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Appendix A: QUANTUM BACKACTION CANNOT BE AVOIDED IN TWO-TIME MEASUREMENT
EXPERIMENTS

In this Appendix we use the generalized von Neumann Orthodox protocol to describe the measurement of a qunatum
system without assuming a strong (or projective) measurement. In particular, we will show that (Born) probabilities
of two-time measurements are always contaminated by the measuring apparatus.

1. Semi-weak measurements

Let us first consider the expectation value of a property of a quantum system at time t, i.e.:

〈y(t1)〉 =

∫
dykykP (yk), (A.1)

where P (yk) is the probability of reading-out a particular value yk = zk, and integrals are definite integrals over all
possible values of the variables x, y and z (i.e., −∞,+∞). In order to relate the probability distribution of outcomes
P (yk) with the degrees of freedom of the system x, we here follow a generalized quantum Von Neumann measurement
protocol for weak (generalized) measurements [1–3]. We assume the full state of the system-ancilla-pointer to be
initially described by a separable state vector:

|Ψ(0)〉 =
∑
i

ci(0)|si〉 ⊗
∫
a(y, 0)|y〉dy ⊗

∫
f(z, 0)|z〉dz, (A.2)

where the system state vector |ψ(0)〉 =
∑
i ci(0)|si〉 has been defined using the eigenstates |si〉 of the operator Ŝ of

interest, with Ŝ|si〉 = si|si〉. Without the loss of generality, we chose here a discrete and nondegenerate spectrum

{s1, s2, s3....} of the operator Ŝ. The (ancilla) state vector |φW (0)〉 =
∫
a(y, 0)|y〉dy interacts with the system and

also with the (pointer) state vector |φP (0)〉 =
∫
f(z, 0)|z〉dz.

First, a pre-measurement (unitary) evolution from t = 0 to t1 entangles the ancilla with the system and the pointer
with the ancilla as follows:

|Ψ(t1)〉 =
∑
i

ci|si〉 ⊗
∫
a(y − λsi)|y〉dy ⊗

∫
f(z − y)|z〉dz. (A.3)

The original ancilla wave function a(y, 0) splits into several wave functions a(y−λsi) with i = 1, 2, .... We have defined
λ as a macroscopic parameter with dimensions of [y]/[S] which can be defined as the effective coupling constant
[4]. The shape of a(yk − λsi) is arbitrary and includes, in particular, strong (direct measurement) interactions when
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2∫
dy a(y−λsi)a(y−λsj) = δi,j and weaker (indirect measurement) interactions when

∫
dy a(y−λsi)a(y−λsj) 6= δi,j .

We have defined δi,j as a Kronecker delta function. The only two conditions imposed on the ancilla wave functions
a(y−λsi) to be representative of an indirect or weak measurement are: (i)

∫
y|a(y−λsi)|2dy = λsi ∀i, which implies

that the center of mass of |a(y − λsi)|2 is λsi, and (ii)
∫
|a(y − λsi)|2dy = 1 ∀i, which simply states that the ancilla

wave function is well normalized.
Second, the read-out process is described by the non-unitary operator ÎS ⊗ ÎW ⊗ P̂zk , where ÎS is the identity

operator defined in the system Hilbert space, ÎW is the identity operator defined in the ancilla Hilbert space, and
P̂zk = |zk〉〈zk| is a projector acting on the Hilbert space of the pointer. As mentioned previously, it becomes now
evident that an indirect measurement of a system is just a direct measurement of an ancilla that is entangled with
the system. The non-unitary operator ÎS ⊗ ÎW ⊗ P̂zk causes the collapse of the pointer wave function providing the
read-out value zk = yk and the measured state becomes |Ψk(t1)〉 =

∑
i cia(yk − λsi)|si〉 ⊗ |yk〉 ⊗ |zk〉. Therefore, the

state of the system can be effectively represented by:

|ψk(t1)〉 =
∑
i

a(yk − λsi)ci|si〉, (A.4)

where the subscript k indicates (the perturbation that the system has suffered due to) the measurement of the pointer
value zk = yk [5].

The probability of measuring a particular pointer position yk can be then easily evaluated from Born’s rule P (yk) =
〈Ψk(t1)|Ψk(t1)〉 = 〈ψk(t1)|ψk(t1)〉 applied to the non-normalized state in Eq. (A.4). While the probability distribution
P (yk) =

∑
i |ci|2|a(yk − λsi)|2 clearly depends on the type of ancilla that we are considering, the expectation value

in Eq. (A.1),

〈y(t1)〉 =

∫
yk
∑
i

|ci|2|a(yk − λsi)|2dyk =
∑
i

|ci|2λsi = λ 〈Ŝ〉, (A.5)

only depends on the system state |ψ(t1)〉 =
∑
i ci|si〉. As we already anticipated, expectation values of static (one-

time) properties provide information of the system that is not contaminated by the measuring apparatus.
One can now generalize the above measurement scheme to account for a second measurement of another observable

G at time t2 > t1. By repeated read-out of the positions yk (at t1) and yω (at t2) for a large number of identically
prepared experiments, we can compute the corresponding two-time correlation function 〈y(t2)y(t1)〉 as:

〈y(t2)y(t1)〉 =

∫
dyk

∫
dyω ykyωP (yω, yk), (A.6)

where P (yω, yk) is the joint probability of subsequent read-out of the values yk and yω at times t1 and t2, respectively.
To evaluate P (yω, yk) in Eq. (A.6) we simply need to apply the above protocol to the final state in (A.4). We first let

the state in Eq. (A.4) to evolve freely from t1 till t2 according to the time-evolution operator Û = exp(iĤ(t2− t1)/~),

where Ĥ is the Hamiltonian that dictates the evolution of the system degrees of freedom x in the absence of any
interaction with the ancilla and pointer degrees of freedom. For convenience, we write the state of the system
in terms of the eigenstates of the operator Ĝ, i.e., |gj〉, using the transformation |sk〉 =

∑
j βk,j |gj〉. We then

rewrite the state of the system Û |si〉 =
∑
k γi,k|sk〉 in terms of the new basis as Û |si〉 =

∑
k,j γi,kβk,j |gj〉. More

compactly, Û |si〉 =
∑
j cj,i|gj〉, where cj,i =

∑
k γi,kβk,j . Therefore, the state of the system right before the second

pre-measurement can be written as the (non-normalized) state:

|ψk(t2)〉 =
∑
i,j

a(yk − λsi)cicj,i|gj〉. (A.7)

Subsequently, under the assumption that there is no correlation between the ancilla degrees of freedom at times t1 and
t2, the system state vector in (A.7) undergoes a second pre-measurement evolution and the system becomes entangled
again with the ancilla and the pointer wave functions, i.e.:

|Ψk(t2)〉 =
∑
i,j

a(yk − λsi)cicj,i|gj〉 ⊗
∫
a(y − λgj)|y〉dy ⊗

∫
f(z − y)|z〉dz, (A.8)

where now a(y − λgj) is the ancilla wave function displaced by λgj .
The read-out of the pointer position (for an output value yω) at time t2 is described again by a non-unitary

operator ÎS ⊗ ÎW ⊗ P̂zw with P̂zw = |zw〉〈zw|. This non-unitary operator causes the collapse of the state in Eq. (A.8)
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into |Ψk,ω(t2)〉 =
∑
i,j cicj,ia(yk − λsi)a(yω − λgj)|gj〉 ⊗ |yω〉 ⊗ |zw〉, and so the state of the system can be effectively

written as:

|ψk,ω(t2)〉 =
∑
i,j

cicj,ia(yk − λsi)a(yω − λgj)|gj〉. (A.9)

Born’s rule can be used again to write the probability P (yω, yk) = 〈Ψk,ω(t2)|Ψk,ω(t2)〉 = 〈ψk,ω(t2)|ψk,ω(t2)〉 of
subsequently measuring yk and yω as:

P (yω, yk) =
∑
j

∑
i,i′

c∗i′cic
∗
j,i′cj,ia

∗(yk − λsi′) a(yk − λsi)|a(yω − λgj)|2. (A.10)

By introducing the probability P (yω, yk) in Eq. (A.10) into Eq. (A.6) we finally get:

〈y(t2)y(t1)〉 = λ
∑
i,i′

∫
dykyka(yk − λsi)a∗(yk − λsi′)〈ψ(t1)|si′〉〈si′ |Û†ĜÛ |si〉〈si|ψ(t1)〉, (A.11)

where we have used
∫
dyω yω |a(yω − λgj)|2 = λgj and Ĝ =

∑
j gj |gj〉〈gj | together with ci = 〈si|ψ(t1)〉 and cj,i =

〈gj |U |si〉.
Expression (A.11) is completely general and describes the two-time correlation function of Ŝ and Ĝ at times t1

and t2. At this point what is significant is that in (A.11) we have not been able to eliminate the dependence of the
ancilla degrees of freedom a(yk − λsi) and a∗(yk − λsi′) on 〈y(t2)y(t1)〉. Therefore, in contrast to what happens to
the one-time expectation values in Eq. (A.5), different types of measurements (ancillas) will produce different time
correlation functions. Therefore, multiple-time correlation functions such as 〈y(t2)y(t1)〉 are not universal properties
of quantum systems, but are dependent on the measuring apparatus.

The only scenario where the outcome of the second measurement does not depend on the first measurement is when
the initial state of the system is an eigenstate of the operator Ŝ, i.e., |ψ(t1)〉 = |sk〉. Then the first measurement
always yields the same output result yk = λsk without having perturbed the state of the system, and hence the second
measurement happens to be independent of the first measurement. Mathematically this can be stated as:

〈y(t2)y(t1)〉 = λ2sk〈sk|Û†ĜÛ |sk〉 = λ2〈Ĝ(t2)〉〈Ŝ(t1)〉, (A.12)

where we have used that 〈ψ(t1)|si′〉〈si|ψ(t1)〉 = 〈sk|si′〉〈si|sk〉 = δi,k′δi′,k′ and that
∫
dyy|a(y − λs)|2 = λs. Equiva-

lently, if 〈si′ |Û†ĜÛ |si〉 = gwδi′,i which means that the evolved state Û |si〉 is an eigenstate of Ĝ, then Eq. (A.11) can

be also written as 〈y(t2)y(t1)〉 = λ2gw〈ψ(t1)|Ŝ|ψ(t1)〉 = λ2〈Ĝ(t2)〉〈Ŝ(t1)〉. In these two scenarios, since the results

〈Ĝ(t2)〉 and 〈Ŝ(t1)〉 are apparatus-independent, the two-time correlation function in Eq. (A.12) also represents an
apparatus-independent correlation function. Unfortunately, this result is not general enough and is invalid in many
practical situations where the initial state is a coherent superposition of the observable eigenstates [6].

2. Ideally-weak measurements

We define an ideally-weak measurement as the one where the system-ancilla coupling is minimized. This is mathe-
matically equivalent to making the support of the ancilla wave function much larger than the support of system wave
function, i.e. y � λsk. In this limit we can assume a first order Taylor approximation so that the ancilla wave packet

can be written as a(yk − λsi) ≈ a(yk)− λsi ∂a(yk)∂yk
.

The measuring protocol satisfying the above Taylor expansion is what we call ideally-weak measurement in the text.

The above condition for its definition written above can be equivalently written as
∣∣∣∂a(yk)∂yk

∣∣∣� ∣∣∣λ2 ∂2a(yk)
∂y2k

s
∣∣∣.

The evaluation of the main result in Eq. (A.11) for the ideal weak measurements used here, requires the evaluation
of the integral

∫
dyk yka(yk − λsi)a(yk − λsi′)∗, which can be written as:∫

dyk yka(yk − λsi)a∗(yk − λsi′) =

∫
dyk yk

(
a(yk)− λ∂a(yk)

∂yk
si

)(
a∗(yk)− λ∂a

∗(yk)

∂yk
si′

)
=

∫
dyk yka(yk)a∗(yk)− λsi

∫ ∞
−∞

dykyka
∗(yk)

∂a(yk)

∂yk

− λsi′
∫
dykyka(yk)

∂a∗(yk)

∂yk
+ λ2si si′

∫
dykyk

∂a∗(yk)

∂yk

∂a(yk)

∂yk

= λ
1

2
(si + si′). (A.13)
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In the evaluation of Eq. (A.13) we have considered that ancilla wave function is real (not complex), a(yk − λsi) =

a∗(yk−λsi). We have also used the identities
∫
dy y a(y)∂a(y)∂y = −1/2,

∫
dy y ∂a(y)

∂y
∂a(y)
∂y = 0, and

∫
dy y a(y)a(y) = 0.

Finally, using Eq. (A.13) into the integral in Eq. (A.11), we get:

〈y(t2)y(t1)〉 =
λ2

2
〈Ψ(t1)|Û†ĜÛ Ŝ|ψ(t1)〉+

λ2

2
〈Ψ(t1)|ŜÛ†ĜÛ |ψ(t1)〉

= λ2Re[〈Ψ(t1)|Û†ĜÛ Ŝ|ψ(t1)〉], (A.14)

where we have used the identities Ŝ =
∑
i si|si〉〈si|, Ĝ =

∑
j gj |gj〉〈gj |,

∑
i |si〉〈si| = 1 and Ĝ =

∑
j |gj〉〈gj |. Now,

by simply defining the Heisenberg operators Ĝ(t2) = Û†ĜÛ and Ŝ(t1) = Ŝ, then can write the two-time correlation
function in the ideally-weak measurement regime as:

〈y(t2)y(t1)〉 = λ2Re[〈ψ(t1)|Ĝ(t2)Ŝ(t1)|ψ(t1)〉]. (A.15)

3. Even ideally-weak measurements involve quantum backaction

To understand whether the result Eq. (A.15) is contaminated or not by the measurement, let us rewrite the general
state in the system space in Eq. (A.9), according to the Taylor series used above for the ancilla wave function:

|ψk,ω(t2)〉 =
∑
j,i

|gj〉a(yω − λgj)〈gj |Û |si〉a(yk − λsi)〈si|ψ(t1)〉

=
∑
j,i

|gj〉
(
a(yω)− λ∂a(yω)

∂yω
gj

)
〈gj |Û |si〉

(
a(yk)− λ∂a(yk)

∂yk
si

)
〈si|ψ(t1)〉,

(A.16)

which can be easily expanded to read:

|ψk,ω(t2)〉 = a(yω)a(yk)
∑
j,i

|gj〉〈gj |Û |si〉〈si|ψ(t1)〉 − λ∂a(yω)

∂yω
a(yk)

∑
j,i

|gj〉〈gj |Û |si〉si〈si|ψ(t1)〉

−λ∂a(yk)

∂yk
a(yω)

∑
j,i

|gj〉gj〈gj |Û |si〉〈si|ψ(t1)〉+ λ2
∂a(yω)

∂yω

∂a(yk)

∂yk

∑
j,i

|gj〉gj〈gj |Û |si〉si〈si|ψ(t1)〉. (A.17)

Using now Ŝ =
∑
i si|si〉〈si| and Ĝ =

∑
i gi|si〉〈si| Eq. (A.17) reduces to:

|ψk,ω(t2)〉 =

(
a(yω)a(yk)Û + λ2

∂a(yω)

∂yω

∂a(yk)

∂yk
ĜÛ Ŝ − λ∂a(yω)

∂yω
a(yk)ĜÛ − λ∂a(yk)

∂yk
a(yω)Û Ŝ

)
|ψ(t1)〉. (A.18)

For simplicity, we defined ∂a/∂y ≡ ∂a(y)/∂y. Erroneously assuming ∂a(y)/∂y = 0, one could then think
that the state of the system after the two measurements can be approximated only by the first term in Eq.
(A.18) as |ψk,ω(t2)〉 ≈ |ψ̃k,ω(t2)〉 ≡ a(yω)a(yk)Û |ψ(t1)〉. This approximation would indeed imply that the state
of the system has not been perturbed during the two-time measurement. Thus, the Born’s probability associated
with this unperturbed wavefunction is P (yω, yk) = 〈ψ̃k,ω(t2)|ψ̃k,ω(t2)〉 ≈ |a(yω)|2|a(yk)|2. Computing two time cor-
relations with this two time probability, obtained after neglecting the contributions ∂a(y)/∂y, leads to 〈y(t2)y(t1)〉 = 0.

The approximation |ψk,ω(t2)〉 ≈ |ψ̃k,ω(t2)〉 yields a wrong result because the unperturbed state |ψ̃k,ω(t2)〉 signifies
no correlation at all, between system and measuring apparatus. Thus, since we want some type of correlation,
the terms ∂a(y)/∂y in Eq. (A.18) cannot be neglected. Even if these terms are very small in general, for the rare
events associated to y → ∞, they become comparable or larger than the main term that gives zero correlation,
∂a(y)/∂y ≈ a(y) and hence, these terms ∂a(y)/∂y are indeed the responsible for providing non-zero correlations in
Eq. (A.15) due to the rare events y →∞.

In conclusion, two-time measurements do entail, in general, non-negligible perturbation on the state of the system,
and therefore cannot provide intrinsic (or unperturbed) information of the dynamics of quantum systems. This is
an important result that is in contrast with the naive thought that ideally-weak measurements can be used to avoid
the quantum backaction of the measurement apparatus. The reader can argue that we have not discuss results from
individual experiments, but only results from an average over an ensemble of identically prepared quantum systems.
The key point is that if the ensemble average shows backaction is because some individual experiments (not all
perhaps) suffer from backaction.
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Appendix B: WEAK VALUES OF SPIN- 1
2
PARTICLE

We consider a spin- 12 particle (electron). The three cartesian components of the spin operator are given by Ŝx = ~
2σx,

Ŝy = ~
2σy and Ŝz = ~

2σz, with the Pauli matrices defined as:

(σx, σy, σz) =

((
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
(B.1)

We consider a particle whose guiding state is described by the spinor

|ψ〉 = α|z,+〉+ β|z,−〉 =

(
α
β

)
(B.2)

with |z,+〉 =

(
1
0

)
the eigenstate of the z-spin operator Ŝz with eigenvalue +~/2 and |z,−〉 =

(
0
1

)
the eigenstate

of the Ŝz operator with eigenvalue −~/2. The constants α and β provides the correct normalization |α|2 + |β|2 = 1
of the superposition state. Now, from expression Eq. (7) in the manuscript, we can easily compute the following
local-in-position weak value of the spin in the z-direction:

Re

(
〈x|Ŝz|ψ〉
〈x|ψ〉

)
= Re

(
(+~

2 )α〈x|z,+〉+ (−~
2 )β〈x|z,−〉

α〈x|z,+〉+ β〈x|z,−〉)

)
=

~
2

Re

(
α〈x|z,+〉 − β〈x|z,−〉
α〈x|z,+〉+ β〈x|z,−〉)

)
. (B.3)

For the same state in Eq. (B.2), we can compute the local-in-position weak value of the spin in the y-direction. By

using |z,+〉 = 1/
√

2(|y,+〉+ |y,−〉) and |z,−〉 = −i/(
√

2(|y,+〉 − |y,−〉), we rewrite the guiding state in Eq. (B.2) as

|ψ〉 = α|z,+〉+ β|z,−〉 =
α− iβ√

2
|y,+〉+

α+ iβ√
2
|y,−〉. (B.4)

Using again Eq. (7) in the manuscript, we compute the following local-in-position weak value of the spin in the
y-direction:

Re

(
〈x|Ŝy|ψ〉
〈x|ψ〉

)
= Re

(
(+~

2 )α−iβ√
2
〈x|y,+〉+ (−~

2 )α+iβ√
2
〈x|y,−〉

α−iβ√
2
〈x|y,+〉+ α+iβ√

2
〈x|y,−〉)

)
=

~
2

Re

( α−iβ√
2
〈x|y,+〉 − α+iβ√

2
〈x|y,−〉

α−iβ√
2
〈x|y,+〉+ α+iβ√

2
〈x|y,−〉)

)
. (B.5)

Finally, from the same state in Eq. (B.2), we can also compute the local-in-position weak value of the spin in the

x-direction too. By using |z,+〉 = 1/
√

2(|x,+〉+ |x,−〉) and |z,−〉 = −1/(
√

2(|x,+〉 − |x,−〉), we rewrite the guiding
state as

|ψ〉 = α|z,+〉+ β|z,−〉 =
α− β√

2
|x,+〉+

α+ β√
2
|x,−〉 (B.6)

From expression (7) in the manuscript, we again compute straightforwardly the following local-in-position weak value
of the spin in the x-direction:

Re

(
〈x|Ŝx|ψ〉
〈x|ψ〉

)
= Re

(
(+~

2 )α−β√
2
〈x|x,+〉+ (−~

2 )α+β√
2
〈x|x,−〉

α−β√
2
〈x|x,+〉+ α+β√

2
〈x|x,−〉)

)
=

~
2

Re

( α−β√
2
〈x|x,+〉 − α+β√

2
〈x|x,−〉

α−β√
2
〈x|x,+〉+ α+β√

2
〈x|x,−〉)

)
. (B.7)

1. Weak values that are not always dynamic intrinsic properties of a modal theory

The above result in Eq. (B.3) has two interesting limits. When α = 1 and β = 0, |ψ〉 = |z,+〉, the local-in position
weak value of the spin in the z-direction is,

Re

(
〈x|Ŝz|ψ〉
〈x|ψ〉

)
= Re

(
(+~

2 )〈x|z,+〉
〈x|z,+〉

)
=

~
2

(B.8)
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Identically, for α = 0 and β = 1, |ψ〉 = |z,+〉, the local-in position weak value of the spin in the z-direction is,

Re

(
〈x|Ŝz|ψ〉
〈x|ψ〉

)
= Re

(
(−~

2 )〈x|z,−〉
〈x|z,−〉

)
= −~

2
(B.9)

In both cases, the states that defined the quantum system are eiegnestate of the Ŝz. Thus, according to the orthodox
eigenstate-eigenvalue-link, such quantum systems have well-defined properties of the spin in the z direction: the
eiegnvalues ~/2 and −~/2, respectively.

In the general case, the spin in the z-direction of the state |ψ〉 = α|z,+〉+ β|z,−〉, is not a well-defined Orthodox
property. The relevant point in the present subsection is discussing if the spin in the z direction (or in the three
cartesians directions) is a well-defined intrinsic property in Modals theories or not. Certainly, the position x has been
used as the property state in Eq. (B.3), Eq. (B.5) and Eq. (B.7). Thus, we are discussing if the z-component of the

spin is an intrinsic property Re
(
x〈Ŝz〉ψ

)
in the type of Modal theories known as Bohmian mechanics (or also known

as de Broglie-Bohm theories). If a property reaches the status of intrinsic property in a Modal theory is because such
property is part of ontology of such Modal theory. Is spin an ontological property of Bohmian mechanics? Well, the
answer depends on how the ontology of Bohmian mechanics is internally defined. Regarding the spin in Bohmian
mechanics, there are basically two opposite schools:

• The first school argues that the z component of spin is an additional (hidden) ontological variable of a particle
in the Bohmian theory, as is the position of the particle [7–9]. The y and x components of the spin, as defined
above, are also well-defined ontic properties. This school keeps the classical idea of spin as a little spinning ball
of charge with definite spin angular momentum vector. Such picture requires, not only the z component of the
spin to be an ontic property at all times, but also the x and y components to be ontic variables. They imaging
the spin as a well defined vector in the 3D physical space. Then, for them, the weak values in Eq. (B.3), in Eq.
(B.3) and Eq. (B.5) are the measurement of a well-defined intrinsic properties that defines the ”spin vector” of
three components at all times:(

Re

(
〈x|Ŝx|ψ〉
〈x|ψ〉

)
,Re

(
〈x|Ŝy|ψ〉
〈x|ψ〉

)
,Re

(
〈x|Ŝz|ψ〉
〈x|ψ〉

))
=
(

Re
(
x〈Ŝx〉ψ

)
,Re

(
x〈Ŝy〉ψ

)
,Re

(
x〈Ŝz〉ψ

))
(B.10)

In conclusion, for this first school, when the system is detached from a measurement context, the ”spin vector” of
three components is indeed an intrinsic property (given by the above expression) with a deep physical meaning.

• The second school argues that spin is not an onticological property of Bohmian mechanics [10–12]. Only the
position (not the spin) is the ontological (hidden) variables in this school (at least for non-relativistic quantum
mechanics). In fact, this school argues that, even when the spin is measured, the spin is not an ontic property
[10–12]. The value of the laboratory that we call spin is, in fact, the value of a position of a pointer in a
Stern-Gerlach experiment [10]. Such pointer positions will obviously depend on the coefficients α and β of
the quantum state in Eq. (B.3). For this school, even being considered a Modal theory under the umbrella of
Bohmian mechanics, the experimental value given by the weak values Eq. (B.3), Eq. (B.5) and Eq. (B.7) are just
juggling with experimental data with no ontological meaning. In conclusion, for this second school, the ”spin
vector” of three components It cannot be an intrinsic property, because it is not even an ontic property.

It is far from the scope of this paper to judge (or show our preferences between) both Bohmian definitions of spin. In
this subsection, we do only want to show a clear example indicating that the selection of what are the intrinsic (ontic)
properties of a given Modal theory is just an arbitrary decision of each Modal theory, without been influenced by
the experimental accessibility of weak values. In simple words, for the first Modal theory, the weak values computed
in Eq. (B.3), Eq. (B.5) and Eq. (B.7) are very relevant values with a deep physical meaning. For the second Modal
theory, the weak values computed in Eq. (B.3), Eq. (B.5) and Eq. (B.7) are just a manipulation of experimental data
of an ensemble of experiments, without any deep physical meaning. Notice that this second school will insist that spin
is not an ontological property even on the scenarios given by Eq. B.8 and B.9 where the Orthodox theory accepts
that spin is a well defined property (following the eigenstate eiegnvalue link). In any case, the empirical results of
both Bohmian schools on spin are in perfect agreement with all empirical results and basic theorems of the Orthodox
theory.

2. Weak values and intrinsic properties are context-free

The concept of conextuality revolves around the role of the measuring apparatus as an active element in the definition
of the properties of a system. As such, any discussion of contextuality requires to clarify which degrees of freedom are
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understood as the system and which degrees of freedom are the measuring apparatus. Once such distinction is made
clear, it is obvious that dynamic intrinsic properties discussed in this paper are context-free because, by construction,
they are defined without involving the degrees of freedom of the measuring apparatus (only the degrees of freedom
of the system are relevant with the unitary evolution of a closed system) for such property. In other words, there
is no measuring context involved in the definition of the intrinsic properties. Once we select a Modal theory and a
dynamical intrinsic property as part of the ontology of such theory, then, the associated weak value must also be
context-free because the weak value and the dynamic intrinsic property are, both, the same.

But, as discussed in the next appendix C, weak values are measured in a laboratory. Then, why we consider them
as context-free? The solution to this apparent paradox is that the weak values are obtained under a very special
protocol involving an ensemble of identical experiments. In each experiment, the quantum system is perturbed by
the two-times measurement (in a contextual way) as we have shown in appendix A. However, when doing the post-
processing of the data, the individual perturbation present in each experiment is compensated so that the final weak
value has eliminated the back-action (contamination) due to the measuring apparatus in each experiment. Only when
the experimental procedure ensures that we are dealing with a back-action free value, we get a weak value. In the
subsection C 2 we clarify under which measuring circumstances we can ensure that we have an experimental weak
value equal to that of the context-free weak value.

We want to provide some additional clarification about the context-free intrinsic properties and the associated
weak values. We have been able in Eq. (B.3), Eq. (B.5) and Eq. (B.7) to find the weak values for the three Cartesian
components a the spin of a particle. Such values are understood as the real intrinsic values of the spin of the particle
for the first Bohmian school mentioned above. Notice that the order of the computation of the different weak values
of spin is irrelevant. For example, the sequence (1st) weak value of Sz; (2nd) weak value of Sy and (3nd) weak value
of Sx provide the same results as any other sequence, for example, (1st) weak value of Sx; (2nd) weak value of Sz
and (3nd) weak value of Sy. The reason why this values are independent of the order are obviously that we have used
always the same state in Eq. (B.2) for the computation of Eq. (B.3), Eq. (B.5) and Eq. (B.7), either for defining an
intrinsic property or a weak value. The Modal theory defines the intrinsic properties of one component of spin without
implying any manipulation of the state for a posterior definition of other component of spin. For the empirical result
of weak values, they are always computed from an ensemble of experiments with identical preparation of the state in
Eq. (B.2) and involve the weak measurement of only one type of spin component. In conclusion, intrinsic properties
and weak values are context-free by construction.

It is well-known, however, that the three components that define the intrinsic value of the spin (as defended by
the first school of the Bohmian theory) will not be the three components measured in the laboratory in a unique
experiment. The reason is clear. In a laboratory, the first measurement of the z component of the spin will collapse
the initial state Eq. (B.2) into one of the two eigenstate of the Ŝz operator. Then, we can no longer use state Eq.
(B.2) to evaluate the subsequent results of the measurement of other component of spin. Therefore, the order in
the measurement affect the values that we get for each spin component. In conclusion, the measured components
of spin properties are contextual by construction. For this reason, the Orthodox theory (and also the second school
of the Bohmian theory) prefer to say that the property of Sx, Sy and Sx are not defined prior to its measurement.
On the contrary, the first Bohmian school prefer to say that the spin components are always well-defined at the
ontological level (ontic variable) but they change its numerical value when interacting with the measuring apparatus
(the context). Thus, ontic variables have to contextual to satisfy empirical results (this is exactly the case for all
Bohmian ontic variables discussed here). But, we emphasize that an ontic variable can be understood as an intrinsic
property only when we detach the system from the measuring apparatus, which is not the case in this example.

The important point in this section is that there is no contradiction at all between the first conclusion, intrinsic
properties and weak values of the components of spin are context-free by construction and the second conclusion the
measured components of spin (and the ontic variables) are contextual by construction. We are talking about two
different things.

Appendix C: EXPERIMENTAL ACCESSIBILITY OF WEAK VALUES

In the manuscript, we have defined weak values as intrinsic properties of Modal theories. We show in this appendix
that this definition is compatible with what the original development done by Aharonov, Albert and Vaidman in
1988 [13] which was focused on its experimental accessibility. Next, we reproduce such original development of the
weak value done by Aharonov, Albert and Vaidman in 1988 [13] with our own notation used in the paper. We
identifying that no collapse (no back-action) is considered in the development. Then, we provide a path for discussing
the experimental accessibility of weak values directly for the probability of two measurements done in appendix A.
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1. Original derivation of weak values

The weak value requires two measurements: a first weak measurement, plus a second strong measurement. We know
that a weak measurement of the system is, in fact, a strong measurement of another complementary system coupled
to what we have defined initially as the system. We define such complementary system as the ancilla described by
the degrees of freedom y. Thus, the first weak measurement requires an entanglement between the system and the
ancilla. Such entanglement can be obtained through a unitary interaction of the ancilla with the system given by
the Von Neumann time-evolution operator exp(−i~ λŜ ⊗ P̂a) where Ŝ is the system operator (the observable we want

to measure), P̂a is the momentum operator for the ancilla and λ is the effective coupling constant quantifying the
coupling strength between the system and ancilla.

We assume the full state of the system-ancilla to be initially described by a separable state vector:

|Ψ(0)〉 = |ψ(0)〉 ⊗ |φ(0)〉 = |ψ(0)〉 ⊗
∫
a(y, 0)|y〉dy, (C.1)

where the system state vector is |ψ(0)〉 and the ancilla state is |φ(0)〉 =
∫
a(y, 0)|y〉dy with a(yk, 0) = 〈yk|φ(0)〉 the

ancilla wave packet in the y-position representation at time t = 0. The process of the pre-measurement of the first
weak measurement can be mathematically described as follows,

|Ψ(t)〉 = exp

(
−i
~
λŜ ⊗ P̂a

)
|Ψ(0)〉. (C.2)

Now, assuming a small coupling between the system and the ancilla, the previous pre-measurement evolution of
the weak measurement can be defined as:

exp

(
−i
~
λŜ ⊗ P̂a

)
≈ 1− i

~
λŜ ⊗ P̂a (C.3)

assuming λ is small. Because of (C.1) and (C.3), one can write (C.2) as:

|Ψ(t)〉 = exp

(
−i
~
λŜ ⊗ P̂a

)
|Ψ(0)〉 ≈

(
1− i

~
λŜ ⊗ P̂a

)
|Ψ(0)〉

≈
(

1− i

~
λŜ ⊗ P̂a

)
|ψ(0)〉 ⊗ |φ(0)〉 ≈ |ψ(0)〉 ⊗ |φ(0)〉 − i

~
λŜ |ψ(0)〉 ⊗P̂a |φ(0)〉 (C.4)

Now, one would have to implement the collapse of the ancilla during the first weak measurement. However, the typical
development done in the literature neglects such back-action on the system due to the first weak measurement and
proceeds with the second strong (post-selection) measurement.

We have noticed in the previous section A 3 of this appendix that there is a dramatic difference between assuming
exp(iλŜ ⊗ P̂a/~) ≈ 1 − iλŜ ⊗ P̂a/~ in Eq. (C.3) and assuming exp(iλŜ ⊗ P̂a/~) = 1. The first in Eq. (C.3), iplies a

non-zero coupling between the system and the ancilla, while exp(iλŜ ⊗ P̂a/~) = 1 means no coupling at all, i.e. no

measurement at all, and a state after the measurement given by |Ψ(t)〉 = exp(iλŜ ⊗ P̂a/~)|Ψ(0)〉 ≈ |Ψ(0)〉. We argue
that neglecting the back-action of the first weak measurement on the system is not possible. We will return to this
point in section C 2 when discussing the computation of weak values directly from two-times probabilities.

The second strong measurement is done in a different measuring apparatus with pointer yω. Thus, in principle, we
would have to include a pre-measurement entanglement of the system with a new degree of freedom of the second
apparatus and then collapse the system. However, we can simplify the discussion without introducing any relevant
approximation by just assuming that the state of the system and ancilla after the post selection given by the eigenvalue
gw is given by the projector |gw〉〈gw| ⊗ 1̂a multiplied by the state in (C.4). We define 1̂a as the unitary operator for
the ancilla that is not affected by this second measurement. Thus, after the post-selection the state of the system and
ancilla is: (

|gw〉〈gw| ⊗ 1̂a
)
|Ψ(t)〉 ≈ |gw〉〈gw|ψ(0)〉 ⊗ |φ(0)〉 − i

~
λ|gw〉〈gw|Ŝ|ψ(0)〉 ⊗ P̂a |φ(0)〉

≈ 〈gw|ψ(0)〉 |gw〉 ⊗

(
1− i

~
λ
〈gw|Ŝ|ψ(0)〉
〈gw|ψ(0)〉

P̂a

)
|φ(0)〉

≈ 〈gw|ψ(0)〉 |gw〉 ⊗ exp

(
− i
~
λ
〈gw|Ŝ|ψ(0)〉
〈gw|ψ(0)〉

P̂a

)
|φ(0)〉 (C.5)
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Now, by writing the ancilla wave packet of the first measurement as in (C.1), φ(0) =
∫
a(y, 0)|y〉dy and using the

identity 1̂a =
∫
|y′〉〈y′|dy′ we have can easily write the ancilla wave packet a(yk, t) = 〈yk|φ(t)〉 in the position

representation as at time t:

a(yk, t) = 〈yk| exp

(
− i
~
λ
〈gw|Ŝ|ψ(0)〉
〈gw|ψ(0)〉

P̂a

)∫
|y′〉〈y′|dy′

∫
a(y, 0)|y〉dy =

∫
dy

(
1− i

~
λ
〈gw|Ŝ|ψ(0)〉
〈gw|ψ(0)〉

〈yk|P̂a|y〉+ ...

)
a(y, 0) =(

1− λ 〈gw|Ŝ|ψ(0)〉
〈gw|ψ(0)〉

∂

∂y
+ ...

)
a(y, 0)|y=yk = a

(
yk − λ

〈gw|Ŝ|ψ(0)〉
〈gw|ψ(0)〉

, 0

)
(C.6)

where we have used 〈yk|P̂a|y〉a(y, 0) = −i~
∫
dyδ(yk − y)∂a(y,0)∂y . We use here a Taylor series to show that the ancilla

wave packet at time t, after the weak and post selected measurements, is not centered at zero, but to a new position

λ 〈gw|Ŝ|ψ(0)〉〈gw|ψ(0)〉 . We clearly recognize the definition of the weak value in the displacement of the ancilla wave packet

gω〈Ŝ〉ψ(t) ≡ 〈gω|Ŝ|ψ(t)〉
〈gω|ψ(t)〉 . The collapse of the ancilla due to the weak measurement is still missing in the previous

development. We have only developed the pre-measurement (unitary) evolution of the first weak measurement. At
each weak measurement, the ancilla will be collapsed to a unique position yk. We can assume that the probability of

the different yk is given by the Born law |a(yk, t)|2 =
∣∣∣a(yk − λ 〈gw|Ŝ|ψ(0)〉〈gω|ψ(0)〉 , 0

)∣∣∣2. In fact, |a(yk, t)|2 is the probability

of getting yk conditioned to the fact that we have also measured gω given by P (yk|qω, t) = |a(yk, t)|2. Thus, the
central position of ancilla wave packet in Eq. (C.6) is gievn by the ensemble of weak measurements yk when properly
post-selected by gω as:

Re
(
gω〈Ŝ〉ψ(t)

)
≡ Re

(
〈gω|Ŝ|ψ(t)〉
〈gω|ψ(t)〉

)
=

1

λ

∫ ∞
−∞

dyk|a(yk, yω, t)|2yk =
1

λ

∫ ∞
−∞

dykP (yk|yω, t)|yk

=
1

λ

∫ ∞
−∞

dyk
P (yk, yω, t)

P (yω)
yk =

1

λ

∫∞
−∞ dykP (yk, yω, t)yk∫∞
−∞ dykP (yk, yω, t)

(C.7)

where we have used that the definition of conditional probability P (yk|yω, t) = P (yk,yω,t)
P (yω,t)

= P (yk,yω,t)∫∞
−∞ dykP (yk,yω,t)

with

P (yω) =
∫∞
−∞ dykP (yk, yω, t). Notice that we have identified gω = yω

λ where gω is the eigenvalue of the system and yω
is the pointer of the second measuring apparatus. Such identification is obvious for the second strong measurement.

The results in Eq. (C.7) are correct, but they hide the difficulties of accessing experimentally to the weak values.

In other words, special conditions depending on the operator Ŝ are required to satisfy the identity Eq. (C.7). The
reasons, as we have indicated, is because the above development of weak value avoids the back-action on the system
due to the first weak measurement. We have shown in the previous appendix A that in the two times experiments,
one cannot neglect the back action on the system due to the first weak measurement never. The fact that the weak

measurement provides no perturbation on the state of the system is only true when assuming exp
(
−i
~ λŜ ⊗ P̂a

)
≈ 1 in

Eq. (C.3). But, then, we have shown that this approximation means no measurement at all. Next, we will discussion
the experimental accessibility of weak values without such assumption.

2. Derivation of weak values based on two-time genralized Von-Neuman measurements

We want here to start from the two time probability P (yω, yk) in Eq. (A.10) without any approximation about the
back-action of the first weak measurement on the system, to see under which conditions we are able to reach a weak
value experimentally. In simpler words, we want to check expression Eq. (C.7) from a more general development. We
rewrite Eq. (C.7) here as an approximation:

Re
(
gω 〈Ŝ〉ψ(t2)

)
= Re

(
〈gω|Ŝ|ψ(t2)〉
〈gω|ψ(t2)〉

)
≈ 1

λ

∫
dyk ykP (yω, yk)∫
dykP (yω, yk)

. (C.8)

We can use the first order Taylor expansion for the first ancilla wave function a(yk − λsi) ≈ a(yk)− λsi ∂a(yk)∂yk
and a

Kronecker delta function for the second ancilla wave function |a(yω −λgj)|2 = |δyω,λgj |2. Using this in Eq. (A.10) and
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defining gw = yw
λ we get

P (yω, yk) ≈
∑
i,i′

c∗i′cic
∗
w,i′cw,i

(
a∗(yk)− λsi′

∂a∗(yk)

∂yk

)(
a(yk)− λsi

∂a(yk)

∂yk

)
. (C.9)

Using Eq. (A.13) in Eq. (C.9) we can evaluate the numerator in Eq. (C.8) as∫
dyk ykP (yω, yk) ≈

∑
i,i′

c∗i′cic
∗
w,i′cw,iλ

1

2
(si + s′i)

≈
∑
i,i′

〈ψ(t1)|si′〉〈si|ψ(t1)〉〈si′ |Û†|gω〉〈gω|Û |si〉λ
1

2
(si + si′)

≈ λ

2
〈ψ(t1)|U†|gω〉〈gω|Û Ŝ|ψ(t1)〉+

λ

2
〈gω|Û |ψ(t1)〉〈ψ(t1)|ŜÛ†|gω〉,

(C.10)

where the dependence on the second measurement is indicated by the term |gw〉. We have used the identity developed

in Eq. (A.13) and also Ŝ =
∑
i |si〉si〈si| =

∑
i |si′〉si′〈si′ | and

∑
i |si〉〈si| =

∑
i′ |s′i〉〈si′ | = 1 and we allow a unitary

evolution described by Û between the measurements. The commutation of the operators S and U in Eq. (C.10)
requires some further discussion.

Our goal of achieving the approximation in Eq. (C.8) necessitates that the operator Ŝ should commute with the

unitary operator Û . For the case of work, the operator Ŝ is the Hamiltonian Ĥ which commutes with the unitary
operator. In the case of the momentum operator P̂ using the assumption of a flat potential leads to the commutation of
the momentum operator P̂ with the unitary operator (as far as the time between the weak and projective measurements
are done within a short time interval t2 − t1). Under this assumption, we get∫

dyk ykP (yω, yk) ≈ Re
[
λ〈ψ(t2)|gω〉〈gω|Ŝ|ψ(t2)〉

]
. (C.11)

In any case, we emphasize that the fact that the operator Ŝ commutes with the unitary operator Û is not always
satisfied.

We evaluate now the denominator of Eq. (C.8)as follows:

∫
dykP (yω, yk) ≈

∫
dyk

∑
i,i′

c∗i′cic
∗
w,i′cw,i

(
a∗(yk)− λsi′

∂a∗(yk)

∂yk

)(
a(yk)− λsi

∂a(yk)

∂yk

)
. (C.12)

Noting that
∫
dyk|a(yk)|2 = 1 and

∫
dyka(yk)∂a(yk)∂yk

= 0 we get

∫
dykP (yω, yk) ≈

∫
dyk

∑
i,i′

c∗i′cic
∗
w,i′cw,i

(
|a(yk)|2 + λ2sisi′

∣∣∣∣∂a(yk)

∂yk

∣∣∣∣2
)
. (C.13)

Again, one is tempted to argue that in general c∗i′ci|a(yk)|2 � λ2c∗i′cisisi′
∣∣∣∂a(yk)∂yk

∣∣∣2 so that the last term can be

neglected. However, as a test, by using a(yk) =
(

1
πσ2

)1/4
exp

(
−y2k
2σ2

)
we can check for which values of y = yk this is

true. We get that the second coefficient becomes comparable to the first one when y ≈ σ2/λ.
The solution to the above-mentioned source of contamination in the denominator is quite simple from an experi-

mental point of view. In a real experiment, the rare events corresponding to y > σ2/λ will not provide a significant
contribution. Notice that we are approximating here the marginal probability in Eq. (C.13) with P (yω, yk) ≈ 0 for
yk →∞. The same approximation cannot be done when dealing with the correlation functions computed in the text
and in A 3. Then, we can evaluate the denominator as∫
dykP (yω, yk) ≈

∑
i,i′

c∗i′cic
∗
w,i′cw,i =

∑
i,i′

〈ψ(t1)|si′〉〈si|ψ(t1)〉〈si′ |Û†|gω〉〈gω|Û |si〉

≈
∑
i,i′

〈ψ(t1)|si′〉〈si′ |Û†|gω〉〈gω|Û |si〉〈si|ψ(t1)〉 = 〈ψ(t1)|Û†|gω〉〈gω|Û |ψ(t1)〉. (C.14)
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Finally, using Eq. (C.14) and Eq. (C.11), we arrive at expression (C.8).
In conclusion, we have been able to reproduce Eq. (C.7) from the two time probability P (yω, yk) in Eq. (A.10)

without neglecting the back-action on the system due to the first weak measurement. Importantly, we have seen
that the fact that the operator Ŝ commutes with the unitary operator Û is not always satisfied. This implies that
it is not always possible to reach the weak value (or intrinsic properties) from the experimental values of the two
times probability P (yω, yk). These difficulties are not evidenced in the development done in Sec. C 1 because it was
(erroneously) assumed that a weak measurement has no perturbation on the system.
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