Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

SO2-induced surface reconstruction of Cu(111): An x-ray-absorption fine-structure study

MPG-Autoren
/persons/resource/persons21969

Polcik,  Martin
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons251493

Wilde,  Lutz
Fritz Haber Institute, Max Planck Society;

/persons/resource/persons250424

Haase,  J.
Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Polcik, M., Wilde, L., & Haase, J. (submitted). SO2-induced surface reconstruction of Cu(111): An x-ray-absorption fine-structure study.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-B505-6
Zusammenfassung
The interaction of SO2 with Cu(111) has been studied by x-ray-absorption fine-structure measurements above both the oxygen and sulfur K edge. The combined analysis of the data for the (SO2+O) phase formed on adsorption of SO2 at 170 K shows that the S atoms are located in hollow sites on a locally (100) reconstructed surface with a S-Cu bond length of 2.32±0.05Å. The SO2 molecular plane is oriented perpendicular to the surface. Within the plane the C2 axis is tilted with respect to the surface normal resulting in additional bonding to the substrate through one of the oxygen atoms. The corresponding O-Cu bond length measures 2.14±0.05Å. Due to bonding through only one of the oxygen atoms two different intramolecular bond lengths, 1.43±0.03 and 1.48±0.03Å, within the same molecule are observed. The coadsorbed atomic oxygen is located in bridge sites with a O-Cu bond length of 2.02±0.05Å. These results are consistent with a structural model where (100) units form “clock” reconstruction.