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Nonadiabatic Molecular Dynamics with Real-Time Time-

Dependent Density Functional Theory

The time-dependent Schrödinger equation for coupled electron-ion systems can be formally

written as

i~
∂Ψ(r,R, t)

∂t
= Ĥtot(r,R, t)Ψ(r,R, t) (S1)

where Ψ is the many-body wavefunction, R = (R1,R2, ...,RN) is the collective vector of the

N ionic positions and r = (r1, r2, ..., rn) is the collective vector for n electronic positions.

Ĥtot is the time-dependent total Hamiltonian given by

Ĥtot(r,R, t) =−
∑
i

~2

2m
∇i −

∑
I

~2

2MI

∇I +
1

2

∑
i 6=j

e2

|ri − rj|

+
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

−
∑
i,I

eZI
|ri −RI |

+ V̂ext(r,R, t)

(S2)

Here, m and e denote the electronic mass and charge, MI and ZI are the mass and charge of

Ith ion, and V̂ext is the external potential. According to Runge-Gross theorem,1 the external

potential for electrons and ions can be determined by their densities, ρ and ρI , respectively.

The following electronic and ionic time-dependent Kohn-Sham equation (TDKS) can be

expressed as

i~
∂φi(r, t)

∂t
= [− ~2

2m
∇2
i + v̂s[ρ](r, t)]φi(r, t) (S3)

i~
∂χI(RI , t)

∂t
= [− ~2

2m
∇2
I + V̂ I

S [ρI ](RI , t)]χI(RI , t) (S4)

where φ and χ are the single-particle electronic and nuclear wavefunctions, respectively. The

densities are given by ρ(r, t) =
∑

i |φi(r, t)|2 and ρI(RI , t) = |χI(RI , t)|2.
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The single particle external potential v̂s[ρ] and V̂ I
S [ρI ] are as follows:

v̂s[ρ](r, t) =

∫
ρ(r

′
, t)

|r − r
′ |
dr

′ −
∑
I

∫
ZIρI(r, t)

|r −RI |
dRI + v̂ext(r, t) + v̂xc[ρ](r, t) (S5)

V̂ I
S [ρI ](RI , t) =ZI

∑
J

∫
ZJρJ(RJ , t)

|RI −RJ |
dRJ − ZI

∫
ρ(r, t)

|RI − r|
dr

+ V̂ I
ext(RI , t) + V̂xc[ρI ](RI , t)

(S6)

As the nuclei are much heavier than electrons, we invoke the Ehrenfest dynamics theorem

for the nuclear TDKS equation, in which ionic motion follows Newton’s second law:

MI
d2RI(t)

dt2
= −∇I

[∑
I 6=J

ZIZJ
|RI −RJ |

− ZI
∫

ρ(r, t)

|RI − r|
dr + V̂ I

ext(RI , t)

]
(S7)

Note that we ignore the ion-ion exchange-correlation functional and assume a sharp ionic

density distribution ρI(R, t) = δ(R − RI(t)). On the other hand, the electronic motion

follows the TDKS equations, where

i~
∂φi(r, t)

∂t
=

[
− ~2

2m
∇2
i +

∫
ρ(r

′
, t)

|r − r
′|
dr

′ −
∑
I

ZI
|r −RI |

+ v̂ext(r, t) + v̂xc[ρ](r, t)

]
φi(r, t)

(S8)

Eq. S7 and Eq. S8 describe the time-dependent propagation of a coupled electron-nuclear

system. Within TDDFT, the electronic subsystem is described quantum mechanically, while

the nuclear subsystem evolves along classical Newton’s trajectories with the forces obtained

from an averaged potential energy based on the Ehrenfest theorem.
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Computational Details

First-principles calculations of graphene/WS2 heterostructure are performed with linear

combination of atomic orbital methods implemented in SIESTA,2 using PBE exchange-

correlation functional.3,4 Troullier-Martins norm-conserving pseudopotentials5 are employed

to describe the core electrons. The orthogonal 5 × 5 graphene/4 × 4 WS2 supercell is fully

relaxed (atomic positions and lattice vectors) until the residual forces are less than 5× 10−3

eV/Å and the total energy variation is less than 10−6 eV with the vdW vdw-DF2 func-

tional.6 This results lattice parameter a = 12.4325 Å and b = 21.5241Å, corresponding to

0.6% stretch of graphene and 1.7% compression of WS2. The Brillouin Zone is sampled by

5×5×1 k-mesh grid with a 250 Ry energy cutoff for the orthogonal supercell to obtain elec-

tronic band structures. A 30 Å vacuum layer is employed to avoid the interactions between

repeated images.

The electron and nuclear dynamics are simulated within the time-dependent ab initio

package (TDAP).7 Similarly, Troullier-Martins norm-conserving pseudopotentials5 and PBE

exchange-correlation functional3,4 are used for core electrons. The supercell is sampled at Γ

point. With Γ-point approximation, some of graphene states within the band gap of WS2 are

ignored, this may slow down the longer time-scale carrier recombination in graphene but have

minor effects on the ultrafast interlayer charge transfer process. For molecular dynamics,

we use NVE ensemble with a time step of 0.02419 fs. Initial ion velocities are obtained by

the equilibrium Boltzmann-Maxwell distribution at a given temperature 300 K. Spin-orbit

coupling (SOC) is ignored in the simulations. SOC results in two main effects. First, a band

gap is opened at Dirac point due to symmetry breaking of graphene pseudospin. Second,

the spin degeneracies of valence and conduction band at Dirac point are lifted and give rise

to four distinct bands.8 Since the changes in the electronic band structure are on the order

of meV, the effects on the short time carrier dynamics and couplings between carrier states

are insignificant. Therefore, it is expected that ignoring SOC would not affect the overall

interlayer dynamics.
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Density of States

Figure S1 shows the density of states (DOS) of graphene/WS2 heterostructure applied with

different external electric fields, varying from -0.3 V/Å to +0.3 V/Å. The density of acceptor

states for photoexcited electron and hole are similar when no electric field is applied. Thus,

it is expected the availability of acceptor states for electron and hole transfer should be

similar. The more efficient interlayer hole transfer is rather attributed to the couplings

between states on the two layer. In the case of applied fields, it can be seen that negative

electric field significantly increases the density of acceptor states for hole transfer, which is

10 times more than that for electron transfer. Meanwhile, positive electric field has the same

effect on the density of acceptor states for electron transfer.

Figure S1: The DOS of graphene/WS2 heterostructure with external electric fields, varying
from -0.3 V/Å to +0.3 V/Å. The density of acceptor states on graphene for photoexcited
electron and hole are illustrated by blue and red areas, respectively.

The coupling between donor and acceptor states

We define the coupling between donor and acceptor states by projecting the time-dependent

density matrix P onto initial eigenstates,

5



i

…
j

i j…

σ$$ τ$,'( τ$,')

L+ L,

σ$-

Figure S2: Illustration of the coupling matrix. σ is divided into sub-blocks according to
different layers (solid lines), and the sub-blocks are further divided into eigenstates within the
layer (dashed lines). The diagonal element σii, shaded by yellow, represents the occupation
of state i. The off-diagonal element σij, shaded by green, represents the coupling between
states i and j. Summing up all the off-diagonal elements within the layer L1 (red shaded
area) or L2 (blue shaded area) gives the coupling between state i and all states on layer L1

or L2, denoted by τi,L1 or τi,L2 respectively.
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σij(t) =
∑
µνκλ

(cµi(0)Sκµ)∗Pκλ(t)Sλνcνj(0) (S9)

where c is the molecular orbital coefficient and µ, ν, κ, λ are atomic orbitals. The overlap

matrix S and single-electron density matrix P are in non-orthogonal atomic basis represen-

tation. The summation in the above equation runs over all atomic orbitals. i and j are the

eigenstates at t=0.

As shown in Figure S2, σ is divided into sub-blocks labelled by the layer number L,

and each sub-block contains all the eigenstates localized in the layer. The diagonal element

σii (yellow block) represents the occupation of the state i, and the off-diagonal element σij

(green block) represents the coupling between states i and j. The coupling between i and

states on the layer of interest is then obtained by summing over all the off-diagonal elements

within L,

τi,L(t) =
∑

j 6=i,jεL

|σij(t)| (S10)

for example, the red block represents the coupling between state i and all states on layer L1,

denoted by τi,L1 . Similarly, τi,L2 (blue block) is the coupling between state i and all states

on layer L2. In this work, L1 and L2 represent graphene and WS2, respectively.

Excitation dynamics of graphene/WS2 heterostructure with

frozen atoms

In the case of graphene/WS2 heterostructure with all frozen atoms, the Fourier transforms

(FTs) of ne/h(t), εe/h(t) and τe/h,G(t) are presented in Figure S3. Both photoexcited hole and

electron dynamics show characteristic frequencies at ∼657 cm−1 and ∼1100 cm−1, which

are close to the frequencies of ∼620 cm−1 and ∼1067 cm−1 obtained with moving atoms.

Further investigation shows that these two frequencies can also be observed in the scenario
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when only WS2 or graphene layer is clamped (Figure S5, grey shaded areas). This result

demonstrates that the above oscillations are not related to the atom vibration, originating

from the collective motion of carriers.9
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Figure S3: Comparison of FTs of photoexcited (A) hole and (B) electron transferred to
graphene ne/h(t), their corresponding energies εe/h(t) and the coupling to electronic states
of graphene layer τe/h,G(t) with all frozen atoms. Red, blue and green curves correspond to
the FTs of ne/h(t), εe/h(t) and τe/h,G(t), respectively. The grey shaded areas represent the
frequencies associated with the collective motion of carriers.

To further confirm the relationship between nuclear vibrational modes and interlayer

charge transfer process, photoexcited carrier localization on graphene and WS2 layers with

all frozen atoms are simulated, as shown in Figure S4. As mentioned in manuscript, the

coupling between excited carriers and states of graphene plays a key role in the carrier

interlayer dynamics. Stronger coupling between photoexcited hole and graphene states drives
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hole filling and emptying periodically the nearby graphene states. Meanwhile, a majority of

photoexcited electron relaxes to WS2 states of low energy and resides on WS2 layer due to

its stronger coupling to WS2 states.
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Figure S4: The time evolution of photoexcited (A) hole and (B) electron localization on
graphene and WS2 with all frozen atoms.

The excitation dynamics with clamped graphene and WS2 layers in frequency domain is

presented in Figure S5. As discussed in the manuscript, the vibrational mode G10 of graphene

is associated with photoexcited hole and electron interlayer transfer process. When atoms

in WS2 layer are clamped, photoexcited hole and electron dynamics indeed exhibit charac-

teristic oscillation of the C=C stretching mode G, shaded by red areas in Figure S5A. In

contrast, the out-of-plane vibration A1g
11 in WS2 only contributes to the electron interlayer

transfer. As showed in Figure S5B, A1g-mode (shaded by red area) can only be observed in

electron dynamics when atoms in graphene are fixed. These results further demonstrate that

nuclear vibrations in graphene are associated with both hole and electron interlayer transfer

while nuclear vibrations in WS2 are only coupled to electron transfer.
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Figure S5: Comparison of FTs of photoexcited hole and electron transfer to graphene ne/h(t),
their corresponding energies εe/h(t) and the coupling to electronic states of graphene layer
τe/h,G(t) with (A) frozen WS2 layer and (B) frozen graphene layer. Red, blue and green curves
correspond to the FTs of ne/h(t), εe/h(t) and τe/h,G(t), respectively. The red shaded areas
represent the frequencies associated with ionic vibrations, and grey shaded areas represent
the frequencies associated with the collective motion of carriers.
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Figure S6: The band structures and DOS of graphene/WS2 heterostructure with different
applied electric fields, varying from (A) -0.1 V/Å to (B) +0.1 V/Å. Fermi energy is set to
zero. Same color map as Figure 1D is employed to show the charge localization. The density
of acceptor states on graphene for photoexcited electron and hole are illustrated by blue and
red areas, respectively.
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Figure S7: Excitation dynamics of graphene/WS2 heterostructure with external electric
fields varying from -0.1 V/Å to +0.1 V/Å. (A) Amount of photoexcited electron and hole
transferred from WS2 to graphene. (B) Time evolution of the energy levels ε(t). Same color
map as the Figure 1D is employed to show the charge localization. (C)Time evolution of
the couplings, τe,G(t), τe,W (t), τh,G(t) and τh,W (t). The color indicates the strength of the
coupling between photoexcited carriers and acceptor states.
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Excitation dynamics of graphene/WS2 heterostructure ap-

plied with electric fields

Applied with -0.1V/Å and +0.1V/Å electric fields, electronic structures of graphene/WS2

heterostructure exhibit the similar response as that applied with -0.3V/Å and +0.3V/Å elec-

tric fields. As shown in Figure S6A, -0.1V/Å electric field downshifts the WS2 states, which

increases acceptor states for hole transfer and simultaneously suppresses electron transfer

due to the decrease of available states. On the contrary, +0.1V/Å electric field upshifts

the WS2 states, and thus accelerates electron transfer but impedes hole transfer. The time

evolution of ne/h(t), εe/h(t) and τe/h,L(t) are presented in Figure S7 to further demonstrate

the above findings. For the case of +0.1V/Å electric field, it is found that some of the states

are delocalized over both graphene and WS2 layers. Taking into account the delocalization

effect, Eq. S10 is modified by including a weight factor fLj : τi,L(t) =
∑

j 6=i,jεL f
L
j |σij(t)|. fLj

corresponds to the fraction of the state j that are localized on layer L. With an applied

electric field of -0.1V/Å, τh,G(t) is enhanced, and thus hole transfer is significantly acceler-

ated. On the other hand, +0.1V/Å electric field induces a stronger τe,G(t) which facilitates

the electron interlayer dynamics. Therefore, the coupling between donor and acceptor states

indeed can be controlled by external electric fields, and thus achieve the manipulation of

charge transfer rate at heterointerfaces.
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