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SOLUTIONS TO ARITHMETIC DIFFERENTIAL EQUATIONS

IN ALGEBRAICALLY CLOSED FIELDS

ALEXANDRU BUIUM AND LANCE EDWARD MILLER

Abstract. We prove that the “main examples” in the theory of arithmetic
differential equations [8] possess a remarkable “total differential overconver-
gence property”. This allows one to consider solutions to these equations with
coordinates in algebraically closed fields.

1. Introduction

Arithmetic differential equations [2, 5, 6, 8] are an analogue of usual differential
equations in which functions are replaced by numbers and the derivation operator is
replaced by a p-derivation (Fermat quotient operator) acting on a ring of numbers.

Typically, one takes the ring of numbers to be R := Ẑur
p and then arithmetic

differential equations can be viewed as certain functions

(1.1) f : V (R) → R

defined on sets of R-points of various smooth schemes V over R; these functions,
referred to as δ-functions are given by limits of polynomials in affine coordinates
and their iterated p-derivatives up to a certain fixed order. The preimage f−1(0)
can be interpreted as the set of unramified solutions to f .

In this paper we introduce a class of functions V (Ralg) → Kalg, referred to as
δalg-functions, where Kalg is the algebraic closure of K := R[1/p] and Ralg is the
valuation ring of Kalg. As with δ-functions, δalg-functions have the following “an-
alytic continuation” property which makes them behave like “global objects”: if a
δalg-function g vanishes on a p-adic ball in V (Ralg) and V has a Zariski connected
reduction mod p then g vanishes everywhere. We will also distinguish among δalg-
functions a subclass of functions which we call tempered δalg-functions. Tempered
δalg-functions are distinguished among δalg-functions by asking that the p-adic ab-
solute value of the value of the function at any point be bounded by a constant
times a power of the ramification index of that point.

The aim of this paper is to show that the “main examples” of arithmetic differen-
tial equations 1.1 in the theory can be uniquely extended to tempered δalg-functions

(1.2) falg : V (Ralg) → Kalg.

The preimage (falg)−1(0) can be interpreted as the set of algebraic (hence arbi-
trarly ramified) solutions to f . The association f 7→ falg will commute with the
ring operations and p-derivations and hence will preserve all “differential algebraic
properties”. In particular, it will send δ-characters [5] into δ-characters and isogeny
covariant δ-modular forms [6, 8] into isogeny covariant δ-modular forms.
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Now Kalg is, of course, dense in the p-adic complex field Cp and one can ask if
our functions falg in 1.2 can be further extended to continuous functions

(1.3) fCp : V (C◦
p) → Cp,

where C◦
p is the valuation ring of Cp. This does not seem to be automatic for

arbitrary δalg-functions (or even for the tempered ones) but we will prove this
is the case for the δalg-functions 1.2 arising from some of the main examples of δ-
functions 1.1 in the theory. The extension 1.3 of a δalg-function, if it exist, is unique
and will be referred to as a δCp -function. Except in trivial cases, δCp -functions are
not locally analytic, in particular they are not rigid analytic. But, of course, δCp -
functions have the same “analytic continuation” property as before: if they vanish
on a ball then they vanish everywhere.

Here is the heuristic behind the theory in the present paper. Roughly speaking
what happens when one passes from R to Ralg is that p-derivatives of numbers in
ramified extensions of R “acquire denominators”; this phenomenon is entirely sim-
ilar to what happens in usual calculus where the derivative of a ramified algebraic
function “acquires denominators”; e.g.

(1.4)
d

dx
(
√
x) =

1

2
√
x
.

The presence of such denominators in the arithmetic setting potentially introduces
divergences in the p-adic series of the theory and should be, in principle, an obstacle
to developing the theory in the arbitrarily ramified case. The main point of the
present paper is to show that this potential obstacle can be overcome for the “main
examples” of the theory. The main idea is to “rescale” the p-derivation every
time we increase the ramification; naively speaking this corresponds, in the case of
classical calculus, to passing from the equality 1.4 to the equality

(1.5)
d

d
√
x
(
√
x) = 1.

Rescaling the p-derivation, in the arithmetic setting, will lead us to revisit the con-
cept of differential overconvergence introduced in [11]; the main point then will be
to show that one can drop, “everywhere” in [11], the requirement of “bounded ram-
ification.” That this is possible is indicated already by a construction of aribitrarly
ramified “δ-characters” in [12]. On the other hand it would be interesting to see if
the “unbounded ramification” theory of the present paper can be made to interact
with the Borger-Saha construction of isocrystals in [3].

For the convenience of the reader the main concepts and results of the present
paper will be presented without any reference to [5, 6, 8, 11, 12]; some references
to these papers will be made, however, in our proofs.

Acknowledgement. The first author is grateful to Max Planck Institute for
Mathematics in Bonn for its hospitality and financial support; to the Simons Foun-
dation for support through awards 311773 and 615356; and to A. Saha for enlight-
ening conversations.
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2. Main concepts and results

2.1. Basic fields and rings. Throughout this paper p ∈ Z is a fixed prime which
we assume for technical reasons to be at least 5. Consider the diagram of valued
fields:

Qur
p Qalg

p

K Kalg

where Qalg
p is an algebraic closure of Qp, Q

ur
p is the maximum unramified exten-

sion of Qp inside Qalg
p , K is the metric completion of Qur

p and Kalg is the algebraic

closure of K in the metric completion Cp of Qalg
p . Of course Kalg coincides with

the maximum totally ramified extension Ktot of K. Also, by Krasner’s Lemma, we
have Kalg := KQalg

p , the compositum of K and Qalg
p ; cf. [4, pg. 149, Prop. 5]. We

denote by vp the valuation on Cp normalized by the condition vp(p) = 1 and for

a ∈ Cp we denote by |a|p = p−vp(a) the absolute value. We denote by

(2.1) Zur
p ,Z

alg
p , R,Ralg,C◦

p

the valuation rings of

(2.2) Qur
p ,Q

alg
p ,K,Kalg,Cp

respectively. In particular,

R := Ẑur
p , C◦

p = R̂alg.

Here and later the symbol ̂ always denotes p-adic completion of rings or schemes.
We denote by k the common residue field of the rings 2.1; so k is an algebraic
closure of Fp. The ring R possesses a unique automorphism φ : R → R whose
reduction mod p is the p-power Frobenius on k. Denote by φ : K → K the induced
automorphism of K and fix, throughout the paper, an automorphism (which we
still denote by φ) of Kalg extending the automorphism φ of K. Since K is complete
vp on Kalg is the unique valuation extending vp on K so vp ◦ φ = vp on Kalg and
hence the automorphism φ of Kalg induces an automorphism (still denoted by φ)
of Ralg.

Denote by Π the set of all roots π in Qalg
p of Eisenstein polynomials with coeffi-

cients in Zur
p having the property that the extension Qp(π)/Qp is Galois. So Qalg

p

is obtained from Qur
p by adjoining the set Π. For any π ∈ Π write Kπ = K(π),

let Rπ = R[π] be the valuation ring of Kπ, and set e(π) := [Kπ : K], the degree
(and also the ramification index) of π over K. Also we write π|π0 if and only if
Kπ0 ⊂ Kπ. Note that, by above discussion, we have

(2.3) Kalg =
⋃

π∈Π

Kπ

and the maximal ideal of Ralg is generated by Π. Clearly for π ∈ Π the field Kπ is
mapped into itself by φ : Kalg → Kalg and we have an induced automorphism

φ : Rπ → Rπ

inducing the p-power Frobenius on Rπ/πRπ = k.
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2.2. δ-functions and δπ-functions [5, 6, 8]. For π ∈ Π recall the Fermat quotient
operator [5]

δπ : Rπ → Rπ, δπx :=
φ(x) − xp

π
, x ∈ Rπ.

This is a special case of what in [5, 7] was called a π-derivation, cf. our discussion
in Section 4.1 below. The setting in [5] was such that π was assumed to be totally
ramified over Qp but we will not impose this condition here. In particular, for π = p
we have a Fermat quotient operator denoted simply by

δ := δp : R → R.

Definition 2.1. [5, pg. 317] Let V be an affine smooth scheme over R and fix a
closed embedding V ⊂ Ad over R. A function

fπ : V (Rπ) → Rπ

is called a δπ-function of order r ≥ 0 on V if there exists a restricted power series
Fπ ∈ Rπ[x, x

′, ..., x(r)]̂, where x, x′, ..., x(r) are d-tuples of variables, such that

(2.4) fπ(a) = Fπ(a, δπa, ..., δ
r
πa), a ∈ V (Rπ) ⊂ Rd

π.

If V is not necessarily affine fπ is called a δπ-function if its restriction to the Rπ-
points of any affine subset of V is a δπ-function. If V = G is a group scheme a δπ-
character of G is a δπ-function G(Rπ) → Rπ which is also a group homomorphism
into the additive group of Rπ.

The concept above is independent of the embedding. We denote by Or
π(V )

the ring of δπ-functions on V of order r ≥ 0. The association U 7→ Or
π(U) for

U ⊂ V Zariski open is a sheaf on V . For π = p, δp-functions will be referred to as
δ-functions and we write f = fp,

f : V (R) → R.

Also we writeOr(V ) := Or
p(V ). The δp-characters will be simply called δ-characters.

2.3. Total δ-overconvergence. Recall from [11, Def. 2.4] the following:

Definition 2.2. Let f ∈ Or(V ), f : V (R) → R, be a δ-function on V of order r and
let π ∈ Π. We will say that f is δπ-overconvergent if there exists an integer ν ≥ 0
and a δπ-function fπ,ν on V of order r making the diagram below commutative:

(2.5)
V (R) R

V (Rπ) Rπ

pνf

fπ,ν

where the vertical arrows are the natural inclusions. The smallest ν for which
there is a fπ,ν as above is called the polar order of f .

Remark 2.3. It will be checked later, in Remark 4.2, that for a given f and ν, the
map fπ,ν in Diagram 2.5 is unique.

Remark 2.4. By the uniqueness property in Remark 2.3 we have that if 2.5 holds
for some ν and a necessarily unique fπ,ν it also holds for ν + 1 with a necessarily
unique fπ,ν+1. We have an equality of maps

pfπ,ν = fπ,ν+1 : V (Rπ) → Rπ



SOL. TO ARITH. DIFF. EQ. IN ALG. CLOSED FIELDS 5

hence an equality of maps

p−νfπ,ν = p−(ν+1)fπ,ν+1 : V (Rπ) → Kπ.

We set

p−∗fπ,∗ := p−νfπ,ν : V (Rπ) → p−νRπ ⊂ Kπ, for ν >> 0;

hence we have a commutative diagram

(2.6)
V (R) R

V (Rπ) Kπ

f

p−∗fπ,∗

Moreover if π|π0 and f is both δπ-overconvergent and δπ0 -overconvergent then
we will later check (cf. Remark 4.2) that we have a commutative diagram

(2.7)
V (Rπ0) Kπ0

V (Rπ) Kπ

p−∗fπ0,∗

p−∗fπ,∗

Definition 2.5. Let f ∈ Or(V ), f : V (R) → R, be a δ-function.
1) f is totally δ-overconvergent if it is δπ-overconvergent for all π ∈ Π.
2) Assume f is totally δ-overconvergent and let λ : [1,∞) → [0,∞) be a real

function. We say f has polar order bounded by λ(x) if for any π ∈ Π, f is δπ-
overconvergent with polar order at most λ(e(π)).

3) Assume f is totally δ-overconvergent. We say f is tempered if there exist
positive real constants κ1, κ2, depending on f , such that f has polar order bounded
by the function

λ(x) = κ1 log x+ κ2,

where log is the natural logarithm.

Remark 2.6. The sum and product of any two totally δ-overconvergent δ-functions
with polar order bounded by λ1(x) and λ2(x) is totally δ-overconvergent with polar
order bounded by

max{λ1(x), λ2(x)} and λ1(x) + λ2(x),

respectively. Also any function V (R) → R induced by a morphism of R-schemes
V → A1 is clearly totally δ-overconvergent with polar order bounded by the function
λ(x) = 0. Clearly if f is totally δ-overconvergent with polar order bounded by λ(x)
and g : Y (R) → V (R) is induced by a morphisms of R-schemes Y → V then f ◦ g
is totally δ-overconvergent with polar order bounded by the same λ(x). Also if f
is totally δ-overconvergent with polar order bounded by λ(x) then the composition
δf := δ ◦ f is totally δ-overconvergent with polar order bounded by λ(x) + 1.
Consider the rings

Or(V )†† ⊂ Or(V )† ⊂ Or(V )

where Or(V )† is the subring of all totally δ-overconvergent δ-functions in Or(V )
and Or(V )†† is the subring of all tempered functions in Or(V )†. By the above we
have

δOr(V )† ⊂ Or+1(V )†, δOr(V )†† ⊂ Or+1(V )††.



6 ALEXANDRU BUIUM AND LANCE EDWARD MILLER

In particular, the ring Or(V )†† contains all the elements of the form δif with i ≤ r
and f ∈ O(V ); so it follows from 4.1 below that if V is affine then Or(V )††, hence

also Or(V )†, is p-adically dense in Or(V ). Finally, for any V , the presheaves Or†
V

and Or††
V on V , defined by

U 7→ Or(U)†, U 7→ Or(U)††

for U ⊂ V Zariski open are subsheaves of the sheaf Or
V defined by U 7→ Or(U). As

we will see, if V/R has relative dimension ≥ 1 and n ≥ 1 the sheaf inclusion

(2.8) Or†
V → Or

V

is never an isomorphism; cf. Remark 4.2, assertion 3.

2.4. δalg-functions. We now come to the main property of interest.

Definition 2.7. Let V be a scheme of finite type over R. A function

g : V (Ralg) → Kalg

is a δalg-function if for any π ∈ Π there exists an integer ν ≥ 0 and a δπ-function
gπ,ν : V (Rπ) → Rπ such that the following diagram is commutative.

V (Rπ) Kπ

V (Ralg) Kalg

p−νgπ,ν

g

We say g is tempered if there exist positive real constants c1, c2, depending on g,
such that

|g(P )|p ≤ c1 · e(P )c2 , P ∈ V (Ralg)

where
e(P ) := min{e(π); π ∈ Π, P ∈ V (Rπ)}.

Remark 2.8.
1) Using the Equality 2.3 and Remark 2.4 we see that any totally δ-overconvergent

δ-function
f : V (R) → R

extends uniquely to a δalg-function

(2.9) falg : V (Ralg) → Kalg.

If f is tempered then falg is tempered. Conversely, if a δ-function f : V (R) → R can
be extended to a δalg-function then f is totally δ-overconvergent. By the uniqueness
of falg above the following properties hold. These will be used repeatedly later.

2) For any totally δ-overconvergent δ-functions f, g : V (R) → R and any λ ∈ R.

(f + g)alg = falg + galg, (fg)alg = falggalg, (λ · f)alg = λ · falg, (φf)alg = φfalg.

In particular, if F is a polynomial with R-coefficients in a number of variables and
(fj) is a finite family of δ-overconvergent δ-functions V (R) → R such that the
following polynomial relation between the φifj ’s is satisfied

F (..., φifj, ...) = 0 on V (R)

then the same polynomial relation between the φifalg
j is satisfied:

F (..., φifalg
j , ...) = 0 on V (Ralg).
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3) For any map g : X(R) → V (R) induced by a morphism of R-schemes X → V
and for any totally δ-overconvergent δ-function f : V (R) → R we have

(f ◦ g)alg = falg ◦ galg : X(Ralg) → Kalg,

where galg : X(Ralg) → V (Ralg) is the map induced by X → V on Ralg-points.
4) Let V = G be a group scheme and let f : G(R) → R be a δ-character of G.

Assume f is a totally δ-overconvergent δ-function. We claim that

falg : G(Ralg) → Ralg

is also a homomorphism. Indeed, if

µ : G×G→ G

is the multiplication map the claim above follows from the uniqueness of galg where

g : (G×G)(R) → R, g(P,Q) := f(µ(P,Q))− f(P )− f(Q).

5) Let G×V → V be an action of a smooth group scheme G over R on a smooth
R-scheme V and let f : V (R) → R and χ : G(R) → R be totally δ-overconvergent
δ-functions such that

f(gP ) = χ(g)f(P ), g ∈ G(R), P ∈ V (R).

We have

(2.10) falg(gP ) = χalg(g)falg(P ), g ∈ G(Ralg), P ∈ V (Ralg).

6) Let g1, g2 : X(R) → V (R) be two maps defined by morphisms X → V of R-
schemes. Let λ ∈ R and let f : V (R) → R be a totally δ-overconvergent δ-function
such that

(2.11) f ◦ g1 = λ · f ◦ g2 : X(R) → R.

Then

(2.12) falg ◦ galg1 = λ · falg ◦ galg2 : X(Ralg) → Kalg.

Remark 2.9. Throughout this paper we fix once and for all, a prime p and the
automorphism φ of Kalg; all other objects are determined by these. The choice of
φ on Kalg is of course non-canonical; one can make it “more” canonical by insisting
that φ is the identity on the maximal totally ramified extension Qtot

p of Qp in

Qalg
p . On a similar note one can ask about the dependence of our concepts on the

choice of φ on Kalg. Let φ(1), φ(2) be two automorphisms of Kalg extending the
automorphism φ of K and for π ∈ Π denote by

δ(1)π , δ(2)π : Rπ → Rπ

the corresponding π-derivations. Consider the K-automorphism σ of Kalg defined
by

σ := φ(2) ◦ (φ(1))−1 : Kalg → Kalg

and define the operator

δ(12)π : Rπ → Rπ, δ(12)π a :=
σa− a

π
, a ∈ Rπ .

Clearly δ
(12)
π is additive and satisfies the identity

δ(12)π (ab) = a(δ(12)π b) + b(δ(12)π a) + π(δ(12)π a)(δ(12)π b), a, b ∈ Rπ .
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This is an example of what in [7] was called a π-difference operator. We have the
following formula:

δ(2)π a =
σπ

π
δ(1)π a+ (σπ)δ(12)π δ(1)π a+ δ(12)π (ap), a ∈ Rπ.

In particular, any δ
(2)
π -function fπ : V (Rπ) → Rπ of order r on a smooth affine

scheme V ⊂ Ad can be represented, in affine coordinates, as

fπ(a) = G(..., (δ(12)π )α1(δ(1)π )β1 ...(δ(12)π )αs(δ(1)π )βs , ...), a ∈ V (Rπ) ⊂ Rd
π,

where G is a restricted power series with coefficients in Rπ and
s∑

i=1

(αi + βi) ≤ 2r, αi, βi ≥ 0.

Morally, if one “adds” π-difference operators to the picture then the theories for
φ(1) and φ(2) are related in a simple way. This can be, of course, formalized but we
will not pursue this formalism here.

2.5. δCp-functions.

Definition 2.10. A function h : V (C◦
p) → Cp is called a δCp -function if it is

continuous in the p-adic topologies and there is a (necessarily unique) δalg-function
g making the following diagram commute:

V (Ralg) Kalg

V (C◦
p) Cp

g

h

It is not clear at this point if any δalg-function V (Ralg) → Ralg or even any
tempered such function can be extended to a continuous function and hence to a
δCp -function V (C◦

p) → Cp. We will prove that such an extension is possible in a
series of important cases.

2.6. Aim and structure of the paper. The purpose of the present paper is to
show that the “main” δ-functions appearing in the theory of [5, 6, 8] are totally
δ-overconvergent. This improves upon the results in [11, Thm. 1.2] which showed
that these δ-functions were δπ-overconvergent for π of ramification index at most
p − 1. This allows one to consider the functions falg in 2.9 and, in particular,
it allows one to consider sets (falg)−1(0) of solutions in Kalg to the “arithmetic
differential equations” f . We summarize some of the main results of the paper in
the Theorems 2.11, 2.12, 2.13, 2.14 below. The objects involved in the statement
of this theorem were introduced in [1, 2, 5, 6, 8] and will be reviewed in the body of
the paper. They are the main players in the theory and applications of arithmetic
differential equations [8].

Theorem 2.11. Let A be an abelian scheme over R and let ψ be a δ-character of
A; cf. Definition 2.1. Then ψ is a tempered totally δ-overconvergent δ-function on
A.

Theorem 2.12. Let X be a smooth fine moduli space of principally polarized
abelian schemes of dimension g with level structure, A→ X be the universal abelian
scheme, E be the direct image on X of the relative cotangent sheaf ΩA/X , and let
B → X be the principal bundle associated to E. Let f be an isogeny covariant Siegel
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δ-modular form of size g and some basic weight; cf. section 5.1. Then f defines a
tempered totally δ-overconvergent δ-function on B.

Theorem 2.13. In the situation of Theorem 2.12 assume g = 1 and X is the
modular curve X1(N) minus the cusps. Let f be a normalized newform of weight
2 over Q and let f ♯ be the attached δ-modular form of weight 0; cf. Section 6.2.
Then f ♯ defines a tempered totally δ-overconvergent δ-function on X.

Theorem 2.14. In the situation of Theorem 2.12 assume g = 1, X is the modular
curve X1(N) minus the cusps, and consider the open set Bord of B lying over the
ordinary locus Xord of X. Let f be an isogeny covariant δ-modular form on Xord;
cf. Section 5.4. Then f is a tempered totally δ-overconvergent δ-function on Bord.

Theorems 2.11, 2.12, 2.13, 2.14 are special cases of Theorem 6.1, Corollary 5.4,
Corollary 6.9, and Corollary 5.14, respectively.

Now the theorems above allow one to consider the corresponding δalg-functions
attached to our δ-functions. We would like to understand the sets of zeros of these
δalg-functions and the extendability of these functions to δCp -functions.

Remark 2.15. If ψ : A(R) → R is as in Theorem 2.11 then, since ψalg : A(Ralg) →
Kalg is a homomorphism we get that Ker ψalg contains the division hull in A(Ralg) of
the group

⋂
n≥1 p

nA(R); cf. Corollary 6.6 for more on Ker ψalg. For the analogous
kernel in the case of Gm see Proposition 3.5.

On the other hand, for the zero sets of δ-modular functions we have the following.

Theorem 2.16. If f is any non-zero function as Theorem 2.12, with g = 1, then
the set of ordinary points mapped to 0 by falg : B(Ralg) → Kalg contains the
ordinary points whose Serre-Tate parameters are roots of unity. Conversely, if
an ordinary point P ∈ Bord(R

alg) is such that falg(P ) = 0 and if the Serre-Tate
parameter of P is algebraic over Qp then that Serre-Tate parameter is a root of
unity.

See for example, Proposition 5.10. As for extendability to δCp -functions we will
prove the following.

Theorem 2.17. Let ψ be as in Theorem 2.11, let f ♯ be as in Theorem 2.13, and
let f be as in Theorem 2.14. Then the functions ψalg, (f ♯)alg, and falg extend to
δCp-functions

ψCp : A(C◦
p) → Cp, (f ♯)Cp : X(C◦

p) → Cp, fCp : Bord(C
◦
p) → Cp,

respectively.

See Propositions 5.17 and 6.8 and Corollary 6.9. We expect a similar result for
the functions in Theorems 2.12.

The plan of the paper is as follows. In section 3 we discuss some simple ex-
amples of totally δ-overconvergent δ-functions. In section 4 we rephrase total δ-
overconvergence in formal scheme theoretic terms. In sections 5 and 6 we review
the “main” δ-functions in our theorems, cf. [2, 5, 6, 8], and prove their total δ-
overconvergence; section 5 is devoted to δ-modular forms; section 6 is devoted to
δ-characters of abelian schemes.
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3. Some simple examples

Example 3.1. Trivial examples of totally δ-overconvergent δ-functions are given
by

f : A1(R) = R → R, f(a) = δra,

which has polar order at most r or, more generally, functions of the form

f : A1(R) = R → R, f(a) = P (a, δa, ..., δra),

where P is a polynomial with R-coefficients. For such a function f the function
falg : A1(Ralg) → Kalg trivially extends to a continuous function, which is therefore
a δCp -function fCp : A1(C◦

p) → Cp.

Example 3.2. Here is another trivial example of totally δ-overconvergent δ-functions.
Let Z[φ] be the ring of polynomials with Z-coefficients in the indeterminate φ. For
w =

∑
ciφ

i ∈ Z[φ] set w(p) :=
∑
cip

i. Assume m is an integer coprime to p and
dividing w(p). Let V = Gm = Spec R[x, x−1] and consider the δ-function

f : V (R) = R× → R, f(a) := a
w
m := a

w(p)
m ·

∏(
φi(a)

api

) ci
m

,

where if γ ∈ Zp we set
(
φi(a)

api

)γ

:=

∞∑

s=0

(
γ
s

)
psPp,i(a, δa, ..., δ

ia)s

apis
,

where Pp,i are the unique polynomials in i+1 variables with Z-coefficients satisfying

φi(b) = bp
i

+ pPp,i(b, δb, ...., δ
ib), b ∈ R.

We claim that f is δπ-overconvergent with polar order 0. Indeed we trivially have
(
φi(a)

api

)γ

=

∞∑

s=0

(
γ
s

)
πsPπ,i(a, δπa, ..., δ

i
πa)

s

apis
,

where Pπ,i are the unique polynomials in i+ 1 variables with Rπ-coefficients satis-
fying

(3.1) φi(b) = bp
i

+ πPπ,i(b, δπb, ...., δ
i
πb), b ∈ Rπ.

In particular, f is totally δ-overconvergent with polar order bounded by the function
λ(x) = 0. Moreover falg : Gm(Ralg) → Kalg trivially extends to a continuous
function, which is therefore a δCp -function fCp : Gm(C◦

p) → Cp.

Remark 3.3. For the examples of totally δ-overconvergent δ-functions that will
appear later it is useful to record the following facts:

(3.2) vp

(
πn

n

)
≥ − log e

log p
, e := e(π);

(3.3) vp

(
πn

n

)
→ ∞ as n→ ∞.

Indeed we have

vp

(
πn

n

)
≥ n

e
− log n

log p
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which gives 3.3 and, since the function

θ(x) =
x

e
− log x

log p
, x > 0,

attains its minimum at x0 = e
log p the minimum of θ(x) equals

θ(x0) = − log e

log p
+

1 + log log p

log p
≥ − log e

log p

which gives 3.2.

Example 3.4. Let V = Gm = Spec R[x, x−1] and consider the δ-function

(3.4) ψ : Gm(R) = R× → R, ψ(a) :=
1

p
log

(
φ(a)

ap

)
:=

1

p

∑

n≥1

(−1)n
pn

n

(
δa

ap

)n

,

which we refer to as the basic δ-character of Gm; cf. [5]. This is a homomorphism
and its kernel Ker ψ is the group of roots of unity in R, i.e., the group of all roots
of unity of degree prime to p in Qalg

p . We claim that ψ is totally δ-overconvergent.
Indeed for π ∈ Π we have

ψ(a) =
1

p

∑

n≥1

(−1)n
πn

n

(
δπa

ap

)n

∈ Kπ.

By 3.2 and 3.3 ψ is δπ-overconvergent with polar order at most log e
log p + 2. So ψ is

totally δ-overconvergent with polar order bounded by the function

λ(x) :=
log x

log p
+ 2.

In particular, we have an induced homomorphism

(3.5) ψalg : Gm(Ralg) → Kalg,

which trivially extends to a continuous homomorphism ergo is a δCp -function

ψCp : Gm(C◦
p) → Cp.

Proposition 3.5. For the basic δ-character ψ of Gm and P ∈ Gm(Ralg) = (Ralg)×

the following hold:. 1) If P is a root of unity then ψalg(P ) = 0.
2) If ψalg(P ) = 0 and P ∈ Gm(Qalg

p ) then P is a root of unity.

Proof. Assertion 1 is clear. To check assertion 2 assume P = a, ψalg(a) = 0. For
some π we have

φ(a)

ap
∈ Ker(log : 1+πRπ → Rπ) = {ζ ∈ 1+Rπ; there exists k such that ζp

k

= 1}.

Hence for b = ap
k

we have φ(b) = bp. Since b is algebraic over Qp we have φN (b) = b

for some N ≥ 1. So b = bp
N

hence b is a root of unity, hence so is a. �

Example 3.6. It is easy to give examples of δ-functions that are not totally δ-
overconvergent. The following is such a function,

f : A1(R) → R, f(a) = exp(pδa) :=

∞∑

n=1

pn

n!
(δa)n, a ∈ R.

This can be checked directly but also follows trivially from Remark 4.2, assertion
1, and the proof of assertion 2 in Proposition 4.1.
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4. Scheme theoretic view on δπ-overconvergence

We review some basic concepts from [5, 11]. From now on whenever a π is
mentioned it will be assumed to be in Π.

4.1. π-jet spaces [5]. Let Cπ(X,Y ) ∈ Rπ[X,Y ] be the polynomial

Cπ(X,Y ) :=
Xp + Y p − (X + Y )p

π
=
p

π
Cp(X,Y ).

A π-derivation from an Rπ-algebra A into an A-algebra B is a map δπ : A → B
such that δπ(1) = 0 and

δπ(x+ y) = δπx+ δπy + Cπ(x, y)
δπ(xy) = xp · δπy + yp · δπx+ π · δπx · δπy,

for all x, y ∈ A; cf. [5, 17]. Here for x ∈ A we continue to write x in place of
x · 1B ∈ B. Given a π−derivation we always denote by φ : A → B the map
φ(x) = xp + πδπx; then φ is a ring homomorphism.

A δπ-prolongation sequence is a sequence S∗ = (Sr)r≥0 of Rπ-algebras S
r, r ≥ 0,

together with Rπ-algebra homomorphisms, all of which will be denoted by ϕ :
Sr → Sr+1 and π-derivations δπ : Sr → Sr+1 such that δπ ◦ ϕ = ϕ ◦ δπ on Sr

for all r. A morphism of δπ-prolongation sequences, u∗ : S∗ → S̃∗ is a sequence
ur : Sr → S̃r of Rπ-algebra homomorphisms such that δπ ◦ ur = ur+1 ◦ δπ and
ϕ ◦ ur = ur+1 ◦ ϕ. For w =

∑r
i=0 ciφ

i ∈ Z[φ] (respectively for w with ci ≥ 0), S∗

a δπ-prolongation sequence, and x ∈ (S0)× (respectively x ∈ S0) we can consider
the element xw :=

∏r
i=0 ϕ

r−iφi(x)ci ∈ (Sr)× (respectively xw ∈ Sr).
As in the introduction we may consider the Fermat quotient operator

δπ : Rπ → Rπ, δπx =
φ(x) − xp

π
;

clearly δπ is a π-derivation. One can consider the δπ-prolongation sequence R∗
π

where Rr
π = Rπ for all r. By a δπ-prolongation sequence over Rπ we understand a

prolongation sequence S∗ equipped with a morphism R∗
π → S∗. From now on all

our δπ-prolongation sequences are assumed to be over Rπ.
Assume π|π0. Note that if S∗ = (Sr)r≥0 is a δπ0 -prolongation sequence such

that each Sr is flat over Rπ0 then the sequence

S∗ ⊗Rπ0
Rπ = (Sr ⊗Rπ0

Rπ)r≥0

has a natural structure of δπ-prolongation sequence. Indeed, letting φ : Sr → Sr+1

denote, as usual, the ring homomorphisms φ(x) = xp + π0δπ0x one can extend
these φ’s to ring homomorphisms φ : Sr ⊗Rπ0

Rπ → Sr+1 ⊗Rπ0
Rπ by the formula

φ(x⊗ y) = φ(x)⊗φ(y) where φ : Rπ → Rπ is given, as usual, by φ(y) = yp + πδπy.
Then one can define π-derivations δπ : Sr ⊗Rπ0

Rπ → Sr+1 ⊗Rπ0
Rπ by

δπ(z) =
φ(z)− zp

π
, z ∈ Sr ⊗R Rπ.

With these δπs the sequence S∗ ⊗Rπ0
Rπ is a δπ-prolongation sequence.

Denote by Prolπ the category of δπ-prolongation sequences S∗ = (Sn) such that
Sn are Noetherian, p-adically complete and flat over Rπ. For any S∗ ∈ Prolπ
and any affine S0-scheme of finite type V = Spec A there exists a δπ-prolongation
sequence, A∗ = (Ar)r≥0 in Prolπ, unique up to a canonical isomorphism, with

A0 = Â, equipped with a morphism S∗ → A∗, such that for any δπ-prolongation
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sequence B∗ in Prolπ equipped with a morphism S∗ → B∗ and any S0-algebra
homomorphism u : A→ B0 there exists a unique morphism u∗ : A∗ → B∗ over S∗

with u0 = u. We define the π-jet spaces of V over S∗ as the p-adic formal schemes

Jr
π(V/S

∗) := Spf Âr. This construction immediately globalizes to the case V is not
necessarily affine (such that the construction commutes, in the obvious sense, with
étale maps). For S∗ = R∗

π we write Jr(V ) := Jr(V/R∗
π). For V smooth over Rπ

we have a natural identification

(4.1) Or
π(V ) ≃ O(Jr

π(V ))

between the ring Or
π(V ) of δπ-functions V (Rπ) → Rπ and the ring of global func-

tions O(Jr
π(V )); cf. [5, Prop. 1.4, Rmk. 1.6]. If V = G is a group scheme over Rπ

then

f : Jr
π(G) → Â1

Rπ
= Ĝa/Rπ

is a group homomorphism into the additive group if and only if the corresponding
map G(Rπ) → Rπ is a group homomorphism; recall that such an f is called a
δπ-character of G.

For π = p we write δ := δp, J
r(V ) := Jr

p (V ), Or(V ) := Or
p(V ).

As a prototypical example if V = AN
Rπ

= Spec Rπ[x] is the affine space where x

denotes an N -tuple of variables, then Jr
π(V ) = Spf Rπ[x, δπx, ..., δ

r
πx]

̂ where each
δπx, ..., δ

r
πx are new N -tuples of variables. More generally, if V is affine and has

étale coordinates T : V → Ad
Rπ

then we have natural isomorphisms

O(Jr
π(V )) ≃ O(V̂ )[δπT, ..., δ

r
πT ]

̂.

Let V be a scheme over R. By a Frobenius lift on X we mean a morphism
φV : V → V of Z-schemes, compatible with the automorphism φ of R, such that φV

mod p is the p-power Frobenius on V ⊗RR/pR. For V smooth projective over R the

existence of a Frobenius lift is equivalent to the existence of a section of J1(V ) → V̂ .
More generally let Vπ be a scheme over Rπ. By a relative Frobenius lift on Vπ we
mean a morphism φV : V → V of Z-schemes, compatible with the automorphism
φ of Rπ, such that φV mod π is the p-power Frobenius on V ⊗Rπ

Rπ/πRπ. For Vπ
smooth projective over Rπ the existence of a relative Frobenius lift is equivalent to

the existence of a section of J1
π(Vπ) → V̂π.

For any scheme V/R we write VRπ
:= V ⊗R Rπ. Let V/R be a smooth affine

scheme. The δ-prolongation sequence (O(Jr(V )))r≥0 induces a structure of δπ-
prolongation sequence on the sequence (O(Jr(V ))⊗R Rπ)n≥0. By the universality
property of the δπ-prolongation sequence (O(Jr

π(VRπ
)))r≥0 we get, for any π0 with

π|π0, a canonical morphism of δπ-prolongation sequences

(4.2) O(Jr
π(VRπ

)) → O(Jr
π0
(Vπ0))⊗Rπ0

Rπ .

Note that the map

(4.3) O(Jr
π(VRπ

)) → O(Jr(V ))⊗R Rπ

factors through the map 4.2. On the other hand the map 4.3 induces a map

(4.4) O(Jr
π(VRπ

))[1/p] → O(Jr(V ))⊗R Rπ[1/p].

The maps 4.2, 4.3, 4.4 induce such maps for V smooth, not necessarily affine.

Proposition 4.1. For V smooth,
1) the map (4.2) is injective.
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2) Assume V/R has relative dimension ≥ 1 and assume r ≥ 1 and e(π) is
sufficiently big (e.g. ≥ p− 1). Then the injective map 4.4 is not surjective.

We will usually view the maps 4.2 and 4.3 as inclusions. Note that these maps
are very far from being flat in general.

Proof. Assertion 1 was proved in [11, Prop. 2.2] but we need to recall the
argument. We may assume V is affine and possesses étale coordinates T : V → Ad.
Then the source of 4.3 embeds naturally into the ring

Kπ[[T, δπT, ..., δ
r
πT ]] = Kπ[[T, φ(T ), ..., φ

r(T )]]

while the target of 4.3 naturally embeds into the same ring,

Kπ[[T, δT, ..., δ
rT ]] = Kπ[[T, φ(T ), ..., φ

r(T )]].

This implies assertion 1.
To check assertion 2 we may assume again that V is affine and possesses étale

coordinates T . Now take any π with e(π) =: e ≥ p− 1 and consider the element,

f = exp(pδT ) :=

∞∑

n=1

pn

n!
(δT )n ∈ O(V̂ )[δT, ..., δrT ]̂ = O(Jr(V )).

Then f identifies in the ring

(4.5) Kπ[[T, δπT, ..., δ
r
πT ]]

with the element

(4.6)

∞∑

n=1

πn

n!
(δπT )

n.

Now if f is in the image of the map 4.4 then 4.6 would be identified in 4.5 with an
element of the form

(4.7)

∞∑

n=1

bn(δπT )
n,

where bn ∈ Kπ satisfy vp(bn) → ∞. Comparing 4.7 and 4.6 we get that

n

e
− vp(n!) → ∞ as n→ ∞

which is, of course, false if e ≥ p− 1. This ends the proof of assertion 2. �

Remark 4.2. Let V be a smooth scheme over R.
1) Under the identification Or(V ) = O(Jr(V )) (cf. 4.1) a function f ∈ Or(V ) is

δπ-overconvergent with polar order at most ν if and only if the function pνf ⊗ 1 ∈
O(Jr(V ))⊗R Rπ belongs to the image of the map 4.3.

2) Proposition 4.1 trivially implies the uniqueness of fπ,ν in diagram 2.5 and the
commutativity of diagram 2.7.

3) Proposition 4.1 also trivially implies that if V is affine, possesses étale coordi-
nates, and has relative dimension at least 1 over R then, for any r ≥ 1 there exist
δ-functions on V which are not totally δ-overconvergent. This implies the assertion
that the inclusion of sheaves 2.8 is not an isomorphism.
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Remark 4.3. Let us say that f ∈ Or(V ) = O(Jr(V )) has polar π-order N if N is
the smallest non-negative integer such that the function f ⊗πN ∈ O(Jr(V ))⊗RRπ

belongs to the image of the map 4.3. It is easy to check that if f has polar order ν
and polar π-order N then

[N/e] ≤ ν ≤ [N/e] + 1, e := e(π),

where [ ] stands for the integral part function. Note that if f has polar π-order N
then the function f∗

π ∈ Or
π(VRπ

) = O(Jr
π(VRπ

)) mapping to f ⊗ πN via 4.3 satisfies

f∗
π 6≡ 0 mod π in O1(VRπ

).

so one can ask for the reduction of f∗
π mod π. It is interesting to remark that

the reduction of f∗
π mod π is, in general, unrelated to the reduction of f mod p.

Here is a simple example that actually effectively appears in the theory, cf. for
instance, [10, Eq. 4.43]. Indeed, let V be an affine curve over R possessing an étale

coordinate T ∈ O(V ) and let f ∈ O1(V ) = O(V̂ )[δT ]̂ have the form

f = αδT + β + pγ, α, β ∈ O(V̂ ), γ ∈ O1(V )

hence

f ≡ αδT + β mod p in O1(V ).

However a simple computation shows that if f has polar order ≥ 2 then

f∗
π ≡ γ∗ mod π in O1

π(VRπ
),

where

γ∗ := pπNγ ∈ O1
π(VRπ

).

In concrete examples one sometimes has information about α, β but not about γ.
Hence one has information about f mod p but not about f∗

π mod π.

4.2. Analytic continuation for δalg-functions. Let V be a smooth scheme over
R of relative dimension d and let R be any of the rings R,Rπ, R

alg,C◦
p. Denote

by M the maximal ideal of R. Let P ∈ V (k) be a k-point of V . By the unit ball
in V (R) with center P we mean the set B(V, P ,R) of all points P ∈ V (R) whose
image in V (k) equals P . In particular, V (R) is a disjoint union of unit balls:

V (R) =
∐

P∈V (k)

B(V, P ,R).

Fix P ∈ V (k) and fix an isomorphism σ between the completion of V along P
and Spf R[[t]], where t is a d-tuple of variables. The the unit ball B(V, P ,R) is in
bijection with M

d: the bijection is given by attaching to any β ∈ M
d the R-point

P ∈ V (R) defined by the homomorphism

O(U) → R[[t]] → R, t 7→ t(P ) := β,

for U ⊂ V affine, containing P . Note thatMd has the p-adic topology hence the ball
B(V, P ,R) inherits this p-adic topology (which is independent of the isomorphism
σ).

Proposition 4.4. Let g : V (Ralg) → Kalg be a δalg-function. Assume the reduction
mod p of V is Zariski connected and g vanishes on one ball B(V, P ,Ralg). Then g
vanishes everywhere.
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Proof. Since the reduction of V mod p is Zariski connected we may assume V
is affine and has étale coordinates t around P over R. Consider an isomorphism
between the completion of V along P and Spf R[[t]]. For any π we have a homo-
morphism

O(Jr
π(VRπ

)) = O(V̂Rπ
)[δπt, ..., δ

r
πt]

̂ → Rπ[[t]][δπt, ..., δ
r
πt]

̂.

This homomorphism is injective because the reduction mod p of V is connected.
Recall that, by definition, g produces δπ-functions gπ,ν : V (Rπ) → Rπ, g ∈
O(Jr

π(VRπ
)) for ν sufficiently big. Then the image

Gπ,ν = Gπ,ν(t, δπt, ..., δ
r
πt) ∈ Rπ[[t]][δπt, ..., δ

r
πt]

̂

of gπ,ν has the property that

Gπ,ν(λ, δπλ, ..., δ
r
πλ) = 0 for all λ ∈ (πRπ)

d.

This immediately implies that Gπ,ν = 0 and hence we get gπ,ν = 0. Since this is
true for all π we get g = 0. �

We have the following direct consequence of Proposition 4.4

Corollary 4.5. Let h : V (C◦
p) → Cp be a δCp-function. Assume the reduction

mod p of V is Zariski connected and h vanishes on one ball B(V, P ,C◦
p). Then h

vanishes everywhere.

4.3. π-jets of formal groups. Our aim here is to improve upon a criterion for
π-jets of formal groups in [11, Sec. 2.2].

Start with a formal group law in g variables, F ∈ S[[T1,T2]]
g (where T1,T2

are g-tuples of variables) over a Noetherian flat R-algebra S and let S∗ be a δπ-

prolongation sequence in Prolp with S0 = Ŝ. One has a natural p-prolongation
sequence

(Sr[[T1,T2, δT1, δT2, ..., δ
rT1, δ

rT2]])r≥0

(where, for i = 1, 2, δTi, δ
2Ti, ... are g-tuples of new variables). Then the r+1-tuple

of g-tuples

(4.8) F , δF , ..., δrF
defines a commutative formal group in (r + 1)g variables; we view these (r + 1)g
variables as r + 1 g-tuples

T, δT, ..., δrT

of variables. Setting T1 = T2 = 0 in the series 4.8, and forgetting about the first
of them, we obtain r g-tuples of series

F1 := {δF}|T1=T2=0, ..., Fr := {δrF}|T1=T2=0.

The components of this r-tuple belong to Sr[δT, ..., δrT]̂ and define a group

(4.9) (Ârg
Sr , [+])

in the category of p-adic formal schemes over Sr. Now let l(T) = (lk(T))gk=1,

lk(T ) =
∑

|α|≥1

AαkT
α ∈ (S ⊗Q)[[T ]]
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be the logarithm of F , where α = (α1, ..., αg) ∈ Z
g
≥0, |α| :=

∑
αi, T = {T1, ..., Tg},

Tα := Tα1
1 ...T

αg
g . Recall from [18, p. 64], for all α we have:

(4.10) |α|Aαk ∈ S.

Define

(4.11) Lr = (Lr
k)

g
k=1, Lr

k :=
1

p
{φr(lk(T))}|T=0 ∈ (Sr ⊗Q)[[δT, ..., δrT ]].

Then Lr
k actually belong to Sr[δT, ..., δrT ]̂ and define group homomorphisms

Lr : (Ârg
Sr , [+]) → (Âg

Sr ,+) = Ĝ
g
a,Sr .

For all the facts above, in case g = 1 we refer to [8, pg. 123–125]; the general case
g ≥ 1 is entirely similar.

Now let X be a smooth affine R-scheme and set Sr = O(Jr(X)) and

Sr
π := O(Jr

π(XRπ
)) ⊂ Sr ⊗R Rπ,

cf. Proposition 4.1. We have the following result, which was proved in [11, Prop.
2.19] for g = 1 under a restrictive hypothesis on e that we here remove.

Proposition 4.6. For e = e(π) and ν := [ log e
log p ] + 2 the series pνLr

k ⊗ 1 belong to

the image of the natural homomorphism

Sr
π[δπT, ..., δ

r
πT]̂ → Sr[δT, ..., δrT]̂ ⊗R Rπ.

Proof. Since φr(Tk) ≡ T pr

k mod π in Rπ[δπT, ..., δ
r
πT] we have {φr(Tk)}|Tk=0 ≡ 0

mod π in that ring. Set Grπk = 1
π{φr(Tk)}|Tk=0, Grπ = (Grπk)

g
k=1. Note that

pνLr
k = pν−1

∑

|α|≥1

φr(|α|Aαk)
π|α|

|α| G
α
rπ

and we are done by 3.2, 3.3, and 4.10. �

5. Applications to δ-modular forms

5.1. Siegel δ-modular forms. We recall some concepts from [2, 8] related to
Siegel δ-modular forms and we introduce a construction that will be needed later.

For any Noetherian ring S we let Mg(S) denote the set of all triples (A, θ, ω)

where A/S is an Abelian scheme of relative dimension g, θ : A → Ǎ is a principal
polarization, and ω = (ω1, ..., ωg)

⊤ is a column vector whose entries are a basis of
the S−module of 1−forms H0(A,Ω1

A/S). Here and later the superscript ⊤ denotes

the transpose of a matrix. Recall that we denoted by Prolp the category of δ-
prolongation sequences S∗ = (Sn) such that Sn are Noetherian, p-adically complete
and flat over R. By a Siegel δ−modular function of genus g, size g, and order r we
understand a rule, call it f , that associates to any prolongation sequence S∗ ∈ Prolp
and to any triple (A, θ, ω) ∈ Mg(S

0) a g × g matrix

f(A, θ, ω, S∗) ∈ Matg(S
r),

depending on S∗ and on the isomorphism class of (A, θ, ω) only, such that the

formation of f(A, θ, ω, S∗) is functorial in S∗ in the sense that if η : S∗ → S̃∗ is
a morphism of prolongation sequences in Prolp and η∗ denotes “pull back via η”
then

f(π∗A, η∗θ, η∗ω, S̃∗) = η(f(A, θ, ω, S∗)).
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In [2, Sec. 1.3] arbitrary sizes (rather than size g) were considered. For now we
discuss size g forms; we will later discuss the case of size 1.

By a basic weight we mean a pair (φa, φb) ∈ Z[φ]×Z[φ], where a, b are two non-
negative integers. Each φa and φb may be viewed as δ-homomorphism GLg(S

0) →
GLg(S

a) and GLg(S
0) → GLg(S

b) respectively by iterating the ring homomorphism
φ : Si → Si+1 where φ(x) = xp + pδx. A Siegel δ−modular function f as above is
called a Siegel δ−modular form of basic weight (φa, φb) if for all (A, θ, ω) ∈ Mg(S

0)
and λ ∈ GLg(S

0) we have

f(A, θ, λω, S∗) = λφ
a · f(A, θ, ω, S∗) · (λ⊤)φb

where the interpretation of λφ
a

is to apply the associated δ-homomorphism to λ

and similarly for (λ⊤)φ
b

.
The collection of all Siegel δ−modular forms of genus g, size g, order r and weight
(φa, φb) will be denoted by M r

g (φ
a, φb). In [2, Sec. 1.3] more general weights were

considered. We will come back to such weights later.
Let

(A1, θ1, ω1), (A2, θ2, ω2) ∈ Mg(S)

and let u : A1 → A2 be an isogeny (which is not assumed to be compatible with
the forms or the polarizations). We let

u⊤ := θ−1
1 ◦ ǔ ◦ θ2 : A2 → Ǎ2 → Ǎ1 → A1

denote its “transpose” and we let [u] be the unique g×g matrix with S−coefficients
such that u∗ω2 = [u] · ω1. Let d(u) := det([u ◦ u⊤]). We have d(u) = ±deg(u). If
g = 1 we have d(u) = deg(u). A Siegel δ−modular form f ∈ M r

g (φ
a, φb) will

be called isogeny covariant if for any prolongation sequence S∗ ∈ Prolp, any
(A1, θ1, ω1), (A2, θ2, ω2) ∈ Mg(S

0), and any isogeny u : A1 → A2, of degree prime
to p, such that [u] is the identity (i.e. u∗ω2 = ω1) the following holds:

f(A2, θ2, ω2, S
∗) = f(A1, θ1, ω1, S

∗) · (([u⊤]⊤)−1)φ
b

.

We denote by Irg (φ
a, φb) the space of all isogeny covariant Siegel δ−modular forms

in Mn
g (φ

a, φb). Recall the following:

Theorem 5.1. [2, Thm. 1.7] The R-module Irg (φ
a, φb) has rank one if r ≥ a,

r ≥ b, a 6= b, and has rank zero in all other cases.

For r ≥ 1 let f r be a basis of the rank one R-module Irg (φ
r, φ0). For any

non-negative integers a, b with a > b set

(5.1) fab := φbfa−b, f ba := (fab)⊤.

So we have 0 6= fab ∈ Icg(φ
a, φb) whenever a 6= b and c = max{a, b}. Hence fab is a

basis of Irg (φ
a, φb)⊗K whenever a 6= b and r ≥ c.

For the purpose of our proofs later we need to explicitly construct a basis f r for
Irg (φ

r , φ0). The construction that follows is a generalization for arbitrary g ≥ 1 of
a basic construction in [6, Sec. 4, Cons. 4.1] for g = 1 and is different from the
(crystalline) construction in [2, Sec. 4.1]. By Theorem 5.1, the two constructions
yield (up to a multiplicative constant in R) the same form.

To construct f r start with any S∗ ∈ Prolp and let (A,ω, θ) ∈ M(S0). Cover A
by affine open sets Ui. Then the natural projections

Jr(Ui/S
∗) → Ûi ⊗S0 Sr
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possess sections

si : Ûi ⊗S0 Sr → Jr(Ui/S
∗).

Let

N r := Ker(Jr(A/S∗) → Â⊗S0 Sr);

it is a group object in the category of p-adic formal schemes over Sr. Then the
differences si − sj define morphisms

si − sj : Ûij ⊗S0 Sr → N r

where the difference is taken in the group law of Jr(A/S∗)/Sr. On the other

hand N r identifies with the group (Ârg
Sr , [+]) in (4.9) with coordinates given by

δT, ..., δrT, where T is a g-tuple of formal parameters at the origin of A/S. Let Lr

be the tuple of series in (4.11) attached to the formal group of A with respect to

T, viewed as a homomorphism Lr : N r = (Ârg
Sr , [+]) → Ĝ

g
a,Sr . The compositions

(5.2) Lr ◦ (si − sj) : Ûij ⊗S0 Sr → Ĝ
g
a,Sr

define a Cech cocycle of elements

(5.3) ϕr
ij ∈ O(Ûij ⊗S0 Sr)g

and hence a column vector

ϕr = (ϕr,1, ..., ϕr,g)⊤

of cohomology classes in

H1(Â⊗S0 Sr,O) ≃ H1(A⊗S0 Sr,O).

Now θ induces canonically an identification of Lie algebras

H0(A, TA/S0) ≃ H1(A,O)

of A and Ǎ respectively and hence we have an induced pairing

〈 , 〉θ : H1(A,O) ×H0(A,Ω) → S0.

We denote by the same symbol, 〈 , 〉θ, the extensions of this pairing to the pull
backs of the above spaces to Sr. Consider the basis

ω = (ω1, ..., ωg)
⊤.

Assume that one can choose étale coordinates over S0,

T : U → A
g
S0 ,

on an open set U of A, containing the zero section, such that

(5.4) ω ≡ dT mod T.

This can be done locally on Spec S0 in the Zariski topology. Let us take T as
formal parameters for A/S0 at the origin. Then one can consider the g × g matrix

(5.5) f r(A, θ, ω, S∗) := 〈ϕr, ω⊤〉θ ∈ Matg(S
r)

with entries

f r(A, θ, ω, S∗)αβ := 〈ϕr,α, ωβ〉θ ∈ Sr, α, β = 1, ..., g.

This matrix does not depend on the choice of T as long as 5.4 holds. In general,
when étale coordinates as above do not necessarily exist, we make the construction
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locally in the Zariski topology and glue to get a matrix 5.5. It is easy to check that
the association

(A, θ, ω, S∗) 7→ f r(A, θ, ω, S∗)

defines an element

(5.6) f r ∈ Irg (φ
r , φ0);

for a similar verification (for a different form) see [2, Sec. 4.1].

We next investigate overconvergence of the above construction. We consider the
following two special cases which we treat simultaneously:

Lemma 5.2. Fix π ∈ Π. In each of the following cases

Case 1 X is a smooth affine R-scheme with étale coordinates y : X → Ad
R.

Case 2 Sr
for := R[[t]][δt, ..., δrt]̂ with t a d-tupe of variables and

Sr
π,for := R[[t]][δπt, ..., δ

r
πt]

̂.

the function f r is δπ-overconvergent. In particular, in Case 1, f r is totally δ-
overconvergent of polar order bounded by log x

log p + 2.

Proof. We handle both cases simultaneously as the proofs are similar. In what
follows, set z = y, Sr := Or(X), Sr

π := Or
π(X), in Case 1 and set z = t, Sr = Sr

for,
Sr
π = Sr

π,for, in Case 2.

Assume A has étale coordinates over S0 on an open set U containing the zero
section, T : U → A

g
S0 , satisfying 5.4, and each Ui possesses étale coordinates

Ti : Ui → A
g
S0 over S0. (We do not need to assume that U = Ui0 and T = Ti0 for

some i0.) Set e := e(π) and ν = [ log e
log p ] + 2. Note that we have a natural morphism

(5.7) Ûi⊗̂S0Sr ⊗R Rπ ≃ (Ûi ⊗R Rπ)⊗S0
π
(Sr ⊗R Rπ) → (Ûi ⊗R Rπ)⊗̂S0

π
Sr
π.

Set Ûi,Rπ
= Ûi ⊗R Rπ. We claim that one can find sections si and si,π of the

canonical projections making the following diagram commute:

(5.8)

Ûi⊗̂S0Sr ⊗R Rπ Jr(Ui/S
∗)⊗R Rπ

Ûi,Rπ
⊗̂S0

π
Sr
π Jr

π(Ui,Rπ
/S∗

π)

si

si,π

Indeed, consider the commutative diagram

(5.9)

O(Ûi,Rπ
)[δz, ..., δrz]̂ O(Ûi,Rπ

)[δz, ..., δrz, δTi, ..., δ
rTi]

̂

O(Ûi,Rπ
)[δπz, ..., δ

r
πz]

̂ O(Ûi,Rπ
)[δπz, ..., δ

r
πz, δπTi, ..., δ

r
πTi]

̂

with horizontal arrows sending
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(5.10) δTi, ..., δ
rTi 7→ 0, δπTi, ..., δ

r
πTi 7→ 0.

Then the spaces in the diagram (5.8) are the formal spectra of the rings in the
diagram (5.9) and we can take the horizontal arrows in the diagram (5.8) to be
induced by the horizontal arrows in the diagram (5.9). The diagram (5.8) plus
Proposition 4.6 then induces a commutative diagram

(5.11)

Ûij⊗̂S0Sr ⊗R Rπ N r ⊗R Rπ Ĝg
a,Sr⊗RRπ

Ûij,Rπ
⊗̂S0

π
Sr
π N r

π Ĝg
a,Sr

π

si − sj

si,π − sj,π

pνLr

Lr
π,ν

where N r
π is the kernel of the canonical projection

Jr
π(ARπ

/S∗
π) → ÂRπ

⊗̂S0
π
Sr
π

and the vertical morphisms are the canonical ones. The diagram (5.11) shows that

the cocycle pνϕr
ij in (5.3) comes from a cocycle of elements in O(Ûij,Rπ

⊗̂S0
π
Sr
π).

This immediately implies that

(5.12) pνf r(A, θ, ω, S∗)αβ ⊗ 1 = pν〈ϕr,α, ωβ〉θ ⊗ 1 ∈ Im(Sr
π → Sr ⊗R Rπ).

�

Denote by f r
π,ν(A, θ, ω, S

∗)αβ ∈ Sr
π the element whose image is pνf r(A, θ, ω, S∗)αβ .

Case 1 and Case 2 of the above construction are compatible in the following sense.
Let X be as in Case 1, choose a k-point P ∈ X(k), and choose an isomorphism be-
tween R[[z]] and the completion of X along P ; we do not assume any compatibility
between y and t. Now consider any Rπ-point P : Spec Rπ → X reducing to P mod
π and let

O(X) ⊂ R[[t]] → Rπ, z 7→ t(P ) ∈ πRπ

be the corresponding homomorphism. Consider a triple A := (A, θ, ω) ∈ M(O(X))
and let

AR[[t]] := (AR[[t]], θR[[t]], ωR[[t]]) ∈ M(R[[t]]), AP := (AP , θP , ωP ) ∈ M(Rπ)

be the base changed triples. We claim that the diagram

Or(X)⊗R Rπ Sr
for ⊗R Rπ Rπ

Or
π(X) Sr

π,for Rπ

induces a diagram
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(5.13)

pνf r(A,O∗(X))⊗ 1 pνf r(AR[[t]], S
∗
for)⊗ 1 pνf r(AP , R

∗
π)

f r
π,ν(A,O∗(X)) f r

π,ν(AR[[t]], S
∗
for) f r

π,ν(AP , R
∗
π)

Indeed, this compatibility holds because the horizontal maps in 5.9 can be chosen
to be given, in all cases, by the same recipe 5.10; so the fact that t and y are not
assumed to be compatible is irrelevant.

There is a size one version of theory which we now briefly recall. Let w =∑r
i=1 ciφ

i ∈ Z[φ]; set deg(w) =
∑
ci and write w ≥ 0 if ci ≥ 0 for all i. By

an Siegel δ-modular form of order r, size 1, and weight w, we understand a rule
f that attaches to any S∗ ∈ Prolp and any triple (A, θ, ω) ∈ M(S0) an element
f(A, θ, ω) ∈ Sr, depending only on the isomorphism class of the triple, behaving
functorially in S∗, and such that for any λ ∈ GLg(S

0) we have

f(A, θ, λω, S∗) = det(λ)−wf(A, θ, ω, S∗).

By an ordinary Siegel δ-modular form of order r, size 1, and weight w, we under-
stand a rule as above which is only defined for triples (A, θ, ω) with A/S0 having
ordinary reduction mod p. So δ-modular forms as above define ordinary δ-modular
forms but not vice versa. Denote by M r

g,1(w) the space of forms as above and by
M r

g,1,ord(w) the space of ordinary forms.

5.2. Siegel δ-modular forms on moduli spaces. Consider an abelian scheme
A→ X of relative dimension g ≥ 1 over a smooth R-schemeX . Consider the locally
free sheaf E on X defined as the direct image of the relative cotangent bundle ΩA/X

and let B → X be the principal GLg-bundle associated to E (which we refer to as
being attached to A); recall that

(5.14) B = Spec(Sym(Ě⊕g))\Z.
where ˇ denotes the dual and Z is the obvious “determinant hypersurface”. To give
an R-point of B is the same as to give an R-point P of X together with a basis
ωP for the 1-forms on the abelian scheme AP over R corresponding to P . By a
Siegel δ-modular form on X of size g, order r, and weight (φa, φb) we will mean an
element f ∈ Or(B) such that for any affine open set U ⊂ X and basis ω of E on U
we have

f = ((ω̌)φ
a

)⊤ · fω · (ω̌)φb

, for some fω ∈ Matg(Or(U))

over U , where ω̌ is the basis of Ě dual to ω, i.e. 〈ω̌, ω⊤〉 = 1g. Here both ω and ω̌
are viewed as column vectors. Denote by

M r
X(φa, φb) ⊂ Or(B)

the module of Siegel δ-modular forms of size g, order r, and weight (φa, φb) on X .
There is a natural homomorphism

(5.15) M r
g (φ

a, φb) →M r
X(φa, φb), f 7→ f(A, θ)

where f(A, θ) is defined by gluing the functions

((ω̌)φ
a

)⊤ · f(A, θ, ω,O∗(U)) · (ω̌)φb
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where O∗(U) is, of course the δ-prolongation sequence (On(U)) and ω is a local
basis of E .

The above construction may be applied, of course, to X any open set, with
non-empty special fiber at p, of a smooth fine moduli space of principally polarized
abelian schemes with some level structure. In this case the map 5.15 is injective.

There is a size 1 variant of the above. Indeed let us continue to assume we
have an abelian scheme A → X over a smooth R-scheme X . Consider the locally
free sheaf E above and its determinant L = det(E). Let C → X be the principal
GL1-bundle associated to L; so

(5.16) C = Spec(Sym(Ľ))\X = Spec

(⊕

i∈Z

L⊗i

)
,

where X is embedded as the zero section. Let w =
∑r

i=1 ciφ
i ∈ Z[φ] and set

deg(w) =
∑
ci; write w ≥ 0 if ci ≥ 0 for all i. By a Siegel δ-modular form on X

of order r, size 1, and weight w we will understand an element f ∈ Or(C) such for
any affine open set U ⊂ X and basis ω = (ω1, ..., ωg)

⊤ of E on U we have

(5.17) f = fω · (ω1 ∧ ... ∧ ωg)
w, for some fω ∈ Or(U).

Denote by
M r

X(w) ⊂ Or(C)

the module of Siegel δ-modular forms of order r, size 1, and weight w on X . There
is a natural map

M r
g,1(w) →M r

X(w);

and if, in addition, A/X has ordinary reduction mod p then there is a natural map

M r
g,1,ord(w) →M r

X(w).

For any point P ∈ X(R) we let AP be the corresponding abelian scheme over
R; in this case, for any f ∈M r

X(w) and any basis of 1-forms ωP on AP we set

f(AP , ωP ) := fω(P ) ∈ R

where ω is any local basis of E which reduces to ωP at P ; the definition does not
depend, of course, on the choice of ω.

Now let θ be a principal polarization on A/X . Say that f ∈ M r
X(w) (where w

has even degree) is an isogeny covariant Siegel δ-modular form on X of order r,
size 1 and weight w if for all P1, P2 ∈ X(R), any isogeny u : AP1 → AP2 of degree
prime to p, and any bases ωP1 , ωP2 for the 1-forms on AP1 , AP2 respectively, with
u∗ωP2 = ωP1 , we have

(5.18) f(AP1 , ωP1) = d(u)−
deg(w)

2 f(AP2 , ωP2).

Note that in the above we do not assume u compatible with the polarizations (or
with any level structure that might be present). We denote by IrX(w) ⊂ M r

X(w)
the space of isogeny covariant forms. We have a natural map

Irg (φ
a, φb) → IrX(−φa − φb).

Recall from [2] the following construction of elements in IrX(w) for various w’s.
A sequence of non-negative integers a1, ..., a2k is said to form a cycle if ai 6= ai+1

for all 1 ≤ i ≤ 2k − 1 and a2k 6= a1. Define a2k+1 := a1. Recall the forms fab from
5.1. Consider a cycle as above and let

w := φa1 − ...− φa2k , r := a1 + ...+ a2k.
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Consider the Siegel δ-modular forms fa1...a2k
∈M r

g,1(w), called in [2] cyclic products,
defined by

(5.19) fa1...a2k
:= tr{fa1a2 · (fa3a2)∗ · fa3a4 · (fa5a4)∗ · · · fa2k−1a2k · (fa1a2k)∗}.

Here the superscript ∗ denotes “taking the adjoint of a matrix”. Of course

fa1a2a3a4...a2k−1a2k
= fa3a4...a2k−1a2ka1a2

and

fa1a2 = g · det(fa1a2).

Then fa1...a2k
define elements

fa1...a2k
(A, θ) ∈ IrX(w) ⊂ Or(C).

We refer to [2] for applications of cyclic products: they may be used to construct
“δ-maps” from moduli spaces of abelian schemes to projective spaces, that are
constant on isogeny classes.

5.3. Total δ-overconvergence of isogeny covariant Siegel δ-modular forms.

Our main result here is the following:

Theorem 5.3. Let f ∈ Irg (φ
a, φb) and let A be an abelian scheme over a smooth

R-scheme X. Let ω be a basis of H0(A,ΩA/X) and let θ be a principal polarization
on A. Then the entries

(5.20) f(A, θ, ω,O(J∗(X)))αβ ∈ Or(X),

of the matrix f(A, θ, ω,O(J∗(X))) are totally δ-overconvergent δ-functions on X

with polar order bounded by the function λ(x) = log x
log p + 2.

Corollary 5.4. Let f ∈ Irg (φ
a, φb) and let A be an abelian scheme over a smooth

R-scheme X. Let B → X be the principal GLg-bundle attached to A and let θ be a
principal polarization on A. Then the function

(5.21) f(A, θ) ∈ Or(B)

is totally δ-overconvergent on B with polar order bounded by the function λ(x) =
log x
log p + 2.

Corollary 5.5. Let A be an abelian scheme over a smooth R-scheme X. Let C →
X be the principal GL1-bundle attached to A and let θ be a principal polarization
on A. Then for any cycle a1, ..., a2k the cyclic product

(5.22) fa1...a2k
(A, θ) ∈ Or(C)

is a totally δ-overconvergent δ-function on C with polar order bounded by the func-
tion λ(x) = log x

log p + 2.

In particular the functions 5.20, 5.21, 5.22 are tempered.

Proof of Theorem 5.3. By Theorem 5.1 it is enough to prove our Theorem
5.3 for the forms f r constructed in section 5.1 which follows immediately from
Lemma 5.2. �.
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5.4. Case g = 1. Form now on we consider the case g = 1. In this case we let
X1(N) be the modular curve over Z[1/N, ζN ] parameterizing elliptic curves with
level Γ1(N) structure where N ≥ 4, (N, p) = 1 and let L be the line bundle on
X1(N) such that the spaces of sections H0(X1(N), L⊗κ) identify with the spaces
M(R, κ,N) of classical modular forms over Z[1/N, ζN ] of weight κ on Γ1(N), cf.
[16, pg. 450] where L was denoted by ω. Choose an embedding Z[1/N, ζN ] ⊂ R,
let X1(N)R be the modular curve over R, and we continue to denote by L the
corresponding bundle on X1(N)R. Let X ⊂ X1(N)R be an affine open subset
disjoint from the cusps. The restriction of L to X (still denoted by L) is the direct
image E = det(E) = L of the relative cotangent bundle on the universal elliptic curve
A→ X . Here and later by an elliptic curve we mean an abelian scheme of relative
dimension one. So in the situation here B = C. An element f ∈ Or(B) = Or(C)
is called a δ-modular form on X of order r and weight w ∈ Z[φ] if it is a Siegel
δ-modular form on X of order r, size 1, and weight w. As before we denote by

M r
X(w) ⊂ Or(B)

the space of δ-modular forms on X of order r, size 1, and weight w and we denote
by

IrX(w) ⊂M r
X(w)

the space of isogeny covariant forms in M r
X(w). Note that f(AP , ωP ) in 5.18 can

be interpreted as the value of f at the R-point of B representing the pair (AP , ωP ).
We have a natural homomorphism

(5.23) M r
1 (φ

a, φb) →M r
X(−φa − φb), f 7→ f(A, θ)

which, for X the complement of the cusps, is injective; here θ is the canonical
polarization. By abuse we will write f in place of f(A, θ). The map 5.23 induces a
map

Ir1 (φ
a, φb) → IrX(−φa − φb)

and, in particular, f r in 5.6 defines an isogeny covariant form,

f r ∈ IrX(−1− φr) ⊂ Or(B).

We get:

Corollary 5.6. The δ-functions f r on B are totally δ-overconvergent with polar
order bounded by the function λ(x) = log x

log p + 2.

In particular f r are tempered.

More isogeny covariant forms will be introduced in the special case when X is
disjoint from the supersingular locus and, as we shall see, in that case, all such
forms will be totally δ-overconvergent; cf. Corollary 5.14.

On the other hand we have the following general property; roughly speaking if
f is isogeny covariant then falg has a similar property.

Proposition 5.7. Let f ∈ IrX(w) be an isogeny covariant δ-modular form of order
r and weight w, f : B(R) → R. Assume f is totally δ-overconvergent. Then

falg : B(Ralg) → Kalg

satisfies the following properties.
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1) For any P ∈ X(Ralg) let AP be the corresponding elliptic curve over Ralg, let
ωP be an invertible 1-form on AP , and let λ ∈ (Ralg)×. Then

(5.24) falg(AP , λωP ) = λ−w · f(AP , ωP ).

2) Let P1, P2 ∈ X(Ralg), let AP1 , AP2 be the corresponding elliptic curves over
Ralg, let ωP1 , ωP2 be invertible 1-forms on these elliptic curves, respectively, and let
u : AP1 → AP2 be an isogeny of degree d prime to p, preserving the level structures,
such that u∗ωP2 = ωP1 . Then

(5.25) falg(AP1 , ωP1) = d−
deg(w)

2 falg(AP2 , ωP2).

In the above falg(APi
, ωPi

) ∈ Kalg is, of course, the value of the function falg :
B(Ralg) → Kalg at the Ralg-point of B represented by the pair (APi

, ωPi
). Also

note that we insist here that u preserve the level structures.

Proof. Assertion 1 can be interpreted as an equality of the form 2.10 where
G := Gm acts naturally on B and χ(λ) = λ−w.

To prove assertion 2 it is enough to assume d is a prime. Now 5.25 can be
interpreted as an equality of the form 2.12 where V,W, g1, g2, λ in 2.12 are taken as
follows. We take V = B, we let W be scheme over R whose points are identified
with tuples (A1, A2, α1, α2, ω1, ω2, u) where A1, A2 are elliptic curves “lying over
X”, α1, α2 are Γ1(N) level structures, ω1, ω2 are invertible 1-forms, and u is an
isogeny of degree d, respecting the level structures, and pulling back ω2 to ω1. We
let gi :W → V be induced by

(A1, A2, α1, α2, ω1, ω2, u) 7→ (Ai, αi, ωi).

Finally we take λ := d−
deg(w)

2 . The scheme W can be easily seen to exist as a
GL1-bundle over the preimage of X in the “Hecke correspondence” parameterizing
triples (A1, A2, α1, α2, u) as above; cf. [8, Eq. 2.88]. Then the fact that 5.25 holds
follows form 5.18 plus the our earlier observation that 2.12 follows from 2.11. �

An analogue of 5.25 can also be proved, in a similar way, for Siegel isogeny
covariant δ-modular forms.

Remark 5.8. By the proof of Theorem 5.3 the following holds. Let

P ∈ X(Rπ) ⊂ X(Ralg),

let AP be the corresponding elliptic curve over Rπ and let ωP be an invertible
1-form on AP . Then: (f

1)alg(AP , ω) = 0 if and only if AP has a relative Frobenius
lift. Note that for π = p the existence of a relative Frobenius lift is equivalent to
the existence of a Frobenius lift, which is equivalent to AP being the canonical lift
of an ordinary elliptic curve; cf. [8, Sec. 8.1.6, Cor. 8.68].

Remark 5.9. To further understand the zeros of (f r)alg we need to review some facts
from [8] about δ-Serre-Tate expansions. Let X ⊂ X1(N) be disjoint from the cusps
and let P ∈ X(k) be an ordinary point i.e., a k-point for which the corresponding
elliptic curve AP /k is ordinary. Let b and b̌ be bases of the Tate modules of AP

and of its dual respectively. Then b, b̌ define, via Serre-Tate theory [20], a canonical
isomorphism between a power series ring in one variable, R[[t]], and the completion
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of X along P ; for any Rπ-point P of X whose reduction mod π is P the defining
homomorphism

O(X) ⊂ R[[t]] → Rπ, z 7→ t(P ) ∈ πRπ ,

is such that the element

q(AP ) = q(AP , b, b̌) := 1 + t(P ) ∈ 1 + πRπ

is the Serre-Tate parameter of AP (with respect to b, b̌). Consider the diagram
5.13 with A the universal elliptic curve over X , A = (A, θ, ω), and θ the canonical
polarization. Recall that we denoted by

AR[[t]] = (AR[[t]], θR[[t]], ωR[[t]])

the base changed triple over R[[t]]. On the other hand there is a “canonical” triple,

Afor = (AR[[t]], θR[[t]], ωfor)

where ωfor is the 1-form on AR[[t]] whose induced 1-form on the formal group of

AR[[t]] corresponds via b̌ to the invariant 1-form on the multiplicative formal group
over R[[t]], cf. [8, Eq. 8.67] and the discussion before it. So, in particular, Afor

does not depend on ω. By [8, Prop. 8.22, 8.61], there is an ǫ ∈ Z×
p such that

f r(Afor, S
∗
for) = ǫΛr−1Ψ,

where

Λr−1 :=

r−1∑

j=0

pjφr−1−j ,

and

Ψ :=
1

p

∑

n≥1

(−1)n
pn

n

(
δ(1 + t)

(1 + t)p

)n

∈ S1
for = R[[t]][δt]̂.

The element f r(Afor, S
∗
for) was called in [8] the δ-Serre-Tate expansion of f r. Write

ωR[[t]] = u(t) · ωfor, u(t) ∈ R[[t]]×.

In particular

f r(AR[[t]], S
∗
for) = u(t)1+φr · f r(Afor, S

∗
for) = ǫ · u(t)1+φr · Λr−1Ψ.

By the diagram 5.13 we must have

f r
π,ν(AR[[t]], S

∗
for) = ǫ · u(t)1+φr · Λr−1Ψπ,ν,

where

(5.26) Ψπ,ν := pν−1
∑

n≥1

(−1)n
πn

n

(
δπ(1 + t)

(1 + t)p

)n

∈ S1
π,for = Rπ[[t]][δπt]

̂.

Using the compatibility in 5.13 we get

(5.27)

(f r)alg(AP , ωP ) = p−νf r
π,ν(AP , R

∗
π)

= ǫp−νu(t(P ))1+φr

Λr−1(Ψπ,ν(q(AP ), δπq(AP )))

= ǫu(t(P ))1+φr

Λr−1
(

1
p log

(
φ(q(AP ))
q(AP )p

))
.



28 ALEXANDRU BUIUM AND LANCE EDWARD MILLER

So if we identify

(5.28) X ×Gm ≃ B via (P, λ) 7→ (AP , λωP ),

then (f r)alg is given by

(5.29) (f r)alg(P, λ) = λ1+φr

u(t(P ))1+φr

Λr−1

(
1

p
log

(
φ(q(AP ))

q(AP )p

))

for (P, λ) in the ball B(X ×Gm, (P , 1), R
alg).

Since Λr−1 : Kalg → Kalg is injective we have that

(f r)alg(AP , ωP ) = 0 ⇔ log

(
φ(q(AP ))

q(AP )p

)
= 0

In view of Proposition 3.5 we get the following result.

Proposition 5.10. Let r ≥ 1 and let P ∈ X(Ralg) be such that the corresponding
elliptic curve AP /R has ordinary reduction and Serre-Tate parameter q(AP ). The
following hold:

1) If q(AP ) is a root of unity then (f r)alg(AP , ωP ) = 0.
2) If (f r)alg(AP , ωP ) = 0 and q(AP ) is algebraic over Qp then q(AP ) is a root

of unity.

Remark 5.11. The condition that the Serre-Tate parameter is a root of unity is
related to the notion of quasi-canonical lift in the ordinary case; cf. [15, Prop.
3.5.1]. It would be interesting to understand what “non-ordinary zeros” (if any)
the functions (f r)alg have.

We consider, in what follows, the special case when

X = Xord ⊂ X1(N)R

is the complement of the cusps and the supersingular locus. Recall from [1, Sec. 3]
that there exist unique ordinary Siegel δ-modular forms

f∂ ∈M1
1,1,ord(φ− 1), f∂ ∈M1

1,1,ord(1− φ), f∂f∂ = 1,

whose images in M1
Xord

(φ− 1) and M1
Xord

(1− φ) we continue to denote by f∂ and
f∂, satisfying the following properties. First these forms are isogeny covariant, so

f∂ ∈ I1Xord
(φ− 1), f∂ ∈ I1Xord

(1 − φ).

Moreover consider the canonical R-derivation ∂ : O(Bord) → O(Bord) defined by
Katz [19] via the Gauss-Manin connection, generalizing the “Serre operator”; cf.
[8, pg. 254–255], consider the conjugate differential operators ∂0, ∂1 : O1(Bord) →
O1(Bord) introduced in [8, pg. 93] and consider the Ramanujan form P ∈M0

Xord
(2);

cf. [8, pg. 255]. Then one has the following formulae:

(5.30) f∂ := ∂1f
1 − pPφf1 ∈ O1(Bord).

(5.31) f∂ = −∂0f1 + P · f1 ∈ O1(Bord).

Recall the notation f1 is from (5.6) with r = 1 and is not a power. We have the
following consequence involving overconvergence.

Corollary 5.12. The δ-functions f∂ and f∂ on Bord are totally δ-overconvergent
with polar order bounded by the function λ(x) = log x

log p + 2.
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In particular f∂ and f∂ are tempered.

Proof. The argument is the same as the one in the proof of [11], Theorem 5.3,
except that throughout that proof p

π needs to be replaced by pν and instead of [11],
Proposition 2.19, one needs to use Proposition 4.6 in the present paper. Also one
needs the fact that if f ∈ O1(Bord) is any element which is δ-overconvergent with
polar order at most ν for some ν then ∂0f, ∂1f ∈ O1(Bord) are also δ-overconvergent
with polar order at most ν; the latter follows from in [11], Proposition 2.20. �

On the other hand the forms f1 and f∂ and their iterated images by φ generate
modulo torsion the space of isogeny covariant δ-modular forms. Indeed, recall the
following basic result explained in [8].

Theorem 5.13. For any w ∈ Z[φ] of even degree the K-vector space

IrXord
(w)⊗R K

is spanned by elements of the form

(f1)v(f∂)v
′

where v, v′ ∈ Z[φ], v ≥ 0, (−1− φ)v + (φ− 1)v′ = w.

Proof. By [8, Prop. 8.75, 8.22] the above holds if, in the definition of isogeny
covariance, we insist that isogenies be compatible with level structures. But then
the result follows because f1 and f∂ satisfy the definition of isogeny covariance
given in the present paper (where compatibility with level structures is not being
assumed). �

Putting together Theorem 5.13 and Corollaries 5.6 and 5.12 we get the following.

Corollary 5.14. Any element of IrXord
(w) ⊂ Or(Bord) is a tempered totally δ-

overconvergent δ-function on Bord. In particular, for any

f ∈ IrXord
(w), f : Bord(R) → R

the associated map

falg : Bord(R
alg) → Kalg

satisfies the conclusions of Proposition 5.7.

Remark 5.15. Recall from [8, Cor. 8.62, Prop. 8.76], that the forms φif r, φif∂,
φif∂ satisfy certain basic polynomial relations, by Remark 2.8 the same polynomial
relations will be satisfied by the forms φi(f r)alg, φi(f∂)alg, φi(f∂)

alg.

Remark 5.16. Let us go back to the notation in Remark 5.9. By [8, Prop. 8.59],
we have

f∂(Afor, S
∗
for) = ǫ,

hence, by the same reasoning as in Remark 5.9, we have that if (A, θ, ω) is a triple
over a Zariski open set of X then

(5.32) (f∂)alg(AP , ωP ) = p−νf∂
π,ν(AP , R

∗
π) = ǫ · u(t(P ))1−φ.

So, again, under the identification 5.28 we have

(5.33) (f∂)alg(P, λ) = ǫλ1−φu(t(P ))1−φ

for (P, λ) in the ball B(X ×Gm, (P , 1), R
alg). In particular we get the following:
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Proposition 5.17. For any f ∈ IrXord
(w) (with w of even degree) the function

falg : Bord(R
alg) → Ralg

extends to a δCp-function

fCp : Bord(C
◦
p) → Cp.

Proof. By Theorem 5.13 it is enough to prove the Proposition for f = f1, f∂ , f∂.
The statement only needs to verified inside each unit ball. But then the statement
follows from equations 5.29 and 5.33. �

Remark 5.18. Consider the set Xord(C
◦
p)

◦ of all points P ∈ Xord(C
◦
p) such that

(f1)Cp(AP , ωP ) 6= 0.

The above condition does not depend on ωP . Then consider the set theoretic map

(5.34) ℘ : Xord(C
◦
p)

◦ → C×
p

defined by

(5.35) ℘(P ) := (((f1)Cp)φ−1((f∂)Cp)φ+1(AP , ωP ).

The right hand side of the above equation does not depend on ωP . We may refer to
the map ℘ as the δ-period map; its restriction to R-points played a key role in [8].
Note that, in our formalism, it does not make sense to say that ℘ is a δCp -function
because ℘ is not defined on the whole of Xord(C

◦
p). One can extend our formalism

to accommodate functions such as ℘ but we will not pursue this here; be that as it
may ℘ is a “quotient of δalg-functions”. Note also that, by 5.29 and 5.33, we have:

(5.36) ℘(P ) = ǫ2
1

p

(
log

(
φ(q(AP ))

q(AP )p

))φ−1

in the ball B(X,P ,C◦
p).

Remark 5.19. Note that the right hand sides of 5.29, 5.33, and 5.36 are defined
locally on balls centered at ordinary points. The remarkable fact is that these
locally defined functions arise from globally defined δCp -functions.

Remark 5.20. Consider the δ-period map ℘ in 5.35 and fix P ∈ Xord(k). Let
q = 1 + t be the Serre-Tate parameter. Consider the function

(5.37) σ : A1(C◦
p) → Xord(C

◦
p), u 7→ Pu,

where Pu is the point defined by the homomorphism

R[[t]] → C◦
p, t 7→ exp

(
∞∑

n=1

pnφ−n(u)

)
− 1.

Here φ−1 is the inverse of φ on Cp Note that σ(0) = P0 ∈ Xord(R) is the point
corresponding to the elliptic curve over R that is the canonical lift of the elliptic
curve corresponding to P . Let

χ : Gm(C◦
p) → Gm(C◦

p), χ(u) := uφ−1.

Using Equation 5.36 it is trivial to verify that σ maps Gm(C◦
p) into Xord(C

◦
p)

◦ and
the following diagram is commutative
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(5.38)

A1(C◦
p) Gm(C◦

p) Gm(C◦
p)

Xord(C
◦
p) Xord(C

◦
p)

◦ C×
p

σ σ ǫ2

χ

℘

where the right vertical arrow is the multiplication by ǫ2. The map σ in 5.37 is
far from being an object of the δ-geometry developed in [8]: indeed in its definition
the negative (rather than the positive) powers of φ are involved. However the map
σ can be shown to fit into the perfectoid δ-geometry framework developed in [13].
It is an analogue, for modular curves, of the co-characters of elliptic curves in. We
will not pursue this here.

6. Applications to δ-characters

6.1. Total δ-overconvergence of δ-characters. Let A/R be an abelian scheme
of arbitrary relative dimension g ≥ 1. Recall from [5, pg. 310, Sec. 0.3] that a
δ-character of order r on A is a δ-function ψ : A(R) → R of order r which is a
group homomorphism (with R viewed as a group with its additive structure). We
view such a ψ as an element of Or(A) = O(Jr(A)). It follows from the theory in [5,
Cor. 2.10] that the R-module of δ-characters of order r is finitely generated of rank
between (r − 1)g and rg; we will give an argument for this below; cf Remark 6.2.
When in addition, g = 1 we can be more specific. If A does not have a Frobenius
lift then it was proved in [5, Prop. 3.2] that there exists a δ-character

(6.1) ψ ∈ O2(A)

which is a basis for the R-module of δ-characters of order 2; on the other hand, in
case A has a Frobenius lift, there exists a δ-character

(6.2) ψ ∈ O1(A).

which is a basis for the R-module of δ-characters of order 1. In each of the cases
we can refer to ψ above as a basic δ-character of A.

The following result was proved in [11, Sec. 5.4] in the special case when g = 1
and e ≤ p− 1.

Theorem 6.1. Let A/R be an abelian scheme of relative dimension g ≥ 1 and let
r ≥ 1 be an integer. Then there exists an integer κ such that for any δ-character
ψ ∈ Or(A) of order r of A, ψ is totally δ-overconvergent with polar order bounded

by the function λ(x) = log x
log p + κ.

In particular, any δ-character of an abelian scheme over R is a tempered totally
δ-overconvergent δ-function.

Proof. Fix r ≥ 1. We need to find κ such that for any δ-character ψ on A of
order r and any π ∈ Π, if e := e(π) and ν := [ log e

log p + κ] then pνψ ⊗ 1 belongs to

the image of the map

O(Jr
π(ARπ

)) → O(Jr(A))⊗R Rπ.
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As explained in [5] the R-module of δ-characters of order r identifies with the

module Hom(Jr(A), Ĝa). Recall also that N r = ker(Jr(A) → A) is the kernel of
canonical projection yielding the short exact sequence 0 → N r → Jr(A) → A→ 0.

Applying Hom(−, Ĝa), we get the standard exact sequence,

(6.3) 0 = H0(A,O) → Hom(Jr(A), Ĝa)
res→ Hom(N r, Ĝa)

∂→ H1(A,O) ≃ Rg.

By [5, Cor. 2.10], the R-module Hom(N r, Ĝa) is finitely generated of rank ≤ rg.
On the other hand consider the setting of 5.2 where X = Spec R and consider the
functions denoted there by

(6.4) Ls
k, s = 1, ..., r, k = 1, ..., g.

These functions define, and hence can be identified with, R-linearly independent
elements in

(6.5) Hom(N r, Ĝa);

so 6.5 has rank rg. In particular there exists an integer µ such that for any ψ ∈
Hom(Jr(A), Ĝa) we have that pµψ restricted to N r is an R-linear combination L
of the functions 6.4. The image of L via ∂ in H1(A,O) is the class of the cocycle

L ◦ (si − sj) : Ûij → Ĝ
g
a.

Since this class vanishes there exist elements Γi ∈ O(Ûi) such that

(6.6) L ◦ (si − sj) = Γi − Γj.

We may assume there is an index i0 such that the origin of A belongs to Ui0 and

Γi0 vanishes at the origin. Viewing Jr(A) as obtained from the schemes Ûi × Ârg

via the isomorphisms given on points by

(u, v) 7→ (u, v + si(u)− sj(u))

we see that the condition 6.6 implies that the functions

ψ′
i,p := L− Γi ∈ O(Ûi × Ârg)

glue together to give a function ψ′ ∈ O(Jr(A)). Clearly ψ′(0) = 0. Then, as in [8],

Lemma 7.13, we get that ψ′ is a homomorphism, i.e., it belongs to Hom(Jr(A), Ĝa).
Since the map res in 6.3 is injective we get that pµψ = ψ′. Set κ := µ+ 2. Then,
by Proposition 4.6, the functions pν−µψ′

i (which glue to give pνψ) belong to the
image of

O(Ûi ⊗R Rπ)[δπT, ..., δ
r
πT]̂ → O(Ûi ⊗R Rπ)[δT, ..., δ

rT]̂.

In order to conclude we note that, using the sections si and si,π in the diagrams
5.8 one has commutative diagrams

(Ûi ⊗R Rπ)×̂(N r ⊗R Rπ) Jr(Ui)⊗R Rπ

(Ûi ⊗R Rπ)×̂N r
π

Jr
π(Ui ⊗R Rπ)

τi,p

τi,π
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where

N r
π := Ker(Jr

π(A⊗R Rπ) → Â⊗R Rπ)

and τi,p, τi,π isomorphisms. This ends the proof.
�

Remark 6.2. The exact sequence 6.3 shows that Hom(Jr(A), Ĝa) has rank between
(r − 1)g and rg.

Remark 6.3. The above proof shows that for ψ the basic δ-character of an elliptic
curve one can take κ = 2 in our Theorem.

Definition 6.4. Let A be a commutative group scheme over R (with composition
law written additively), and let P ∈ A(Ralg). For any n ≥ 1 set

en = min{e(π);π ∈ Π and there exists Qn ∈ A(Rπ) such that pnQn = P}
and call (en) the ramification sequence of P . Let us say that (en) is slowly growing
if the following condition is satisfied:

(6.7) inf

{
en
pn

;n ≥ 1

}
= 0.

Remark 6.5.
1) Recall that by Serre-Tate theory, cf. [5, p. 331], if A is an Abelian scheme

with ordinary reduction and no Frobenius lift then to each basis of the Tate module
of A mod p one can attach a non-zero point 0 6= P ∈ A(R), reducing to the origin
mod p (hence P is non-torsion), such that

P ∈
∞⋂

n=1

pnA(R);

hence P ∈ A(Ralg) has ramification sequence (en), en = 0, which is, of course, slowly
growing. It would be interesting to have a description of all points in A(Ralg) with
slowly growing ramification sequence.

2) Assume A = Gm. Let α ∈ Zp satisfy α ≡ 1 mod p and α 6≡ 1 mod p2 and
let P = α ∈ R× = Gm(R). We claim that P has ramification sequence (en) with
en ≥ pn (which is, of course, not slowly growing). Indeed let βn ∈ (Ralg)× satisfy
βpn

n = α. Note that βn − 1 is a root of the Eisenstein polynomial

(x+ 1)p
n − α ∈ Zp[x]

so if πn ∈ Π is such that Qn := βn ∈ Gm(Rπn
) then pnQn = P (in additive

notation) and πn has ramification index ≥ pn which proves our claim. Of course,
for ψ the basic δ-character of Gm, we have ψalg(P ) 6= 0.

On the other hand we have the following consequence of Theorem 6.1.

Corollary 6.6. Let A be an abelian scheme over R and let ψ be a δ-character
of A. Assume P ∈ A(Ralg) has a slowly growing ramification sequence. Then
ψalg(P ) = 0.

Proof. Let P have ramification sequence (en). Assume Qn ∈ A(Rπn
), πn ∈ Π,

pnQn = P , e(πn) = en. By Theorem 6.1 there exists κ ≥ 0 such that

ψalg(A(Rπn
)) ⊂ p−[ log en

log p
+κ]Rπn
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hence
ψalg(P ) = pnψalg(Qn) ∈ pn−[ log en

log p
+κ]Rπn

.

We get

vp(ψ
alg(P )) ≥ n− log en

log p
− κ

hence, by 6.7, ψalg(P ) = 0. �

Remark 6.7. It would be interesting to compute the intersection of the kernels of
all ψalg : A(Ralg) → Kalg for A an abelian scheme over R where ψ runs through
the set of δ-characters of A. This kernel contains the division hull of the group
generated by all points that have a slowly growing ramification sequence.

As for δ-modular forms we have the following extension property.

Proposition 6.8. For any δ-character ψ : A(R) → R of an abelian scheme the
function

ψalg : A(Ralg) → Kalg

extends to a δCp-function
ψCp : A(C◦

p) → Cp.

Proof. Since ψalg is a homomorphism it is enough to show that ψalg restricted
to the unit ball B(A, 0, Ralg) centered at the origin 0 ∈ A(k) can be extended to a
Cp-valued continuous function on the unit ball B(A, 0,C◦

p). But this follows from

the fact, cf. [5, Lem. 2.8], Lemma 2.8, that ψ on B(A, 0, R) has the form

ψ(P ) = Λ(
1

p
l(t(P )))

for some Λ =
∑r

i=1 λiφ
i ∈ R[φ], where l is the logarithm of the formal group of A

with respect to the formal tuple of parameters t and t(P ) is the image of t under
the map R[[t]] → R defined by P . �

6.2. Total δ-overconvergence of the forms f ♯. We first recall the construction
of the δ-modular forms f ♯ attached to newforms on Γ0(N) given in [9]. As usual
we let N ≥ 4, (N, p) = 1. Fix, in what follows, a normalized newform f of weight
2 on Γ0(N) over Q and an elliptic curve A over Q of conductor N such that f and
A correspond to each other so there exists a morphism

(6.8) Φ : X0(N) → A

over Q such that the pull back to X0(N) of some 1-form on A over Q corresponds
to f . Let AR be the Néron model of A ⊗Q K over R (which is an elliptic curve).
By the Néron model property there is an induced morphism Φ : X1(N)R → AR.
Let X ⊂ X1(N)R be any Zariski open set (which may be the whole of X1(N)).
Let r be 1 or 2 according as AR has or has not a Frobenius lift. The image of the
canonical δ-character ψ ∈ O(Jr(AR)) in (6.1) (respectively (6.2)) via the map

O(Jr(AR))
Φ∗

−→ O(Jr(X)) = Or(X)

is denoted by
f ♯ ∈ Or(X).

If X is an affine open set disjoint from the cusps then f ♯ ∈ M r
X(0) so f ♯ is a δ-

modular form on X of weight 0 and played a key role in [10, Sec. 3.6]. By Theorem
6.1 and Proposition 6.8 we get, for such an X :
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Corollary 6.9. The δ-function f ♯ on X is totally δ-overconvergent with polar order
bounded by the function λ(x) = log x

log p + 2. In particular, f ♯ is tempered. Moreover

(f ♯)alg extends to a δCp-function

(f ♯)Cp : X(C◦
p) → Cp.
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