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Abstract: We review and extend results on higher-curvature corrections to different con-
figurations describing a superposition of heterotic strings, KK monopoles, solitonic 5-branes
and momentum waves. Depending on which sources are present, the low-energy fields de-
scribe a black hole, a soliton or a naked singularity. We show that this property is unal-
tered when perturbative higher-curvature corrections are included, provided the sources are
fixed. On the other hand, this character may be changed by appropriate introduction (or
removal) of sources regardless of the presence of curvature corrections, which constitutes a
non-perturbative modification of the departing system. The general system of multicenter
KK monopoles and their 5-brane charge induced by higher-curvature corrections is dis-
cussed in some detail, with special attention paid to the possibility of merging monopoles.
Our results are particularly relevant for small black holes (Dabholkar-Harvey states, DH),
which remain singular after quadratic curvature corrections are taken into account. When
there are four non-compact dimensions, we notice the existence of a black hole with regular
horizon whose entropy coincides with that of the DH states, but the charges and super-
symmetry preserved by both configurations are different. A similar construction with five
non-compact dimensions is possible, in this case with the same charges as DH, although
it fails to reproduce the DH entropy and supersymmetry. No such configuration exists if
d > 5, which we interpret as reflecting the necessity of having a 5-brane wrapping the
compact space.
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1 Introduction

Many supergravity theories are known to describe certain low energy limits of string theory.
Hence, given a solution to the equations of motion of one of these supergravity theories,
a natural question is to investigate if a correspondent description in terms of fundamen-
tal objects of string theory exists. Such a description is not always to be expected, as
it is well-known that low-energy theories admit certain “badly” singular solutions which
are to be regarded as unphysical (negative-mass Schwarzschild, for example) [1]. On the
contrary, certain classical solutions, even if singular, can be argued to admit a microscopic
interpretation provided some conditions are met — see [2, 3]. In the case in which there are
good reasons to expect a correspondent description, this identification turns out to pose
a challenging problem unless the task is somehow facilitated. Simplifications take place
when the system preserves some of the supersymmetries of the theory. From the field the-
ory perspective, supersymmetry imposes relations between the components of the different
fields, such that the allowed configurations are described by a reduced set of functions.
Restrictions also occur for the equations of motion, with many of them being no longer
independent. Typically, it suffices to solve Maxwell equations and Bianchi identities for
some p-form fields, and it follows that the Einstein and scalar equations are automatically
satisfied1 [7, 8]. Hence, one can say that a solution is completely determined by the spec-
ification of the charge distribution associated to the corresponding p-forms. On the UV
part of the story, one then needs to find supersymmetric states in the spectrum acting as
sources of those fields, an information that can be read from the worldsheet or worldbrane
(effective) action. The identification obtained in this manner can be tested by comparing
additional properties, like the number of supersymmetries preserved or the degeneracy.
The use of these tools has been very fruitful, playing a role in much progress in string
theory. Some noteworthy examples are the discovery of non-perturbative fundamental ob-
jects in the spectrum, evidence in favour of a web of dualities connecting seemingly distinct
string theories or the identification of the microscopic degrees of freedom responsible for the
thermodynamic entropy of certain black holes. A quite limited list of references is [9–23].

The microscopic derivation of black hole entropy performed by Strominger and Vafa
followed a seminal paper of Sen that studied heterotic small black holes [24], whose event
horizon is singular and has zero size. Small black holes provide a toy model that was
close to becoming the first confirmed description of black hole microstates in quantum
gravity and, hence, their study has a special position in the history of the achievements
of the theory. Consider states consisting of excitations of a string carrying winding and
momentum charges (Qw,Qn). This system was first studied by Dabholkar and Harvey
(DH) in [25] —see also [26]. In the heterotic theory, the degeneracy of these states gives

1For supersymmetric solutions with a null Killing vector, one component of the Einstein equations
needs to be solved as well, as described for example in [4–6]. It often occurs that a solution of this kind
has appropriate isometries and can be equivalently described as a lower-dimensional configuration with a
timelike Killing vector, in which case the original non-trivial Einstein equation is understood as a Maxwell
or Bianchi equation of a p-form. The solutions described in this article have this property.
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the following value for the entropy in the large charge limit [27, 28]

S = 4π
√
QnQw . (1.1)

The mass of the DH states grows linearly with the value of the charges. Hence, for large
values of (Qw,Qn) a black hole can be expected to emerge at the effective gravitational
field theory [29]. However, when one tries to construct such a black hole, a singular horizon
with vanishing area is obtained and the formula (1.1) is not reproduced. Sen argued that,
since the effective theory shall not be valid in regions of large curvature, a “stretched
horizon” surface beyond which the usual understanding breaks down can be defined. He
then postulated that the area of this stretched horizon would account for the macroscopic
entropy of the system, and showed that the value, remarkably, scales with

√
QnQw.

Sen’s insight found two lines of continuation. On the one hand, a string carrying
momentum should oscillate, and one can study how many solutions can be constructed
such that the string’s profile lies within a stretched horizon [30]. Depending on the duality
frame used to describe them, the resulting geometries are of singular or solitonic nature.
On the other hand, working within the special geometry formulation of effective four-
dimensional supergravity with higher-curvature corrections, it was found in [31, 32] that
it is possible to construct a regular near-horizon geometry reproducing (1.1) such that
only two of the lower dimensional vectors carry non-vanishing charge. The two approaches
offer a distinct realization of the macroscopic entropy in the field theory, and a debate was
opened regarding the compatibility of these two ideas [3, 33].

In the light of the findings of [31, 32], shortly followed by [34, 35], it emerged the ap-
pealing idea that stringy higher-curvature corrections lead to the resolution of the singular
small horizon.2 String theory, as candidate to being a consistent theory of quantum gravity,
is expected to resolve the singularities that mark the limitations of classical gravitational
theories when these are associated to physically allowed configurations. For instance, one
should be able to describe the collapse and evaporation of a black hole in terms of a uni-
tary evolution free of divergences in a UV-complete theory. But the idea that stringy or
quantum corrections may resolve singularities directly in the low-energy (field-theory) ap-
proximation goes beyond that expectation. It is, therefore, interesting to explore if this is
actually a generic feature of the theory. Arguably, the simplest test that can be performed
is to study similar configurations in slightly different situations. However, it turns out that
the same mechanism that produced the horizon resolution in a few cases, failed in others
without a clear explanation. Some examples of the latter case are those of a type II string
with winding and momentum charges on a toroidal compactification [23], or a heterotic
string with five or more non-compact dimensions3 [36, 40]. In view of these facts, it is fair
to acknowledge that the effect of higher-curvature corrections must be understood better.
In this article we study the problem by revisiting the original small-black-hole system di-
rectly in the original ten-dimensional heterotic theory, instead of using four-dimensional
supergravity formulated in the language of special geometry as was done in [31, 32, 34, 35].

2See also [22, 23, 36–42] and references therein.
3A five-dimensional heterotic two charge solution with regular horizon exists, but its entropy differs

from (1.1). We will discuss this solution in more detail in section 6.
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While we will not have at our disposal the powerful tools based on the attractor mechanism
developed in [43–46], in exchange we will have analytic solutions in the complete black hole
exterior region, with direct control on which are the sources in the equations of motion.
As we will see, this approach will facilitate the microscopic interpretation.

In the last years an intensive effort to understand the effect of higher-curvature cor-
rections to solutions of heterotic string theory has been performed [47–55]. The cases
considered include different supersymmetric configurations of strings, momentum, Kaluza-
Klein monopoles (KK) and solitonic 5-branes (S5), as well as some non-extremal black
holes (that lack a microscopic interpretation to date). The small-black-hole system with
four non-compact dimensions was studied in [50], where it was found that the perturbative
curvature corrections leave the field theory solution singular. Additionally, a curvature-
corrected solution with a regular horizon and whose Wald entropy coincides with (1.1) was
described. It was argued that this field configuration should not be identified microscop-
ically with the DH small black hole, because it contains a KK monopole. Interestingly,
this charge does not appear explicitly in the entropy formula, although its value needs to
differ from zero in order to have a regular horizon. A crucial ingredient in the construction
is the presence of localized solitonic 5-brane sources, with a non-trivial charge profile that
asymptotes to zero. The presence of these branes is the ultimate reason for the regularity
of the horizon. Two important points to notice are that this solution is already regular
in the zeroth-order supergravity description, and that the main effect of higher-curvature
corrections is to screen the S5-brane charge. Hence, the system describes a modification of
the one studied by Dabholkar and Harvey [25] obtained adding non-perturbative sources,
just like Strominger and Vafa did in [19]. Since it reproduced the entropy of the DH states
but did not match other properties, the solution was called a “fake” small black hole in [50].
Likewise, the perturbative corrections to the small black ring system have been computed
in [55], showing that the field configuration remains singular after their inclusion.

Motivated by these results, we perform here a more exhaustive study of a large family
of supersymmetric solutions of the heterotic theory, which includes singular and regular
horizon black holes, as well as other related configurations that serve to gain a broader
perspective on the matter. We will not restrain ourselves to spacetimes with four non-
compact dimensions, but will study the problem for 4 ≤ d ≤ 9 (DH states describe strings
wrapping one compact direction).

1.1 Content of the paper

In section 2 we describe our default course of action for the construction of solutions of
heterotic string theory at first order in α′. Section 3 reviews the supersymmetric black
holes with four (five) non-compact dimensions that result from the superposition of the
four (three, without KK monopole) types of sources considered in the article. Besides
describing the complete solutions in the exterior of the black hole, we use the near-horizon
entropy function formalism as an alternative method to obtain some relevant properties of
the solutions. The purpose of this is manifold; on one side, it is useful as a consistency
check and facilitates the comparison with previous literature, while on the other side it is
illustrative to show how some information beyond the near-horizon background needs to
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be given in order to distinguish between solutions with 3 charges and 4 charges with unit
KK monopole. In section 4, we study the fields that result from general superposition of
KK monopoles and S5 branes. Special attention is paid to the merging of monopoles and
possible emergence of conical defects. It is described that fractional charge contributions
induced by curvature corrections is a generic property of orbifolded spaces, consequence of
the fact that the integral of the Bianchi identity is related to the orbifold Euler character
of the space, which typically has non-integer value. The curvature corrections to small
black holes and rings (string with winding and momentum, static or oscillating) in general
number of dimensions are computed in section 5. Finally, section 6 describes a very special
family of black hole solutions of the kind considered in section 3 with the property that
the S5 charge is completely screened, which we call fake small black holes. Some of the
properties of the resulting field configuration (but, crucially, not all of them) coincide with
those of the DH states. Most importantly, while DH (and, hence, small black holes) are
1/2 BPS states, fake small black holes are 1/4 BPS. It is shown how a supersymmetric
solution with regular horizon is only possible if there are at least 5 compact dimensions,
which illustrates that the construction is possible due to the presence of S5 branes wrapping
the internal space. Some conclusions are collected in section 7. Supplementary technical
information is contained in the appendices.

2 On the perturbative approach to stringy solutions

It is with relative frequency that problems need to be approached perturbatively. In some
occasions the equations that need to be solved are known, but they are too complicated
to be directly treated. In that case, it may happen that those can be expressed as a small
modification, in some appropriate sense, of a set of simpler equations, for which analytic
solutions can be found. The system is then expressed in terms of a series expansion,
possibly with infinite terms, where the zeroth order term corresponds to the simpler set of
equations. Another common situation, which we will encounter in this work, is that only
a perturbative description of the system is known, with the complete non-perturbative
formulation inexistent or unknown. A schematic representation of such a problem is

∞∑
n=0

αnfn,i [φa,O(φa)] = 0 . (2.1)

Here i labels a number of independent equations for the variables φa, withO(φa) collectively
representing any possible operator acting on the variables. The expansion is controlled by
the presence of the parameter α, whose power serves to label the order of the correction.
The functional form of terms of higher order n > k could be unknown, or simply it may be
computationally convenient to truncate the series at a certain order. Perturbative solutions
to the system at kth-order are expressions of the form

φa = φa0 +
k∑

n=1
αnφan , (2.2)

such that, when substituted in (2.1), the equations are not necessarily identically satisfied,
but the non-vanishing terms are of order k+ 1 or higher in the expansion parameter. Such
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expression is usually interpreted as a good approximation of the real solution of the full
system if some requirements are fulfilled, which include an estimation of how small the
non-vanishing part of the equations is.

The zeroth-order term in (2.2), φa0, plays a special role. It is an exact solution of the
zeroth-order system of equations that serves as the starting point in the construction of
the solution. In order to obtain it, boundary conditions need to be given for the variables.
These boundary conditions are considered to be part of the specification of the zeroth-order
system. The subsequent terms in the expansion φak are progressively computed using the
previously obtained values for φam, with m < k, as input in equation (2.1), which is then
solved up to terms of order αk+1. The perturbative solution is therefore built order by
order from φa0, which can be used as a sort of label to identify the configuration.

The variables we shall be interested in are fields defined on a manifold. In the problems
we find in this article, boundary conditions can be chosen following different approaches. In
first place, we need to specify the asymptotic structure of the manifold (i.e. its topology)
and the assumed isometries. The remaining information can be specified through the
introduction of localized sources in the equations of motion or, alternatively, indicating the
asymptotic fall-off behaviour of (independent) fields. In this work, this corresponds either
to the election of sources signalling the presence of fundamental objects of the heterotic
theory, or the independent charges carried by the field configuration. Both possibilities are
technically valid and, most frequently, they define inequivalent perturbative expansions.
The reason is that, in certain configurations, some of the higher-order terms behave as
delocalized sources of charge in the equations of motion, affecting the original relation
between localized sources and asymptotic charges of the fields. Hence, if one of these
properties is kept constant in the construction of the perturbative solution, the other one
will change, and viceversa. When constructing these solutions, it is fundamental to identify
these relations appropriately and understand their implications, as we emphasize at several
stages in this work.

In the perturbative constructions presented below, the boundary conditions are fixed
by specifying the localized sources in the system. The advantage of this approach is that, for
the systems in which there is a string theory interpretation, the fundamental constituents
of the solution remain fixed, so it gives us information of how higher-curvature corrections
modify a given stringy configuration.

2.1 Heterotic theory

The low-energy limit of heterotic string theory is described by an effective field theory for
its massless modes —the metric gµν , the dilaton φ, the Kalb-Ramond (KR) 2-form Bµν ,
and a set of non-Abelian Yang-Mills fields AAµ with gauge group fixed to be either SO(32)
or E8 × E8 —4 which involves a double perturbative expansion in α′, the string length
square, and gs, the string coupling. In this work, we will only deal with the α′ expansion,
assuming we are in a regime where gs- or loop corrections can be neglected.5

4We will however work with a consistent truncation in which all the Yang-Mills vector fields are trivial.
5Of course, this is something that must be checked a posteriori. The solutions described in section 4.2

have a divergent dilaton, we refer to [12] for more information about this issue.
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2.1.1 Effective action and equations of motion

To first order in α′, the bosonic part of the effective action of the heterotic string is given
by [56–58]

S = g2
s

16πG(10)
N

∫
d10x

√
|g| e−2φ

[
R− 4(∂φ)2 + 1

2 · 3!H
2 − α′

8 R(−)µν
a
bR(−)

µν b
a + . . .

]
,

(2.3)
where R(−)

a
b = dω(−)

a
b−ω(−)

a
c∧ω(−)

c
b is the curvature of the torsionful spin connection,

defined as ω(−)
a
b ≡ ωab − 1

2Hc
a
b e
c, where ωab is the spin connection. The 3-form field

strength H associated to the Kalb-Ramond 2-form B is given by

H = dB + α′

4 ΩL
(−) , (2.4)

where
ΩL

(−) = dω(−)
a
b ∧ ω(−)

b
a −

2
3ω(−)

a
b ∧ ω(−)

b
c ∧ ω(−)

c
a , (2.5)

is the Chern-Simons 3-form of ω(−)
a
b. The Bianchi identity is obtained by taking the

exterior derivative of eq. (2.4), getting

dH = α′

4 R(−)
a
b ∧R(−)

b
a . (2.6)

The equations of motion at first order in α′ can be obtained by varying the action (2.3)
with respect to the metric, dilaton and Kalb-Ramond 2-form. In doing so, we can ignore
implicit occurrences of these fields through the torsionful spin connection, which according
to the Bergshoeff-de Roo lemma yield terms of second order in α′ [57].6 The set of equations
that one obtains is

Rµν − 2∇µ∂νφ+ 1
4HµρσHν

ρσ − α′

4 R(−)µρ
a
bR(−)ν

ρ b
a = O(α′2) , (2.7)

(∂φ)2 − 1
2∇

2φ− 1
4 · 3!H

2 + α′

32R(−)µν
a
bR(−)

µν b
a = O(α′2) , (2.8)

d
(
e−2φ ?H

)
= O(α′2) . (2.9)

Although it is not explicitly written in (2.6)–(2.9), the equations are allowed to have lo-
calized sources in the form of Dirac delta functions. These appear at zeroth-order in the
perturbative expansion of the theory. An election of sources correspond to a choice of
boundary conditions, being ultimately responsible for the zeroth-order background stud-
ied. The possibility that higher-order corrections induce new terms of this form should not
a priori be discarded (that would mean that the first-order terms produce a Dirac delta
function when evaluated on the zeroth-order background), although this does not occur in
the cases we consider here. Hence, when a solution is described perturbatively, the sources
are fixed. A modification of those is interpreted as a non-perturbative modification of
the background.

6It is worth to emphasize that this only holds if one works perturbatively in α′.
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2.1.2 Supersymmetry transformations
Later on, we shall be interested in studying the conditions that must be satisfied by our
configurations in order to preserve a certain amount of supersymmetry. Therefore, we need
to know the supersymmetry transformations of the fermionic fields, the gravitino ψµ and
the dilatino λ. Their explicit form also receive α′ corrections, but fortunately to us, they
appear at cubic order in α′, see for instance [57]. Hence, for the purposes of this work, the
supersymmetry transformations of the fermionic fields reduce to

δεψµ =
(
∂µ −

1
4ω(+)µab Γab

)
ε , (2.10)

δελ =
(
∂aφΓa − 1

12Habc Γabc
)
ε , (2.11)

where ω(+)
a
b = ωab + 1

2Hc
a
b e
c.

3 Review of regular supersymmetric black holes

3.1 Zeroth-order description

Regular supersymmetric black-hole solutions to supergravity theories have five or four non-
compact dimensions.7 The simplest black holes of this kind that one can obtain as solutions
of the effective equations of motion of the heterotic string have the following form [59, 60]

ds2 = 2
Z−

du

(
dt− Z+

2 du

)
−Z0 dσ

2 − dzαdzα ,

H = ?σdZ0 + dZ−1
− ∧ du ∧ dt ,

e2φ = e2φ∞ Z0
Z−

, (3.1)

where
dσ2 = H−1 (dη + χ)2 +H d~x2

(3) , dχ = ?(3)dH , (3.2)

is the metric of a four-dimensional Gibbons-Hawking (GH) space [61, 62], where the func-
tions Z0,+,− are defined. It turns out that this field configuration, as it stands, preserves
at least four of the sixteen supersymmetries of the theory.

The coordinates zα ∼ zα + 2π`s parametrize a four-dimensional torus, T4, with no
internal dynamics, whereas z ≡ t − u ∼ z + 2πRz parametrizes an internal direction, S1

z,
whose dynamics is non-trivial.

The equations of motion are satisfied if Z0,+,− are harmonic functions in the GH space.8

The choices that yield the black-hole solutions we are interested in are

Z0,+,− = 1 + q0,+,−
r

, H = ε+ qH
r
, (3.3)

where ε is either 0 or 1 and where r denotes the radial coordinate of E3: r2 ≡ ~x(3) ·~x(3). The
ε = 0 and ε = 1 cases will give rise to five- and four-dimensional black holes respectively.
Let us consider each case separately.

7Higher-dimensional supersymmetric solutions may describe black strings with a null isometry in a
non-compact direction of spacetime.

8Note that the Gibbons-Hawking function H is also harmonic in E3 and in GH.
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Static, spherically-symmetric, three-charge black holes in five dimensions. In
the ε = 0 case, which implies there are five non-compact dimensions, the change of variables
ρ2 = 4qHr and ψ = η

qH
allows us to rewrite the metric as

dσ2 = dρ2 + ρ2

4
(
dψ2 + dφ2 + dθ2 + 2 cos θ dψdφ

)
, (3.4)

where one can recognize the factor multiplied by ρ2 as the metric of the round 3-sphere S3.
Hence, this (trivial) choice of the GH function gives four-dimensional Euclidean space E4,
provided ψ ∈ (0, 4π), φ ∈ (0, 2π) and θ ∈ (0, π). With the solution written in this form,
the parameter qH has disappeared from the field expressions, and one concludes that it
has no physical significance in these configurations (it merely sets the scale of a change of
coordinates).

After dimensional reduction over the internal directions, the following metric (in the
so-called modified Einstein frame) is obtained

ds2
(5) = (Z0Z+Z−)−2/3 dt2 − (Z0Z+Z−)1/3

(
dρ2 + ρ2 dΩ2

(3)

)
. (3.5)

It represents an extremal black hole with three electric charges. The horizon is placed at
ρ = 0 and the Bekenstein-Hawking entropy is given by

SBH5d = π2

2G(5)
N

√
q̃0q̃+q̃− , (3.6)

where q̃0,+,− ≡ 4qHq0,+,−. In addition to the metric, the compactification yields three
vector fields, with Ai = −Z−1

i dt, and two scalars. The gauge-invariant conserved electric
charge carried by a vector field inside a co-dimension 2 compact spacelike surface (usually
taken to be a 3-sphere) is defined, up to a normalization constant, as the integral over the
surface of the variation of the Lagrangian with respect to the rt component of the field
strength.9 In the zeroth-order theory, this is the integral of the dual field strength. The
evaluation gives Qi ∼ q̃i, which is the reason why the poles of the harmonic functions
are often referred as “charges”. However, when corrections are incorporated, the previous
definition of charge may include additional terms such that the result is not just the pole of
the harmonic function. Being of higher-order in derivatives, these terms become subleading
in the asymptotic expansion, and we get

lim
r→∞

Zi = 1 + ciQi
r

+O
(
r−2

)
, (3.7)

for some convenient normalization constants ci, whose value can be inferred from the
discussion below. This issue is treated with greater care in the following subsection.

Two of the three types of charges —namely, Q− and Q0 — correspond to the electric
and magnetic (or S5-brane) charge associated to the Kalb-Ramond 2-form Bµν . They can

9General five-dimensional supergravities contain gauge Chern-Simons terms that give additional contri-
butions, such that magnetic fields become electric sources. The requirement of spherical symmetry implies
that 2-forms cannot have magnetic sources, so these terms do not contribute here.
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be understood as being produced by fundamental strings, which are electrically-charged
with respect to Bµν , and by a stack of N solitonic five-branes, which carry instead magnetic
charge. In the lower-dimensional description, these objects act as point-like sources, as they
are wrapped along the internal directions. Concretely, fundamental strings are wrapped
along S1

z with total winding number w and solitonic five-branes wrap the five-dimensional
torus T4 × S1

z. Finally, the charge Q+ is associated to the momentum n of a gravitational
wave which travels along the z direction. Introducing these sources in the equations of
motion via Dirac delta functions with appropriate coefficients [47, 49], it is possible to
obtain a relation between the parameters q̃i and the number of fundamental objects in the
microscopic interpretation,

q̃− = g2
sα
′w , q̃0 = α′N , q̃+ = g2

sα
′2

R2
z

n . (3.8)

In this case, the charges of the system are equal to the localized sources, Q− = w, Q0 = N ,
Q+ = n. However, it is important to bear in mind that, in general, these quantities are
different, as will become evident when we include α′ corrections. Now, using

G
(5)
N = G

(10)
N

(2π`s)42πRz
= πg2

sα
′2

4Rz
, (G(10)

N = 8π6g2
sα
′4) , (3.9)

the Bekenstein-Hawking entropy gives

SBH5d = 2π
√
nwN = 2π

√
Q+Q−Q0 , (3.10)

Static, spherically-symmetric, four-charge black holes in four dimensions. Let
us now consider the ε = 1 case, which means there are four non-compact dimensions. The
Gibbons-Hawking 1-form χ is determined by solving eq. (3.2). A possible local expression is

χ = qH cos θ dφ , (3.11)

where we have introduced the spherical coordinates θ and φ, defined in terms of the Carte-
sian coordinates ~x(3) = (x1, x2, x3) as

x1 = r sin θ cosφ , x2 = r sin θ sinφ , x3 = r cos θ . (3.12)

The resulting metric has a Dirac-Misner string singularity, as χ is ill-defined at θ = 0, π. It
is well-known that this string can be removed if η is a compact coordinate (η ∼ η+ 2πRη)
and qH obeys the quantization condition

qH = RηW

2 , W ∈ N . (3.13)

The resulting GH metric describes an orbifold with a conical singularity for integer values
of W other than 1. This can be seen by studying the r → 0 limit of (3.2), which is

dσ2
∣∣∣
r→0

= dρ2 + ρ2

4
[
(d (Ψ/W ) + cos θdφ)2 + dθ2 + sin2 θdφ2

]
, (3.14)
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where we have introduced the radial coordinate ρ2 = 2RηWr and the angular coordinate
Ψ = 2η/Rη, whose periodicity is 4π. Then, we see that near r = 0 the GH metric is that of
the orbifold E4/ZW . This conical singularity, however, is not present in the ten-dimensional
metric (3.1) as long as q̃0 6= 0, in which case the conformal factor behaves as Z0|r→0 ∼ q̃0/ρ

2

and we are left with the metric of the lens space S3/ZW , which is perfectly regular.
The four-dimensional geometry (in modified Einstein frame) that one obtains when

compactifying the solution over the internal manifold T4 × S1
z × S1

η is the following

ds2
(4) = (Z0Z+Z−H)−1/2 dt2 − (Z0Z+Z−H)1/3

(
dr2 + r2 dΩ2

(2)

)
, (3.15)

and describes an extremal black hole with four charges: Q0, Q+, Q− and QH = W . The
additional charge with respect to the five-dimensional case, QH , is the magnetic charge of
the Kaluza-Klein vector associated to the compactification over the isometric direction of
the GH space. Therefore, the system described by this black-hole solution contains, apart
from extended objects present in the five-dimensional case, a KK monopole. The relation
between the parameters qi and the number of fundamental objects is now given by10

q− = g2
sα
′w

2Rη
, q0 = α′N

2Rη
, q+ = g2

sα
′2n

2R2
zRη

, qH = RηW

2 . (3.16)

The horizon of these black holes is again at r = 0 and the Bekenstein-Hawking entropy in
terms of the source parameters and the charges reads

SBH4d = 2π
√
nwNW = 2π

√
Q+Q−Q0QH , (3.17)

where we have made use of eq. (3.16).

3.2 First-order description. S5-brane charge screening

The first-order α′ corrections to the black holes presented in the previous section have
been computed in an analytic fashion in [47–49]. Let us summarize here the main results
of these papers.

A first result is that the corrected solutions have the same form as the zeroth-order
expressions given in eqs. (3.1)–(3.2). This fact can be interpreted as a consequence of super-
symmetry, which strongly constrains the form of the field configuration. The functions Z+
and Z0 receive α′ corrections, while Z− and H remain unmodified. In the five-dimensional
case, the corrections to these functions take the following form

Z+ = 1 + q̃+
ρ2 + α′

2q̃+
(
ρ2 + q̃0 + q̃−

)
q̃0 (ρ2 + q̃0) (ρ2 + q̃−) +O(α′2) ,

Z0 = 1 + q̃0
ρ2 − α

′ ρ
2 + 2q̃0

(ρ2 + q̃0)2 +O(α′2) , (3.18)

10The reason for the modification with respect to the expressions in the five-dimensional solution is that
the stringy objects are now smeared over the transverse direction η which forms part of the GH space.
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whereas in the four-dimensional case it was found that they are given by

Z+ = 1 + q+
r

+ α′q+
2qHq0

r2 + r (q0 + q− + qH) + qHq0 + qHq− + q0q−
(r + qH) (r + q0) (r + q−) +O(α′2) ,

Z0 = 1 + q0
r
− α′ [F (r; q0) + F (r; qH)] +O(α′2) , (3.19)

where
F (r; q) ≡ (r + qH) (r + 2q) + q2

4qH (r + qH) (r + q)2 . (3.20)

On the one hand, the new terms in the functions Z0 and Z+ are everywhere finite, which
implies that the α′ corrections do not change neither the location of the horizon nor the
near-horizon geometry. This is consequence of the fact that R(−)

a
b vanishes in these limits,

so at this order the equations of motion remain uncorrected in that region. On the other
hand, as we describe below, the value of the charges is modified.

Before doing so, it is worth noticing a subtle point about the perturbative construction
of the solution. As we constructed it, the near-horizon geometry is entirely determined by
the choice of boundary conditions, in terms of delta functions, when solving the equations
of motion. This is convenient in the case at hand, as these functions have a direct interpre-
tation in the microscopic theory in terms of localized sources of fundamental objects. Still,
it would be possible to follow an alternative approach and solve the equations of motion
fixing the boundary conditions in terms of asymptotic properties of the solution. With that
choice, one would keep the charges fixed, but the near-horizon geometry and the localized
sources would be modified. Since these sources are in correspondence with the microscopic
interpretation of the solution, this alternative approach is inconvenient if one wants to
study how a given string theory system behaves when α′ corrections are incorporated.11

This is the reason why we fix the boundary conditions at r = 0.
We begin now the discussion about the charges that receive corrections. First, we start

noting that in presence of higher-curvature terms the definition is not unique. Consider
the Bianchi identity (2.6). In presence of external sources, it is modified as

dH − α′

4 R(−)
a
b ∧R(−)

b
a = ?JS5 , (3.21)

where JS5 is a six-form current satisfying the conservation law d ? JS5 = 0, which follows
from the well-known fact that R(−)

a
b∧R(−)

b
a = dΩL

(−). In the case at hand, this current is
produced by a stack of S5-branes and its integral over the transverse space to the S5-branes,
M, is proportional to the number of S5-branes, N :∫

M

(
dH − α′

4 R(−)
a
b ∧R(−)

b
a

)
=
∫
M
?JS5 = 4π2α′N . (3.22)

Therefore, the relation between the harmonic poles (q̃0 and q0) and N can be obtained
after evaluation of the left-hand side of this equation. As the sources are fixed, one obtains

11A clear example of the importance of this observation can be found in the study of isolated KK monopole
solution, which dates back to the 90′s [63], as emphasized in section 4.1. This remark plays a central role
in our discussion of small black holes.

– 11 –



J
H
E
P
0
5
(
2
0
2
1
)
2
7
2

the same result than in previous section [47, 49],

q̃0 = α′N , q0 = α′N

2Rη
. (3.23)

The number of S5-branes N coincides with the notion of brane-source charge of ref. [64].
It is worth stressing that the notion of brane-source charge that we have just defined is
conserved. This is different from what happens in other scenarios, like in type II, where
the Chern-Simons terms appearing in the Bianchi identities of the RR field strengths are
not necessarily closed forms if one allows for external sources.

In addition, one can define a second notion of charge, which is usually called the
Maxwell charge. Unless otherwise stated, this is the notion that we use in the article when
we talk about charges — as opposed to sources. In the S5-brane case, it is denoted by Q0
and it is given by

Q0 = 1
4π2α′

∫
∂M

H . (3.24)

As the brane-source charge, the Maxwell charge is also conserved and gauge-invariant.
The main difference between these two charges lies in the fact that the brane-source charge
is localized while the Maxwell charge is not, as it gets contributions from the quadratic-
curvature corrections, which behave as effective delocalized sources of S5-brane charge
in the Bianchi identity. Evaluating (3.24) and using (3.23), in the five-dimensional case
we obtain

Q0 = q̃0 − α′

α′
= N − 1 , (3.25)

while in the four-dimensional case,

Q0 = 2Rη
α′

(
q0 −

α′

2qH

)
= N − 2

W
. (3.26)

We observe that, up to a normalization constant, the Maxwell charge can be read from
the asymptotic expansion of the function Z0, with Z0 = 1 + c0Q0/r +O(r−2) for large r.
Hence, we see that this also gives the charge carried by the lower-dimensional vectors, as
defined in previous subsection.

Let us now discuss the momentum charge. Analogously to the S5-brane case, the
coefficients q̃+ and q+ —which control the leading (divergent) term of the function Z+
in the near-horizon limit— are related to the momentum n exactly as in the zeroth-order
solution, see eqs. (3.8) and (3.16). The α′ corrections to this function give a contribution
to the asymptotic charge carried by the lower-dimensional Kaluza-Klein vector, which can
be read off from the asympotic expansion of Z+, which is Z+ = 1 + c+Q+/r + O(r−2),
with:

Q+ = n

(
1 + 2

N

)
, (3.27)

in the five-dimensional case and

Q+ = n

(
1 + 2

NW

)
, (3.28)
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in the four-dimensional case. An interesting task for the future would be to investigate how
these two different notions of Kaluza-Klein momentum charge appear when compactifying
the α′-corrected action (2.3) on a circle [65, 66]. The remaining charges do not receive
corrections, hence

Q− = w , QH = W , (3.29)

as in the zeroth-order solution.
It is possible to compute the entropy of these black holes using directly Wald’s formula.

The presence of the Riemann curvature tensor in the field strength H makes this a subtle
problem, which has been addressed in previous literature12 [37, 67]. For the family of black
holes we are interested in, the result was obtained in [52]. For the five- and four-dimensional
solutions it was found, respectively

SW5d = 2π
√
nwN

(
1 + 2

N

)
= 2π

√
Q+Q− (Q0 + 3) , (3.30)

SW4d = 2π
√
nwNW

(
1 + 2

NW

)
= 2π

√
Q+Q− (Q0QH + 4) . (3.31)

The expressions in terms of the sources coincide for both kind of solutions when W = 1,
which is consequence of the fact that their near-horizon limit is identical, i.e. AdS3×S3×T4.
In other words, it is not possible to distinguish a 4d black hole with QH = W = 1 from a
5d black hole if only the near-horizon fields are obtained. Indeed, the distinction is only
possible if information beyond the near-horizon region is somehow taken into account.13 In
the presence of a general KK monopole of chargeW , one can write in convenient coordinates

ds2 = ρ2

g2
sα
′w
du

[
dt− g2

sα
′n

R2
zρ

2 du

]
− α′NW

[
dρ2

ρ2 + dΩ2
(3)/ZW

]
− d~z2

(4) ,

e−2φ = w

N
,

H = 1
g2
sα
′w
ρdρ ∧ du ∧ dt+ α′N

4 sin θdθ ∧ dψ ∧ dϕ . (3.32)

Heterotic string theory on this background was studied in [68], where the left and right
central charges were determined to be cl = 6Q−(k+ 2), cr = 6Q−k, with k the total ŜL(2)
level for the right-movers (k + 2 for the left-movers). Upon use of Cardy’s formula, the
microscopic entropy (to all orders in the α′ expansion in the large charge approximation)
that one obtains is

SC = 2π
√
Q+Q−(k + 2) . (3.33)

12In general, the application of Wald’s formula to the heterotic theory gives a gauge dependent expression.
This problem can be solved for the family of solutions considered, where is possible to write the action in
a covariant form after imposing symmetries and adding boundary terms. In order to deal with Chern-
Simons terms, the approach takes the dual Kalb-Ramond field strength (which transforms as a tensor) as
the fundamental field, see [52].

13The configuration given in (3.32) with W = 1 can be interpreted in two different manners: a near-
horizon background of a black hole with three or four independent charges. However, each interpreta-
tion is only consistent when, outside the horizon, there is respectively a five- or four-dimensional non-
compact space.
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We notice that this expression matches both (3.30) and (3.31) if the level is identified
with the AdS curvature radius in string units as k = NW (with the understanding that
W = 1 in the five-dimensional case). As observed in [68], consistency of the bosonic
ŜU(2) CFT theory on this background requires that its level, which was found to be k− 2,
must be the product of W and another integer, which implies that Q0 is quantized. Our
expressions (3.31) and (3.30) in terms of the charges also match those of [23] (identically)
and the perturbative expansion obtained in [69], respectively. Since R(−)

a
b is zero in the

near-horizon background, no corrections are expected in this region in the higher-curvature
expansion, such that the expressions (3.30) and (3.31) in terms of the sources would also
be exact in the α′ expansion.

Before continuing, we recall that the derivation of Wald’s formula from the first law
of black hole mechanics assumes that all fields in the theory behave as tensors under gen-
eral coordinate transformations, although this is only true for the metric and the dilaton
(not for the Kalb-Ramond Bµν , which includes gauge and Nicolai-Townsend [70] trans-
formations). A proof of the first law taking into account this property of the heterotic
theory at first order in α′ has been only recently found [71, 72], obtaining a manifestly
gauge invariant general entropy formula. When applied to the solutions at hand, the result
reproduces (3.30), (3.31).

In the following section we derive these expressions for the entropies and the charges
using a near-horizon approach.

3.3 Near-horizon entropy function formalism

Some aspects of the α′-corrected black holes we have just presented have been previously
studied in [37, 40, 41, 73] making use of the entropy function formalism developed by Sen
et al. [23, 73], which provides a useful method to find the near-horizon geometry and the
entropy of extremal black holes. The aim of this subsection is to review this formalism
and check its compatibility with the results presented in previous subsections. From a
ten-dimensional perspective, the near-horizon geometry of both types of black holes is
essentially the same: AdS3 × S3 ×T4 in the five-dimensional case and AdS3 × S3/ZW ×T4

in the four-dimensional case. Therefore, for most of the discussion it is enough to study the
near-horizon geometry of the four-dimensional black holes. The five-dimensional one will
be carefully recovered settingW = 1 and taking into account the implications of having one
additional non-compact coordinate in the asymptotic space, such that one obtains (3.25)
for the S5-brane charge instead of (3.26).

3.3.1 Leading-order computation

As a warm-up exercise, let us first consider the leading-order computation, ignoring for
the time being the α′ corrections. In this approximation, the effective action is that of
ten-dimensional N = 1 supergravity compactified on T4 × S1

z × S1
η. The compactification

on the trivial T4 is straightforward and yields

S = g2
s

16πG(6)
N

∫
d6x̂

√
|ĝ| e−2φ

(
R̂− 4(∂φ)2 + 1

12H
2
)
, (3.34)
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where R̂ is the Ricci scalar of ĝµ̂ν̂ , the six-dimensional metric, and x̂µ̂ = {xµ, z, η}, with
µ = {0, 1, 2, 3}, denote the coordinates of the six-dimensional spacetime. Further compact-
ification on z and η yields the STU model of N = 2, d = 4 supergravity

S = g2
s

16πG(4)
N

∫
d4x

√
|g| s

(
R− aij∂µφi∂µφj − t2F (1)2 − u2F (2)2 − u2

s2 F
(3)2 − t2

s2F
(4)2

)
,

(3.35)
where φi = {s, t, u} are the three scalar fields present in this model. The relation between
the lower- and the higher-dimensional fields is

gµν = ĝµν −
ĝµz ĝνz
ĝzz

− ĝµη ĝνη
ĝηη

,

A(1) = − ĝµz
2ĝzz

, A(2) = − ĝµη
2ĝηη

, A(3) = B̃zµ
2 , A(4) = B̃ηµ

2 ,

s = e−2φ
√
ĝzz ĝηη , t =

√
|ĝzz| , u =

√
|ĝηη| , (3.36)

where B̃µ̂ν̂ is the dual of the Kalb-Ramond 2-form Bµ̂ν̂ , defined as

dB̃ = H̃ ≡ e−2φ ? H . (3.37)

Ansatz for the near-horizon geometry. We shall restrict ourselves to study the near-
horizon geometry of static, extremal, spherically-symmetric black holes assuming that not
only the metric but all fields are invariant under the SO(2, 1) × SO(3) isometry group.
The most general ansatz consistent with this symmetry and the four type of charges we
want to describe is

ds2 = v1

(
r2dt2 − dr2

r2

)
− v2

(
dθ2 + sin2 θdφ2

)
,

F (1) = e1 dr ∧ dt , F (2) = p2 sin θdθ ∧ dφ , F (3) = e3 dr ∧ dt , F (4) = p4 sin θdθ ∧ dφ ,

s = us , t = ut , u = uu , (3.38)

where v1, v2, e1, e3, p2, p4 and ~u ≡ (us, ut, uu) are constants. The election of electric or
magnetic character of F (i) is motivated by the stringy interpretation of the solution.

The above configuration can be straightforwardly uplifted to six dimensions by making
use of eqs. (3.36). We obtain:

dŝ2 = v1

(
r2dt2 − dr2

r2

)
− v2

(
dθ2 + sin2 θdφ2

)
− u2

t (dz − 2e1rdt)2

− u2
u (dη + 2p2 cos θdφ)2 ,

H̃ = 2e3 dt ∧ dr ∧ dz + 2p4 sin θdθ ∧ dη ∧ dφ ,

e2φ = utuu
us

.

(3.39)
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Extremization of the entropy function. Following [67], we define the function
f(v1, v2, ~u, ei, pi) as the integral over the angular coordinates of the (four-dimensional)
Lagrangian evaluated on the ansatz (3.38):

f (v1, v2, ~u, ei, pi) ≡
∫
dθdφ

(√
|g|L

)
|(3.38) . (3.40)

It can be shown that the metric and scalar equations of motion reduce to the extrem-
ization of the function f with respect to v1, v2 and ~u, while the equations of motion of the
vector fields and the Bianchi identities are trivially satisfied for this ansatz. Hence, the
extremization of the function f gives five equations which fix v1, v2 and ~u in terms of the
electric and magnetic charges of the black hole. The latter are defined as

QI = G
(4)
N
g2
s

∫
dθdφ

δ

δF
(I)
rt

(√
|g|L

)
, PI = 1

4π

∫
dθdφF

(I)
θφ . (3.41)

Then,

QI = G
(4)
N
g2
s

∂f

∂eI
, and PI = pI . (3.42)

Let us now define the entropy function E as the Legendre transform of f ,

E(v1, v2, ~u,QI , PI) = 2π
(
g2
s

G
(4)
N
QIeI − f(v1, v2, ~u, eI , PI)

)
, (3.43)

where the parameters eI should be regarded as functions of the electric charges, e = e (Q).
The entropy function evaluated at the extremum of f gives Bekenstein-Hawking entropy
as a function of the electric and magnetic charges [67],

SBH(Q,P ) = E(v1,ext(Q,P ), v2,ext(Q,P ), ~uext(Q,P ), Q, P ) . (3.44)

In the case at hand, the function f is found to be equal to

f (v1, v2, ~u, ei, Pi) = g2
s

2G(4)
N

[
us

(
e2

1u
2
t v2
v1

− p2
2u

2
uv1
v2

+ v1 − v2

)
+ e2

3u
2
uv

2
2 − p2

4u
2
t v

2
1

usv1v2

]
,

(3.45)
and it has an extremum at

v1,ext =v2,ext = 4Q3P2 , e1,ext =
√
Q3P2P4
Q1

, e3,ext =
√
Q1P2P4
Q3

,

~uext =
(√

Q1P4
Q3P2

,

√
Q1
P4
,

√
Q3
P2

)
.

(3.46)

– 16 –



J
H
E
P
0
5
(
2
0
2
1
)
2
7
2

Substituting the values of v1, v2 and ~u at the extremum of the entropy function in the
six-dimensional ansatz (3.39) yields

dŝ2 = 4Q3P2

(
r2dt2 − dr2

r2 − dθ
2 − sin2 θdφ2

)
− Q1
P4

(
dz − 2

√
Q3P2P4
Q1

rdt

)2

− Q1
P4

(dη + 2P2 cos θdφ)2 ,

H̃ = 2
√
Q1P2P4
Q3

dt ∧ dr ∧ dz + 2P4 sin θdθ ∧ dη ∧ dφ ,

e2φ = Q3
P4

.

(3.47)

We can now make a comparison with the near-horizon limit of the solutions studied in
the previous subsections to extract the relation between the electric and magnetic charges
(Q,P ) and the source parameters:

Q1 = α′2n

4R2
zRη

, Q3 = α′N

4Rη
, P2 = WRη

4 , P4 = α′w

4Rη
. (3.48)

Plugging these values back into (3.47),

dŝ2 = α′NW

4

(
r2dt2 − dr2

r2 − dθ
2 − sin2 θdφ2

)
− α′n

R2
zw

dz − Rz
2

√
wNW

n
rdt

2

− α′N

R2
ηW

(
dη + WRη

2 cos θdφ
)2

,

H̃ = α′

2Rz

√
nwW

N
dt ∧ dr ∧ dz + α′w

2Rη
sin θdθ ∧ dη ∧ dφ ,

e2φ = N

w
,

(3.49)

that matches (3.32) after a coordinate redefinition. Let us note an interesting property of
the near-horizon limit, which is that the 3-form field strength is selfdual (with respect to
the orientation εtrθφηz = +1) in six dimensions, namely H̃ = ?H̃ = e−2φH. This, as we
will discuss in section 6, is directly related to supersymmetry.

Finally, the entropy is obtained by evaluating E at the extremum. The function f

vanishes there, and we simply have

SBH(Q1, Q3, P2, P4) = 2πg2
s

G
(4)
N

(Q1e1 +Q3e3) |ext = 4πg2
s

G
(4)
N

√
Q1Q3P2P4 = 2π

√
nwNW ,

(3.50)
in agreement with eq. (3.17).

3.3.2 First-order α′ corrections

Rewriting of the α′-corrected action. Let us now take into account the α′ corrections
to the supergravity action (2.3). Since the trivial T4 plays absolutely no role in the discus-
sion, we can directly work in six dimensions after integrating over the internal directions
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associated to the torus,

S = g2
s

16πG(6)
N

∫
d6x

√
|g| e−2φ

(
R− 4(∂φ)2 + 1

12H
2 + α′

8 R(−)µνρσR(−)
µνρσ

)
, (3.51)

where G(6)
N = G

(10)
N (2π`s)−4. It is well-known that the Chern-Simons term in the local

definition of H, eq. (2.4), hampers the application of the entropy function formalism, as
this field depends on the curvature. Fortunately, at least in the cases of interest to us,
it is possible to deal with this problem, see for instance [23, 37, 40, 52]. Let us note,
nevertheless, that the application of Wald’s formula to theories that contain fields that
do not transform as tensors is not justified in terms of the first law of thermodynamics,
and it would be interesting to develop a more rigorous treatment of the entropy function
formalism in the light of refs. [71, 72]. The first step is to rewrite the action in terms of
the dual 2-form B̃ defined in (3.37). To achieve this purpose, we add the following total
derivative to the action (3.51)

S̃ = S − g2
s

16πG(6)
N

∫ (
H − α′

4 ΩL
(−)

)
∧ H̃ . (3.52)

The variation of the action with respect to B̃ gives the Bianchi identity of H, and the
variation with respect to H gives (3.37), which can be used to eliminate H in terms of H̃
everywhere. As a result, the dependence on the Riemann tensor has been made explicit,
although now we have to deal with the non-covariant form of the Lagrangian. The resulting
action can be split in three contributions:

S̃ =
∫
d6x

√
|g| (L̃1 + L̃2 + L̃3) , (3.53)

where

L̃1 = g2
s

16πG(6)
N

[
e−2φ

(
R− 4(∂φ)2

)
+ e2φ

12 H̃
2
]
,

L̃2 = g2
s

16πG(6)
N
e−2φα

′

8 R(−)µνρσR(−)
µνρσ ,

L̃3 = g2
s

16πG(6)
N

α′

4
εµ1µ2µ3ν1ν2ν3

(3!)2√|g| ΩL
(−)µ1µ2µ3H̃ν1ν2ν3 . (3.54)

The only contribution that it is not manifestly covariant is the last one, L̃3, but under
some assumptions a total derivative can be added to recast it in a manifestly covariant
form. We denote the resulting Lagrangian as

√
|g|L̆3 =

√
|g|L̃3+ total derivative. It will

be the sum of two contributions L̆3 = L̆′3 + L̆′′3, corresponding to the following split of the
Chern-Simons 3-form

ΩL
(−) = A + ΩL , (3.55)

where

A = 1
2d
(
ωab ∧Hb

a

)
+ 1

4H
a
b ∧DHb

a −Rab ∧Hb
a + 1

2H
a
b ∧Hb

c ∧Hc
a . (3.56)
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and ΩL is the Chern-Simons 3-form associated the Levi-Civita spin connection ωab. The
first contribution L̆′3 is obtained from the first term in (3.55), after adding a total derivative
that cancells the one in (3.56), namely√

|g|L̆′3 = g2
s

16πG(6)
N

α′

4
εµ1µ2µ3ν1ν2ν3

(3!)2 Ã µ1µ2µ3H̃ν1ν2ν3 , (3.57)

with Ã = A − 1
2d
(
ωab ∧Hb

a

)
.

We are left with the second contribution due to ΩL. For this we can use that, in the
family of solutions considered, the six-dimensional metric (3.39) is the sum of two three-
dimensional metrics —parametrized by the coordinates {t, r, z} and {θ, φ, η} respectively—
and that also H̃ is the sum of two contributions according to this splitting of the metric.
Then, we have√
|g|L̃′′3 = g2

s

16πG(6)
N

α′

4
εµ1µ2µ3ν1ν2ν3

(3!)2 ΩL
µ1µ2µ3H̃ν1ν2ν3 = g2

s

16πG(6)
N

α′

4
(
ΩL
θφηH̃trz − ΩL

trzH̃θφz

)
,

(3.58)
where we have chosen the orientation εtrθφηz = +1. The last information we need in order
to write this in a manifestly covariant form is that for three-dimensional metrics admitting
a spacelike isometry,

ds2
(3) = λ2[hαβdxαdxβ − (dx] + Vαdx

α)2] , α, β = 1, 2. (3.59)

the Chern-Simons 3-form ΩL is given by [74]

ΩL
12] = R(dV )12 − (dV )12(dV )21(dV )12 + ∂[1V2] , (3.60)

where R is the Ricci scalar of the two-dimensional metric hαβ and V is a certain 1-form
which involves the spin-connection associated to hαβ . Again,

√
|g|L̆′′3 is obtained by adding

a total derivative to the action that cancels the last term in (3.60).

Corrections to the entropy function. The most convenient way to find the corrections
to the entropy function is to evaluate the six-dimensional Lagrangian on the ansatz (3.39),

f(v1, v2, ~u, ei, pi) =
∫
dzdηdθdφ

[√
|g|
(
L̃1 + L̃2 + L̆′3 + L̆′′3

)]
(3.39)

. (3.61)

Therefore, the function f will be now the sum of four contributions, f = f1 + f2 + f ′3 + f ′′3 :

1. The first contribution is exactly the same as the one we obtained in (3.45).

2. The second contribution will not be displayed since we do not need it to compute
the first-order corrections. This is due to the fact that the curvature tensor R(−)µνρσ
vanishes when evaluated at the extremum (3.46). Then, this contribution must be at
least of second order in α′, so we can simply ignore it.

3. The third contribution (3.57) is

f ′3 = g2
sα
′

2G(4)
N

[
u2
t p

2
4

u3
sv

2
1

(
u2
t p

2
4+u2

s

(
u2
t e

2
1−v1

))
+u2

ue
2
3

u3
sv

2
2

(
u2
ue

2
3+u2

s

(
u2
up

2
2−v2

))]
. (3.62)
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4. Finally, the last contribution (3.58) is

f ′′3 = g2
sα
′

2G(4)
N

[
e3p2u

2
u

(
2p2

2u
2
u − v2

)
v2

2
− e1p4u

2
t

(
v1 − 2e2

1u
2
t

)
v2

1

]
. (3.63)

It is straightforward to check that (3.49) is also an extremum of the corrected entropy
function, as expected. However, the relation between the electric charges carried by the
lower-dimensional vector fields and the source parameters is no longer the one we found at
zeroth order in α′, eq. (3.48). Now, taking into account the corrections to f , we find

Q1 =G
(4)
N
g2
s

∂f

∂e1

∣∣∣∣∣
ext

= α′2

4R2
zRη

n

(
1 + 2

NW

)
,

Q3 =G
(4)
N
g2
s

∂f

∂e3

∣∣∣∣∣
ext

= α′

4Rη

(
N − 2

W

)
,

(3.64)

which agree with the value of the Maxwell charges obtained in the previous subsection.
Finally, evaluating the corrected entropy function E at the extremum, we get Wald’s entropy

SW4d = 2π
√
nwNW

(
1 + 2

NW

)
= 2π

√
Q+Q− (Q0QH + 4) , (3.65)

as previously reported in [37, 40, 52].

Five-dimensional three-charge black holes. The above steps can be repeated to
obtain this near-horizon solution after the following modifications are taken into account.
In first place, since there are now less independent parameters, the appropriate ansatz is

dŝ2 = v1

(
r2dt2 − dr2

r2

)
− v2

(
dθ2 + sin2 θdφ2

)
− u2

t (dz − 2e1rdt)2

− v2 (dψ + cos θdφ)2 ,

H̃ = 2e3 dt ∧ dr ∧ dz + 2p4 sin θdθ ∧ dη ∧ dφ ,

e2φ =
ut
√
v2

us
.

(3.66)

Additionally, the first term in the right-hand-side of (3.58) needs to be set to zero. The
reason is the following. First, we notice that this term only depends on spatial components
of the Riemann tensor, hence it cannot play a role in the computation of the entropy from
Wald’s formula. Second, the Chern-Simons 3-form of a 3-sphere is zero when evaluated
using the Christoffel symbols, while reduces to a total derivative when evaluated using the
spin connection. Hence, the inclusion of this term depends on the boundary conditions of
the configuration. This leads us to the third and last consideration; from the structure
of (3.58), it is clear that this term has the interpretation of magnetic source of the Kalb-
Ramond field (or electric source of H̃) produced by the geometry of the Gibbons-Hawking
space. In the four-dimensional solution, this term is responsible for a factor of −1/W in
the screening of the S5-brane charge (the other −1/W comes from (3.57)) produced by the

– 20 –



J
H
E
P
0
5
(
2
0
2
1
)
2
7
2

KK gravitational instanton —more details about this are given in the following section.
Since in the five-dimensional solution the KK instanton number is zero, there can be no
contribution from this term.

Once these observations are considered, it is straightforward to check that (3.49) with
W = 1 (which in this case does not have the physical interpretation of a charge, just like it
does not indicate the presence of a KK monopole) gives again an extremum of the entropy
function. Its evaluation gives

SW5d = 2π
√
nwN

(
1 + 2

N

)
= 2π

√
Q+Q− (Q0 + 3) . (3.67)

For the charges, one gets

Q1 = α′2

4R2
z

n

(
1 + 2

N

)
, Q3 = α′

4 (N − 1) , P4 = α′w

4 . (3.68)

4 Kaluza-Klein monopoles and solitonic 5-branes

4.1 General KK monopoles

In the previous section we have described two families of regular black-hole solutions, with
four and five non-compact dimensions respectively. Before describing the singular case of
small black holes made by strings and momentum, it is convenient to study first the system
formed by Kaluza-Klein monopoles and solitonic 5-branes.

At zeroth order, the unit charge Kaluza-Klein monopole is a well-known solution of
string theory in which all fields are trivial except for the metric, that reads

ds2 = dt2 − dzαdzα −H−1 (dη + χ)2 −H
(
dr2 + r2dΩ2

(2)

)
,

H = 1 + Rη
2r , χ = Rη

2 cos θdϕ , η ∼ η + 2πRη . (4.1)

It is straightforward to check that this solution can be obtained from the family considered
in section 3.1 setting n = w = N = 0, W = 1. On the other hand, at first sight it might
not be obvious that the α′-corrected Kaluza-Klein monopole is not automatically obtained
performing the same operation on the solution described in section 3.2. There are several
reasons why such procedure fails. In first place, it is unclear how to treat the n/N → 0/0
indeterminacy that appears in the α′-correction to Z+, see (3.19). More importantly, the
term F (r; q0) in Z0 collapses into a harmonic pole that causes, among other effects, a
divergence in the dilaton. On the other hand, the direct computation of the corrections to
the original background (4.1) gives a regular configuration

ds2 = dt2 − dzαdzα −Z0
[
H−1 (dη + χ)2 +H

(
dr2 + r2dΩ2

(2)

)]
,

e2φ = e2φ∞Z0 , H = ?σdZ0 , with Z0 = 1− α′F
(
r; Rη2

)
, (4.2)

with H and χ unchanged. Recall that the function F (r; q) is given by (in the case we are
now considering, W = 1)

F (r; q) = (r + qH) (r + 2q) + q2

4qH (r + qH) (r + q)2 , qH = RηW

2 . (4.3)
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A relevant property of the α′-corrected heterotic KK monopole is that it carries -1
units of solitonic 5-brane charge, as defined in (3.24). This observation dates back to [63],
that arrived to this conclusion without explicitly finding (4.2), but using the fact that the
KK monopole is a gravitational instanton with unit instanton number. The argument goes
as follows. The Kalb-Ramond Bianchi identity has the form

dH = α′

4 R(−)
a
b ∧R(−)

b
a . (4.4)

In absence of matter fields at zeroth order, the right hand side is proportional to the
Pontryagin density. Hence, upon integrating this equation over a four-dimensional Rie-
mannian space, we obtain that the magnetic charge carried by H is proportional to the
gravitational instanton number. Working out the details, the aforementioned factor of −1
is obtained. The value can be read in a fast inspection of the asymptotic behaviour of
limr→∞Z0 = 1− α′

r + . . . .
As emphasized by Sen in [63], the fact that the KK monopole carries this S5 charge is

a necessary condition for the consistency of S-duality of heterotic string theory. Thus, in
order to properly understand the corrections to this string theory system, the perturbative
solution must be constructed fixing the sources at r = 0, while the asymptotic charges are
allowed to vary. Observe that it is the asymptotic Maxwell charge of the Kalb-Ramond field
strength the one that contains the information about the microscopic S5 charge (the S5
brane source charge vanishes for this configuration, N = 0). Additionally, one notices that
the truncation of sources directly in α′-corrected solutions can produce a wrong answer;
had we simply set n = w = N = 0, W = 1 directly in the general corrected solution of
section 3.1, we would not have obtained the appropriate value of S5 charge.

The previous discussion extends straighforwardly to a multicenter configuration of KK
monopoles. In (4.1) we can use a multicenter harmonic function, H = 1 +

∑m
i=1

Rη
2ri , where

ri represents now the three-dimensional Euclidean distance measured from some point ~xi,
interpreted as the location of a monopole. Likewise, χ must be appropriately modified.14 It
is well-known that the resulting space is a regular gravitational instanton, with instanton
number given by the number of poles of the harmonic function, m. From the previous
argument, one concludes that the multicenter configuration carries −m units of S5 charge.
The backreacted solution is still of the form of (4.2), with the already mentioned multicenter
expressions for H, χ and with

Z0 = 1− α′

4

[
m∑
i=1

2
Rηri

− (~∇H)2

H3

]
= 1− α′

4

 m∑
i=1

2
Rηri

−
R2
η

∑
i,j

(~x−~xi)·(~x−~xj)
r3
i r

3
j

4
(
1 +

∑
i
Rη
2ri

)3

 . (4.5)

The most general configuration is that of multicenter KK monopoles, each with generic
charge. So far in this section, we have restricted to unit charge monopoles by setting the
coefficient of all harmonic poles to Rη/2. Together with the fact that the coordinate η
has period 2πRη, this ensures that the metric is locally flat at the centers ~xi. On the
contrary, a monopole with general charge is obtained if the coefficient is WiRη/2, with Wi

14Its expression is not important for our discussion and can be readily found in the literature.
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a positive integer. The resulting space presents conical singularities at the centers whenever
the charge is larger than one, as described after (3.14). In what follows, we offer a detailed
computation of the instanton number when these defects are present. The gravitational
instanton number is defined as

n = − 1
16π2

∫
M
Ra b ∧Rb a , (4.6)

where M denotes the four extended dimensions where the metric is non-trivial. In fact,
since the solution is purely four-dimensional and the instanton number is independent of
conformal rescalings of the metric, we can just evaluate the integral above in the metric

ds2
M = H−1(dη + χ)2 +H

(
dr2 + r2dΩ2

(2)

)
. (4.7)

For simplicity, let us perform the computation in the case of one center, so that

H = 1 + W

r
, χ = W cos θdϕ , W = 1, 2, . . . , (4.8)

where we are setting units such that Rη = 2. Now, the curvature tensor is self-dual, the
instanton number can be expressed as15

n = 1
32π2

∫
M
d4x
√
gX4 , (4.9)

where X4 = RµνρσR
µνρσ − 4RµνRµν + R2 is the Gauss-Bonnet density. If M were a

manifold, this would be nothing but its Euler characteristic, but in our case one has to be
careful with this interpretation due to the presence of a conic defect at r = 0. In order
to perform the computation we may first split M in two regions r > r0 and r < r0, that
we may callM∞ andM0, respectively. The instanton number is then the sum of “Euler
characteristics”

n = X (M0) + X (M∞) , (4.10)

where now, since each partMp has a boundary, we have to take into account the boundary
terms:

X (Mp) = 1
32π2

∫
Mp

d4x
√
gX4 + 3

16π2

∫
∂Mp

d3x
√
h

(
K

[i
[iR

jk]
jk] −

2
3K

[i
[iK

j
jK

k]
k]

)
. (4.11)

Here hij is the induced metric on the boundary r = r0, R is the intrinsic curvature and K
is the extrinsic curvature, defined as

Kij = 1
2Lnhij , (4.12)

where Ln is the Lie derivative with respect to the normal vector n. Since the normal vectors
to M0 and M∞ are opposite, it is obvious that in eq. (4.10) the boundary terms cancel
out and one is left with the integration in the whole volume, hence recovering eq. (4.9).
The evaluation of X (M∞) is straightforward and it yields

X (M∞) = −W
2(4r +W )

(r +W )4

∣∣∣∣∣
∞

r0

− W 2(4r0 +W )
(r0 +W )4 = 0 . (4.13)

15The self-duality of the Riemann tensor also implies that the vanishing of the Ricci tensor, Rµν = 0.
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2π
W

Figure 1. Orbifold B4/ZW . This is a slice of the unit ball in E4 where the sides (red dashed lines)
are identified. The boundary is only composed of the arc of the circumference r = 1 (red solid line).

This actually follows from the fact thatM∞ is topologically S1 × S2 × [0, 1) and from the
factorization property of the Euler characteristic.

Let us now consider M0. We already mentioned that near r = 0 the KK monopole
becomes the orbifold E4/ZW . Therefore,M0 is topologically B4/ZW , this is, a 1/W slice
of the unit ball in E4, with the sides identified as illustrated in figure 1. One can then
apply eq. (4.11) to this space in order to compute X (M0). Notice that, if the sides were
not identified, one would need to take them into account in the boundary integral and
there would be additional contributions coming from the vertices, so that the result would
be 1, i.e., the Euler characteristic of any simply-connected open set in E4. However, once
they are identified they do not form part of the boundary and, for the same reason, there
are no contributions from any of the vertices. Let us also stress that the curvature of this
space is identically zero at all points, so that no bulk contribution can come from the cone
at r = 0 as well. Thus, the only contribution to eq. (4.11) comes from the boundary at r0.
It is clear that adding up W times that result one would get the corresponding value for
the Euler characteristic of the disc, which is 1. Therefore, we conclude that

n = X (M0) = 1
W
. (4.14)

Note that this is, in fact, the orbifold Euler characteristic of E4/ZW . Orbifold Euler
numbers are naturally rational, and it has been known for long that the Gauss-Bonnet
formula applied to orbifolds gives this result rather than the standard Euler characteris-
tic [75]. Therefore, our fractional result for the instanton number of the higher-charge KK
monopole should not come as a surprise.

This result can be straightforwardly generalized to an arbitrary number of centers, in
which case each center contributes as before and we get

n =
m∑
i=1

1
Wi

. (4.15)
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Note that, once again, this is the orbifold Euler characteristic of the multicenter
KK monopole.

While not a surprise, the fact that the result is a fractional number might feel un-
comfortable when thinking about charge quantization. Additionally, there seems to exist
a quite extended expectation16 that the charges carried by m unit charge KK monopoles
should be the same than those carried by one monopole of charge m. While obviously the
KK charges coincide, the former has (−m) S5 charge while the latter has (−1/m) if we
use (4.15). This could lead to the proposal that, in the presence of conical singularities,
the S5 charge should not simply be the instanton number, but an additional contribution
should be added. Such putative term should amount to (Wi− 1/Wi) for every defect, such
that the S5 charge is always minus the KK charge. We do not know of any argument
supporting the introduction of such term, and hence we will not do it here.

On the contrary, there are hints that the S5 charge might not necessarily be given in all
cases by −m. On one side, let us note that the fractional KK contribution to the S5 charge
is crucial in order to obtain the correct value for the black hole entropy in (3.30), and
in that case there is no conical singularity whatsoever. Besides this, we can find another
possible argument in the study of the moduli space of the effective worldvolume theory of
heterotic Kaluza-Klein monopoles, which was argued in [76] to be that of BPS monopoles
in a SU(2) gauge theory.17 The claim strongly relies on the fact that, after taking into
account higher-curvature corrections, a collection of m separated, unit charge monopoles
has (m,−m) KK and S5 charges, respectively. This is a unique feature of the heterotic
theory. The conical singularity that appears in (4.2) when several KK monopoles coincide
is well understood in M and type IIA theories, where it produces an enhancement of the
gauge symmetry group of the worldvolume theory, as well as in type IIB, where tensionless
strings appear [76]. On the other hand, a relevant property of the moduli space of BPS
monopoles is that it has no singularities [77]. Hence, there would seem to be a contradiction
between this fact and the possibility of having higher-charge heterotic KK monopoles with
conical singularities. A way out of this problem would be that the S5 charge they carry
is not the same as when they are separated, so that higher-charge KK monopoles have
different quantum numbers than BPS monopoles.

4.2 Adding S5 branes

In previous section we have shown that higher-charge KK monopoles, if alone, have a
discrete charge spectrum which does not obey standard quantization rules. A plausible
interpretation could be that the corresponding solution to the equations of motion does
not correspond to any actual state of string theory. Just like in classical electromagnetism,
there are solutions to the field equations which are discarded once Dirac quantization is
imposed, i.e. we shall only consider solutions in which the charge is an integer. In the
case at hands, this implies that we need to add S5 branes. Remarkably, this addition also

16This is our personal perception of the issue, after having discussed about it with a respectable number
of researchers. We do not know about any bibliographical support of this fact.

17As described in [76], in M and type II theories the field content determines the effective theory of the
KK worldvolume theories, that correspond respectively to N = 1 (U(1)m) gauge theories (M and type IIA)
and N = (2, 0) tensor multiplet (type IIB).
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resolves the orbifold singularity and produces a regular, geodesically complete manifold.
The solution has still the form given in (4.2), now with

Z0 = 1 + q0
r
− α′ [F (r; q0) + F (r; qH)] +O(α′2) , (4.16)

where, we recall, q0 = α′N
2Rη . Contrary to the situation in the previous section, the right

solution is obtained if we truncate n = w = 0 in the α′-corrected black hole of section 3.2.
Now, when we approach the r → 0 region, we find that the orbifold singularity has been
replaced by a semi-infinite cylinder smoothly glued to the Gibbons-Hawking space. Indeed,
in this near-brane limit one finds

ds2 = dt2 − dzαdzα −
(
dβ2 + α′NWdΩ2

(3)/ZW

)
, φ = − β√

α′NW
. (4.17)

with dΩ2
(3)/Z2

the metric on the Lens space S3/ZW , which has the form of the metric on
the 3-sphere but its volume is only a 1/W fraction of it. The radial coordinate has been
redefined as β =

√
α′NW log r, such that r → 0 corresponds to an infinitely extended

cylinder along β → −∞. For fixed values of β, t, zα, the geometry is that of a 3-sphere
with points identified under the action of a discrete ZW group that has no fixed points.

The computation of the S5 charge, defined in (3.24), yields

Q0 = N − 2
W

, (4.18)

which, in light of the discussion below eq. (3.33), we assume to be an integer. In particular,
this means that the localized brane source charge N can be fractional. This somewhat
unusual value is a consequence of the ZW quotient performed at the sphere that surrounds
the brane. The topology of the space coincides with that of the previous subsection, where
the conical singularity has been mapped to the asymptotic near-brane region r → 0, and
hence the KK gravitational instanton screens the S5 charge with a factor of −1/W . An
additional factor of −1/W comes from the introduction of the S5-brane localized sources.
This latter effect, which has been mostly ignored in the literature, is a consequence of
using the supersymmetric formulation of the heterotic theory given in [57], as described
in [48]. Recall that in this formulation the torsion component of the spin connection is
−1

2Hµ
a
bdx

µ. Due to the presence of this term, a stack of S5 branes produces a new
gravitational instanton that backreacts as a source in the α′-corrected Bianchi identity.
An elementary observation that, nevertheless, must be stressed is that, once the S5 branes
are included, there is no uncertainty in the computation of the S5-brane charge, as the
manifold has no singularity anymore.

In summary, we have seen that a non-perturbative modification of the higher-charge
KK monopole, that involves the introduction of S5 branes, allows to solve the problem of
charge quantization and simultaneously resolves the conifold singularity. The most relevant
effect of higher-curvature corrections is to modify the charges of the zeroth-order solution,
which must be allowed to vary in the perturbative expansion. We have also seen that the
truncation of charges in a general corrected solution may produce an incorrect result.
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5 Higher-curvature corrections to small black holes and rings

After having discussed those solutions made up of Kaluza-Klein monopoles and solitonic
5-branes, we now turn our attention into the study of small black holes and rings, con-
sisting solely of fundamental strings wrapping an compact direction (denoted by z) with
momentum flowing along them.

Regarding small black holes, special attention has been paid to the four-dimensional
ones. At leading order in the α′ expansion, they were shown to be solutions of the heterotic
effective action characterised by a singular horizon with vanishing area [28]. The inclusion
of quadratic-curvature corrections was studied in detail in [50], where it was found that they
do not regularize the singular supergravity solution. A similar analysis was carried out for
five-dimensional small black rings, obtaining analogous conclusions [55]: small black rings
in five dimensions are singular in the supergravity approximation and the α′ corrections
do not cure this behaviour. The aim of this section is to present a general treatment and
extend these results to any number of dimensions.

Let us begin with a discussion of the heterotic backgrounds constructed in the mid-
1990s in [78, 79] which describe heterotic strings carrying arbitrary right-moving momen-
tum waves, generalizing those of [26, 80]. These solutions preserve half of the spacetime
supersymmetries (see appendix A for further details) and their form is the following

ds2 = 2
Z−

du

(
dt+ ω − Z+

2 du

)
− ds2(Ed−1)− d~z2

(9−d) ,

B =Z−1
− du ∧ (dt+ ω) ,

e−2φ = e−2φ∞Z− ,

(5.1)

where ds2(Ed−1) represents the metric of Ed−1 and

Z− =1 + q−

||~x− ~F ||d−3
,

Z+ =1 + q+ + q−Ḟ
mḞm

||~x− ~F ||d−3
,

ωm = q−Ḟ
m

||~x− ~F ||d−3
,

(5.2)

where ~x ∈ Ed−1, q± are constants and Fm = Fm(u) are arbitrary functions of u = t − z.
Derivatives with respect to this coordinate are denoted with a dot. Finally, ~z(9−d) represent
the coordinates over which the solution has been smeared and parametrize a torus T9−d

without internal dynamics. The position of the string in the non-compact directions is
determined parametrically by

~x = ~F (u) . (5.3)

For this solution to represent a closed string, we must demand that ~F (u) is periodic. We
denote the periodicity of this function by `, which does not necessarily coincide with the
periodicity of the compact coordinate z. Instead, we allow the function F to be multi-
valued on S1

z. All we demand is that the string closes after a finite number of revolutions
along z. Therefore, ` = 2πRzw, where w = 1, 2, . . . represents the winding number along z.
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Following [81], we can further smear the solution over the compact coordinate z, which
yields the following solution

Z− = 1 +
∫ `

0

q−

||~x− ~F ||d−3
du ,

Z+ = 1 +
∫ `

0

q+ + q− ~̇F · ~̇F
||~x− ~F ||d−3

du ,

ωm =
∫ `

0

q−Ḟ
m

||~x− ~F ||d−3
du ,

(5.4)

which has no dependence on u anymore. Hence, it can be dimensionally reduced (on T9−d×
S1
z) to d dimensions through a standard Kaluza-Klein reduction. The lower-dimensional

metric that one obtains, in the Einstein frame, is

ds2
(d) = (Z+Z−)

3−d
d−2 (dt+ ω)2 − (Z+Z−)

1
d−2 ds2(Ed−1) . (5.5)

As we will see next, the lower-dimensional solutions can describe small black holes and
rings for particular choices of ~F (u). Before discussing these choices, we shall make use of
the results of [55], where the first-order α′ corrections to the above class of backgrounds
were computed. The form of the corrected solution turns out to be the same, so no
other field components are activated by the corrections. This is in fact a consequence of
supersymmetry. As we show in appendix A (see also [82]), (5.1) is the most general field
configuration that one can write down for the DH states. The curvature corrections only
modify the form of the function Z+. Then, the corrected solution is (5.1) with Z−,Z+, ω

given in terms of the zeroth-order solution (which we now denote as {Z(0)
− ,Z(0)

+ , ω}) by the
following expressions.

Z− = Z(0)
− +O(α′2) ,

Z+ = Z(0)
+ + α′

Ω(0)
mnΩ(0)mn − 2∂mZ(0)

+ ∂mZ(0)
−

4Z(0)
−

+O(α′2) ,

ω = ω(0) +O(α′2) , (5.6)

where Ω = dω.
We shall now examine the subsequent black hole and black ring solutions arising from

consideration of two particular profile functions ~F .

5.1 Static fundamental strings

We start by considering a constant ~F , which corresponds to a static fundamental string.
Without loss of generality, we can always set ~F = 0 after an appropriate change of coordi-
nates. Plugging this static ansatz into (5.6), we find that

Z+ = 1 + q̃+
ρd−3 −

(3− d)2α′

2
q̃+q̃−

ρd−1(ρd−3 + q̃−) +O
(
α′2
)
,

Z− = 1 + q̃−
ρd−3 +O

(
α′2
)
, (5.7)
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where we have made the definitions q̃+ = q+`, q̃− = q−` and ρ = ||~x||. The Killing vector
∂t is timelike for positive values of ρ, becoming null in the ρ → 0 limit, where the tt
component of the metric (5.5) vanishes, thus signaling the presence of an event horizon at
ρ = 0 whose area is given by18

AH = (d− 3)π
d−1

2

Γ
(
d−1

2

) √
−2α′q̃+q̃− , (5.8)

We see, as anticipated, that the area of the horizon vanishes if curvature corrections are
ignored (setting α′ → 0), giving rise to a naked singularity. Then, it may naively seem,
if one just looks at the lower-dimensional metric, that the naked singularity is cloaked by
a regular event horizon once the corrections are taken into account. However, this is not
the complete story: it is not hard to see that the Kaluza-Klein scalar k one gets upon
compactification of the z-coordinate takes the form19

k = k∞
Z1/2

+

Z
d−3

2(d−1)
−

, ⇒ k(ρ→ 0) ∼ ρ−
2(d−2)
d−1 . (5.9)

Hence, it diverges at the horizon. This tells us that we cannot trust the d-dimensional
metric (5.5) as it has been obtained through a singular dimensional reduction. This singular
behavior can also be detected directly in ten dimensions, where the divergence of the KK
scalar is reflected in a divergence of the ten-dimensional Ricci scalar, whose explicit form is

R = − 7(d− 3)2(q̃−)2

2ρ2(q̃− + ρd−3)2 . (5.10)

5.2 Rotating fundamental strings

Now let us consider that the string has a non-trivial profile function ~F . We shall restrict,
as in the previous literature (see e.g. [38, 78, 81, 83]), to circular profiles of the form

F 1 = R cos
(

2πW u

`

)
, F 2 = R sin

(
2πW u

`

)
, F 3 = · · · = F d−1 = 0 . (5.11)

Such a configuration corresponds to a string winding a 2-torus spanned by z and the polar
angle ψ in the x1 − x2 plane. More concretely, this yields a helix profile for the string,
which swirls around the z-direction while turning round along the circle (x1)2 +(x2)2 = R2.
This radius R can be related to the momentum carried by the string [81] and W (not to
be confused with the charge of the KK monopole, denoted by W in the previous section)
represents the number of times the string is wrapped along the ψ direction.

It was shown in [38] (see also [83]) that this configuration, when reduced to d > 4
dimensions, gives raise to small black rings with two monopole and one dipole charges
which are singular at leading order in the α′ expansion. We shall now investigate the effect

18Note that in order to have a regular (d-dimensional) metric we must ensure that Z+ > 0 for ρ ∈ R+,
which in turn requires q+ < −b(q−; d), where b(q−; d) is a certain positive-definite function of q− and d

which was determined numerically in [47] for the particular case of d = 5.
19Remember that the (d+ 1)-dimensional metric is expressed in the Einstein frame.
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of the first-order corrections on these solutions. To this aim, we first re-derive the explicit
form of zeroth-order solution for the above circular profile which was presented in [38]. It
is convenient to introduce the following set {ξ, ψ, η, φ1, . . . , φd−4} of new coordinates

x1 =ξ cosψ , x2 = ξ sinψ ,
x3 =η cos(φ1) , . . . xd−1 = η sin(φ1) . . . sin(φd−4) . (5.12)

2 After some routine computations, one finds

Z(0)
± = 1 + q̃±

(ξ2 + η2 +R2)
d−3

2
2F 1

(
d− 3

4 ,
d− 1

4 ; 1; 4R2ξ2

(ξ2 + η2 +R2)2

)
,

ω(0) = (d− 3)πq̃−W R2ξ2

`(ξ2 + η2 +R2)
d−1

2
2F 1

(
d− 1

4 ,
d+ 1

4 ; 2; 4R2ξ2

(ξ2 + η2 +R2)2

)
dψ , (5.13)

where 2F 1(a, b; c; z) denotes the hypergeometric function and where we have defined q̃− ≡
q−` and q̃+ ≡ q+` + 4π2W 2R2q−/`. Note that these results are strictly equivalent to
those presented at [38] after identifying their notation {ff , fp, Am} with our notation
{Z(0)
− ,Z(0)

+ ,−ωm}. Regarding future manipulations, it is convenient to rewrite it in terms
of the so-called ring coordinates [84], which are defined as

ξ =
√
y2 − 1
x− y

R , η =
√

1− x2

x− y
R , (5.14)

and whose range is −∞ ≤ y ≤ −1 and −1 ≤ x ≤ 1. The metric (5.5) (of the zeroth-order
solution) in this coordinates reads

ds2
(d) = (Z(0)

+ Z
(0)
− )

3−d
d−2 (dt+ ω(0))2 −

R2(Z(0)
+ Z

(0)
− )

1
d−2

(x− y)2

[
dy2

y2 − 1 + (y2 − 1)dψ2 + dx2

1− x2

+ (1− x2)dΩ2
(d−4)

]
, (5.15)

where dΩ2
(d−4) denotes the metric of S(d−4) and

Z(0)
± = 1 + q̃±

(
y − x
2R2y

) d−3
2

2F 1

(
d− 3

4 ,
d− 1

4 ; 1; 1− 1
y2

)
,

ω(0) = (d− 3)πq̃−W R4(y2 − 1)
`(x− y)2

(
y − x
2R2y

) d−1
2

2F 1

(
d− 1

4 ,
d+ 1

4 ; 2; 1− 1
y2

)
dψ . (5.16)

It is not difficult to see that the norm of the Killing vector ∂t vanishes at y → −∞.
However, this does not correspond to a regular horizon since this null hypersurface has
vanishing area and, furthermore, the curvature blows up there, exactly what one finds for
the static small black holes discussed in the previous subsection.

Let us then take into account the corrections. Given this zeroth-order solution, it is
straightforward to use (5.6) to find the corrections to Z+. Since its explicit form involves
long expressions which are not particularly illuminating, we relegate it to appendix B, see
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eq. (B.7). It suffices to know that the near-horizon behavior of the function Z+ is modified
by the α′ corrections as

Z+ ∼
y→−∞

|y|d−4 + α′|y|d−2 , (5.17)

while
Z− ∼

y→−∞
|y|d−4 , ω ∼

y→−∞
|y|d−4dψ . (5.18)

Then, we find that the area of the would-be horizon scales as

AH ∼ lim
y→−∞


(Z+Z−)

1
d−2R2

y2


d−2

2

y

 ∼ √α′ (`2q̃+ − 4π2q̃−R2W 2) ∼
√
nw − JW ,

(5.19)
where n represents the units of momentum carried by the fundamental string and J its
angular momentum. The last expression is obtained upon use of eqs. (A.4) and (A.13)
of [38], which relate the parameters q̃± and J with n,w and W as follows:

q̃−

16πG(d)
N

=
Γ
(
d−1

2

)
2(d− 3)π

d−1
2

Rzw

α′
,

q̃+

16πG(d)
N

=
Γ
(
d−1

2

)
2(d− 3)π

d−1
2

n

Rz
, J = R2W

α′
. (5.20)

Note that the result (5.19) is in agreement with the scaling argument of [24, 38].
In another vein, we check that (5.19) vanishes at leading order (as we anticipated)

while receiving a finite correction once the first-order α′ corrections are included. However,
one should be aware of the fact that this finiteness is only a mirage, and it actually comes
from the combination of two divergences. In order to see this explicitly, let us first carry
out the change of coordinates [85]

r = −R
y
, x = cos θ , (5.21)

which maps the y → −∞ hypersurface to the r → 0+ hypersurface. Using this coordinates,
our metric (5.5) reads

ds2
(d) = (Z+Z−)

3−d
d−2 (dt2 + ω)2 − (Z+Z−)

1
d−2

(1 + r cos θ
R )2

[(
1− r2

R2

)
R2dψ2 + dr2

1− r2

R2

+ r2dΩ2
(d−3)

]
,

(5.22)
where dΩ2

(d−3) = dθ2 + sin2 θdΩ2
(d−4) and where it is assumed that Z+,Z− and ω are

expressed in terms of the new coordinates (5.21). Surfaces of constant r have topology
S1×Sd−3, where the S1 is charted by the ψ-coordinate. By using the near-horizon behavior
of Z+,Z− and ω, we find that the radii Rψ and Rd−3 associated to S1 and Sd−3 scale near
the horizon as

Rψ ∼
r→0+

r
3−d
d−2 ∼ |y|

d−3
d−2 , Rd−3 ∼

r→0+
r

1
d−2 ∼ |y|−

1
d−2 . (5.23)

Consequently, the radius Rd−3 vanishes in the horizon while Rψ diverges. However,
Rψ(Rd−3)d−3, which is proportional to the area, is indeed finite in this limit, what jus-
tifies why the expression for the area does not diverge.
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This unusual behaviour of Rψ and Rd−3 clearly indicates that the metric (5.5) is
singular at y → −∞ (r → 0+). We can additionally check the existence of such singularity
by computing its Ricci scalar Rd. Indeed, at zeroth order the Ricci scalar already diverges
as Rd ∼

y→−∞
|y|

4
d−2 , and after including the first order-corrections such behaviour is not

regularized, since we find that Rd ∼
y→−∞

(α′)−
1
d−2 |y|

2
d−2 . This signals the persistence of the

singularity, as well as the breakdown of the perturbative expansion.

6 Fake small black holes

The conclusion that one extracts from the previous section is that small black holes are
not regularized by higher-curvature corrections. On the other hand, previous results in
the literature have described the existence of regular black holes with a reduced number
of charges when the curvature corrections are included, while at zeroth order the solutions
with these reduced number of charges are singular. The possible compatibility of these
seemingly contradictory facts is studied below.

6.1 Fake small black holes in four and five dimensions

Let us recall some of the results described in section 3.2. The Wald entropy of the four-
dimensional black hole in terms of the asymptotic charges has the following expression,

SW4d = 2π
√
Q+Q− (Q0QH + 4) . (6.1)

Looking at this formula only, one sees that if any of the solitonic 5-brane or the Kaluza-
Klein charges is set to zero, we obtain

SW4d|Q0QH=0
?= 4π

√
Q+Q− , (6.2)

whose expression coincides with the microscopic degeneracy of the DH system (1.1). If it
were possible to truncate both of the two charges in a consistent manner and, particularly,
such that these expressions hold, this could be interpreted as a resolution of the horizon of
four-dimensional small black holes via higher-curvature terms.

However, in previous sections of the paper, we have illustrated how the truncation (or
addition) of sources (and, consequently, of charges) in a particular solution is a procedure
that needs to be handled with care. Indeed, if we remove the KK monopole from the
general four-dimensional solution described in section 3, the result will be a singular space.
The corrections to the functions Z0 and Z+ —see eqs. (3.19)— diverge when the KK-
monopole charge vanishes, which tells us that this limit must be taken before computing
the α′ corrections. Doing so, one finds that the functions that determine the solution are
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given by

Z+ = 1 + q+
r
− α′q+q−

2r2 (r + q0) (r + q−) +O
(
α′2
)
,

Z0 = 1 + q0
r
− α′q2

0
4r2 (r + q0)2 +O

(
α′2
)
,

Z− = 1 + q−
r

+O
(
α′2
)
,

H = 1 +O
(
α′2
)
, (6.3)

which yield singularities in the spacetime and matter fields. We notice that if one further
truncates the S5-brane charge, which here is achieved by imposing q0 = 0, one recovers
the (singular) solution derived in section 5.1 for the particular case of d = 4. Clearly, the
formula (6.2) is not correct for the resulting configuration.

On the other hand, we recall that, as outlined in section 3.2, the vanishing of the
Maxwell S5-brane charge does not necessarily imply the absence of S5-branes when KK
monopoles are present, as we can have contributions from the higher-curvature terms in
the Bianchi identity. Concretely, for the four-dimensional system we have that Q0 = 0 if
the following relation between the sources holds,

NW = 2 . (6.4)

As a result, we get a black hole with a regular horizon and whose S5-brane charge is
completely screened. When a black hole has this property, we call it a fake small black hole.
In this case, the expression for the entropy in (6.2) is correct, and its value coincides with
that of the DH states, 4π

√
Q+Q−. However, since the KK monopole charge is necessarily

non-vanishing (otherwise, the functions would be given by (6.3)), the solution cannot be
interpreted as a small black hole with regular horizon. Indeed, it is an ordinary black
hole with four type of sources which is already regular at zeroth-order in α′, with the
special property that its S5 brane charge is screened by the higher-curvature corrections.
Additionally, we point out that the presence of S5-branes, even if its charge is screened,
influences the amount of supersymmetry preserved by these solutions, which is 1/4 instead
of the 1/2 preserved by the DH states, see e.g. [47, 49]. It is worth noticing that in this
solution the Wald entropy satisfies SW4d = A/2G, the same relation that was found for
the solutions described in [32, 34, 35].

A similar construction is also possible if there are five non-compact dimensions, in
which case it is possible to have a regular horizon without KK monopole. If we set Q0 = 0
in the general solution of section 3.2, which according to (3.25) implies N = 1, we obtain
a configuration with the same charges than the DH states. However, in this case the
numerical factor of 4π in the DH entropy is not reproduced. Instead, upon use of (3.30),
one has

SW5d|Q0=0 = 2
√

3π
√
Q+Q− . (6.5)

Therefore, although there exists a regular five-dimensional fake small black hole —that is, a
black hole with only two asymptotic charges, Q+ and Q−—, its entropy does not reproduce
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the degeneracy of the DH states. This mismatch is a natural consequence of the fact that
the sources of this black hole include not only fundamental strings with momentum, but
also one solitonic 5-brane. Once again, due to the presence of this brane, the amount of
supersymmetry preserved by the five-dimensional fake small black hole differs from the
DH states.

6.2 Higher-dimensional small black holes and supersymmetry

We have just seen that it is possible to have regular supersymmetric black holes with less
than four (three) Maxwell charges in four (five) dimensions, provided these contain four
(three) non-vanishing brane-source charges, which signals the presence of S5-branes and
(in 4d) KK-monopoles.

The goal of this section is to show that it is not possible to have regular, supersymmetric
near-horizon geometries in the heterotic theory compactified on T9−d × S1

z if d ≥ 6. When
there are d ≥ 6 non-compact dimensions, the internal manifold is not large enough to
allow for effective point-like sources in the non-compact directions coming from S5-branes
and KK-monopoles wrapping the internal space. This would imply that only fundamental
strings with momentum can act as effective point-like sources for these higher-dimensional
solutions. Therefore, this result gives additional evidence that regularization of a singular
horizon occurs through the (non-perturbative) introduction of sources, rather than higher-
curvature corrections.

As in the rest of the manuscript, we assume that the torus T9−d has trivial dynamics
and that the near-horizon limit of the solutions enjoys a SO(2, 1) × SO(d− 1) symmetry.
With these assumptions in mind, we proceed to write down the most general ansatz for
the near-horizon geometry. For the sake of convenience, we use the (d + 1)-dimensional
fields,20

ds2
(d+1) = v1

(
r2dt2 − dr2

r2

)
− v2 dΩ2

(d−2) − u
2
k (dz − 2erdt)2 ,

e−2φ =uk
uφ

, H̃ = pωSd−2 ,

(6.6)

where H̃ is the (d − 2)-form field strength dual to the 3-form H, H̃ ≡ e−2φ ?(d+1) H, and
ωSd−2 is the volume form of the round Sd−2 sphere.21

By applying the entropy function formalism, one can check that there are no regular
extrema of the entropy function at zeroth order in α′. However, when higher-curvature
corrections are taken into account, the system of algebraic equations that one has to solve
becomes much harder to study. This is probably the reason why small black holes in d ≥ 6
dimensions have hardly been studied in the literature.

In spite of this, we can follow an alternative route to show that there are no regular,
supersymmetric (small) black holes with the assumed SO(2, 1) × SO(d−1) isometry in the
near-horizon limit. The argument goes at follows. The dilatino Killing spinor equation is

20I.e., we get rid of the torus T9−d, which does not play any rôle here.
21?(d+1) denotes the (d+ 1)-dimensional Hodge star operator.
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given by (
∂aφΓa − 1

12HabcΓabc
)
ε = 0 . (6.7)

Since the dilaton is constant, the above equation reduces to HabcΓabcε = 0 and, for our
ansatz, this equation can only be satisfied by a non-vanishing Killing spinor ε if p = 0.
Since p is proportional to the winding charge of the fundamental string, this already proves
that there are no regular, supersymmetric solutions describing the near-horizon of higher-
dimensional small black holes. However, it is possible to go an step further and show that
there are no regular supersymmetric solutions of this form at all. To do this, we can use
the integrability condition of the gravitino Killing spinor equation, which reduces to

RabcdΓcdε = 0 , (6.8)

since the 3-form field strength H vanishes. Contracting this equation with Γb and using
eq. (2.6) of [86], we arrive to

RabΓbε = 0 . (6.9)

It is not difficult to see by explicitly computing the Ricci tensor of the metric (6.6) that
the above integrability condition cannot be satisfied in our configuration for any choice of
the parameters.

Let us explain why this argument only holds if d ≥ 6. Notice that if d = 5, H̃ is a
3-form and therefore the ansatz (6.6) is not the most general one, as one can write down
an electric term for H̃ of the form

H̃ = 2ẽ dt ∧ dr ∧ dz + pωS3 , (6.10)

which precisely indicates the presence of S5-branes, as they are electric sources of the dual
Kalb-Ramond field strength. The argument works exactly in the same way for d = 4 non-
compact dimensions, see eq. (3.39). At the extremum of the entropy function, H̃ turns out
to be self-dual and the dilatino KSE is solved by a non-vanishing Killing spinor ε satisfying(

1− Γ012345
)
ε = 0 . (6.11)

7 Conclusions

In this article, we have studied supergravity field configurations that can be interpreted as
sourced by the presence of different combinations of fundamental heterotic strings (carrying
winding and momentum), solitonic 5-branes and Kaluza-Klein monopoles at first order in
the higher-curvature expansion and in several dimensions.The most relevant effect produced
by the higher-curvature corrections is to introduce non-linear couplings between fields, such
that there are delocalized sources in some of the equations of motion. This produces a shift
in the mass and in some of the charges of the solution, which can have a negative character.
An interesting phenomenon is that, in few specific cases (Q0 = 0 in d = 5 and Q0 = −1
in d = 4), the value of the charges does not uniquely determine the solution, and more
information is needed for that purpose.
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Depending on which sources are present, the solutions describe a black hole, a soliton
or a naked singularity. The inclusion of first order corrections in the higher-curvature
expansion of the effective theory does not change the character of the solution, but the
addition or truncation of sources may do it. This latter operation is intrinsically non-
perturbative and modifies substantially the properties of the fields at zeroth-order in the
expansion. We show that, for this reason, the computation of curvature corrections and
the truncation of sources are two processes that do not always commute; starting from a
zeroth-order solution, the same result is not necessarily obtained if the two operations are
performed in different order.

In addition, we have shown that one gets a consistent string theoretic interpretation of
a perturbative solution when the sources are kept fixed in the higher-curvature expansion,
allowing variations in the value of the charges. This plays a fundamental role in the study
of Kaluza Klein monopoles (as first noticed more than 20 years ago in [63]) and small black
holes. As a consequence of these observations, small (2-charge) black holes corresponding
to the DH system remain singular when quadratic curvature corrections are included.

On the other hand, we note that the corrections imply the existence of regular 3-charge
black holes in four dimensions, and 2-charge ones in five, where the vanishing charge is that
of the S5 brane. Since all 3- and 2-charge solutions are singular at zeroth order in α′, it
might seem that the corrections resolve the singularities. However, following our previous
discussion, what really happens is that the system described by these solutions is already
regular at zeroth-order, and the effect of the corrections is to screen the charge of the
S5 brane, which has a localized source. In d = 4, the corresponding 3-charge solution
has the same entropy as the DH system, but neither the charges, the sources nor the
supersymmetry are equal to those of a string carrying momentum, and hence we refer to it
as a fake small black hole. The matching of the entropies is most likely a coincidence, since
in the five-dimensional case the regular 2-charge solution does not reproduce the entropy
of the DH system. In turn, there is another 2-charge solution with no localized sources
of S5 branes which is singular — this is the one describing the DH system. Likewise, in
higher dimensions all 2-charge solutions are singular due to the absence of S5 branes.
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A Supersymmetry analysis

The main purpose of this appendix is to show that the ansatz used in section 5 to describe
small black holes is the most general one with no dependence on the coordinate u preserving
half of the spacetime supersymmetries at first order in α′. We shall make a wide use of the
results of [87] but we also refer to [86, 88] where supersymmetric heterotic backgrounds
have been studied and classified using different techniques as those employed in [87]. The
results of this appendix are contained in the general classification of half-supersymmetric
heterotic backgrounds of [82]. Here we offer a different re-derivation of some of the results
contained in this reference.

A.1 General form of supersymmetric configurations

According to this reference, the metric of a supersymmetric configuration can always be
written as

ds2 = 2f (du+ β) [dt+K (du+ β) + ω]− hmn dxmdxn , (A.1)

where ω = ωmdx
m and β = βmdx

m are 1-forms on the eight-dimensional space charted by
the coordinates xm and f and K are functions defined on this manifold.22 It is convenient
to introduce the following zehnbein basis

e+ = f (du+ β) , e− = dt+K (du+ β) + ω , hmn dx
mdxn = emen δmn . (A.2)

The components of the spin connection ωab in this basis are23

ω+− = −1
2∂m log f em , (A.3)

ω+m = −f−1∂mK e+ − 1
2∂m log f e− + 1

2 (Kdβ + dω)nm en , (A.4)

ω−m = −1
2∂m log f e+ + f

2 (dβ)nm en , (A.5)

ωmn = 1
2 (Kdβ + dω)mn e

+ + f

2 (dβ)mn e
− +$pmn e

p , (A.6)

where we have defined $mnp to be the spin connection associated to hmn, which satisfies
that dem = −$mn ∧ en.

In order for a configuration to be supersymmetric, several conditions need to be ac-
complished. First, the torsionful spin connection Ω(+)

a
b ≡ ωab+ 1

2Hc
a
b e
c must fulfil that24

Ω(+)[ab]− = 0 , (A.7)
Ω(+)am− = 0 , (A.8)

∇(+)aΩmnpq = 0 , (A.9)

22In general, objects occurring in the metric may also depend on u. We assume no dependence on this
coordinate in order to perform a standard KK reduction over this internal direction.

23In our conventions, we have that dea = +ωab ∧ eb, with a, b = +,−,m.
24We note there is an error in eq. (3.17) of [87] since Ω(+)−mn = H−mn, which is non-vanishing in general.

Therefore, the only constraint on Ω(+)−mn comes from eq. (A.16).
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where Ωmnpq is a 4-form which can be interpreted as a Spin(7) structure. As such, it
possesses the following properties25

Ωm1m2m3pΩn1n2n3p = −9Ωm1m2n1n2δm3n3 + 6δm1m2m3, n1n2n3 , (A.10)
Ωm1m2p1p2Ωn1n2p1p2 = −4Ωm1m2n1n2 + 12δm1m2, n1n2 , (A.11)
Ωm1n2p1p2Ωn1m2p1p2 = +4Ωm1m2n1n2 + 6δm1m2, n1n2 . (A.12)

Ωm1m2n1n2Ωm3m4n1n2 = −4Ωm1···m4 , (A.13)
Ωmp1p2p3Ωnp1p2p3 = 42δmn , (A.14)
Ωm1···m4Ωm1···m4 ≡ Ω2 = 14 · 4! . (A.15)

Apart from eqs. (A.7), (A.8) and (A.9), there exists another set of conditions to be imposed.
They constrain the components of Habc as follows:

H
(−)
−mn = 0 , (A.16)

H
(−)
+mn = 1

48Ωm
s1s2s3∇+Ωns1s2s3 , (A.17)

H(−)
mnp = 1

7 (2∂qφ−H+−q) Ωq
mnp , (A.18)

where we have made use of the projectors acting on 2-forms Θmn and 3-forms Ψmnp defined
in [87]:

Θmn = Θ(+)
mn + Θ(−)

mn , Θ(±)
mn = Π(±)

mnpqΘpq , (A.19)

Ψmnp = Ψ(+)
mnp + Ψ(−)

mnp , Ψ(±)
mnp = Π(±)

mnpqrsΨqrs , (A.20)

where

Π(+)
mnpq = 3

4

(
δmn,pq + 1

6Ωmnpq

)
, (A.21)

Π(−)
mnpq = 1

4

(
δmn,pq −

1
2Ωmnpq

)
, (A.22)

Π(+)
m1m2m3n1n2n3 = 6

7

(
δm1m2m3,n1n2n3 + 1

4Ωm1m2n1n2δm3n3

)
, (A.23)

Π(−)
m1m2m3n1n2n3 = 1

7

(
δm1m2m3,n1n2n3 −

3
2Ωm1m2n1n2δm3n3

)
. (A.24)

Let us analyse all eqs. (A.7), (A.8), (A.9), (A.16), (A.17) and (A.18) carefully. First, we
realize that conditions (A.7) and (A.8) tell us that all the components of Ω(+)ab− vanish,26

implying that the components Hab− get fixed in terms of the objects that occur in the
metric. We find

Hm+− = ∂m log f , Hmn− = f (dβ)mn . (A.25)
25We follow the convention of [87] and indices with same latin letter mi, ni, . . . are totally antisym-

metrized.
26The component Ω(+)++− = ω++− is not fixed by these equations but it vanishes for the coordinates

we have chosen, see (A.3).
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Let us postpone the study of eq. (A.9) for the moment. Regarding eq. (A.16), we see it
imposes that

(dβ)(−)
mn = 0 , (A.26)

so that the connection β is that of an Abelian octonionic instanton [89, 90]. On the other
hand, we check that eq. (A.17) can be rewritten by use of eqs. (A.11) and (A.14) as

H
(−)
+mn = −2ω(−)

+mn = −(Kdβ + dω)(−)
mn = −(dω)(−)

mn . (A.27)

Therefore H+mn can always be expressed as

H+mn = H
(+)
+mn − (dω)(−)

mn = −(dω)mn +K(dβ)mn + f−1ξmn , (A.28)

for some two-form ξ = 1
2ξmn e

m ∧ en satisfying that ξ(−)
mn = 0. Consequently, the general

form of H for supersymmetric configurations with no dependence on u is

H = d log f ∧ e+ ∧ e− + fe− ∧ dβ + e+ ∧
(
−dω +Kdβ + f−1ξ

)
+ 1

3!Hmnp e
m ∧ en ∧ ep ,

(A.29)

with Hmnp satisfying (A.18), which can be rewritten by virtue of (A.25) as

H(−)
mnp = 1

7∂q (2φ− log f) Ωq
mnp . (A.30)

Now it is the moment to study condition (A.9). From the a = ± components of eq. (A.9)
and taking into account that Ωmnpq is independent of u and t, we find

Ω(+)±[m|sΩs|npq] = 0 . (A.31)

Contracting this equation with Ωrnpq, we arrive to the equivalent condition

Π(−)
mnpqΩ(+)±pq = 0 , (A.32)

which reduces to the self-duality conditions already derived for dβ and ξ. If instead we
take a = m at eq. (A.9), we deduce that Ω(+)mnp has special holonomy G ⊆ Spin(7). This
last condition can be expressed in a fairly compact way if one chooses a basis {em} for
which the components of Ωmnpq are constant, which is known to always exist locally since
Ωmnpq defines a Spin(7) structure. In particular, in such a basis, we obtain the condition

Π(−)
mnrsΩ(+)prs = 0 . (A.33)

A.2 Killing spinor equations

Let us now study the Killing spinor equations (KSEs). It was proven in [87] that they are
fulfilled by a constant spinor ε satisfying

Γ+ε = 0 , (A.34)

Π(−)ε = 0 . (A.35)
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where
Π(−) = 7

8

(
1− 1

336Ωm1...m4Γm1...m4

)
. (A.36)

The first condition (A.34) annihilates half of the spacetime supersymmetries and, albeit
in general half-supersymmetric configurations do not necessarily satisfy it, the class of
half-supersymmetric solutions we are interested in (those describing superpositions of fun-
damental strings with momentum) does [82]. Hence, if we want to preserve exactly this
amount of supersymmetry, we must find a way to avoid using (A.35) but still solving the
dilatino and the gravitino KSEs. For that, we are going to impose extra conditions on the
fields to ensure that such KSEs hold even if (A.35) does not.

To this aim, we first concentrate on the dilatino KSE. It is convenient to use the
rewriting of such KSE provided in eq. (3.47) of [87]:27[1

2 (2∂mφ−H+−m) Γm − 1
12
(
HmnpΓmnp + 3H−mnΓ−Γmn

)]
Π(−)ε = 0 , (A.37)

where we have already required (A.34). Since we do not want to impose (A.35), the term
between brackets must vanish necessarily. Therefore,

φ = φ0 + 1
2 log f , Hmnp = 0 , (dβ)mn = 0 , (A.38)

where φ0 is an integration constant.
We now move to the gravitino KSE. For a constant spinor satisfying (A.34), it is only

necessary to check that
Ω(+)amnΓmnε = 0 . (A.39)

As we derived before at eq. (A.33), in a basis {em} where the components of Ωm1...m4 are
constant, we have that Ω(−)

(+)amn = 0. Therefore, we can use eq. (A.46a) of [87] to show
that

Ω(+)amnΓmnε = Ω(+)amnΓmnΠ(−)ε = 0 , (A.40)

which implies that either Ω(+)amn or Π(−)ε must vanish. Since we do not want on any
account to impose (A.35), we require Ω(+)amn = 0 and this, in turn, demands

$mnp = 0 , ξmn = 0 , (A.41)

so that em = dxm and hmn = δmn. Consequently, the most general configuration preserving
half of the spacetime supersymmetries with no dependence on u is given by28

ds2 = 2e2(φ−φ0)du (dt+Kdu+ ω)− dxmdxm , (A.42)

H = 2e2(φ−φ0)dφ ∧ du ∧ (dt+ ω)− e2(φ−φ0)du ∧ dω . (A.43)

Note that these results are identical to those presented at eq. (8.10) of ref. [82] if we elim-
inate all dependence on his coordinate v (which we have called u instead). This concludes
the proof of the fact that the ansatz used in section 5 is the most general ansatz to construct
heterotic string backgrounds consisting of supersymmetric superpositions of fundamental
strings with momentum along them.

27We correct an innocent typo in eq. (3.47) of [87].
28The 1-form β can always be removed via the coordinate transformation u→ u−χ, where dχ = β, since

by (A.38) β is closed.
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B First-order α′-corrections to the fundamental rotating string solution

We present in this appendix the precise form of the first-order α′ corrections to the small-
black-ring solution presented in subsection 5.2. For that, we just use eqs. (5.16) and plug
them into eq. (5.6) to obtain the α′-corrected solution. Following the notation of the main
text, we encounter that

Z+ = Z(0)
+ + α′Z(1)

+ +O(α′2) , (B.1)

Z− = Z(0)
− +O(α′2) , (B.2)

ω = ω(0) +O(α′2) , (B.3)

where

Z(0)
+ = 1+q̃+

(
y−x
2R2y

) d−3
2

2F 1

(
d−3

4 ,
d−1

4 ;1;1− 1
y2

)
, (B.4)

Z(0)
− = 1+q̃−

(
y−x
2R2y

) d−3
2

2F 1

(
d−3

4 ,
d−1

4 ;1;1− 1
y2

)
, (B.5)

ω(0) = (d−3)πq̃−W R4(y2−1)
`(x−y)2

(
y−x
2R2y

) d−1
2

2F 1

(
d−1

4 ,
d+1

4 ;2;1− 1
y2

)
dψ , (B.6)

Z(1)
+ = 1

`2
C(x,y;d)

[
A1(x,y;d)2F 1

(
d−3

4 ,
d−1

4 ;1;1− 1
y2

)
2F 1

(
d+1

4 ,
d+3

4 ;2;1− 1
y2

)

+A2(x,y;d)2F 1

(
d−1

4 ,
d+1

4 ;2;1− 1
y2

)
2F 1

(
d−1

4 ,
d+5

4 ;2;1− 1
y2

)
+A3(x,y;d)2F 1

(
d−3

4 ,
d−1

4 ;1;1− 1
y2

)2
+A4(x,y;d)2F 1

(
d−1

4 ,
d+1

4 ;2;1− 1
y2

)2

+A5(x,y;d)2F 1

(
d−1

4 ,
d+5

4 ;2;1− 1
y2

)2]
, (B.7)

with the definitions,

C(x, y; d) = − 2−4−dy−3−d(d− 3)2q̃−R
4−2d(y − x)d−2

1 + 2
3−d

2 q̃−(R2y)
3−d

2 (y − x)
d−3

2 2F 1
(
d−3

4 , d−1
4 ; 1; 1− 1

y2

) , (B.8)

A1(x, y; d) = 8(d− 1)`2q̃+xy
2(−1 + y2) , (B.9)

A2(x, y; d) = −4(d+ 1)
(
2π2q̃−R

2W 2y2
(
(d− 5)xy2 − (d− 3)y + 2x

)
−

`2q̃+
(
y2 − 1

)
(x− y)

)
, (B.10)

A3(x, y; d) = 16`2q̃+y
4(x+ y) , (B.11)

A4(x, y; d) = 4
(
π2q̃−R

2W 2y2
(
(d− 5)(d− 1)xy2 − (d− 5)2y3 − 4(d− 4)y + 4x

)
−`2q̃+

(
y2 − 1

)
(x− y)

)
, (B.12)

A5(x, y; d) = −(d+ 1)2(x− y)
(
`2q̃+

(
y2 − 1

)
− 4π2q̃−R

2W 2y2
)
. (B.13)
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The different hypergeometric functions appearing at the corrected solution have the
following behaviour (as y → −∞):

2F 1

(
d− 3

4 ,
d− 1

4 ; 1; 1− 1
y2

)
∼

y→−∞
|y|d−4 , 2F 1

(
d+ 1

4 ,
d+ 3

4 ; 2; 1− 1
y2

)
∼

y→−∞
|y|d−2 ,

2F 1

(
d− 1

4 ,
d+ 1

4 ; 2; 1− 1
y2

)
∼

y→−∞
|y|d−4 , 2F 1

(
d− 1

4 ,
d+ 5

4 ; 2; 1− 1
y2

)
∼

y→−∞
|y|d−2 ,

Consequently, a careful analysis reveals that

Z+ ∼
y→−∞

|y|d−4 + α′|y|d−2 , (B.14)

Z− ∼
y→−∞

|y|d−4 , (B.15)

ω ∼
y→−∞

|y|d−4dψ . (B.16)
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