines. Note that quarter and three-quarter fillings
lead to the same leading order expression for β f . The data
agree to the field theoretical prediction to leading order in U .
All this is as expected. To save computational resources we
therefore refrain from presenting DMRG data for the gap scal-
ing of the interacting generalized Z = 4 AAH model. How
quickly the functional RG results for the exponent deviate
from field theory obviously when increasing U depends on the
filling (gap index). We, however, emphasize that employing
the lowest-order truncated functional RG we do not control
the orders of the exponent beyond the leading one; for an
extensive discussion of this for the interacting RM model see
Ref. [25].

In Fig. 2 we show exemplary functional RG results for
the local single-particle spectral function on site j = 1 of
the interacting generalized Z = 4 AAH model with open
boundaries. Three-quarter filling is chosen. Energies around
the gap with index ν = 3 are shown corresponding to the
low-energy regime (the Fermi energy lies in the center of
the gap shown). The parameters, as given in the caption, are
taken from a regime in which the U = 0 function shows a van
Hove singularity at the band edge of the gap but no in-gap
edge state (see the dark purple curve in Fig. 2). For the Z = 2
RM model we have shown that this is the parameter regime
in which with increasing U an effective interaction-induced
unconventional in-gap edge state forms [25]. As Fig. 2 shows,
the same happens in the generalized AAH model. The edge
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FIG. 3. Main panel: Functional RG data for of the local den-
sity relative to the bulk value as a function of the unit cell index
n for i = 1 and different U . The single-particle parameters are
N = 20 000, V = 0.03, δt = 0.08, ϕv = ϕt = π/4. Half filling is
considered. Note the linear-log scale. The slope of the dashed line
is computed plugging the renormalized single-particle parameters
into the analytical expression for −2κ ren

bc at U = 0, where κ ren
bc is an

inverse decay length calculated in Ref. [14]. Inset: The logarithmic
derivative of the preexponential function. Solid lines are for i = 1,
dashed lines are for i = 2, dotted lines are for i = 3, and dashed-
dotted ones are for i = 4.

state is indicated by an in-gap δ-peak displayed by a verti-
cal arrow of a height which is proportional to the spectral
weight. With increasing U the in-gap state detaches from
the van-Hove singularity and gains weight. It is not located
at the Fermi energy, i.e., it is not a zero energy edge state.
The appearance of this interaction-induced edge state can be
understood as follows. During the RG flow the interplay of the
open boundary and the interaction leads to the build-up of a
spatial modulation of the effective single-particle parameters
beyond the unit cell structure. The corresponding envelope
decays from the boundary towards the bulk and can lead to
bound states located close to the boundary (edge states). Deep
in the bulk the same effective single-particle parameters as
obtained from a calculation with periodic boundary conditions
are reached. Crucially, the appearance of such unconventional
edge states cannot be understood from either the bare or the
renormalized single-particle parameters in the bulk and does
thus not follow the notion of the standard bulk-boundary cor-
respondence, which deals with conventional edge states only.

The spectral function is computed for N = 6000 lattice
sites. To obtain a continuous function for energies within the
bands the spectral weight is averaged over a few eigenener-
gies. Further increasing the system size does not lead to any
visible changes on the scale of the plot, and the results can be
considered as being in the thermodynamic limit.

As a side remark we emphasize that Fig. 2 also illustrates
that the gap increases with increasing U (see above).

The bulk density on each intracell lattice site i takes a value
which is independent of the unit cell index n. However, the
density of the interacting generalized AAH model becomes
n-dependent if a system with an open boundary is considered.
The main part of Fig. 3 shows exemplary functional RG
results for the absolute value of the difference between the
bulk density and the one obtained in the presence of an open
boundary for the intracell index i = 1 and different U . To

FIG. 4. Main panel: Functional RG data for the boundary charge
of the interacting three-quarter filled generalized AAH model as a
function of ϕ = ϕv = ϕt for different δt and V . The system size
is N = 4000 and the interaction U = 0.08. Inset: Derivative of the
data of the main panel with respect to ϕ. Black lines are the result
obtained from the noninteracting generalized AAH model but with
the effective bulk renormalized parameters.

be able to access large distances from the boundary without
any significant finite size effects a fairly large system size of
N = 20 000 sites is considered. Such cannot be reached by
DMRG. Without loss of generality we focus on half filling.
The single-particle parameters are given in the caption. For
sufficiently large n the decay towards the bulk follows an ex-
ponential function with a U -dependent decay length (2κbp)−1;
note the linear-log scale of Fig. 3. This length scale is inde-
pendent of i (not shown). For U = 0 an analytic expression
for 2κbp in terms of the single-particle parameters is known
[14]. The details of this formula are irrelevant in the present
context, and we do not reproduce it here. The figure indicates
that this expression can also be used in the interacting case
if the bulk renormalized single-particle parameters at the end
of the RG flow are plugged into the noninteracting formula;
see the dashed lines. The decay length is linked to the gap
size, and it is thus not surprising that 2κbp increases with
increasing U .

After the exponential part of the n-dependence is known
it can be divided out. For U = 0 the resulting preexponential
function decays as n−1/2. This is shown in the inset of Fig. 3,
in which we present the log-derivative of the preexponential
function as a function of n. For all i the data approach the
asymptotic exponent ζ = −1/2. This is known analytically
[14]. For increasing interaction the preexponential function
changes. In particular, it no longer seems to decay as the
inverse square root of the unit cell index but instead shows
a richer behavior. As for the gap and the spectral function
these findings are in full agreement with our results for the
interacting RM model [25].

Finally, we discuss the boundary charge of the interacting
generalized AAH model. In Fig. 4 we show QB (symbols)
as a function of ϕ = ϕv = ϕt for U = 0.08, different V , and
δt at three-quarter filling. The line shape is consistent with
the second case of Eq. (11) (involving ν − Z = −1) and, for
small gaps, with Eqs. (12) and (13). The linear dependence of
QB on ϕ is known from noninteracting models [11–14], for
small gaps from effective low-energy field theories [15], and
from our results for the microscopic RM model [25]; see the
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FIG. 5. Functional RG data for the interaction correction of the
boundary charge for the generalized AAH Z = 4 model at half filling
as a function of U . Different V and δt are considered, and we choose
ϕv = ϕt = 5π/6. The system size is N = 4000. The black dashed
line indicates a power law ∼U , and the blue dashed line a power
law ∼U 2. The weak U -dependence in the uniform hopping limit
with δt = 0 indicates that the quantization of the fractional part
of the boundary charge is particularly robust against two-particle
interactions. Note the log-log scale.

summary in Sec. II C 4. As already emphasized in these works
it is robust for weak two-particle interactions. Moreover, the
interaction enhanced corrections to the linear behavior can be
understood from the effective single-particle picture. In the
inset of Fig. 4, we show the derivative of the data of the cor-
responding main panel (symbols). Black lines are the results
obtained from the noninteracting AAH model but with the
renormalized effective bulk parameters. They coincide with
the numerical data. Therefore, the interacting boundary charge
can be determined by the effective bulk parameters alone.

For large gaps (red diamonds in Fig. 4) plateaus at multi-
ples of 1/4 develop. These are also known from considering
the atomic limit [15] and from our discussion of the mi-
croscopic RM model [25]. We found similar results for the
one-quarter-filled AAH model.

For the half-filled noninteracting generalized AAH model,
there is no simple universal linear relation between the bound-
ary charge and the phase of the modulation in the small gap
limit. Instead, Ref. [15] showed that the fractional part of the
boundary charge is quantized in the uniform hopping limit
δt = 0 and takes values ±1/2 and 0. In this work it was
also shown that the quantization is robust towards two-particle
interactions (and disorder). In the following, we examine
the robustness of the boundary charge for the half-filled in-
teracting generalized AAH model using our functional RG
approach. Away from the uniform hopping limit, the boundary
charge at U = 0 is not quantized and shows a nonuniversal
behavior that we do not further investigate here. We studied
only the difference between the interacting and noninteract-
ing boundary charge for both the uniform hopping limit and
generic parameters to show that results for QB are in both
cases rather robust towards the two-particle interaction. In
Fig. 5 we show the absolute value of the interaction correction
of the boundary charge for small interactions as a function
of U on a log-log scale. On the one hand generic exemplary
single-particle parameters are taken (red and orange symbols);
on the other hand the subspace with δt = 0 (blue symbols)

is considered. The black dashed line indicates a power law
∼U and the blue one a power law ∼U 2. The detailed values
of the single-particle parameters are given in the legend. We
observe that for all single-particle parameters the correction of
the boundary charge is very small. Moreover, for the generic
cases, the correction of the boundary charge scales linearly in
U in the small U limit. In contrast, in the uniform hopping
limit with δt = 0, the linear U correction vanishes, rendering
the quantized boundary charge particularly insensitive to the
two-particle interaction. We note that our approximate func-
tional RG procedure does not contain all terms of order U 2;
thus we do not control the results in the uniform hopping limit
besides the insight that the linear term vanishes.

These results for the boundary charge again support our
idea [25] that it might be more appropriate and a more
physical indicator of the relation between boundary and bulk
properties for interacting systems as compared to the number
of edge states.

The above insights on the interaction dependence of the
gap, the single-particle spectral function, the local density, as
well as the charge accumulated close to an open boundary
of the generalized AAH model for Z = 4 are in full accor-
dance with the ones we gained for the Z = 2 RM model.
This indicates that the phenomenology on the interaction de-
pendence of the above observables for gapped Fermi systems
summarized by properties 1 to 4 in the Introduction and first
formulated for the RM model seems to be generalizable to
models with more complex unit cell structure.

We now proceed to investigate if effects similar to the
ones summarized in this phenomenology are also found in
models which are gapless in the noninteracting limit. The gap
is instead generated by a spatially modulated interaction.

IV. RESULTS FOR THE MODULATED
INTERACTION MODEL

A. The Z = 2 model

In this section we discuss the modulated interaction model
with Z = 2. For symmetry reasons a gap can open only around
the zero band energy. In the following we thus consider a
vanishing Fermi energy and half filling. Due to particle-hole
symmetry no effective on-site potential is generated during
the RG flow. As we have discussed in Ref. [25] this symme-
try also implies that an open boundary does not induce any
density modulations beyond the intra-unit cell structure. For
the present model we thus consider only the gap and the local
spectral function as observables.

To the best of our knowledge only the gap of the modulated
interaction model was studied so far in a reliable way [43].
We therefore have no expectations from other models or field
theory that we can compare and benchmark our approximate
functional RG results for the ground state density and bound-
ary charge against. For this reason numerically exact DMRG
results obtainable for small to moderate system sizes will play
a major role in this and the next subsection.

However, we first discuss approximate analytical insights
which can be gained by functional RG. The RG flow equations
can be found in Appendix A. For periodic boundary condi-
tions, the number of coupled flow equations is reduced to two:
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the ones for t�
1 and t�

2 . This shows that an effective SSH model
is generated by the modulation of the interaction. To the given
approximation, the physics of this effective single-particle
model corresponds to the one of the modulated interaction
model.

The effective flowing gap is determined by

2�� = 2
∣∣t�

1 − t�
2

∣∣. (15)

In Appendix B, we present the details of an analytical deriva-
tion of functional RG results for the effective gap in the small
interaction and the small gap limit. In a first step we prove that
the gap in first-order perturbation theory for the self-energy,
i.e., on Hartree-Fock level, is given by

2�HF = 4δU

π
. (16)

In a second step we show that for �IR � W , the solution of
the flow equation of the effective gap is given by

2�(�IR) = 2�HF

(
�IR

4t

)−U/πt

(2 − 2U/πt ), (17)

where �IR is the infrared (IR) scale, cutting off the RG flow.
It needs to be determined numerically. In Fig. 12, the mo-
mentum space RG flow for the effective gap divided by δU
is shown for very small δU . From this figure (and related ones
for other parameter sets) we conclude in a third step that the
IR cutoff is given by the Hartree-Fock gap �IR = 2�HF. This
appears to be reasonable on general grounds and could have
been guessed even without the numerical results. The final
result for the renormalized gap

2�ren = 2�HF

(
�HF

2t

)−U/(πt )

(2 − 2U/πt ) (18)

shows that in the RG procedure logarithms are resummed to
a power law as it is the case in the interacting RM model and
the interacting generalized AAH model.

We, however, emphasize that the appearance of the interac-
tion in the basis [in the form of the modulation amplitude δU ;
see Eq. (16)] and the exponent (in the form of the unit cell
average U ) makes it less obvious that our approximate func-
tional RG indeed captures the physics for small to moderate
two-particle interactions.

In Fig. 6 we therefore compare numerical results for the
gap at the end of the RG flow obtained by real-space as
well as k-space functional RG with DMRG results. We note
that besides the lowest-order trunction the numerical solution
of the functional RG equations does not contain any further
approximations. This has to be contrasted to the analytical
functional RG analysis of Appendix B leading to Eq. (18)
which requires such steps. The main panel shows the compar-
ison of the renormalized gap divided by 2�HF as a function of
the Hartree-Fock gap. The real-space functional RG data are
shown as color-coded filled diamonds. In comparison DMRG
data are indicated by open symbols, and the momentum space
functional RG results are displayed as dotted lines.

For not too large interactions, that is, U = 0.1 and U =
0.5, the functional RG data and the DMRG data agree nicely
when 2�HF is not too small. The upturn of the DMRG data
at small Hartree-Fock gaps and the resulting deviation from

FIG. 6. Main plot: Ratio of the renormalized gap and the Hartree-
Fock gap 2�HF as a function of 2�HF. Data of DMRG (open
symbols), real-space FRG (solid lines with filled diamonds), and
k-space functional RG (black dotted lines) are shown. Inset: The
log-derivative and thus the apparent exponent β of the data in the
main plot. The system size is N = 1000. The corresponding δU
are 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 1.0. Three different U are
considered. Note the log-log scale of the main plot.

the functional RG data can be understood as follows. For
very small gaps, very low energy scales must be accessible.
In DMRG the low-energy scale is set by the inverse system
size. If the gap becomes smaller than this scale, finite size
effects prevail and in the present case lead to the upturn.
Due to limitations in computing resources it is not possible
to produce DMRG data, which are converged with respect to
the bond dimension—as it is the case in Fig. 6—for systems
significantly larger than the N = 1000 lattice sites considered
here. The k-space functional RG results were obtained in the
thermodynamic limit instead and do not suffer from finite
size effects. The real-space functional RG data were, however,
obtained for the same system size as studied by DMRG. Thus
finite size effects matter for these as well but apparently do
not show up in Fig. 6. Two reasons for this appear to be
reasonable. First, the way the gap is extracted in finite size
DMRG and real-space functional RG (gap in the many-body
spectrum versus gap in the effective single-particle spectrum)
differ. Second, truncated functional RG is an approximate
tool, while DMRG (for finite systems) is numerically exact.
Both might affect the details of the finite size corrections.

As the renormalized gap increases with increasing U and
thus the low-energy scale increases, this finite size effect
becomes less severe for larger U . Accordingly, the U = 1
DMRG data show barely any upturn at small 2�HF. How-
ever, for this interaction higher-order corrections missed in the
functional RG approach become important and DMRG and
functional RG data deviate for all 2�HF (see the green data).

Most notably all data sets of Fig. 6 show linear behavior
for intermediate 2�HF on a log-log scale. In the inset the log-
derivative of the data is shown. Up to the finite-size issues just
discussed and higher order (in U ) corrections, DMRG con-
firms the functional RG result Eq. (18) of power-law scaling.
We observe that the DMRG and functional RG exponents de-
viate from the leading order expression −U/π (black dashed
lines in the inset of Fig. 6) in similar ways. We have already
observed this for the Z = 2 interacting RM model. For a
discussion of this, see Ref. [25]. As the full numerical solution
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FIG. 7. Functional RG data for the local single-particle spectral
function Aj (ω) of the modulated interaction model with Z = 2, δU =
0.19, U = 0.5, and ϕU = π/4. Modulated interaction induced in the
gap zero energy δ-peak is shown as the vertical arrows, and the height
is scaled up.

of the RG equations contains terms beyond the leading order,
the deviation of the numerical exponent for U of order 1 from
the analytical exponent −U/π is not surprising.

All this confirms that our functional RG analysis based
on the lowest-order truncation indeed provides the correct
answer. A gap opens in the modulated interaction model
which is triggered by the modulation amplitude δU and scales
as a power law in the Hartree-Fock gap, with the interac-
tion U averaged over the unit cell entering the exponent
to leading order. The leading order exponent −U/π is the
same as found in the Z = 2 half-filled interacting RM model
[25] as well as the Z = 4 half-filled interacting generalized
AAH model (see Sec. III) and is consistent with field theory.
Within truncated functional RG this can be understood from
the effective single-particle SSH model generated during the
RG flow. From a perturbative perspective it, in contrast, can
be understood as follows. Lowest-order perturbation theory
for the self-energy, i.e., the (non-self-consistent) Hartree-Fock
approximation, leads to a gap ∼δU . In the RG process, which
includes more than the Hartree-Fock diagrams, this gap is
elevated to a power law with a U -dependent exponent.

We numerically verified that for vanishing average inter-
action U = 0 but δU �= 0 a gap opens but does not show
power-law scaling (in the Hartree-Fock gap) consistent with
Eq. (18). In short, for U = 0 the δU term alone generates an
effective SSH model which shows noninteracting physics.

After gaining confidence that the modulated interaction
model also can reliably be analyzed using truncated func-
tional RG, we proceed and study the local spectral function
employing this approach (see our comment in Sec. II C 2 on
the use of DMRG for this observable).

In Fig. 7 we show functional RG results for the local
spectral function Aj (ω) of the modulated interaction model
with Z = 2 and open boundary conditions as a function of ω

and the lattice site index j. The average interaction is U = 0.5
with a modulation of δU = 0.19. The phase ϕU = π/4 and
the system size is given as N = 6000. Obviously, an effective
edge state forms which shows as an in-gap δ-peak. As the

figure indicates the effective edge state has a nontrivial spatial
structure. When going from the boundary towards the bulk
the spectral weight first increases before it starts to decrease
(asymptotically is decreases exponentially; not shown), the
latter as it is supposed to be the case for an edge state. Due to
symmetry the spectral weight of the edge state is nonvanishing
only on odd sites (or, equivalently, for the unit cell index
i = 1).

We now have to ask if this edge state appears because
the effective SSH model at the end of the RG flow has bulk
single-particle parameters which imply a conventional edge
state or if the edge state is of an unconventional type. For the
effective bulk SSH model an (topological) edge state appears
if t ren

2 < t ren
1 [17,18,25]. For the parameters of Fig. 7 this

indeed holds, and the edge state is of the conventional type.
It is the well-known zero energy edge state of the effective
SSH model in its topological phase. The van Hove singularity
discussed in connection with Fig. 2 as a necessary requirement
for the appearance of unconventional edge states is associated
to a modulated on-site energy. For Z = 2 and half-filling no
(modulated) on-site energy is generated during the RG flow,
and thus only conventional edge states can be realized. Note
that in accordance with property 3 of the phenomenology
described in the Introduction one can still say that the (con-
ventional) edge state is induced by the interaction as the
noninteracting model does not have any edge states.

To summarize, this shows that the Z = 2 modulated inter-
action model shows effects similar to the ones summarized in
the Introduction. However, due to particle-hole symmetry the
density takes its bulk value regardless of the boundary con-
dition. To overcome this limitation we next study the Z = 4
case.

B. The Z = 4 model

From what we just observed for Z = 2 and our results for
the interacting generalized AAH model we expect that the
Z = 4 modulated interaction model will show three gaps cor-
responding to one-quarter, one-half, and three-quarter filling.
Again the Fermi energy is selected such that it lies in the
middle of one of the developing gaps. Functional RG but also
the Hartree-Fock approximation confirms this.

For Z = 4 it is less straightforward to determine an analytic
expression for the gap at the Hartree-Fock level [see Eq. (16)
for Z = 2]. However, one can easily obtain the Hartree-Fock
gap numerically. This shows that �HF

ν ∼ δU for one- and
three-quarter filling (ν = 1, 3), that is for the first and the third
gap. At half filling the numerics instead indicates �HF

2 ∼ δU 2,
which is an inconsistent result, as the Hartree-Fock approx-
imation does include only some, but not all, second-order
contributions for the gap. As discussed in Appendix C the
δU 2 dependence of the Hartree-Fock gap can be confirmed
analytically. We conclude that the special symmetry at half-
filling leads to a nongeneric behavior of the corresponding
gap. As also in lowest-order truncated functional RG only
parts of the second-order diagrams for the gap are included,
this special case can also not be treated in a meaningful way by
this method. Half filling is furthermore difficult to be treated
by DMRG. For small δU , the interesting case when it comes
to the power-law scaling, the gap is exceedingly small as
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FIG. 8. Main panel: The ratio of the functional RG effective gap
2�ν and the effective gap in first-order perturbation theory 2�HF

ν

as a function of 2�HF
ν . A comparison of quarter filling (filled sym-

bols) and three-quarter (open symbols) for different U is shown.
The parameters are U = 0.0, 0.1, 0.2, 0.45, ϕU = −0.45 − π/4; the
system size is N = 4000 and δU = 0.01, 0.015, . . . , 0.055. Note
the log-log scale. Inset: The log-derivative of the data in the main
plot. The dashed line indicates the leading order exponent from field
theory.

indicated by �HF
2 ∼ δU 2. To access the corresponding low-

energy regime by DMRG would require huge system sizes
and very large bond dimensions both beyond reasonable
computing resources. We thus refrain from investigating the
nongeneric half-filled case any further. It might be a topic for
a future study.

For one- and three-quarter filling we first investigate if
Eq. (18) for the gap also holds at Z = 4. Based on the finding
that �HF

ν ∼ δU (for ν = 1, 3) and the mechanism leading to
the power law as described in the last subsection this ap-
pears to be reasonable. In the main panel of Fig. 8, we show
functional RG data for 2�ν/2�HF

ν as a function of 2�HF
ν

for different U . Data for quarter filling (ν = 1) are labeled
with filled symbols and for three-quarter filling (ν = 3) with
open symbols. The values of the parameters are given in
the caption. For fixed U the two data sets agree and show
linear behavior on a log-log scale. This indicates again the
power-law scaling of the effective gap with respect to 2�HF

ν

and the same exponent for ν = 1 and ν = 3. In the inset of
Fig. 8, we show the centered logarithmic differences of the
data in the main panel. For small 2�HF

ν (small δU ), both
results approach the leading order exponent β f = −U [1 −
2 cos(2kF)]/[2π sin(kF)] from field theory, which is indicated
as the dashed horizontal lines. As we emphasized in Sec. III
and our paper on the interacting RM model [25], we do not
control the orders of the exponent beyond the leading one.

Based on these numerical results, we conclude that for the
gap induced by the modulated interaction the Z = 4 model
at one- and three-quarter filling shows the same behavior as
the Z = 4 interacting generalized AAH model [see Eq. (14)].
In fact, the effective single-particle model at the end of the
RG flow of the Z = 4 modulated interaction model is a AAH
model, and it appears to be reasonable that both models share
the same low-energy effective theory.

FIG. 9. The local single-particle spectrum function Aj (ω) of the
three-quarter filling Z = 4 modulated interaction model as a function
of ω for different lattice sites j. The interaction-induced effective
edge states are indicated by vertical arrows. The parameters are U =
0.25, δU = 0.15, N = 6000, ϕU = −π/4.

As for Z = 2 we verified numerically that even for U = 0
but δU �= 0 gaps open but that they do not scale as a power
law in the Hartree-Fock gap. The physics of the effective AAH
model is that of a noninteracting one.

Next, we discuss the local spectral function computed
by functional RG considering open boundary conditions. In
Fig. 9 we show Aj (ω) at three-quarter filling as a function
of ω and the lattice site index j. The parameters are given in
the caption. The low-energy regime around the Fermi energy
which is located in the gap centered around ω ≈ 1.6 is shown.
The interaction obviously induces an edge state with spectral
weight, which has a rich spatial structure inherited from the
Z = 4 spatial modulation of the interaction.

As for Z = 2 the question arises whether the edge state
is a conventional or an unconventional one. We verified that
for the parameters of Fig. 9 the former holds. In contrast to
the Z = 2 case with half filling the state is, however, not a
zero energy edge state. Compared to the interacting gener-
alized AAH model, in which in addition to the interaction
U the modulation amplitude and phase of the hopping as
well as the on-site energy can be chosen independently, the
parameter space of the modulated interaction model is signif-
icantly smaller. For this only U , δU , and ϕU can be chosen.
Despite an extensive search of the parameter space we did not
succeed in identifying a regime in which an unconventional
edge state is realized. We, however, emphasize that this does
not exclude that such a regime exists. In any case, the (conven-
tional) edge state is induced by the two-particle interaction in
accordance with property 3 of the Introduction.

We now study the density modulation induced by the mod-
ulated interaction for Z = 4. The main panel of Fig. 10 shows
a comparison of the local density as a function of lattice
site index j computed by functional RG and by DMRG at
quarter filling. The parameters can be found in the caption. As
expected the modulation of the interaction leads to a modu-
lated density around the average value 1/4. The bulk density,
which on the y-axis scale of the plot is approximately reached
already for j ≈ 50, reflects the Z = 4 periodicity. Close to
the boundary this periodicity is disturbed by the interplay of
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FIG. 10. Main plot: Total density ρ as a function of the site index
j for quarter filling modulated interaction model with Z = 4,U =
−5δU = 0.375, and N = 1000. The resulting functional RG local
density which is labeled by “fRG” is compared with the DMRG
result. Inset: The largest absolute value of the difference between
FRG and DMRG data taken over all of the lattices sites as a function
of Ũ , where Ũ = 1, 2, . . . , 11 and (U, δU ) = Ũ (0.025,−0.005).
A log-log scale is used. The dashed line indicated the power
law Ũ 2.

the boundary and the (average) interaction. This modulation
beyond the unit cell structure decays quickly towards the bulk.

Based on our results for the density of the Z = 4 interacting
generalized AAH model we expect that the decay towards
the bulk value is exponential. We verified this (not shown).
The decay rate can again be computed by plugging the renor-
malized bulk parameters at the end of the RG flow into the
analytical expression for the noninteracting AAH model. In
this way the exponential part can be divided out very precisely.
Based on our insights into the different roles of δU and U we
anticipate that the preexponential function for U = 0 decays
as 1/

√
n (independent of the intra-unit cell index i) while a

more complex, i-dependent behavior is found for U > 0. We
also verified this (not shown). The corresponding data look
similar to the ones shown for the interacting AAH model in
Fig. 3.

On the scale of Fig. 10 the approximate functional RG
data cannot be distinguished from the DMRG ones. In the
inset, we show the maximal absolute difference over all lattice
sites as a function of Ũ , where we define Ũ as (U, δU ) =
Ũ (0.025,−0.005) in order to keep the ratio between U and
δU constant during the scaling of the interaction. The dif-
ference scales as a power law ∼Ũ 2 (dashed line) in full
accordance with the approximate nature of the truncated
functional RG, which does not capture all diagrammatic con-
tributions to second and higher order.

We found similar results for three-quarter filling corre-
sponding to the gap with index ν = 3.

Finally, we investigate the boundary charge of the Z = 4
modulated interaction model at three-quarter filling. In Fig. 11
we show functional RG data for the boundary charge as a
two-dimensional color-coded plot in polar coordinates. The
azimuthal direction displays the angle ϕ = ϕU and the radial
direction the amplitude of the modulation δU , which is re-
stricted to small values corresponding to small gaps. The other

FIG. 11. The boundary charge QB of the three-quarter filled
modulated interaction model with Z = 4 as a function of ϕ = ϕU

(in the azimuthal direction) and δU (in the radial direction); see
Eq. (19). The system size is given as N = 4000, and the interaction
is U = 0.08.

parameters are given in the caption. We find that QB depends
linearly on ϕ and has a rather weak dependence on δU . Nu-
merically, we find that the boundary charge is approximately
given by

QB ≈ − ϕ

2π
+ 1

2
. (19)

This result is consistent with Eqs. (12) and (13) as derived in
Refs. [15,16]. The constant part 1/2 can be obtained from the
special symmetry point ϕ = ϕU = π , where the model has lo-
cal inversion symmetry such that QB = 0. Our result indicates
that QB shows the same behavior as for the interacting AAH
model for small gaps; see Sec. III. This is consistent with
the observation from the other observables that the modulated
interaction and the AAH model share the same effective low-
energy theory. We, moreover, note (without showing data)
that one can use the noninteracting AAH model with the
bare bulk parameters replaced by the renormalized effective
bulk parameters to generate the same result. This supports the
idea that the characteristics of the boundary charge can fully
be determined by the bulk properties with effective single-
particle parameters. This is summarized by property 4 of the
Introduction. We found similar results for one-quarter filling.

V. SUMMARY

This work generalizes the results of Ref. [25] on interaction
effects in the Z = 2 RM model to microscopic lattice models
with more complex unit cell structure. A posteriori the success
of this generalization also lends credence to similar arguments
obtained from a purely field theoretical approach.

We first investigated a direct extension of the Z = 2 RM
model, namely, an interacting generalized 1D AAH model
with a unit cell of size Z = 4. We employed functional RG,
which proved to be a valuable tool in the prior study of the RM
model. We were able to confirm the phenomenology already
identified for the interacting RM model also in the case Z = 4.
The gap is renormalized by the two-particle interaction. For
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small bare gaps the renormalized one scales as a power law
with the two-particle interaction entering the exponent. The
local spectral function close to an open boundary can show
(depending on the single-particle parameters) an interaction-
induced in-gap δ-peak associated to an effective edge state.
Its appearance cannot be explained based on the bare or
renormalized bulk single-particle parameters. In contrast, the
characteristics of the boundary charge accumulated close to an
open boundary are robust towards the two-particle interaction.
This consolidates our idea that the boundary charge might
provide a more robust relation between bulk and boundary
properties than the number of edge states (conventional bulk-
boundary correspondence).

In a second step we investigated a lattice model which
in the noninteracting limit is translationally invariant by a
single-lattice site (for PBCs). In this the nontrivial unit cell
structure is induced by a periodically modulated two-particle
interaction. Up to singular situations with a special symmetry
this model also followed the above discussed phenomenology,
with the difference being that the interaction-induced effective
edge states can be predicted based on the renormalized single-
particle parameters. For the parameter space we explored, we
did not find any interaction-induced edge states which cannot
be explained in this way.
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APPENDIX A: THE FLOW EQUATIONS

In this Appendix we present the truncated functional RG
equations for the self-energy and the density for arbitrary Z .
They hold for both the interacting generalized AAH model as
well as the modulated interaction models. We start with the

real space equations which can be employed for open as well
as periodic boundary conditions.

1. Real space

We focus on the lowest-order truncated functional RG
scheme featuring a static flowing self-energy �� and consider
a sharp frequency cutoff in Matsubara space [25,49]. The
two-particle vertex function in real space is given as

� j′1, j′2; j1, j2 = Uj1, j2

(
δ j1, j′1δ j2, j′2 − δ j1, j′2δ j2, j′1

)
, (A1)

Uj1, j2 = Uj1δ j1, j2−1 + Uj1−1δ j1, j2+1, (A2)

and the lowest-order flow equation of the self-energy reads

∂���
j′1, j1

= − 1

2π

∑
ω=±�

eiω0+G�
j2, j′2

(iω)� j′1, j′2; j1, j2 (A3)

= − 1

π
Re

[
G�

j2, j′2
(i�)Uj1, j2δ j1, j′1δ j2, j′2

]
(A4)

+ 1

π
Re

[
G�

j2, j′2
(i�)Uj1, j2δ j1, j′2δ j2, j′1

]
(A5)

with a cutoff dependent propagator

G�(iω) = {
[G0(iω)]−1 − ��

}−1
. (A6)

Equations (A4) and (A5) are the flow equations for the
diagonal part of the self-energy and the off-diagonal one,
respectively. They can be brought in the more explicit forms

∂���
j, j = − 1

π
Re

[
G�

j+1, j+1(i�)Uj + G�
j−1, j−1(i�)Uj−1

]
,

(A7)

∂���
j, j±1 = 1

π
Re

[
G�

j, j+1(i�)Uj/ j−1
]
. (A8)

To consistently compute the local density ρ( j) we set up
according flow equations for this observable

∂

∂�
ρ�( j) = − 1

2π

∑
ω=±�

tr
[
eiω0+G�(iω)R�

j (iω)
]
. (A9)

They involve a density response vertex R�
j , which obeys the equations

∂

∂�
R�

j;l,l = − 1

2π

∑
ω=±�

∑
l ′

∑
r′=0,±1

UlG�
l+1,l ′ (iω)R�

j;l ′,l ′+r′G�
l ′+r′,l+1(iω) + Ul−1G�

l−1,l ′ (iω)R�
j;l ′,l ′+r′G�

l ′+r′,l−1(iω), (A10)

∂

∂�
R�

j;l,l±1 = − 1

2π

∑
ω=±�

∑
mm′

Ul/l−1G�
l,m′ (iω)R�

j;m′,mG�
m,l±1(iω). (A11)

Details on the advantage of computing ρ( j) via its own flow
equation as compared to an approach employing the Green
function (and thus the self-energy) can be found in Ref. [25].

Similarly to what is done in Ref. [25], one can decompose
the self-energy into unit cell index independent and dependent
parts, and the renormalized parameters at the end of the RG

procedure are given as

V ren
j=Z (n−1)+i = Vj + ��=0

j, j = V ren
i + V F

i (n), (A12)

t ren
j=Z (n−1)+i = t j + ��=0

j, j+1 = t ren
i + tF

i (n), (A13)

195119-13



Y.-T. LIN et al. PHYSICAL REVIEW B 103, 195119 (2021)

where “ren” and “F” denote the unit cell index n independent
and dependent parts of the effective on-site potential and the
hopping parameters, respectively.

The above sets of equations for large but finite systems can
easily be solved on a computer.

2. Momentum space

For underlying periodic boundary conditions one can de-
rive flow equations for the effective single-particle parameters
in k-space. They are set up directly in the thermodynamic

limit. For the hopping parameters one obtains

∂�t�
i = − Ui

2π

∑
ω=±�

∫ π

−π

dk

2π
G�

i,i+1(k, iω) for i �= Z,

∂�t�
i=Z = −UZ

2π

∑
ω=±�

∫ π

−π

dk

2π
eikG�

Z,1(k, iω) for i = Z.

(A14)

For the on-site potential they read

∂�V �
i=1 = − 1

2π

∑
ω=±�

∫ π

−π

dk

2π

{
U1G�

2,2(k, iω) + UZG�
Z,Z (k, iω)

}
for i = 1,

∂�V �
i=Z = − 1

2π

∑
ω=±�

∫ π

−π

dk

2π

{
UZG�

1,1(k, iω) + UZ−1G�
Z−1,Z−1(k, iω)

}
for i = Z,

∂�V �
i = − 1

2π

∑
ω=±�

∫ π

−π

dk

2π

{
UiG�

i+1,i+1(k, iω) + Ui−1G�
i−1,i−1(k, iω)

}
else, (A15)

and the single scale propagator in the right-hand side of the RG equations is given as

{G�(k, iω)}−1 =

⎛
⎜⎜⎜⎜⎜⎝

i� + μ − V �
1 t�

1 t�
Z e−ik

t�
1 i� + μ − V �

2
. . .

. . .
. . . t�

Z−1

t�
Z eik t�

Z−1 i� + μ − V �
Z

⎞
⎟⎟⎟⎟⎟⎠. (A16)

The above set can be easily be solved numerically. How-
ever, it can also be used as the starting point for an analytical
analysis; see Appendix B for the Z = 2 modulated interaction
model.

APPENDIX B: ANALYTICAL INSIGHTS FOR THE
MODULATED INTERACTION MODEL WITH Z = 2

Here we consider the Z = 2 modulated interaction model
with vanishing Fermi energy, i.e., at half filling. After plug-
ging in the propagator and performing the k-integration
in the right-hand side of the RG equation (A14), one
obtains

∂�2�� = 2��U

π

1

b�

[
1 − a� + b�√

(a�)2 − (b�)2

]

− 2W � δU

π

1

b�

[
1 − a� − b�√

(a�)2 − (b�)2

]
, (B1)

∂�2W � = −2W �U

π

1

b�

[
1 − a� − b�√

(a�)2 − (b�)2

]

+ 2�� δU

π

1

b�

[
1 − a� + b�√

(a�)2 − (b�)2

]
(B2)

for the difference and the sum of the two hoppings t�
1 and

t�
2 , respectively. Here a� = �2 + (t�

1 )2 + (t�
2 )2, and b� =

2t�
1 t�

2 .

From these flow equations one can obtain the effective
gap and bandwidth in first-order perturbation theory, i.e., on
the Hartree-Fock level, by turning off the feedback of self-
energy in the right-hand side of Eq. (B1) and (B2) [25]. The
�-integral can then be performed leading to

2��=0 = 2�HF = 4δU

π
, (B3)

2W �=0 = 2W HF = 4t

(
1 + U

πt

)
, (B4)

for the Hartree-Fock gap 2�HF and bandwidth 2W HF. For
�� � �,W �, that is, in the small gap limit, and keeping
terms to linear order in U and δU on the right-hand side of
Eq. (B1), one finds

∂��� = 1

2t2

[
��U

π

(
1 −

√
�2 + 4t2

�

)

− 2t
δU

π

(
1 − �√

�2 + 4t2

)]
.

One can rescale all of the parameters �� → y = ��/2t ,
� → x = �/2t , U → a = U/πt , and δU → c = δU/πt , to
obtain the dimensionless equation

dy

dx
= ay

(
1 −

√
1 + x2

x

)
− c

(
1 − 1√

1 + x2

)
(B5)
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with the initial condition y(x = ∞) = 0. The solution of
Eq. (B5) is given as

y(x) = c exp[a(x −
√

x2 + 1)]

(
x

1 + √
1 + x2

)−a

×
∫ x

∞
dξ

{
exp[a(ξ−

√
ξ 2 + 1)]

(
ξ

1 +
√

1 + ξ 2

)a

×
(

ξ −
√

1 + ξ 2√
1 + ξ 2

)}
. (B6)

In order to obtain the result in the small a and c limit (small
�U and U limit), one keeps the linear in c term in front
of the expression and the linear in a term in the exponent.
Moreover, in this limit one finds exp [a(x − √

x2 + 1)] ∼= 1
and exp [a(ξ −

√
ξ 2 + 1)] ∼= 1. Therefore,

y(x) ∼= c

(
x

1 + √
1 + x2

)−a 2
(
tan ξ

2 + 1
)a−1

(a − 1)

× 2F1

(
1 − a,−a; 2 − a;

1

1 + tan( ξ

2 )

)∣∣∣∣∣
ξ= π

2

ξ=tan−1 x

∼= c

(
x

2

)−a

(2 − 2a) for x = �
2t � 1. (B7)

Finally, the effective gap for small two-particle interactions is
given as

2�eff = 4δU

π

(
�IR

4t

)−U/πt

(2 − 2U/πt ), (B8)

where �IR is the IR cutoff of the flow. From numerical obser-
vation, we find

�IR = 2�HF = 4δU

π
, (B9)

which is the effective gap in first-order perturbation theory;
see Eq. (B3). For an exemplary parameter set this is illustrated
in Fig. 12.

FIG. 12. Exemplary numerical data for the k-space RG flow
(color dashed lines) and the analytical result [Eq. (B8) with Eq. (B9)
substituted; black dotted lines] of the ratio of effective gap and δU
are shown. The model parameters are given as U = 0.001, t = 1, and
different δU are shown in the plot. The infrared cutoff scale is clearly
visible.

APPENDIX C: THE MODULATED INTERACTION
MODEL WITH Z = 4 AT HALF FILLING

In this Appendix, we investigate the effective gap in
lowest-order perturbation theory (for the self-energy) for the
modulated interaction model with Z = 4 at half filling. For
this we can use the flow equations in momentum space. Due
to the particle hole symmetry, the flow of the on-site potential
vanishes. The flow of the effective hopping parameters are
given as

∂�t�
1 = − U1

2π

∑
ω=±�

∫ π

−π

dk

2π
G�

1,2(k, iω),

∂�t�
2 = − U2

2π

∑
ω=±�

∫ π

−π

dk

2π
G�

2,3(k, iω),

∂�t�
3 = − U2

2π

∑
ω=±�

∫ π

−π

dk

2π
G�

3,4(k, iω),

∂�t�
4 = − U4

2π

∑
ω=±�

∫ π

−π

dk

2π
e−ikG�

4,1(k, iω), (C1)

Without the feedback of the self-energy in the single scale
propagator, that is, on the Hartree-Fock level, the effective
hopping parameters at the end of the flow are given as

tHF
i = t�=0

i

= t − Ui

π

∫ 0

∞
d�

∫ π

−π

dk

2π

t{�2 + t2[1 − cos(k)]}
�4 + 4t2�2 + 2t4[1 − cos(k)]

= t − Ui

π

∫ 0

∞
d�

1

2t

{
1 − �√

�2 + (2t )2

}

= t + Ui

π
. (C2)

Without loss of generality, we choose ϕU = π/2 and set

tHF
1 = tHF

3 = t + U

π
= t̄, (C3)

tHF
2/4 = t + U ± δU

π
= t̄ ± δŪ . (C4)

With the effective single-particle Hamiltonian in momentum
space hk and the dispersion relation E (k), one can rewrite the
eigenvalue equation det[hk − E (k)] = 0 as

2t̄2(t̄2 − δŪ 2) cos k = E4(k) − AE2(k) + B, (C5)

where A = 4t̄2 + 2δŪ 2 and B = δŪ 4. Therefore, the band
energy is given as

E (k) = ±
√

A ±
√

A2 − 4[B − 2t̄2(t̄2 − δŪ 2) cos k]

2
. (C6)

The gap is located at k = 0 and

2�HF
ν=2 =2

√√√√
2t̄2 + δŪ 2 − 2t̄2

√
1 + δŪ 2

t̄2
(C7)

∼=δU 2

tπ2
. (C8)
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We conclude that even with the linear U and δU terms in the
effective hopping parameters, the linear term in the effective
gap is canceled out. This shows that the effective gap of the
modulated interaction model with Z = 4 at half filling is at

least of second order in the interaction. In our lowest-order
truncated functional RG, not all of the second-order terms are
taken into account. Therefore, we can not obtain controlled
results within lowest-order truncated functional RG.
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