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ABSTRACT: We introduce a local machine-learning method for
predicting the electron densities of periodic systems. The framework
is based on a numerical, atom-centered auxiliary basis, which enables
an accurate expansion of the all-electron density in a form suitable for
learning isolated and periodic systems alike. We show that, using this
formulation, the electron densities of metals, semiconductors, and
molecular crystals can all be accurately predicted using symmetry-
adapted Gaussian process regression models, properly adjusted for the
nonorthogonal nature of the basis. These predicted densities enable
the efficient calculation of electronic properties, which present errors
on the order of tens of meV/atom when compared to ab initio
density-functional calculations. We demonstrate the key power of this
approach by using a model trained on ice unit cells containing only 4 water molecules to predict the electron densities of cells
containing up to 512 molecules and see no increase in the magnitude of the errors of derived electronic properties when increasing
the system size. Indeed, we find that these extrapolated derived energies are more accurate than those predicted using a direct
machine-learning model. Finally, on heterogeneous data sets SALTED can predict electron densities with errors below 4%.

1. INTRODUCTION

The electron density ρ is a fundamental quantity of quantum
chemistry and physics, which in principle can determine all of
the ground state properties of a system. Using density-
functional theory (DFT), a wide variety of these properties can
be derived directly from the electron density, such as energies,
charges, dipoles, and electrostatic potentials.1−4 As a result,
obtaining accurate electron densities is central to many
applications within computational chemistry, physics, and
material science.
In DFT, the ground state electron density is found by

performing a constrained minimization of the energy func-
tional.5 This is most commonly achieved by self-consistently
solving the Kohn−Sham equations.6,7 This minimization
procedure is expensive and formally scales with the cube of
the number of electrons in the system,2 although implementa-
tions which approach linear scaling are available.8−10 As a
result, while DFT computations are hugely successful and
widely used, they remain limited by the system size: typically
they can be applied to at most a few thousand atoms.11

Furthermore, when DFT is used to perform ab initio molecular
dynamics, many successive DFT calculations are required on
very similar structures, severely limiting the time scales
available to these simulations.
In recent years, methods have been proposed which use

machine-learning techniques to predict electron densities while
avoiding the need to minimize the energy functional. For
example, Alred and co-workers have reported a method to
directly predict the electron density on a real-space grid, where

each grid point is used to provide a local representation of the
atomic structure,12 a strategy that was also followed by
Chandrasekaran et al.13 However, the sheer number of grid
points which must be used to accurately represent the density
in this way significantly increases the computational cost of this
approach. Limiting the dimensionality of the learning problem
can be achieved by representing the scalar field using a finite
number of basis functions. Brockherde et al. introduced a
framework that makes use of a plane-wave basis and
constructed a separate kernel-based model to regress each
individual Fourier component of the pseudovalence electron
density.14,15 While the choice of plane waves carries the
advantage of allowing a systematic convergence of the scalar
field in the limit of an infinitely large basis, adopting a set of
center-less functions to discretize the learning problem limits
the application of the method to relatively rigid systems which
can be unambiguously aligned along a prescribed orientation.
To overcome these hurdles, a method capable of predicting

the electron density of a system when represented using an
atom-centered spherical harmonic basis was recently intro-
duced.16 The problem is recast as the regression of a set of
local density coefficients which can be predicted in a

Received: June 10, 2021
Published: October 20, 2021

Articlepubs.acs.org/JCTC

© 2021 The Authors. Published by
American Chemical Society

7203
https://doi.org/10.1021/acs.jctc.1c00576

J. Chem. Theory Comput. 2021, 17, 7203−7214

D
ow

nl
oa

de
d 

vi
a 

M
PI

 S
T

R
U

K
T

U
R

 U
N

D
 D

Y
N

A
M

IK
 M

A
T

E
R

IE
 o

n 
N

ov
em

be
r 

10
, 2

02
1 

at
 0

8:
34

:0
3 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alan+M.+Lewis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrea+Grisafi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michele+Ceriotti"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mariana+Rossi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.1c00576&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00576?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00576?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00576?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00576?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00576?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jctcce/17/11?ref=pdf
https://pubs.acs.org/toc/jctcce/17/11?ref=pdf
https://pubs.acs.org/toc/jctcce/17/11?ref=pdf
https://pubs.acs.org/toc/jctcce/17/11?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00576?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


rotationally covariant fashion thanks to the symmetry-adapted
Gaussian process regression (SA-GPR) framework.17 The SA-
GPR framework has been used in several contexts18−20 and
most importantly enabled the data-efficient and highly
transferable learning of the electron density for arbitrarily
complex molecular systems.17 In a follow-up work by
Corminbeouf and co-workers, the local expansion of the
density field has been made coherent with state-of-the-art
resolution of the identity (RI) schemes, giving access to
reference electron densities which show an accuracy
comparable to that of common quantum-chemical calcula-
tions.21,22

In this paper we extend the method of refs 16 and 21 to the
condensed phase and demonstrate its applicability to a wide
variety of systems. By using numerical atom-centered basis
functions first developed for use in RI schemes of the exchange
operator,23 we retain the local nature of the method and can
treat periodic and finite molecular systems on the same
footing. We demonstrate that for a range of test systems
expanding the density in this basis introduces only small and
controllable errors in both the density itself and energies
derived from the density.
We will refer to the application of SA-GPR within a

machine-learning model that is capable of performing the
regression of electron densities both in finite and periodic
systems as the symmetry-adapted learning of three-dimensional
electron densities (SALTED) method. We employ SALTED to
produce a series of regression models which are applied to
predict the electron density of a metal, a semiconductor, and a
molecular solid in turn, obtaining for each of these systems
accurate densities with fewer than 100 training structures, as
well as derived electronic properties that present errors on the
order of tens of meV/atom. Finally, we use a model trained on
ice cells containing four molecules to predict the densities and
derived energies of up to 512-molecule supercells. We see no
loss of accuracy in these energies as the size of the target
system increases, indicating that our local learning framework
is sufficiently transferable to capture the information needed to
predict the energy of extended systems. Furthermore, we find
that these extrapolated derived energies are more accurate than
those predicted using a direct machine-learning model.

2. THEORY
2.1. RI Framework. The periodic electron density ρ(r)

may be expanded as a linear combination of atom-centered
basis functions using a resolution of the identity (RI) ansatz:
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Here Ri is the position of atom i, and the basis function ϕi,σ is
centered on atom i and may be written as the product of a
radial part Rn(r) and a real spherical harmonic Yλμ(θ, ϕ), so
that we make use of composite index σ ≡ (nλμ). T(U) is a
translation vector to a point removed from the central
reference unit cell by an integer multiple U = (Ux, Uy, Uz)
of the lattice vectors. The expansion coefficients ci,σ then
completely define the approximate density ρ̃(r). This RI ansatz
has long been used in effective single-particle approximations
of the electronic energy, such as Hartree−Fock, Møller−
Plesset, and Kohn−Sham DFT, with the purpose of bypassing

the unfavorable scaling of computing the 4-electron-2-center
integrals that underlie the definition of the Hartree
energy,24−26 as well as of the exact exchange introduced in
hybrid exchange-correlation functionals.27,28

Different error metrics can be adopted to determine the
expansion coefficients, which influence the accuracy that one is
willing to achieve on prescribed classes of density-derived
properties.29 A Coulomb metric, for instance, is typically used
to provide RI approximations that give minimal error in the
Hartree energy.30 In this work, we define the RI expansion
coefficients as those which minimize the integral over a single
unit cell of the square error in the density itself, i.e.,

c r r c r( ) d ( ; ) ( )
u c

RI

. .

RI RI QM 2∫ ρ ρϵ = | ̃ − |
(2)

where ρQM(r) is the self-consistent electron density which we
are using as the fitting target. Note that we do not impose any
constraint on the conservation of the number of electrons
when calculating the RI coefficients. In fact, we find that
including this constraint results in undue weight being given to
the isotropic basis functions (λ = 0), relative to an
unconstrained minimization, damaging the accuracy of the
overall scalar-field representation. Moreover, as clarified in ref
29, imposing a corresponding constraint on the machine-
learning model would only limit the electronic charge
conservation to those structures that are used for training,
and including such a constraint inevitably leads to a breakdown
in the stability of the machine-learning model as the number of
training structures is increased.29

Minimization of the RI error in eq 2 yields

c S wRI 1= − (3)

where S is the overlap matrix of the periodic basis functions
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and w is a vector of the projections of the self-consistent
density ρQM(r) onto the periodic basis

w U 0( ) ( )i i i
U

U

, ,
QM

u.c. ,
QM

cut

3∑ ϕ ρ ϕ ρ= ⟨ | ⟩ = ⟨ | ⟩σ σ σ 
(5)

Equations 4 and 5 display two equivalent expressions for S and
w, which differ in their domains of integration: the subscript
u.c. indicates an integration over a single “central” unit cell, U
= (0, 0, 0), while the subscript 3 indicates an integration over
all space. We refer to the latter as the “unfolded”
representations, which are visualized in Figure 1. (A visual-
ization of the folded representations can be found in ref 31.)
The former expressions describe the “folded” representations,
in which contributions to S and w from neighboring unit cells
are projected onto the “central” unit cell; in practice it is more
efficient to evaluate S and w in this folded representation. In
both representations, the sum over translation vectors can be
truncated by defining a cutoff distance from atom i for each
basis function σ, beyond which contributions to S and w may
be safely neglected; this is indicated by the limits to the sums
found in eqs 4 and 5, Ucut and Vcut.
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2.2. Symmetry-Adapted Learning of Three-Dimen-
sional Electron Densities (SALTED). The SALTED method
predicts the electron density within the RI ansatz defined in eq
1. Rather than using the overlap matrix S and density
projections w to calculate the RI coefficients of a single
structure using eq 3, it uses these quantities obtained from a
series of training structures to produce a model which provides
approximate expansion coefficients ci,σ for related structures,
based solely on their nuclear coordinates. In the following, we
make use of the RI coefficients themselves as a reference, to
disentangle the small error associated with the basis set
representation of the electron density described in eq 1 from
the error that is exclusively associated with the machine-
learning approximation.
The SALTED method produces a symmetry-adapted

approximation of the expansion coefficients ci,σ ≡ ci,nλμ which
mirrors the three-dimensional covariance of the atom-centered
spherical harmonics used to expand the density field.16 While
the property of covariance was first introduced in the space of
symmetry-adapted kernel functions,17 one can equally well
formulate the problem in the primal space of covariant
structural representations. We rely on the general formalism
introduced in ref 32, where an abstract representation of a local
environment of the atom i associated with a given structure A
is indicated by an abstract ket |Ai⟩thus leaving the freedom
to choose any appropriate feature space for the evaluation of
the structural representation. In this picture, a generic
structural representation of the atomic environment Ai that
mirrors the transformation properties of the density-
coefficients ci,nλμ can be constructed by performing the
following rotational average:32

A R R A R; di i∫λμ λμ| ⟩ = ̂ ̂| ⟩ ⊗ ̂| ⟩
(6)

where R̂ is a rotation operator, A ;i λμ| ⟩ is the symmetry-
adapted representation of order λ, and |λμ⟩ is an angular
momentum state associated with the spherical harmonic Yλ

μ. At
this point, a covariant approximation of the density coefficients
could be readily obtained by relying on a linear model based
on a set of structural features defined using eq 6.33 However,
because the feature-space size can grow rapidly with the
complexity of the structural representation, it is typically more
convenient to work in the dual space of kernel functions which
measure structural similarities between pairs of atomic

environments i and j associated with two configurations A
and A′. From eq 6, a covariant kernel function can be defined
by A A A Ak ( , ) ; ;i i i iλμ λμ′ ≡ ⟨ ′ ′| ⟩μμ

λ
′ ′ ′ . Then, a covariant

approximation of the density coefficients reads as follows:

c A b M A M( ) ( )k ( , )n i
j M

n j i j a ai j
∑ ∑ δ≈λμ

μ λ
λμ μμ

λ

∈ | ′|≤
′ ′

(7)

with j running over a sparse set M of atomic environments that
best represent the possible spectrum of structural and chemical
variations, while the sum over μ′ expresses the covariant
character of the SALTED approximation. bnλμ′(Mj) are the
(covariant) weights we wish to determine upon training the
model on a set of N reference densities and atomic
configurations. Note that we use the same kernel for all radial
channels n and that we have introduced the Kronecker-delta
δaiaj to ensure that only structural environments which are
centered about the same atomic species a are coupled. In this
work, the actual calculation of the representation A ;i λμ| ⟩, or
kernel function kμμ′

λ (Ai,Mj), follows the λ-SOAP formalism first
derived in ref 17. However, it is worth pointing out that the
construction of eq 6 is in principle general enough to also allow
for different functional forms, such as LODE34,35 and NICE.36

Having established a suitable ansatz for approximating the
density coefficients, the regression weights bnλμ(Mj) are
determined by the minimization of a loss function which
resembles the one used in eq 2 to provide a suitable RI
approximation of the density field. In particular, given N
training configurations and an associated set of reference ab
initio densities {ρQMA(r)}, we can write

b r r b r

b K b

( ) d ( ; ) ( )M
A

N

u c A M A

M
T

MM M

1 . .

ML QM 2∫∑ ρ ρ

η

= | ̃ − |

+
=

(8)

where ρ̃ML(r) is the density approximation that parametrically
depends of the regression weights through eqs 1 and 7. bM
indicates a single vector containing the regression weights,
whose dimension is determined by the sum of the number of
basis functions (nλμ) in each of the M sparse atomic
environments. The kernel matrix KMM is defined to be block-
diagonal in the atomic types a, angular momenta λ, and radial
indexes n. Note that a regularization term with an adjustable
parameter η is introduced in the second line to prevent
overfitting the model on the training data.
As detailed in ref 21, minimization of eq 8 with respect to

bnλμ(Mj) leads to the following regression formula:

b K S K K K w( )M NM
T

NN NM MM NM
T

N
1η= + −

(9)

The vector wN contains the projections of the training
densities on the basis functions eq 5, whose dimension is given
by the sum of the number of basis functions (nλμ) associated
with every atomic environment in each of the N training
configurations. The matrix SNN contains the overlap between
the basis functions of each configuration (eq 4) and is block-
diagonal in the training structures N. Note that the overlap
matrix is required only to calculate these regression weights;
the overlap matrices of target structures are not needed to
predict their density coefficients using eq 7. Finally, the
rectangular matrix KNM contains the kernels which couple the
atomic environments of the training structures with those
selected to define the sparse approximation of the density

Figure 1. (Left) Unfolded representation of the projection w of the
periodic electron density (shaded gray area) onto atom-centered basis
functions. (Right) Unfolded representation of the periodic overlap S
between atom-centered basis functions. The central red cell indicates
the special unit cell used to compute the periodic integrals in the
folded representation (see text).
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coefficients in eq 7. Note that the set M is a representative
subset of the atomic environments comprising the N training
structures, such that we perform a dimensionality reduction
commonly known as the subset of regressors (SoR) approx-
imation.37 In this work, the sparse set is selected using the
farthest point sampling (FPS) algorithm,38 using the scalar (λ =
0) SOAP metric.39

Using the regression formula of eq 9 with the projections of
an all-electron density directly would result in the major portion
of the learning effort being spent on reproducing the core-
density peaks at the nuclear positions, especially when
considering structures that include heavy atoms. According
to Kato’s theorem,40 however, the form of these peaks in the
vicinity of the nuclei is uniquely determined by the nuclear
charge, so that one can expect the core−electron contributions
to be generally constant across the data set. To allow the
regression to focus solely on the chemically driven variations of
the density field, we provide a baseline value for the vector of
density projections wN. By averaging just the isotropic (λ = 0)
coefficients across the data set (since all other terms must
average to zero for random rotations of the training
structures), we obtain a sparse vector of average density
coefficients c ̅ which is used to define the baseline value for the
density projections using w̅ = Sc.̅ Then, after predicting the
variation of the density coefficients ΔcN relative to this baseline
using eq 7, the precomputed mean density components c ̅ are
added back to yield the final all-electron density prediction.
From a computational point of view, while the kernel is

diagonal across the different types of basis functions (anλ), the
overlap matrix SNN couples these basis functions together, so
that the regression in eq 9 must be performed on the entire
vector of density projections wN. This follows directly from the
nonorthogonality of the multicentered basis set used to expand
the electron density as in eq 1. Unlike orthogonal
approaches,14 this method must deal with regression matrices
which quickly become very large with an increasing number of
sparse environments M or basis functions. This technical
downside is compensated by the great transferability and data
efficiency of the SALTED model, which results from the
adoption of a local and symmetry-adapted representation of
the scalar field.

3. RESULTS AND DISCUSSION
3.1. Validation of the Basis. We begin by establishing

that it is possible to accurately represent the electron density
using a linear combination of our chosen basis functions, as
described by eq 1. Throughout this paper, we use the so-called
“auxiliary basis functions” defined in FHI-aims as the basis in
which to express the electron density.23 This basis set is
produced by taking the “on-site” pair products of the radial
parts of the atom-centered numerical orbitals used by FHI-
aims in DFT calculations.
A particular set of auxiliary basis functions is therefore

defined by the choice of numerical orbitals whose product
pairs generate the auxiliary functions. Throughout this work we
chose the generating set to be the numerical orbitals used in
the calculation of the self-consistent reference density ρQM, as
defined by FHI-aims’ “tight” settings. However, in general the
method presented here does not require this choice of basis
function, provided that the basis allows an accurate expansion
of the density.16

This choice of basis function has two implications for the
implementation of the theory laid out in Section 2. First, the

integrals in eqs 4 and 5 are evaluated within FHI-aims using a
real-space grid inside an arbitrarily chosen “central” unit cell. In
order to obtain an efficient implementation when using this
“folded” representation, care must be taken to find a suitable
cutoff for the sum over U for each individual basis function,
since there is significant variation in radial extent between basis
functions. Second, the near-linear dependencies in the auxiliary
basis can result in numerical instability when solving eq 9 as
the number of basis functions per atom and the number of
environments in the sparse set M increase. To ensure a stable
solution, this equation is solved with a pseudoinverse
calculated using the SVD decomposition, with singular values
smaller than 10−15 × dim(bM) discarded.
To assess the accuracy of expanding the density in this

auxiliary basis, we must calculate the coefficients cRI which
minimize the error in the approximate density defined in eq 1.
These coefficients are given by the RI procedure described in
eqs 2 and 3 and define what we call the RI density, ρ̃RI. For a
data set containing N structures, the average percentage error
in this density is defined as

N

r r r

r r
(%)

100 d ( ) ( )

d ( )A

N
u c A A

u c A

RI . .
RI QM

. .
QM∑

∫
∫
ρ ρ

ρ
ϵ̅ =

| ̃ − |
ρ

(10)

Note that each term in the sum is normalized by the number of
electrons in the structure, making this measure of the error
comparable between different systems.
In order to establish the general applicability of the SALTED

method, we used three simple test data sets: a metal, a
semiconductor, and a molecular solid. These data sets consist
of

1. An aluminum data set, containing 50 1-atom unit cells
and 50 4-atom unit cells,

2. A silicon data set, containing 50 2-atom unit cells and 50
16-atom unit cells,

3. The Ih ice data set, in which all 100 structures contain
four water molecules.

The aluminum structures are generated by randomly varying
the positions of the atoms or the lattice vectors of the cell
around their equilibrium values. The silicon structures were
taken from ref 41, where they formed part of a data set used to
train a Gaussian approximation potential, and the data set
includes both deformations of the unit cell as well as variations
in the atomic positions within the cell. The ice structures were
generated using an NPT molecular dynamics trajectory (P = 1
atm, T = 273 K), with structures sampled every 500 fs. The
forces were evaluated using the TIP/4P force field
implemented in the LAMMPS software package,42 and the
nuclear dynamics were calculated using i-PI.43 Therefore, every
data set includes structures containing significant variations in
both the atomic positions and the lattice vectors of the unit
cell.
Having defined these data sets, we calculated the error

introduced by expressing the density of each structure as a
linear combination of auxiliary basis functions. The first
column of Table 1 lists the average error in the RI density for
each of these data sets, relative to reference densities calculated
self-consistently using the local density approximation
(LDA).6,7 In each case, the error is less than 0.1%. This
compares favorably to previous work, in which Gaussian basis
sets were used to express the density of isolated water
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molecules and simple alkanes and alkenes with mean absolute
errors of approximately 0.3% and 1%, respectively.16,21

Together with the direct error in ρ̃RI, we also investigated
the error in the properties derived from this approximate
density. By using the Harris energy functional with the LDA,
we can compare the exchange-correlation energy derived from
an approximate density, Exc[ρ̃A], to that derived from a
reference density, Exc[ρA

ref], for each structure A in a data set.
The absolute error in the exchange-correlation energy per
atom is then

N
E E

1
xc

A
xc A xc Aat

refρ ρϵ = | [ ̃ ] − [ ]|
(11)

The errors in the exchange-correlation energies derived from
the RI density are reported for each data set in Table 1, along
with the analogous error in the electrostatic energy, ϵel; the self-
consistent density ρA

QM is again used as the reference. While
charge neutrality is not enforced when obtaining either the RI
or the predicted densities, it is very important in the condensed
phase to avoid divergent electrostatic terms. In practice, we
observe very good charge conservation, with errors typically
below 10−4 e per electron. These small errors are then
compensated using the standard practice of applying a constant
background charge,44 which allows us to obtain stable,
nondivergent predictions of the electrostatic energy without
explicitly normalizing the density predictions.
Table 1 reveals significant variation in the errors of these

derived energies between the data sets. The average error
introduced to the electrostatic energies of the ice structures is
very small (<1 meV), indicating that the densities produced by
expanding in these auxiliary basis functions provide an accurate
description of the electrostatic potential. By contrast, the
average error introduced to the electrostatic energies of the
silicon and aluminum structures are around 2 orders of
magnitude larger, a far greater increase than what one would
expect from looking at the error in the density. We find that
the corresponding errors in the Hartree energy EH are much
smaller (3.5 and 0.2 meV, respectively), indicating that the
error in the electrostatic energy arises primarily from the
electron−nuclear interaction energy Een. As rigorously detailed
in the Supporting Information, the error δEen associated with
the latter contribution is dominated by inaccuracies of the
electron density very close to the nuclei, suggesting that an
extremely accurate density is required in this region. However,
given that the behavior of the electron density at the atomic
positions is expected to be mostly determined by the nuclear
charge,40 the nature of these errors is largely systematic, as
shown in Table 1 by the much smaller “baselined” errors which
remain after the mean error is subtracted. This suggests that

differences in the electrostatic energy are predicted with a far
greater accuracy than their absolute values, ensuring the
viability of the method for any kind of physical application.
Being less sensitive to errors in the electron density localized
near the nuclear positions, the average error in the exchange-
correlation energies is significantly smaller for each data set.
Taken together, these observations illustrate an important

point: the errors in properties derived from the electron
density may depend on the errors in that density in a
nonuniform wayerrors in certain regions of space may lead
to very large errors in some properties while not significantly
increasing the error in other properties. As a result, when
approximating the density in this way it may be necessary to
find a basis in which to expand the electron density which
produces a tolerably low error not only in the density itself but
also in some property of interest derived from this density,
since the former does not guarantee the latter.29

3.2. Predicting Electron Densities. Having found a basis
in which we can accurately expand the electron density, we
then used the SALTED method outlined in Section 2 to train a
model with which to predict the electron densities of our test
systems. For this method, the only inputs required are the
atomic coordinates, the overlap matrix S defined in eqs 4, and
electron density projections w defined in eq 5 for each
structure in the data set. There are three parameters which
must be optimized for each data set. Two are associated with
the λ-SOAP representations of the configurations in the data
set;17 the other is the regularization parameter η, which was
introduced in the loss function in eq 8 to avoid overfitting.
These parameters were optimized using 80 structures in the
training set and 20 structures in the validation set. Further
details of this optimization are provided in the Supporting
Information.
To assess the accuracy of the electron density predicted by

the machine-learning model, we calculated the root-mean-
square difference between the predicted density ρ̃ML and the RI
density ρ̃RI, normalized by the standard deviation in the
reference densities. The square difference between the
predicted and reference densities at point r for some structure
A is given by

c cr r r( ) ( ) ( ) ( )A A
i

A i A i i
U

ML RI 2

, ,
, ,

ML
, ,
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,

2

∑ρ ρ ϕ| ̃ − ̃ | = −
σ

σ σ σ
(12)

where the full argument of ϕi,σ given in eq 1 has been
suppressed. Writing ΔcA,i,σ = cA,i,σ

ML − ci,σ
RI, we may write the

square error in the density of structure A as

dr r r

c S c

c w

( ) ( ) ( )

,

A
u c A A

A
T

A A

A
T

A

,
ML 2

. .

ML RI 2∫ ρ ρϵ = | ̃ − ̃ |

= Δ · Δ

= Δ Δ

ρ

(13)

where ΔwA,i,σ = wA,i,σ
ML − wA,i,σ

RI is the difference between the
projection of the predicted and that of the reference density
onto the basis function σ. The standard deviation in the
reference density can be written using a similar notation:
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−

Δ ̅ Δ ̅ρ
(14)

Table 1. Average Error in the Approximate RI Density (ϵρ̅
RI),

along with the Average Error in Exchange-Correlation and
Electrostatic Energies Derived from It (ϵx̅c

RI and ϵe̅l
RI)a

data set ϵρ̅
RI (%) ϵx̅c

RI ϵx̅c′RI ϵe̅l
RI ϵe̅l′RI

Al 0.02 0.14 0.03 11.6 2.58
Si 0.06 1.17 0.05 30.0 2.26
Ih Ice 0.01 0.00 0.00 0.19 0.01

aThese errors are relative to the QM reference values. ϵx̅c′RI and ϵe̅l′RI are
the “baselined” average errors, which remain after the mean error has
been subtracted from each energy; this indicates the remaining error
after the systematic error has been removed. All energies are reported
in meV per atom.
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where ΔcA̅ = cA
RI − c ̅RI, Δw̅A = wA

RI − w̅RI, c ̅RI and w̅RI are the
mean baseline values for the vectors of coefficients and density
projections as defined in Section 2, and Nt is the number of
structures in the validation set. The percentage root-mean-
square error is then defined as

s
%RMSE 100

( )
N A

N
A

1
,

ML 2

RI
t

t

= ×
∑ ϵρ

ρ (15)

Note that while this definition of the error in the density is
similar to the one used in the previous section, it differs in
important respects, namely, the normalization factor. In
addition, we here use the RI density ρ̃RI as the reference
density, rather than the self-consistent density ρQM as in
Section 3.1, since ρ̃RI represents the best possible predicted
density. This avoids conflating errors arising from the choice of
auxiliary basis functions with errors arising from the machine
learning, which could complicate the assessment the accuracy
of the machine-learning model.
Having determined the best parameters for each data set, we

calculated learning curves for each of the data sets introduced
in Section 3.1. To obtain these learning curves, the error was
calculated for 10 randomly selected validation sets each
containing 20 structures. The average error across these
validation sets is shown in Figure 2 as a function of the training

set size. For each data set, these curves have been converged
with respect to the number of reference environments M, as
demonstrated in the Supporting Information.
For all three data sets, the learning curves indicate a model

which reliably and accurately predicts electron densities: in
every case the error decreases monotonically as the size of the
training set is increased, and for every data set the error is
reduced to below 2% using just 80 training structures. Note
that this is a different definition of the error than that used in
in refs 21 and 16 when reporting the predicted electron
densities of isolated molecules and dimers; using the same
metric as in those works, we find errors of at most 0.15%, lower
than those obtained for isolated molecules. It is clear that there
is no significant loss of accuracy from extending the SALTED
method introduced in ref 16 to periodic systems and using a
numeric atom-centered basis set representation.
We again used the Harris functional with the LDA to

calculate the exchange-correlation and electrostatic energies

associated with each predicted density, ρ̃A
ML. The errors in the

energies are once more given by eq 11, using ρ̃A
RI as the

reference density as we did when evaluating the errors in the
predicted density directly. The distributions of these errors are
shown in Figure 3, along with the distribution of the
percentage errors in the density 100 × ϵρ

ML/sρ
RI for the

particular set of test structures used to calculate the energies.

First, it is clear that while the average error in the density is
similar for all three data sets, there is a larger variation in the
error in the density between structures in the aluminum data
set. These outliers are primarily due to the 1-atom unit cells,
contained only in the aluminum data set, in which the effect of
a single poorly described environment on the error is
magnified relative to systems containing more atoms. By
contrast, the predicted densities of the silicon and ice
structures are consistently accurate, with an error of below
2% for almost all of the structures.
As might be expected, this trend is reflected in the exchange-

correlation energies derived from the electron densities, with a
much wider distribution of errors for the aluminum data set

Figure 2. Learning curves for each of the test data sets. For each
point, the percentage root-mean-square error is averaged across 10
randomly selected validation sets, each containing 20 structures; the
error bars indicate the standard error in the mean.

Figure 3. (Upper panel) Distribution of the percentage root square
errors in the density, 100 × ϵρ

ML/sρ
RI, arising from the predicted density

of 20 randomly selected structures from each data set. (Lower two
panels) Distribution of the absolute errors in the exchange-correlation
energy, ϵxc

ML, and electrostatic energy, ϵel
ML, for the same structures.
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than the silicon and ice data sets. By contrast, the distribution
of errors in the electrostatic energies is not much broader for
aluminum than for silicon, although the median error is
significantly larger. One possible reason for this behavior will
be discussed in Section 3.3. For the ice data set, the median
errors in both the electrostatic and the exchange-correlation
energies are approximately 5 meV per atom, as is the median
error in the exchange-correlation energy for the silicon data set.
These errors indicate that, in general, the densities produced
by the SALTED method are sufficiently accurate to provide
reasonable estimates of energies derived from those densities
from just a small number of training structures, with no
information about those properties built into the training
model. We will discuss some possible routes to further
improving the accuracy of these derived quantities in the
conclusions.
Finally, we compare the accuracy of the energies calculated

in this “indirect” manner to the ones predicted “directly” using
a simple Gaussian process regression model, again using 80
training structures. These GPR models are optimized
independently of the SALTED models used to predict the
electron densities. The mean absolute errors in the electrostatic
and exchange-correlation energies predicted by both the
indirect (I) and the direct (D) methods are shown in Table
2. The errors arising from the indirect predictions are larger

than those arising from the direct predictions, but all are of
comparable magnitude. (The direct GPR model used to
predict the electrostatic energies of silicon appears to suffer
from numerical instability arising from the small number of
training points, resulting in the anomalous result in Table 2.)
Furthermore, a separate GPR model must be optimized for
each property of interest in order to learn them directly (the
resulting hyper-parameters are provided in the Supporting
Information). By contrast, both energies are obtained from a
single model when calculated indirectly, along with any other
electronic property of interest which may be derived from the
predicted electron density. By predicting the electron density,
the SALTED method effectively allows the prediction of a
wide range of properties simultaneously.
3.3. Extrapolating Electron Densities. In the previous

section, we demonstrated that the electron density of periodic
systems could be accurately predicted using training data
generated from similar structures. However, the real utility in
local machine-learning algorithms such as the one presented
here is the ability to accurately and efficiently predict
properties of systems which are challenging and expensive to
obtain using a direct ab initio calculation. Therefore, we would
like to establish whether a machine-learning model trained on

smaller systems is able to accurately predict the electron
densities of larger systems containing similar chemical
environments.
To investigate this, we turned to a more realistic example:

predicting the electron densities of Ih ice supercells using the
SALTED model trained on the 4-molecule cells described in
Section 3.1. To generate a representative test set, we ran MD
simulations of ice supercells containing 64, 128, 256, and 512
molecules (up to 1536 atoms) under the same conditions used
to generate configurations for the training data set and sampled
the resulting trajectories every 200 fs following a 5 ps
equilibration to obtain 20 independent configurations at each
cell size. We then predicted the electron densities of each of
these structures using a SALTED model trained using all 100
structures of the 4-molecule ice data set and calculated the
exchange-correlation and electrostatic energies derived from
these extrapolated densities.
Figure 4 contrasts the error in the predicted density ρ̃ML

with the self-consistent electron density ρQM in slices in the xy-

plane of a 64-molecule supercell. This illustrates that the errors
introduced by the SALTED method are an extremely small
fraction of the total electron densitynote the different scales
on the two colorbars. In addition, there is no clear pattern in
the errors in the predicted density, suggesting that the training
data obtained from just 100 small structures contains sufficient
information to avoid introducing large systematic errors into
the extrapolated density.
We measure the accuracy of the energies derived from the

extrapolated density relative to those derived from the self-
consistent density, ρQM. While in principle this convolves the
errors introduced by the SALTED method with the errors
introduced by the choice of basis functions, the latter have
been shown to be extremely small (Table 1). Therefore, the
errors presented here are dominated by errors introduced by
the SALTED method and provide a reasonable measure of the

Table 2. Mean Absolute Errors in the Exchange-Correlation
and Electrostatic Energies (ϵx̅c

ML and ϵe̅l
ML) Derived from the

Predicted Electron Densities (Indirect Errors, I), Compared
to the Mean Absolute Errors Observed When Those
Energies Are Predicted Directly Using Gaussian Process
Regression (D) for Each of the Three Data Setsa

data set ϵX̅c
Ml(I) ϵX̅c

Ml(D) ϵE̅l
Ml(I) ϵE̅l

Ml(D)

Al 15.4 2.85 68.2 25.4
Si 6.30 2.20 37.0 108
IH Ice 5.41 2.05 10.0 6.38

aThese errors are relative to the RI references values. All energies are
reported in meV per atom.

Figure 4. Two-dimensional cut of the predicted electron density of a
64-molecule ice supercell (lower slice and colorbar) and of the error
in the density with respect to the reference DFT calculation (upper
slice and colorbar). The figure also reports the corresponding three-
dimensional contours at isovalues of 1.0, 0.1, 0.01 e/Å3, and ±0.001 e/
Å3, respectively.
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accuracy of this method. The errors in the energies derived
from the extrapolated electron densities are shown in Figure 5.

It is clear that the quality of the electron densities predicted
for large ice supercells does not introduce an increase of the
error on the derived energies with increasing system size. The
predicted exchange-correlation and electrostatic energies are
within 5 meV of the converged energy for almost every
structure at every system size. This clearly demonstrates the
power of our local machine-learning approach: the ground
state electron density of large systems can be accurately
predicted using information straightforwardly obtained from a
small number of structures each containing 100 times fewer
atoms than the target system. In fact, Table 3 demonstrates
that the energies predicted in this indirect manner are more
accurate than those obtained using the GPR model optimized
on the 4-molecule ice structures to directly predict the
energies. Figure 6 shows the learning curves for the energies of
the 64-molecule supercells, as predicted using both the direct

and the indirect machine-learning methods. Interestingly, the
indirect predictions of the electrostatic and exchange-
correlation energy contributions do not necessarily show a
monotonic decrease in the error as a function of the training
set size. This is reminiscent of what was observed for SA-GPR
predictions of molecular dipole moments when extrapolating
to larger compounds than those trained against,45 suggesting
that models trained on small systems can develop weights
corresponding to long-range correlations that are damaging to
the extrapolative prediction. Furthermore, since SALTED
predicts the electron density directly, rather than these
energies, it is not clear that one should expect the derived
energies to exhibit perfectly monotonically decreasing learning
curves. Nevertheless, for every number of training points, the
indirect method shows superior performance; the same
qualitative behavior is observed for every supercell size, with
the remaining learning curves included in the Supporting
Information.
Moreover, this indicates that the information contained

within our local learning model is sufficient to describe the
relevant local atomic environments, regardless of the number
of atoms in the system; any error introduced by finite size
effects appears to be smaller than the error introduced by the
model itself. In fact, if anything, the per atom error in the
electrostatic energy appears to decrease with increasing system
size. This may be the result of a cancellation between
contributions to the error in the electrostatic energy of
opposite signs; as the system size increases, the probability that
these contributions to the error cancel one another out
increases, lowering the error in the electrostatic energy per
atom. This also helps to explain the distribution of the absolute
errors in the electrostatic energy for the validation data sets
shown in Figure 3the aluminum data set contains the
structures with fewest atoms, followed by the silicon data set,
while all of the ice structures contain 12 atoms, and the median
error decreases in the same order.

3.4. Learning Heterogeneous Data Sets. In the
previous sections we have established the accuracy of the
SALTED method for predicting the electron densities and
derived properties of chemically homogeneous data sets. We
now put our approach to the test for heterogeneous data sets.
To investigate the additional challenges these introduce, we

Figure 5. Distribution of the absolute errors in the exchange-
correlation energy, ϵxc

ML, and electrostatic energy, ϵel
ML, arising from the

predicted density of 20 ice supercells containing increasing numbers
of water molecules.

Table 3. Mean Absolute Errors in the Exchange-Correlation
and Electrostatic Energies (ϵx̅c

ML and ϵe̅l
ML) Derived from the

Predicted Electron Densities (the Indirect Errors, I),
Compared to the Mean Absolute Errors Observed When
Those Energies Are Predicted Directly Using Gaussian
Process Regression (D) for Each Size of Ice Supercella

molecules ϵx̅c
ML(I) ϵx̅c

ML(D) ϵe̅l
ML(I) ϵe̅l

ML(D)

64 1.57 2.25 2.90 8.19
128 1.29 3.21 1.80 8.82
256 1.66 3.67 1.41 9.63
512 1.82 3.60 1.09 9.51

aThese errors are relative to the QM reference values. All energies are
reported in meV per atom.

Figure 6. Learning curves for the mean absolute errors in the
exchange-correlation and electrostatic energies (ϵx̅c

ML and ϵe̅l
ML) derived

from the predicted electron densities (the indirect errors, I) and
predicted directly using Gaussian process regression (D) for the 64-
molecule ice supercells. These errors are relative to the QM reference
values. Equivalent plots for the other supercell sizes can be found in
the Supporting Information.
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analyzed two further scenarios. The first is simply the
amalgamation of the three homogeneous data sets introduced
in Section 3.1; this will be referred to as the “mixed” data set.
The second consists of hybrid organic−inorganic perovskites
(HOIP) selected from the data set published in ref 46. These
structures have a common motif of three F atoms and one Sn
atom, along with small organic molecules which varied
between the different configurations. These small molecules
are composed of some combination of C, N, and H atoms.
This data set presents a far greater challenge than any of those
previously considered: each structure contains at least 4
different atomic species, one of which is a heavy transition
metal. Furthermore, this data set contains a total of just 100
structures, which allows a direct comparison with the
homogeneous data sets above.
Having defined the HOIP data set, we followed the same

procedure outlined in Sections 3.1 and 3.2 to validate our
choice of auxiliary basis for these systems. After calculating the
RI density ρ̃RI for each structure, we find an average error in
the density of ϵρ̅

RI = 0.3%, following the definition in equation
10. This is a little larger than the errors observed for the
homogeneous data sets in Table 1 but is still comparable to the
errors observed in previous literature.16,21 This small increase
in the average error in the RI density does not lead to an
increase in the corresponding average errors in the electrostatic
and exchange-correlation energies derived from this density,
11.5 and 0.07 meV, respectively. In addition, this basis allows
excellent charge conservation, introducing errors of up to just
10−7 e per electron. Therefore, we are satisfied that the
numerical auxiliary basis used in FHI-aims provides an
accurate expansion of the densities of these perovskite
structures.
We then built SALTED models with which to predict the

electron densities of structures within these two heterogeneous
data sets. The hyperparameters for both of these models were
optimized as outlined in Section 3.2, with further details and
the selected hyperparameters provided in the Supporting
Information. The resulting learning curves are shown in Figure
7 and are analogous to those shown in Figure 2. For both data
sets we observe remarkably accurate results with just 80
training structures, with errors below 4% for the mixed data set
and below 2% for the HOIP data set. It is also clear that in
both cases the learning curves have not saturated, as might be
expected when using so few training structures to describe
these heterogeneous data sets. Therefore, applying SALTED to
more complex data sets will, with sufficient training structures,
produce models that present an accuracy comparable to that
achieved for the chemically homogeneous data sets. However,
ramping up the number of training structures N would require
a larger number of sparse environmentsM to represent a richer
spectrum of chemical variations, which in the present
formalism would imply reaching a computational bottleneck
given by the requirement to store and invert prohibitively large
matrices. In particular, when using the tight basis sets of FHI-
AIMS, working with a number of sparse environmentsM ∼ 103

would mean inverting matrices with dimensions larger than 105

× 105. A possible solution to this problem would be to avoid
finding the explicit solution of the regression problem and
instead directly minimizing the loss function of eq 8. This and
other appropriate strategies to circumvent the unfavorable
scaling of the training procedure with the system size will be
the subject of future investigation.

The charge conservation of the electron densities of Al and
Si predicted using the SALTED model trained on the mixed
database is of the same order as those predicted by the models
trained on the separate data sets, with the RMSE charge
conservation error rising from 3 × 10−5 to 6 × 10−5 e per
electron for Al and from 9 × 10−6 to 2 × 10−5 e per electron for
Si. By contrast, there is a notable increase in the charge
integration error for the electron densities of ice predicted by
this model, with the RMSE rising from 1 × 10−4 to 8 × 10−4 e
per electron using the SALTED model trained on the mixed
data set, and even larger errors of around 8 × 10−3 e per
electron are seen for the HOIP data set. This can be
understood by considering the role of the SOAP hyper-
parameters. For the individual homogeneous data sets,
different optimal hyperparameters are obtained for each set.
However, when considering the mixed data set, a single set of
hyperparameters must be chosen to describe the whole set. We
find that the optimal parameters for the mixed set are closer to
the optimal parameters for Al and Si than for ice, which then
results in a significant deterioration of the charge conservation
for the latter structures. This problem is even more
pronounced for the HOIP data set. In fact, the optimization
of the ML hyperparamaters is largely dominated by the
presence of the Sn atoms, leading to a very smooth definition

Figure 7. (Above) Selection of the hybrid organic−inorganic
perovskite structures. Tin atoms are shown in yellow, fluorine
atoms in green, nitrogen atoms in blue, carbon atoms in gray, and
hydrogen atoms in white. Below: The learning curves for the mixed
and HOIP data sets. For each point, the percentage root-mean-square
error is averaged across 10 randomly selected validation sets, each
containing 20 structures; the error bars indicate the standard error in
the mean.
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of the SOAP atom density that is used as a structural
descriptor, i.e., rc = 13 Å and σ = 0.9 Å. A strategy to solve this
issue would consist of using different spatial resolutions for the
SOAP description depending on the more or less diffuse
nature of the density components to be predicted.
The problem of charge conservation results in significant

errors in the energies derived from the predicted densities.
While the average error in the indirect predictions of the
electrostatic and exchange-correlation energies of Al and Si
increases only by a factor of ∼2 relative to the indirect
predictions of the separate models, this rises to a factor of ∼5
for ice. Not surprisingly, these errors are larger in the indirectly
predicted energies of the HOIP structureson the order of 1
eV. Increasing the training set size and adopting an ML
description that can be fine-tuned to represent different kinds
of density components will therefore be essential to obtain
accurate predictions in similar highly heterogeneous data sets.

4. CONCLUSIONS
We have shown how to use SALTED models to accurately
predict the electron density of condensed-phase systems. The
locality of the machine-learning model is reflected in the local
nature of the atom-centered expansion of the density field,
which is made possible for periodic systems through the use of
numerical auxiliary basis as implemented in FHI-aims. The
adopted RI basis comes along with an accurate decomposition
of the density, yielding negligible basis set errors, and is tunable
in response to the accuracy required for a particular system.
While the nonorthogonality of these basis functions results in
regression models which rapidly increase in dimensionality
with the size of the basis, this cost is offset by the transferability
and locality of the resulting models. As already proven in other
contexts,16,21,29 the local nature of the approach allows for
accurate linear-scaling predictions, enabling a massive increase
in the size of the systems under study.
We tested the method by training three models which

predicted the electron density of a metal, a semiconductor, and
a molecular solid, finding that in all cases a stable, reliable, and
accurate model for the density was produced, with a RMSE
below 2% obtained for each validation set using fewer than 100
training structures. We established that exchange-correlation
energies could be derived from these densities, with errors
lying below 10 meV per atom for the majority of structures.
We then demonstrated the ability of SALTED to predict the
electron density of very large systems employing a model
trained on much smaller systems, using training data obtained
from ice cells containing just 4 molecules to predict the density
of cells containing 64, 128, 256, and 512 molecules. We found
no loss of accuracy as the system size increased, illustrating the
ability of the SALTED method to obtain accurate electron
densities of large crystalline systems without the need for a self-
consistent DFT calculation. In particular, the errors in the
derived electronic energies do not increase with increasing
system size. Furthermore, these derived energies are more
accurate than those predicted using a direct machine-learning
model also trained only on the small unit cells. Finally, we used
SALTED to predict the electron densities of two heteroge-
neous data sets and found predicted densities with RMSE
below 4%. However, in order to derive reliable energies from
these heterogeneous data sets, technical developments are
required to first store larger matrices related to the larger
number of sparse environments M required for these scenarios
and second to fine-tune the SOAP hyper-parameters to

account for the different atomic sizes found in heterogeneous
data sets.
As recently demonstrated in ref 29, the metric chosen to

define the RI and machine-learning approximation can impact
the quality of density-derived properties. Formulations
discussed in ref 29 could be pursued in order to obtain
more accurate derived electrostatics energies. Understanding
whether or not this choice would compromise the quality of
the exchange-correlation energy is a matter for future
investigation. Another possible improvement for all-electron
densities would be to generate data to train the model that is
based only on density changes with respect to, for example, a
superposition of free atom densities. This procedure could
mitigate any problems representing the density close to the
nuclei, which led to the errors in the electrostatic energy
discussed in Section 3.1.
An extension of the method will be needed to treat those

systems that are dominated by nonlocal physical effects. In fact,
while the locality of SOAP-based and similar representations is
crucial for allowing transferable predictions in very heteroge-
neous data sets,19 the accurate description of highly polarizable
surfaces and/or ionic systems necessarily requires the spatial
nearsightedness of the learning model to be overcome. In this
regard, integrating SALTED with long-range representations of
the atomic structure35 that can be properly combined with
short-range, many-body features36 will represent an attractive
possibility for enabling the accurate prediction of electron
densities in response to far-field perturbations. In addition,
work is underway to incorporate the prediction of density
gradients along with electron densities, allowing the indirect
prediction of electronic properties through generalized-
gradient approximation functionals.
In perspective, the application of SALTED to periodic

systems paves the way for inexpensive prediction of the
electron densities of bulk liquids and solids which can be
directly probed by experimental techniques, e.g., X-ray
scattering experiments.47 The possibility of treating on an
equal footing both molecular crystalline and metallic systems
represents a great advantage in the computational study of
heterogeneous materials, such as those involved in catalytic
reactions and electrochemical processes.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00576.

Equations for the calculation of the overlap matrix and
vector of projections in periodic systems, an error
analysis of the electrostatic and Hartree energies, the
optimizations of the SALTED hyper-paramaters for the
homogeneous and heterogeneous data sets, the opti-
mization of the direct GPR hyper-parameters and their
learning curves, and an illustration of the application of
SALTED to isolated molecules using NAOs (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
Alan M. Lewis − Max Planck Institute for the Structure and
Dynamics of Matter, 22761 Hamburg, Germany;
orcid.org/0000-0002-3296-7203; Email: alan.lewis@

mpsd.mpg.de

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00576
J. Chem. Theory Comput. 2021, 17, 7203−7214

7212

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00576?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00576/suppl_file/ct1c00576_si_002.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alan+M.+Lewis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3296-7203
https://orcid.org/0000-0002-3296-7203
mailto:alan.lewis@mpsd.mpg.de
mailto:alan.lewis@mpsd.mpg.de
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mariana+Rossi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00576?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Mariana Rossi − Max Planck Institute for the Structure and
Dynamics of Matter, 22761 Hamburg, Germany;
orcid.org/0000-0002-3552-0677; Email: mariana.rossi@

mpsd.mpg.de

Authors
Andrea Grisafi − Laboratory of Computational Science and
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