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Positive scalar curvature on manifolds with
odd order abelian fundamental groups

BERNHARD HANKE

We introduce Riemannian metrics of positive scalar curvature on manifolds with
Baas–Sullivan singularities, prove a corresponding homology invariance principle
and discuss admissible products.

Using this theory we construct positive scalar curvature metrics on closed smooth
manifolds of dimension at least five which have odd order abelian fundamental groups,
are nonspin and atoral. This solves the Gromov–Lawson–Rosenberg conjecture for a
new class of manifolds with finite fundamental groups.
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1 Summary

We will show the following existence result for positive scalar curvature metrics:

Theorem 1.1 Let M be a closed connected smooth manifold of dimension at least 5
with odd order abelian fundamental group. Assume that M is nonspin and p–atoral
for all primes p dividing the order of �1.M/. Then M admits a Riemannian metric
of positive scalar curvature.
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For the notion of p–atorality see Definition 1.3. For example, a closed connected
oriented manifold M whose fundamental group is generated by fewer than dim.M/

elements is p–atoral for all odd primes p ; see Remark 1.4(v).

Theorem 1.1 contributes to the Gromov–Lawson–Rosenberg conjecture concerning
the existence of positive scalar curvature metrics on closed smooth manifolds; see
Rosenberg [24, Conjecture 1.22]. It solves Problem 5.11 of Botvinnik and Rosenberg [5]
for odd p .

For finite fundamental groups of odd order the Gromov–Lawson–Rosenberg conjecture
can be formulated in the following concise way; see Rosenberg [23, Conjecture 1.2].

Conjecture 1.2 Let M be a closed connected smooth manifold with finite fundamental
group of odd order. If the universal cover of M admits a positive scalar curvature
metric , then M admits a positive scalar curvature metric.

Connected manifolds with odd order fundamental groups are orientable, and they are
spin if and only if their universal covers are spin. Furthermore, simply connected closed
nonspin manifolds of dimension at least 5 admit positive scalar curvature metrics by
Gromov and Lawson [11, Corollary C]. Hence, if Conjecture 1.2 holds, then each closed
connected nonspin smooth manifold of dimension at least 5 with fundamental group
of odd order admits a positive scalar curvature metric, thus strengthening Theorem 1.1.

Conjecture 1.2 holds in dimensions 1 and 2, and it holds in dimension 3 by the
geometrization theorem. In dimension 4 it is false — see Hanke, Kotschick and
Wehrheim [13] — hence this case must be excluded. In dimensions larger than or
equal to 5 it holds for p–atoral manifolds whose fundamental groups are elementary
abelian p–groups, where p is an odd prime. This result is due to Botvinnik and
Rosenberg [5; 6] and the author [12], who discovered and corrected a gap in the
original argument in [5; 6].

By Kwasik and Schultz [16, Theorem 1.8], which can be generalized to the nonspin
case, Conjecture 1.2 holds for manifolds of dimension larger than or equal to 5 whose
fundamental groups have periodic cohomology.

Conjecture 1.2 is false without assuming that �1.M/ is of odd order; see the remarks
after [23, Theorem 1.3]. Both this fact and the failure of the conjecture in dimension 4
illustrate that the metric obtained from �1.M/–averaging a positive scalar curvature
metric on the universal cover of M is in general not of positive scalar curvature.
Conjecture 1.2 remains open in general in dimensions larger than 4.
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Definition 1.3 Let X be a topological space and let p be a prime. A homology class
h 2 Hd .X IZ/ is called p–toral if there exist ` 2N , `� 1, and classes c1; : : : ; cd 2
H1.X IZ=p`/ such that

.c1[ � � � [ cd /.h/¤ 0 2 Z=p`:

Otherwise h is called p–atoral.

A closed oriented manifold M of dimension d is called p–atoral or p–toral, respec-
tively, if the fundamental class ŒM � 2 Hd .M IZ/ has the corresponding property.

Remark 1.4 (i) The d –torus T d D .S1�� � ��S1/d for d � 1 is p–toral for all p ,
and so are all closed manifolds which are oriented bordant, over the classifying
space B.Z=p/d, to the canonical map T d D BZd ! B.Z=p/d.

(ii) The p–atoral homology classes form a subgroup of Hd .X IZ/.

(iii) A closed connected oriented manifold M d is p–toral if and only if ��.ŒM �/ 2

Hd .B�1.M/IZ/ is p–toral, where � WM ! B�1.M/ is the classifying map
of the universal cover of M. This uses the fact that �� W H1.B�1.M/IZ=p`/!

H1.M IZ=p`/ is an isomorphism for all `� 1.

(iv) Let M d be closed connected oriented with finite abelian fundamental group
�1.M/. Let  WM !M be a connected cover corresponding to a Sylow p–
subgroup of �1.M/. Then M is p–toral if and only if M is p–toral. This
follows from the relation

. �.c1/[ � � � [ 
�.cd //.ŒM �/D deg. / � .c1[ � � � [ cd /.ŒM �/

and from the fact that  � W H1.M IZ=p`/! H1.M IZ=p`/ is an isomorphism
for all `� 1 by our assumption on �1.M/.

(v) Let M d be closed connected oriented and let p be an odd prime. Furthermore,
assume that �1.M/ is generated by fewer than d elements. This implies that the
abelianization of �1.M/ is a product of fewer than d cyclic groups. Then M
is p–atoral since for `� 1 the cohomology group H1.M IZ=p`/ is generated
by fewer than d elements and each element in H1.M IZ=p`/ has square zero
for odd p .

(vi) In contrast the orientable real projective space RP2m�1 is 2–toral for all m� 1.

(vii) One may speculate that p–toral manifolds for odd p do not admit positive scalar
curvature metrics. This would yield counterexamples to Conjecture 1.2.

In the spirit of other existence results for positive scalar curvature metrics on high-
dimensional manifolds, the proof of Theorem 1.1 is based on the propagation of positive
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scalar curvature metrics along surgeries of codimension at least three; see Gromov
and Lawson [11] and Schoen and Yau [26]. In the paper at hand this technique is
combined with the realization of singular homology classes by manifolds with Baas–
Sullivan singularities [1]. To this end we introduce and discuss the concept of positive
scalar curvature metrics on manifolds with Baas–Sullivan singularities in Sections 3
and 4, which includes the discussion of admissible products. In some particular cases
positive scalar curvature metrics on simply connected manifolds with Baas–Sullivan
singularities were studied by Botvinnik [4].

The main steps of the proof of Theorem 1.1 are as follows. Let �SO
� denote the oriented

bordism ring and fix a family Q D .Q4i /i�1 of closed oriented manifolds of dimen-
sion 4i whose bordism classes form a set of polynomial generators of �SO

� =torsion,
and each of which is equipped with a metric of positive scalar curvature. Such families
exist by the results in [11]. By [1], after inverting 2 oriented bordism with singularities
in Q is naturally isomorphic to singular homology; see Section 2.

Given a topological space X we will define a subgroup HQ;C
� .X IZ/ � H�.X IZ/,

called the positive homology of X with respect to Q ; see Definition 3.12. Elements in
this group are represented by maps from Baas–Sullivan manifolds admitting positive
scalar curvature metrics to X. In particular, positive homology classes need not
be representable by smooth manifolds. An important ingredient for the proof of
Theorem 1.1 is the following homology invariance principle, which we show at the
end of Section 3:

Theorem 1.5 Let M be a closed connected oriented smooth manifold of dimension
d � 5 with odd order fundamental group and which is nonspin. Let � WM !B�1.M/

be the classifying map. Then M admits a metric of positive scalar curvature if and only
if ��.ŒM �/ 2 HQ;C

d
.B�1.M/IZ/.

It hence remains to show that under the conditions of Theorem 1.1 we have ��.ŒM �/ 2

HQ;C
d

.B�1.M/IZ/ for some orientation ŒM � of M. For this goal we first study the
positive homology HQ;C

� .B�IZ/ for finite abelian p–groups � .

In this case the homology of B� can inductively be computed by an exact Künneth
sequence (with ˛ � 1),

0! H�.B�/˝H�.BZ=p˛/ ��! H�.B� �BZ=p˛/

! Tor.H�.B�/;H�.BZ=p˛//��1! 0:
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The cross product can be realized by admissible products of manifolds with Baas–
Sullivan singularities, and the same is true for the torsion product, which is related to a
homological Toda bracket. The construction of admissible products and Toda brackets
for Baas–Sullivan manifolds with positive scalar curvature is nontrivial and will be
developed in Sections 4 and 5 of our paper.

By a variant of the well-known “shrinking one factor” argument (see Proposition 4.7)
the cross product of two homology classes is positive if one of the factors is positive.
However we can in general show positivity of Toda brackets only if both of the factors are
positive; compare Corollary 5.5. This does not cover Toda brackets involving homology
classes of degree one (represented by circles), even though these Toda brackets are
p–atoral. Although we can show the positivity of many Toda brackets involving degree
one classes by a systematic use of group homomorphisms in Proposition 6.7, there are
some Toda brackets whose positivity remains obscure; see Question 6.10.

In order to bypass this issue we use the fact that the homology class ��.ŒM �/ 2

Hd .B�1.M/IZ/ is of a restricted type, since M is assumed to be a smooth manifold.
This fact is explored in the following result:

Theorem 1.6 Let p be an odd prime and let � be a finite abelian p–group. Then all
p–atoral classes in the image of �SO

� .B�/! H�.B�IZ/ are positive.

The proof of Theorem 1.6 will be provided in Section 8. As a preparation we investigate
the (ordinary) homology of abelian p–groups � in Section 6. For � D .Z=p˛/n and
p–atoral homology classes not divisible by p , the proof of Theorem 1.6 is especially
difficult and relies on the fact that these homology classes can be represented by
generalized products of Z=p˛–lens spaces modulo elements divisible by p . We refer
to Section 7 for further details.

Now let M be a manifold as in Theorem 1.1. Let p be an (odd) prime dividing the
order of �1.M/, let M !M be the connected cover corresponding to the inclusion
of a Sylow p–subgroup � � �1.M/ and let x� WM ! B� be the classifying map. By
Remark 1.4(iv) the manifold M is p–atoral, and by construction x��.ŒM �/ 2 Hd .B�/
lies in the image of �SO

d
.B�/! Hd .B�/. Using Theorem 1.6 the class x��.ŒM �/ 2

Hd .B�/ is positive. Hence also the class

Œ�1.M/ W�� ���.ŒM �/D  �
�
x��.ŒM �/

�
2 Hd .B�1.M//

is positive, where Œ�1.M/W�� denotes the index of � in �1.M/ and  WB�!B�1.M/

is induced by the subgroup inclusion � � �1.M/.
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By the Chinese remainder theorem we find p̨ 2 Z, where p runs through the primes
dividing the order of �1.M/, such that 1D

P
p p̨ � Œ�1.M/ W�p�, where �p � �1.M/

denotes some Sylow p–subgroup. Hence

��.ŒM �/D
X
p

p̨ � Œ�1.M/ W�p� ���.ŒM �/ 2 HQ;C
d

.B�1.M/IZ/;

finishing the proof of Theorem 1.1.

We conjecture that Theorem 1.1 also holds for spin manifolds with vanishing ˛–
invariants. A proof should be based on real connective K–homology instead of
ordinary homology; compare Rosenberg and Stolz [25]. However our homological
computations do not carry over to this case in an obvious way. Hence we leave the spin
analogue of Theorem 1.1 for later investigation.

Acknowledgements This project was initiated when I was visiting the University
of Notre Dame some years ago. To Stephan Stolz I owe the idea to study positive
scalar curvature metrics on manifolds with Baas–Sullivan singularities for proving
Theorem 1.1. Substantial parts of this research were carried out at the MPI Bonn and
the Courant Institute of Mathematical Sciences (NYU). The hospitality of the named
institutions is gratefully acknowledged. I appreciate a number of helpful suggestions
by an anonymous referee, which led to a significant improvement of the manuscript.
Many thanks also go to John Bourke from the MSP production team.

This research has been supported by the Special Priority Programme SPP 2026 Geometry
at infinity funded by the DFG.

2 Review of manifolds with Baas–Sullivan singularities

We recall some terminology, following mainly [8, Section 3.3], and fix some notation.
Smooth d –dimensional manifolds with corners V are modeled on subsets N.k; U /D
U � Œ0; 1/k � Rd for 0 � k � d , where U � Rd�k is open, with smooth transition
maps of the form .x; t1; : : : ; tk/ 7! .x0; t�.1/; : : : ; t�.k// for some permutation � . For
a precise definition we refer to [8, Definition 3.14] and the subsequent discussion. In
particular, manifolds with corners are equipped with preferred local collar structures.1

The subset U � f0g �N.k; U / defines the points of codimension k in N.k; U /.

Let V be a d –dimensional manifold with corners. Every point x 2 V d has a codimen-
sion 0� c.x/� d , defined with respect to any local chart around x . This induces a

1Some authors use different conventions; compare for instance [15, Definition 2.2].
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decomposition of V into smooth (in general noncompact) connected submanifolds of V ,
called strata, of various codimensions. Each stratum admits a canonical completion
(by adding boundary points to local models), which is itself a manifold with corners;
see [8, Definition 3.17]. The union of strata of codimension at least 1 in V is denoted
by @V .

As usual we require by definition that each x 2 V lies in the closure of exactly c.x/
codimension-1 strata of V . In this case the completions of strata coincide with their
respective closures in V (note that this is not true for the 1–gon, for example), which
are called connected faces of V .

Manifolds with Baas–Sullivan singularities were introduced in [1]. Let us recall some
features of the theory which are relevant for our discussion. A decomposed manifold is
a manifold V with corners together with a decomposition

@V D @0V [ � � � [ @nV

for some n 2N , where each @iV is a disjoint union of connected codimension-1 faces
of V which is globally collared in V and each connected codimension-1 face of V
is contained in exactly one @iV ; see [1, Definition 2.1]. Each @iV has an induced
structure of a decomposed manifold by setting @j .@iV /D @iV \ @jV for j ¤ i , and
@j .@jV /D∅ for 0� j � n; compare [1, page 283].

Definition 2.1 We call the decomposed manifold @0V the boundary of V . If V is
compact and @0V D∅, then V is called closed.

Similar to [1, Definition 2.2] we fix a family of closed smooth manifolds P D

.P0D�; P1; P2; : : : /, called singularity types. For n2N , we set PnD .P0; : : : ; Pn/.
By definition, a Pn–manifold is a family of decomposed manifolds

AD .A.!//!�f0;:::;ng;

where @A.!/D @0A.!/[ � � � [ @nA.!/, with @iA.!/D∅ for i 2 ! , together with
isomorphisms @iA.!/ŠA.!; i/�Pi of decomposed manifolds for i 2f0; : : : ; ngn! .2

Here we set @j .A.!; i/�Pi / WD @jA.!; i/�Pi for 0� j � n and we write A.!; i/
instead of A.![fig/. We also use the shorthand A for the decomposed manifold A.∅/.

By definition the following compatibility condition is required to hold:

2Some authors use the “Bockstein” notation ˇ!A instead of A.!/ .
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Condition 2.2 For all i; j … ! with i ¤ j, the isomorphisms

@iA.!/\ @jA.!/D @j .@iA.!//Š @j .A.!; i/�Pi /D @jA.!; i/�Pi

Š A.!; i; j /�Pj �Pi ;

@iA.!/\ @jA.!/D @i .@jA.!//Š @i .A.!; j /�Pj /D @iA.!; j /�Pj

Š A.!; j; i/�Pi �Pj

coincide after composing one of them with the interchange map Pj �Pi ! Pi �Pj .

Note that each Pn–manifold A can be regarded as a PnC1–manifold in a canonical
way by setting @nC1A WD∅. For a Pn–manifold A we define the union of singular
strata of A as

Sing.A/ WD
[

1�i�n

@iA;

so that, obviously, @AD @0A[Sing.A/ and Sing.@0A/D @0A\Sing.A/.

There is a bordism theory �Pn
� .�/, which we call bordism with singularities in Pn —

compare [1, page 284ff], where this theory is denoted by M.Pn/�.�/. Given a pair of
topological spaces .X; Y �X/, elements in �Pn

d
.X; Y / are by definition represented

by continuous maps f W Ad !X, where (see [1, Definitions 2.2 and 2.3])

(i) A is a compact d –dimensional Pn–manifold;

(ii) on local models U � Œ0; 1/k the map f factors through the projections

U � Œ0; 1/k
prU
�! U I

(iii) for all i 2 f1; : : : ; ng the restriction f j@iA factors as

@iAŠ A.i/�Pi
prA.i/
���! A.i/!X I

(iv) f .@0A/� Y .

Definition 2.3 A continuous map f W Ad !X with properties (ii) and (iii) is called
compatible with the singularity structure of Ad.

Definition 2.4 The homology theory obtained in the limit n!1 is called bordism
with singularities in P and denoted by �P

� .�/.

There is a straightforward generalization to bordism with tangential structures. In this
paper we will be working with oriented bordism with singularities �SO;Pn

� .�/ with
n� 0 or �SO;P

� .�/, where we assume that

� all singularity types Pi are even-dimensional;
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� all Pi and A.!/ are oriented;

� for i … ! and with respect to the induced orientation on @iA.!/ (determined
by the outward normal) the given isomorphism @iA.!/ Š A.!; i/ � Pi is
orientation-preserving if an even number of elements in ! are larger than i , and
orientation-reversing otherwise.

In a similar way one may define spin bordism with singularities �Spin;P
� .�/, but this

theory will not be considered in this paper.

Construction 2.5 For n � 0 we shall define natural transformations of homology
theories

u W�SO;Pn
� .�/! H�.�IZ/:

Let .X; Y / be a pair of topological spaces and let f W Ad !X represent an element
in �SO;Pn

d
.X; Y / with a connected oriented compact Pn–manifold A.

Let A0 be obtained from A by passing to the quotient space resulting from the iden-
tifications .x; p/ � .x; p0/ on @iA D A.i/ � Pi for i D 1; : : : ; n, x 2 A.i/ and
p; p0 2 Pi . Intuitively this process may be regarded as “coning off” the singularity
types P1; : : : ; Pn in A and thereby introducing genuine singularities. It is shown by a
straightforward computation that Hd .A0; .@0A/0IZ/ŠZ (recall dimPi � 2 for i � 1),
with a preferred generator ŒA0; .@0A/0� corresponding to the given orientation of A.
By assumption f factors through a map f 0 W .A0; .@0A/0/! .X; Y /, and we define

(1) u.Œf W A!X�/ WD f 0�
�
ŒA0; .@0A/

0�
�
2 Hd .X; Y IZ/:

Passing to the limit n!1, we also obtain a natural transformation

u W�SO;P
� .�/! H�.�IZ/:

By [21] the oriented bordism ring �SO
� modulo torsion is a polynomial ring. There are

closed oriented manifolds Q1;Q2; : : : with dimQi D 4i such that

�SO
� =torsionŠ ZŒŒQ1�; ŒQ2�; : : : �;

where ŒQi � 2�SO
4i denotes the bordism class represented by Qi . Since �SO

� contains
no odd torsion [17], the sequence .ŒQi �/i�1 is a regular sequence in �SO

� ˝Z
�
1
2

�
.

Setting Q WD .Q0 D �;Q1;Q2; : : : /, we arrive at the following fundamental result
from [1]:
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Proposition 2.6 For all .X; Y / the natural transformation u defined in (1) induces an
isomorphism

u W�SO;Q
� .X; Y /˝Z

�
1
2

�
! H�

�
X; Y IZ

�
1
2

��
:

Corollary 2.7 Let � be a finite group of odd order. Then the map

u W�SO;Q
� .B�/! H�.B�IZ/

is surjective.

Proof This holds in degree 0, when source and target of u are equal to Z. Let d � 1.
Since � is of odd order, the homology group Hd .B�IZ/ is abelian of odd order.
Hence, for any m0 � 0 and any x 2Hd .B�IZ/ there exists m�m0 with 2m �x D x .
The claim is hence implied by Proposition 2.6 by clearing denominators.

In other words, each homology class in H�.B�IZ/ is represented by a Qn–manifold
for some n (which has to be larger than 0 in general; compare Example 7.6). Next we
will introduce and study the notion of positive scalar curvature metrics on these objects.

3 Positive scalar curvature on manifolds with Baas–Sullivan
singularities

Definition 3.1 An admissible Riemannian metric on a manifold with corners V d is a
smooth Riemannian metric g on V which on each local model U � Œ0; 1/k restricts to
a product metric gU ˚ �. Here and in the following � denotes the standard Euclidean
metric and gU is some Riemannian metric on U �Rd�k .

Definition 3.2 A family of Riemannian singularity types is a family of singularity
types PD .P0D�; P1; P2; : : : / together with Riemannian metrics hi on Pi for i � 1.

We call a family of Riemannian singularity types positive if each metric hi for i � 1
is of positive scalar curvature.

Definition 3.3 Let P be a family of Riemannian singularity types and let A be a
Pn–manifold, possibly with boundary. An admissible metric g on ADA.∅/ is called
P –compatible if for each ! � f1; : : : ; ng there is an admissible metric g.!/ on A.!/
such that g D g.∅/ and the metric g.!/ restricts to the product metric g.!; i/˚ hi
on @iA.!/Š A.!; i/�Pi for i 2 f1; : : : ; ng n! .

Geometry & Topology, Volume 25 (2021)



Positive scalar curvature on manifolds with odd order abelian fundamental groups 507

Lemma 3.4 Each Pn–manifold admits a P –compatible metric.

Proof Use downward induction on the cardinality of ! � f1; : : : ; ng, starting with
j!j D n.

Construction 3.5 (scaling P –compatible metrics) Let P be a family of Riemannian
singularity types and let A be a Pn–manifold together with a P –compatible metric g .
For � > 0 the scaled metric � �g is not P –compatible unless �D 1. The following
construction will resolve this issue.

We fix, once and for all, a smooth cut-off function � W Œ0; 1�! Œ0; 1� equal to 0 on�
0; 1
3

�
and equal to 1 near 1.

Let � > 0 and ı � 3 be real numbers. For ! � f1; : : : ; ng, say ! D .i1; : : : ; ik/ with
1 � i1 < � � � < ik � n, we obtain a k–parameter family .gt /tD.ti1 ;:::;tik /2Œ0;ı�k of
Riemannian metrics on @i1 � � � @ikAŠ A.!/�Pi1 � � � � �Pik , where

(2) gt D � �g.!/˚
M
i2!

�
�.ti=ı/ ��C .1��.ti=ı//

�
hi :

We abbreviate P! WDPi1�� � ��Pik . With the Euclidean metric � on Œ0; ı�k we obtain
a smooth Riemannian metric g!;�;ı on A.!/�P! � Œ0; ı�k defined by

g!;�;ı.a; p; t/ WD gt .a; p/˚ �:

Choose some monotonically increasing diffeomorphism � W Œ0; 1�! Œ0; ı� which has
derivative

p
� near 1 and denote the induced diffeomorphisms Œ0; 1�k! Œ0; ı�k by �

as well.

For ! � f1; : : : ; ng, if j!j D k , then we replace the metric � �
�
g.!/˚

L
i2! hi ˚ �

�
on the local model A.!/�P!� Œ0; 1/k �A by the metric g!;�;ı pulled back along the
diffeomorphism id�id�� W A.!/�P!�Œ0; 1/k!A.!/�P!�Œ0; ı/

k . Continuing with
increasing kD0; : : : ; n, this construction results in a smooth metric on A. Furthermore,
by the choice of � and since ı � 3, there are induced local corner models on A with
respect to which this metric is P –compatible.

This new metric on A is denoted by g.�;ı/ and is called the .�; ı/–scaling of g . The
diffeomorphism � and hence the metric g.�;ı/ can be assumed to depend smoothly
on � and ı . Note that g.�;ı/.!/D g.!/.�;ı/ for ! � f1; : : : ; ng.

For nD 2 and ı D 3 the situation is illustrated in Figure 1, where the shaded region
indicates the collar near Sing.A/ for the scaled metric g.�;ı/ .
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�g.1; 2/˚h1˚�h2

�g.1; 2/˚�h1˚�h2

�g.2/˚�h2

�g.1/˚�h1

�g.1/˚h1 �g.1; 2/˚h1˚h2

�g.1; 2/˚�h1˚h2

�g.2/˚h2

�g.∅/

Figure 1: P2–manifold A with scaled metric g.�;ı/ .

Definition 3.6 Let P be a family of Riemannian singularity types, let A be a Pn–
manifold and let g be a P –compatible metric on A. We say that g is singularity-
positive if for all 1 � i � n the product metric g.i/˚ hi on @iA D A.i/�Pi is of
positive scalar curvature.

Proposition 3.7 Let P be positive, let A be a compact Pn–manifold and let g be
a P –compatible metric on A. Then there exists � � 1 and ı0 � 3 such that for all
ı � ı0 the metric g.�;ı/ is singularity-positive.

Proof Since the metrics h1; : : : ; hn are of positive scalar curvature and A is compact
we find some �� 1 such that the metric � �g.i/˚hi on @iADA.i/�Pi is of positive
scalar curvature for all 1� i � n.

By the additivity of scalar curvature in Riemannian products and since � � 1 the
metric gt in (2) is of positive scalar curvature whenever tij �

1
3
ı for some 1� j � k .

For ! � f1; : : : ; ng with j!j D k , we obtain Riemannian submersions

.A.!/�P! � Œ0; ı�
k; g!;�;ı/! .Œ0; ı�k; �/;

whose fibers are equipped with the metrics gt .

By the O’Neill formula for the scalar curvature in Riemannian submersions [2, (9.37)],
we find ı0 � 3 such that for all ı � ı0 the metric g!;�;ı is of positive scalar curvature
on the subset˚

.a; p; t/ 2 A.!/�P! � Œ0; ı�
k
j 0� tij �

1
3
ı for some 1� j � k

	
:

This implies the assertion of Proposition 3.7.
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We need the following variation of Definition 3.6:

Definition 3.8 Let P be a family of Riemannian singularity types, let A be a Pn–
manifold and let g be a P –compatible metric on A. We say that g is positive if for
all ! � f1; : : : ; ng (including ! D∅) the metric g.!/ on A.!/ is of positive scalar
curvature.

This condition, which is stronger than just requiring the metric g on A to be of positive
scalar curvature, will become important in the proof of the next proposition. Note that
positive metrics are singularity-positive in the sense of Definition 3.6.

Proposition 3.9 Let P be a family of singularity types and A be a compact Pn–
manifold together with a P –compatible positive metric g . Let ƒ � .0;1/ be a
compact subset and let s > 0.

(i) Let P be positive. Then there exists ı0 � 3 such that for all � 2ƒ and ı � ı0
the scaled metric g.�;ı/ is positive.

(ii) There exists 0 < �0 � 1 such that for all 0 < � � �0 there exists ı0 � 3 such
that for all ı � ı0 and ! � f1; : : : ; ng we have scalg.�;ı/.!/ > s .

Proof For !�f1; : : : ; ng the metric g.!/ is of positive scalar curvature by assumption
and hence (2) implies, assuming positivity of P in case (a):

(a) For all � 2ƒ and t 2 Œ0; ı�k we have scalgt > 0.

(b) There exists 0 < �0 � 1 such that for all 0 < � � �0 and t 2 Œ0; ı�k we have
scalgt > s .

Using the O’Neill formula and the compactness of ƒ this implies, on AD A.∅/:

(a) There exists ı0 � 3 such that for � 2ƒ and ı � ı0 we have scalg.�;ı/.∅/ > 0.

(b) There exists 0 < �0 � 1 such that for all 0 < � � �0 there exists ı0 � 3 such
that for all ı � ı0 we have scalg.�;ı/.∅/ > s .

Now, for any � � f1; : : : ; ng, a similar argument applies to A.�/ instead of ADA.∅/
so that we can pass to the maximum of the resulting constants ı0 in (a), and to the
minimum of the resulting constants �0 and the maximum of the resulting constants ı0
in (b), in order to prove the required lower estimates of scalar curvatures on all A.�/.
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Corollary 3.10 Let P be positive , let A be a compact Pn–manifold and let g be a
P –compatible metric on A. Furthermore , let C � @0A be a union of components of
@0A and assume that the restriction of g to C is positive (in the sense of Definition 3.8).

Then there exists �� 1 and ı0 � 3 such that for all ı � ı0 the scaled metric g.�;ı/ is
singularity-positive and still restricts to a positive metric on C.

Proof Let � and ı0 be chosen as in Proposition 3.7. The claim follows from
Proposition 3.9(i) applied to A WD C and ƒ WD f�g, possibly after passing to some
larger ı0 .

We can now show the following bordism principle:

Proposition 3.11 Let P be a positive family of singularity types and let V be a
compact Pn–manifold with dimV � 6. Assume that the boundary @0V decomposes
as a disjoint union @0V D AtM, where A is a closed Pn–manifold equipped with
a P –compatible positive metric and M is a closed smooth manifold. Furthermore,
assume that the inclusion M ,! V is a 2–equivalence.

Then M carries a Riemannian metric of positive scalar curvature.

Proof By Corollary 3.10 we find a P –compatible singularity-positive metric g on V
which restricts to a positive metric on A� @0V .

For 1� `� k � nC 1 we consider the face

@`Œ0; 1�
k
WD f.t1; : : : ; tk/ 2 Œ0; 1�

k
j t` D 1g � Œ0; 1�

k :

Each @`Œ0; 1�k can be identified with Œ0; 1�k�1 in a canonical way and @`Œ0; 1�k is
equipped with a collar of width 0:1 equal to

@`Œ0; 1�
k
� .0:9; 1�D f.t1; : : : ; tk/ 2 Œ0; 1�

k
j 0:9 < t` � 1g � Œ0; 1�

k :

For 1 � k � nC 1 we fix smooth hypersurfaces H k�1 � Œ0; 1�k homeomorphic to
compact .k�1/–balls subject to the following conditions:

� H 0 D
˚
1
2

	
� Œ0; 1�.

� H k�1 is invariant under permutations

Œ0; 1�k! Œ0; 1�k; .t1; : : : ; tk/ 7! .t�.1/; : : : ; t�.k//:

� For 2 � k � nC 1, the hypersurface H k�1 is of product form in the collar
neighborhood of width 0:1 of each codimension-1 face @`Œ0; 1�k � Œ0; 1�k for
1� `� k , and meets this face in H k�2 .
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� The metric 
k�1 on H k�1 induced from the Euclidean metric � on Œ0; 1�k is
of nonnegative scalar curvature.

One explicit construction of H k�1 is by attaching a C 1–collar of width 1
5

to the
shifted spherical segment

�
4
5
; : : : ; 4

5

�
�
˚
t 2 Œ0; 1�k j ktkD 3

10

	
� Œ0; 1�k and smoothing.

Replacing U � Œ0; 1/k by U �H k�1 in local corner models of V for increasing
1 � k � nC 1, we obtain a smooth hypersurface @W � V contained in the collar
neighborhood of @V , where we recall that @V is the set of points of codimension at
least 1 in V . (We write H k�1 for H k�1 \ Œ0; 1/k .) The hypersurface @W is the
boundary of a smooth embedded codimension-0 submanifold W of V , which we may
think of V with “smoothened corners”.

We obtain a decomposition @W D C0 tC1 , where C0 and C1 are disjoint smooth
submanifolds of @W with C1 DM. Furthermore, C1 ,!W is a 2–equivalence.

We claim that the smooth manifold C0 carries a Riemannian metric of positive scalar
curvature such that Proposition 3.11 follows from the usual bordism principle for
positive scalar curvature metrics; see [28, Extension Theorem 3.3].

By assumption the induced metrics on the local models V.!/ �
Q
i2! Pi � Œ0; 1/

k

of V for ! � f0; : : : ; ng, ! \ f1; : : : ; ng ¤ ∅ with j!j D k are of product form
g.!/˚

L
i2! hi ˚ � (here we set h0 D 0) and of positive scalar curvature, as g is

singularity-positive. Furthermore, the metric g is of positive scalar curvature in the
collar neighborhood A�P0�Œ0; 1/DA�Œ0; 1/, as g restricts to a positive metric on A.

Since the metrics 
k�1 on H k�1 have nonnegative scalar curvature this implies that
the restricted metrics g.!/˚

L
i2! hi ˚ 
k�1 are of positive scalar curvature on

V.!/�
Q
i2! Pi �H k�1 for these ! as well as on A�H 0 D A�

˚
1
2

	
.

Altogether we obtain a positive scalar curvature metric on C0 , as required.

Let Q WD .Q0 D�;Q1;Q2; : : : / be a family of singularity types as in Proposition 2.6.
For i�1 we can assume that Qi is equipped with a positive scalar curvature metric hi —
compare [11] — such that Q is a positive family of singularity types in the sense of
Definition 3.2.

Definition 3.12 Let X be a topological space. A homology class h 2 Hd .X IZ/ is
called positive with respect to Q if there is a bordism class Œf W Ad !X� 2�

SO;Q
d

.X/

with the following properties:

� A admits a Q–compatible positive metric (see Definition 3.8).

Geometry & Topology, Volume 25 (2021)



512 Bernhard Hanke

� u.Œf W Ad ! X�/ D h, where u W�
SO;Q
d

.X/ ! Hd .X IZ/ is as defined in
Construction 2.5.

The subgroup of all positive homology classes with respect to Q is denoted by
HQ;C
d

.X IZ/.

Note that a priori the subgroup of positive homology classes depends on the choice
of the metrics hi , and that positive homology is functorial in that a map X ! Y of
topological spaces induces a map HQ;C

� .X IZ/! HQ;C
� .Y IZ/.

Proof of Theorem 1.5 First assume that M is equipped with a positive scalar curvature
metric g . Regarding M as a Baas–Sullivan manifold with no singular strata, g is a pos-
itive metric on M in the sense of Definition 3.8. Hence ��.ŒM �/2HQ;C

d
.B�1.M/IZ/,

as required.

For the other implication assume ��.ŒM �/2HQ;C
d

.B�1.M/IZ/. We write ��.ŒM �/D

u.Œf W Ad ! B�1.M/�/, where A is equipped with a Q–compatible positive metric.

Using an inclusion �! B�1.M/, the manifold M represents a class

ŒM � 2�SO
d .B�1.M//:

Then ˇ WD Œ� WM !B�1.M/�� ŒM �2 z�SO
d
.B�1.M//, the reduced oriented bordism

group of B�1.M/. Since z�SO
d
.B�1.M// is a finite abelian group of odd order by

assumption on �1.M/ and by the Atiyah–Hirzebruch spectral sequence, we find, for
each m0 � 0, an m�m0 with 2m �ˇ D ˇ .

Each element in the kernel of the map

u W�
SO;Q
d

.B�1.M//! Hd .B�1.M/IZ/

in Corollary 2.7 is 2–power torsion by Proposition 2.6, and hence, using d > 0, there
is some m0 � 0 with

2m0 �
�
Œf W Ad ! B�1.M/��ˇ

�
D 0 2�

SO;Q
d

.B�1.M//:

Hence there is an m�m0 with

(3) 2m � Œf W Ad !B�1.M/�D ˇD Œ� WM !B�1.M/�� ŒM � 2�
SO;Q
d

.B�1.M//:

Since d � 5, we can represent ŒM �2�SO
d

by a closed oriented smooth d –manifold N
with a positive scalar curvature metric by [11, Corollary C]. By (3) there exists a
compact connected oriented Q–bordism V !B�1.M/ between M tN !B�1.M/

and
`
2m.f W A! B�1.M//. Here N denotes N with the reversed orientation.
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We can assume that the inclusion M ,! V is a 2–equivalence by applying surgeries
to the interior of V . For this we observe that the induced homomorphism �1.V /!

�1.B�1.M// is surjective and has finitely generated kernel since �1.V / is finitely
generated and �1.M/ is finite by assumption. This kernel can hence be killed by
surgeries along finitely many embedded circles in the interior of V with trivial normal
bundles, thus achieving �1.M/Š�1.V /. Since now �1.V / is finite and V is compact,
�2.V / is finitely generated and so is the cokernel of �2.M/!�2.V /. Moreover, each
element in this cokernel can be represented by an embedded 2–sphere in the interior
of V with trivial normal bundle, the universal cover of M being nonspin since M is
nonspin and �1.M/ is of odd order. We can hence apply finitely many surgeries to the
interior of V to make �2.M/! �2.V / surjective, thus achieving our goal.

Now the assertion of Theorem 1.5 follows from Proposition 3.11.

Remark 3.13 The language developed in this section allows an alternative approach
to the results in [10].

4 Admissible products

The cartesian product of two manifolds A and B with corners carries an induced
structure of a manifold with corners. However, the construction of the product of
Pn–manifolds as a Pn–manifold is more involved.

In order to illustrate the issue let A and B be smooth manifolds with boundaries
diffeomorphic to the closed manifold P1 . This induces the structure of P1–manifolds
on A and B, where A.1/DB.1/Df�g. We obtain @.A�B/D .P1�B/[.A�P1/, but
this does not induce the structure of a P1–manifold on A�B (even after straightening
the �

2
–angle at @A�@B ), since the P1–factors on the two pieces of @.A�B/ correspond

to different P1–factors in the intersection .P1 �B/\ .A�P1/D P1 �P1 . Therefore
an additional construction is required, which, roughly speaking, interchanges these two
factors at the gluing region.

This problem was discussed in [3; 18; 20; 27], resulting in an obstruction of order at
most 2 if P1 is of even dimension. In the following we present an explicit geometric
construction, which somewhat differs from the mentioned sources and is well adapted
to our purpose. We will work in an oriented setting and in particular assume that all
singularity types Pi for i � 1 are even-dimensional.
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In the following we fix n� 0. Let A and B be Pn–manifolds with decompositions

@AD @0A[ � � � [ @nA; @B D @0B [ � � � [ @nB:

This includes the case that @iAD∅ or @iB D∅ for some i D 0; : : : ; n. In particular,
A or B are allowed to be smooth manifolds without singular strata.

In the remainder of the construction we fix a two-dimensional compact hexagonal
manifold X with corners; see the dark gray region in Figure 2.

For ! � f1; : : : ; ng we will construct a manifold with corners A�! B, which, intu-
itively speaking, is the cartesian product A�B with all codimension-2 singularities
@iA� @iB D .A.i/�B.i//�Pi �Pi for i 2 ! resolved. The construction runs by
induction on the cardinality of ! .

For !D∅ we set A�!B WDA�B, the cartesian product of A and B with its induced
structure of a manifold with corners. In addition we smoothen the �

2
–angle appearing

at @0A� @0B.

Assume that 1� `� n and A�! B has been constructed whenever j!j D `� 1. Let
! � f1; : : : ; ng with j!j D `.

Choose some i 2 ! and consider the collar neighborhood

.@iA� Œ0; 1//�!nfig .@iB � Œ0; 1//D .@iA�!nfig @iB/� Œ0; 1/
2
� A�!nfigB

of the codimension-2 face @iA�!nfig @iB � A�!nfig B. The manifold A�! B is
obtained by removing this collar neighborhood from two disjoint copies of A�!nfigB
and gluing in the handle .@iA�!nfig @iB/�X as indicated in Figure 2, where X is
drawn in dark gray color. The factor Pi �Pi appearing in

@iA�!nfig @iB D .A.i/�!nfigB.i//�Pi �Pi

is glued to the left-hand copy of .A�!nfig B/ n
�
.@iA�!nfig @iB/� Œ0; 1/

2
�

by the
identity map, and to the right-hand copy by the interchange map .p1; p2/ 7! .p2; p1/.

The interchange map Pi �Pi ! Pi �Pi is orientation-preserving, since Pi is even-
dimensional, and hence the manifold A�! B carries an induced orientation.

Remark 4.1 (i) If @iAD ∅ or @iB D ∅, then A�! B consists of two disjoint
copies of A�!nfigB.

(ii) The manifold A�! B does not depend on the choice of i 2 ! , up to canonical
diffeomorphism.
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.@iA�!nfig@iB/�Œ0; 1/
2

.@iA�!nfig@iB/�X

.@iA�!nfigB/�Œ0; 1/

.A�!nfig@iB/�Œ0; 1/

.A�!nfig@iB/�Œ0; 1/

.@iA�!nfigB/�Œ0; 1/

Figure 2: Construction of admissible products.

For i 2 ! we set

@i .A�! B/ WD 2 � ..@iA�!nfigB/[@iA�!nfig@iB .A�!nfig @iB//;

where the two copies on the right-hand side correspond to the upper and lower thick
boundary pieces in Figure 2. Notice that

.@iA�!nfigB/\ .A�!nfig @iB/D @iA�!nfig @iB D .A.i/�!nfigB.i//�Pi �Pi

and that the identification along this subspace interchanges the two factors in Pi �Pi ,
thus realizing our initial goal.

In particular, we get an induced isomorphism

@i .A�! B/Š .A�! B/.i/�Pi ;

where

(4) .A�! B/.i/ WD 2 �
�
.A�!nfigB.i//[.A.i/�!nfigB.i//�Pi .A.i/�!nfigB/

�
:

This concludes the induction step.

Definition 4.2 The manifold A z�B WD A�f1;:::;ngB is called the admissible product
of A and B.
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Proposition 4.3 The admissible product A z� B carries an induced structure of a
Pn–manifold.

Proof By construction A z�B carries the structure of a manifold with corners (with
respect to appropriate local models) and is a decomposed manifold with decomposition
@.A z�B/D @0.A z�B/[ � � � [ @n.A z�B/, where we set

@0.A z�B/ WD .@0A z�B/[@0Az�@0B .A z� @0B/:

(Recall the smoothening of the �
2

–angle at @0A�@0B at the initial stage of the inductive
construction.)

It remains to define the decomposed manifolds .A z�B/.!/ for ! � f1; : : : ; ng in such
a way that the compatibility condition, Condition 2.2, for decomposed manifolds holds.
First we study the case when ! has two elements.

Let i; j 2 f1; : : : ; ng DW Œn� with i ¤ j. By (4) we have

@j @i .A z�B/

D 2 �
�
@j .A�Œn�nfigB.i//[.@j .A.i/�Œn�nfigB.i///�Pi @j .A.i/�Œn�nfigB/

�
�Pi

D 2 �
�
.A�Œn�nfigB.i//.j /[.A.i/�Œn�nfigB.i//.j /�Pi .A.i/�Œn�nfigB/.j /

�
�Pj �Pi ;

and likewise

@i@j .A z�B/

D 2 �
�
@i .A�Œn�nfj gB.j //[.@i .A.j /�Œn�nfjgB.j ///�Pj @i .A.j /�Œn�nfj gB/

�
�Pj

D 2 �
�
.A�Œn�nfj gB.j //.i/[.A.j /�Œn�nfjgB.j //.i/�Pj .A.j /�Œn�nfj gB/.i/

�
�Pi �Pj :

Furthermore,

.A�Œn�nfigB.i//.j /

D 2 �
�
.A�Œn�nfi;j gB.i; j //[.A.j /�Œn�nfi;jgB.i;j //�Pj .A.j /�Œn�nfi;j gB.i//

�
;

.A.i/�Œn�nfigB/.j /

D 2 �
�
.A.i/�Œn�nfi;j gB.j //[.A.i;j /�Œn�nfi;jgB.j //�Pj .A.i; j /�Œn�nfi;j gB/

�
;

and likewise

.A�Œn�nfj gB.j //.i/

D 2 �
�
.A�Œn�nfi;j gB.i; j //[.A.i/�Œn�nfi;jgB.i;j //�Pi .A.i/�Œn�nfi;j gB.j //

�
;

.A.j /�Œn�nfj gB/.i/

D 2 �
�
.A.j /�Œn�nfi;j gB.i//[.A.i;j /�Œn�nfi;jgB.i//�Pi .A.i; j /�Œn�nfi;j gB/

�
:
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Similar computations apply to .A.i/�Œn�nfigB.i//.j / and .A.j /�Œn�nfj gB.j //.i/.

Defining .A z�B/.i; j / as

4 �
�
.A�Œn�nfi;j gB.i; j //[ .A.i/�Œn�nfi;j gB.j //[ .A.j /�Œn�nfi;j gB.i//

[ .A.i; j /�Œn�nfi;j gB/
�
;

where we glue

� A�Œn�nfi;j gB.i; j / and A.i/�Œn�nfi;j gB.j / along .A.i/�Œn�nfi;j gB.i; j //�Pi ,

� A�Œn�nfi;j gB.i; j / and A.j /�Œn�nfi;j gB.i/ along .A.j /�Œn�nfi;j gB.i; j //�Pj ,

� A.i; j /�Œn�nfi;j gB and A.j /�Œn�nfi;j gB.i/ along .A.i; j /�Œn�nfi;j gB.i//�Pi ,

� A.i; j /�Œn�nfi;j gB and A.i/�Œn�nfi;j gB.j / along .A.i; j /�Œn�nfi;j gB.j //�Pj ,

we hence obtain

@j @i .A z�B/Š .A z�B/.i; j /�Pi �Pj Š @i@j .A z�B/:

Arguing in a similar manner for arbitrary ! � f1; : : : ; ng, we can work with

(5) .A z�B/.!/ WD 2j!j �
[
!0�!

A.!0/�f1;:::;ngn! B.! n!
0/

with gluings of components associated to !0; !00 � ! with j!04!00j D 1 (cardinality
of symmetric difference) in order to identify A z�B as a Pn–manifold.

Let X and Y be topological spaces, let Ad and Be be closed oriented Pn–manifolds
of dimensions d and e , and let ˛ W A!X and ˇ W B!Y be maps which are compatible
with the singularity structures of A and B (see Definition 2.3). Then the induced map
˛ �ˇ W A�B!X �Y is compatible with our inductive construction of A z�B and
we obtain an induced map ˛ z�ˇ W A z�B! X �Y . This results in a bilinear map of
bordism theories

z�W�
SO;Pn
d

.X/��SO;Pn
e .Y /!�

SO;Pn
dCe

.X �Y /

(the theories �SO;Pn
� .�/ were introduced after Definition 2.4) and this construction

extends to relative bordism groups. With the natural transformation u W�SO;Pn
� .�/!

H�.�/ from Construction 2.5 we hence obtain the following result:
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Proposition 4.4 Let � denote the cross product in singular homology. Then for all
pairs of topological spaces .X; S/ and .Y; T / we have a commutative diagram

�
SO;Pn
d

.X; S/��
SO;Pn
e .Y; T /

z�
//

u�u

��

�
SO;Pn
dCe

.X �Y;X �T [S �Y /

u

��

Hd .X; S/�He.Y; T /
.a;b/7!2n�.a�b/

// HdCe.X �Y;X �T [S �Y /

Remark 4.5 The factor 2n appears even if A or B are without singular strata; see
Remark 4.1(i). In particular, the product on �SO;Pn

� .�/ is not unital for n� 1.

Now, choose Riemannian metrics hi on Pi 2P for i � 1. Let A and B be Pn–
manifolds and let g and h be P –compatible metrics on A and B in the sense of
Definition 3.3. Let �;�> 0 and ı; �� 9. With this choice of ı and � , the local models
U � Œ0; 1/k on A and B, equipped with the scaled metrics g.�;ı/ and h.�;�/ from
Construction 3.5, can be canonically extended to local models U � Œ0; 3/k on which
these scaled metrics still restrict to product metrics gU ˚ � and hU ˚ �, respectively,
with the Euclidean metric � on Œ0; 3/k .

We equip the hexagonal manifold X with some admissible Riemannian metric � (see
Definition 3.1) with respect to which each side has length 3.

With these data we construct a metric g.�;ı/ z̊ h.�;�/ on A z�B along the inductive
construction of A z�B before Definition 4.2, starting with the product metric g˚h on
A�B and working with collar factors Œ0; 3/2 and Œ0; 3/ instead of Œ0; 1/2 and Œ0; 1/
in Figure 2. Here it is important that the interchange map on Pi �Pi is an isometry
with respect to hi ˚ hi .

By the choice of ı and � and the metric � on X, we hence obtain a P –compatible
metric g.�;ı/ z̊ h.�;�/ on A z�B.

Definition 4.6 We call g.�;ı/ z̊ h.�;�/ the admissible product metric of g.�;ı/ and
h.�;�/ .

We obtain the following version of the well-known “shrinking one factor” principle:

Proposition 4.7 Assume that A and B are compact and g is positive (see Definition
3.8). Then for any �� 1 and � � 9 there exists 0 < �� 1 and ı � 9 such that for all
ı0 � ı the following holds:

(i) The metric g.�;ı 0/ z̊ h.�;�/ on A z�B is positive.
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(ii) The metric g.�;ı 0/ is positive.

(iii) Let C be a compact Pn–manifold , let k be a P –compatible metric on C and
let � > 0 and � � 9 be such that the scaled metric k.�;�/ is positive. Then
g.�;ı 0/ z̊ k.�;�/ is positive.

Proof Set min.scal� / WDminx2Xfscal� .x/g 2R. We will use a similar notation for
other metrics instead of � . Note that min.scal� / < 0 by the Gauss–Bonnet formula,
since the boundary pieces of X are totally geodesic and meet at angles �

2
.

At each inductive step in the construction of A z�B we replace two collar factors Œ0; 3/2

(with zero scalar curvature) by a factor X equipped with the metric � . Hence, and
more generally for ! � f1; : : : ; ng, we obtain, with (5),

min.scal.g.�;ı/ z̊h.�;�//.!//

� min
!0�!
fmin.scalg.�;ı/.!0//Cmin.scalh.�;�/.!n!0//C .n� j!j/ �min.scal� /g:

By Proposition 3.9(ii) applied to

s WD max
!�f1;:::;ng

fjmin.scalh.�;�/.!//jCn � jmin.scal� /jg;

we find 0 < �� 1 and ı � 9 with the stated properties.

5 Positive cross products and Toda brackets

Let X and Y be topological spaces and consider the Künneth sequence of singular
homology groups

0! H�.X/˝H�.Y /
�
�! H�.X �Y /! Tor.H�.X/;H�.Y //��1! 0:

In this section we study positive homology classes (see Definition 3.12) related to the
homological cross product � and the Tor term in this sequence.

Setting 5.1 Let

Œ˛ W A!X� 2�
SO;Qn
d

.X/ and Œˇ W B! Y � 2�SO;Qn
e .Y /

with Qn–manifolds A and B and let a 2 Hd .X/ and b 2 He.Y / be the images of
these bordism classes under the natural transformation u from Construction 2.5.

Propositions 4.4 and 4.7(i) imply the following result:
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Proposition 5.2 Assume that at least one of the Baas–Sullivan manifolds A or B is
equipped with a Q–compatible positive metric (see Definition 3.8). Then the class
2n � .a� b/ 2 HdCe.X �Y / is positive.

Next we discuss the Tor term in the Künneth sequence. Let r � 2 be an integer with
ra D 0D rb . Let .C�.X/; @/ and .C�.Y /; @/ be the integral chain complexes of X
and Y . We pick chains xa 2 CdC1.X/ and xb 2 CeC1.Y / whose boundaries represent
ra and rb , respectively. The cycle

(6) 1

r
� @.xa˝ xb/ 2 .C�.X/˝C�.Y //dCeC1

represents a Toda bracket coset

ha; r; bi � HdCeC1.X �Y /

with respect to the submodule .a�HeC1.Y //˚ .HdC1.X/� b/� HdCeC1.X �Y /,
which is independent from the choice of xa and xb . It is well known [9, Section 12] that
such Toda brackets generate a submodule of HdCeC1.X �Y / which maps surjectively
onto Tor.H�.X/;H�.Y //dCe . In the following we give a bordism-theoretic description
of Toda brackets.

By Proposition 2.6 there exists m� 0 such that

2m � r � Œ˛ W A!X�D 0 and 2m � r � Œˇ W B! Y �D 0:

Hence, possibly after passing to some larger n, there are compact oriented Qn–
manifolds V and W with boundaries @0V D

`
2m�r A and @0W D

`
2m�r B such

that
`
2m�r.A

˛
�!X/ and

`
2m�r.B

ˇ
�! Y / can be extended to maps x̨ W V !X and

x̌WW ! Y , where x̨ and x̌ are compatible with the singularity structures of V and W .

By (6) and Proposition 4.4 the coset 2mCn � ha; r; bi � H�.X �Y / is represented by

(7) .x̨ z�ˇ/[ .˛ z� x̌/ W .V z�B/[@0V z�BDAz�@0W .A z�W /!X �Y:

Let A and B be equipped with Q–compatible positive metrics g and h. The metrics`
2m�r g on

`
2m�r A and

`
2m�r h on

`
2m�r B, can be extended to (not necessar-

ily positive) Q–compatible metrics xg and xh on V and W (compare the proof of
Lemma 3.4).

By Proposition 3.9(i) we find ı0; �0 � 9 such that for all ı � ı0 and � � �0 the scaled
metrics g.1;ı/ and h.1;�/ are positive.
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Choose .�; ı/ for A according to Proposition 4.7 for the scaled metric xh.1;�0/ on W ,
and in an analogous fashion choose .�; �/ for B for the scaled metric xg.1;ı0/ on V .
With these choices the admissible product metrics xg.1;ı0/ z̊ h.�;�/ on V z� B and
g.�;ı/ z̊ xh.1;�0/ on A z�W are positive by Proposition 4.7(i). In order to glue the
induced metrics on the common boundary

`
2m�r A z�B we need the following result:

Lemma 5.3 The metrics g.1;ı0/ z̊ h.�;�/ and g.�;ı/ z̊ h.1;�0/ on A z�B are isotopic ,
and hence concordant , through positive Q–compatible metrics.

Proof Set ƒD Œ�; 1��R and choose ı00 � ı0; ı according to Proposition 3.9(i) for
this ƒ. We find isotopies, through positive Q–compatible metrics on A,

� from g.1;ı0/ to g.1;ı 00/ , by the choice of ı0 ;

� from g.1;ı 00/
to g.�;ı 00/ , by the choice of ı00 ;

� from g.�;ı 00/
to g.�;ı/ , by the choice of .�; ı/ and by Proposition 4.7(ii).

Hence, by the choice of .�; �/, we obtain a smooth isotopy from g.1;ı0/ z̊ h.�;�/ to
g.�;ı/ z̊ h.�;�/ through positive Q–compatible metrics; see Proposition 4.7(iii).

In an analogous fashion we find a smooth isotopy from g.�;ı/ z̊ h.1;�0/ to g.�;ı/ z̊ h.�;�/
through positive Q–compatible metrics, thus finishing the proof of Lemma 5.3.

We obtain the following counterpart of Proposition 5.2:

Proposition 5.4 We work in Setting 5.1 and assume in addition that both of the Baas–
Sullivan manifolds A and B are equipped with Q–compatible positive metrics. Let
r �2 be such that raD0D rb . Then for each element x 2ha; r; bi�HdCeC1.X�Y /
there exists `� 0 such that 2` � x is positive.

Proof Using the notation introduced after Proposition 5.2, the Qn–manifold

.V z�B/[@0V z�BDAz�@0W .A z�W /

in (7) carries a Q–compatible positive metric by Lemma 5.3. Hence the class x0 2
2mCn � ha; r; bi represented by .V z�B/[ .A z�W /!X �Y is positive.

It is enough to show Proposition 5.4 for x 2 2mCn � ha; r; bi. Given such x we have
x � x0 2 .a �HeC1.Y //˚ .HdC1.X/ � b/ � H�.X � Y /, and by Propositions 2.6
and 5.2 and since a and b are positive there exists ` � 0 such that 2` � .x � x0/ is
positive. Using that x0 is positive we conclude that 2` � x is positive.
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Let �1 and �2 be finite groups of odd order and set X D B�1 and Y D B�2 . Then
each x 2 zH�.X � Y / is of odd order and hence for all m0 � 0 there exists m � m0
with 2m � x D x . By Corollary 2.7 and Propositions 5.2 and 5.4 we conclude:

Corollary 5.5 Let a 2Hd .B�1/ and b 2 He.B�2/, where d; e � 0.

(i) If either a or b is positive , then a� b is positive.

(ii) Let r � 2 with ra D 0 D rb and let a and b be positive. Then ha; r; bi �
HdCeC1.B�1 �B�2/ only contains positive classes.

This result will be crucial for the computations in the next sections.

Remark 5.6 One can show that the product z� on (relative) bordism groups �SO;Pn
�

considered in Proposition 4.4 is graded commutative and associative. Corollary 5.5,
which is sufficient for the remainder of our paper, does not depend on these facts.

6 Homology of abelian groups

Let p be an odd prime. Given an integer ˛ � 1 we denote by G˛ the cyclic group of
order p˛ with generator g˛ and neutral element 1˛ . The group operation in G˛ is
written multiplicatively. We denote by ZG˛ the integral group ring of G˛ .

Let .C.˛/�; @�/ be the Z–graded Z–free chain complex with one generator cd in
each degree d � 0 and differential

@.cd /D

�
p˛ � cd�1 for even d � 2;
0 for odd d and for d D 0:

This is the cellular chain complex with integer coefficients of the standard CW–model
of the classifying space BG˛ with one cell in each nonnegative dimension. We hence
recover the well-known computation (see [7, (II.3.1)])

Hd .C.˛/�; @�/Š Hd .BG˛/D

8<:
ZD hŒc0�i for d D 0;
Z=p˛ D hŒcd �i for odd d;
0 for even d � 2:

For n� 1 and 1� ˛1 � � � � � ˛n we consider the abelian p–group

� DG˛1 � � � � �G˛n
and obtain

H�.B�/Š H�.C
.1/
� ˝ � � �˝C

.n/
� /;

where C .i/� D C.˛i /� for i D 1; : : : ; n refers to the i th cyclic factor in the group � .
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Sometimes we will work with the reduced chain complex zC.˛/� WD C.˛/�=hc0i

of C.˛/� . Note the canonical direct sum decomposition C.˛/� D zC.˛/�˚ hc0i of
chain complexes and the isomorphism zH�. cB�/ŠH�. zC.˛1/�˝� � �˝ zC.˛n/�/, wherecB� D BG˛1 ^ � � � ^ BG˛n is the smash product of pointed classifying spaces. In
general we obtain a direct sum decomposition of chain complexes

(8) C.˛1/�˝ � � �˝C.˛n/� D
M
0�k�n

1�i1<���<ik�n

zC.˛i1/�˝ � � �˝
zC.˛ik /�;

where the summand for k D 0 is equal to hc0˝ � � �˝ c0i � C.˛1/�˝ � � �˝C.˛n/� ,
by definition. For analyzing H�.C.˛1/� ˝ � � � ˝ C.˛n/�/ it is hence important to
provide convenient generators of H�. zC.˛i1/�˝ � � � ˝ zC.˛ik /�/ for 1 � k � n and
1� i1< � � �<ik�n. In Proposition 6.2 we will do this for H�. zC.˛1/�˝� � �˝ zC.˛n/�/;
the other cases are analogous. We first we write down cycle representatives of iterated
Toda brackets.

Construction 6.1 Let k � 1, let 1 � ˇ1 � � � � � ˇk and let m1; : : : ; mk be positive
integers. We define a cycle in zC.ˇ1/�˝� � �˝ zC.ˇk/� of degree 2m1C� � �C2mk�1
by

T .c
.1/
2m1�1

; : : : ; c
.k/
2mk�1

/ WD
1

pˇ1
@.c

.1/
2m1
˝ � � �˝ c

.k/
2mk

/

D

kX
`D1

pˇ`�ˇ1 � .c
.1/
2m1
˝ � � �˝ c

.`/
2m`�1

˝ � � �˝ c
.k/
2mk

/:

Clearly the corresponding homology class satisfies pˇ1 �ŒT .c.1/2m1�1; : : : ; c
.k/
2mk�1

/�D 0.
For k D 1 we have T .c

.1/
2m1�1

/ D c
.1/
2m1�1

, and for k � 2 we obtain iterated Toda
brackets. More precisely, setting hi WD Œc

.i/
2mi�1

� 2 H2mi�1. zC.ˇi /�/ for i D 1; : : : ; k ,
we obtain

ŒT .c
.1/
2m1�1

; : : : ; c
.k/
2mk�1

/�

2 hh1; p
ˇ1 ; pˇ2�ˇ1hh2; p

ˇ2 ; : : : hhk�1; p
ˇk�1 ; pˇk�ˇk�1hki � � � ii:

We can now construct specific generators of H�. zC.˛1/�˝� � �˝ zC.˛n/�/. Let 1�j �n,
let 1� i1 < � � �< ij � n and let m1; : : : ; mj be positive integers. Let .s1; : : : ; sn�j /
with 1 � s1 < � � � < sn�j � n be the unique family complementary to .i1; : : : ; ij /
(this family is empty for j D n) and let d1; : : : ; dn�j be further positive integers.
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Suppressing a signed permutation of tensor factors we obtain a cycle

T .c
.i1/
2m1�1

; : : : ; c
.ij /

2mj�1
/˝ c

.s1/

2d1�1
˝ � � �˝ c

.sn�j /

2dn�j�1

2 zC
.1/
� ˝ � � �˝

zC
.n/
� � C.˛1/�˝ � � �˝C.˛n/�:

In the following we will call cycles of this sort special.

Proposition 6.2 H�. zC.˛1/� ˝ � � � ˝ zC.˛n/�/ is generated by special cycles with
i1 D 1.

Proof We apply induction on n. In the induction step we set C n� WD
zC
.1/
� ˝� � �˝

zC
.n/
�

and consider the exact Künneth sequence

0! H�.C n� /˝H�. zC
.nC1/
� /! H�.C n� ˝ zC

.nC1/
� /

! Tor.H�.C n� /;H�. zC
.nC1/
� //��1! 0:

By the induction hypothesis, the construction of Tor.H�.C n� /;H�. zC
.nC1/
� // and the

assumption that ˛1 � ˛nC1 , Toda brackets of the form

hŒT .c.1/; : : : ; c.ij //˝ c.s1/˝ � � �˝ c.sn�j /�; p˛1 ; p˛nC1�˛1 Œc.nC1/�i

map to a generating set of Tor.H�.C n� /;H�. zC
.nC1/
� //.

This Toda bracket contains ŒT .c.1/; : : : ; c.ij /; c.nC1//˝ c.s1/˝ � � �˝ c.sn�j /� (up to
sign), and hence special cycles T .c.1/; : : : ; c.ij /; c.nC1//˝ c.s1/˝ � � �˝ c.sn�j / map
to a generating set of Tor.H�.C n� /;H�. zC

.nC1/
� //.

The image of the left-hand map in the Künneth sequence satisfies the claim by the
induction assumption.

Example 6.3 Let nD 3 and ˛1 D 1, ˛2 D 2 and ˛3 D 3. Then

0¤ ŒT .c
.2/
1 ; c

.3/
1 /˝ c

.1/
1 � 2 H4.B�/:

Proposition 6.2 can be illustrated in this case by computing T .c
.2/
1 ; c

.3/
1 /˝ c

.1/
1 as

�T .c
.1/
1 ; c

.3/
1 /˝ c

.2/
1 �p �T .c

.1/
1 ; c

.2/
1 /˝ c

.3/
1

D�T .c
.1/
1 ; c

.3/
1 /˝ c

.2/
1 � @.c

.1/
2 ˝ c

.2/
2 ˝ c

.3/
1 /:

Next we will derive some explicit formulas for maps in group homology induced by
group homomorphisms. We consider the homological chain complex in nonnegative
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degrees

.F.˛/�; @�/ WD .� � � ! ZG˛
�˛
�! ZG˛

�˛
�! ZG˛

�˛
�! ZG˛

�˛
�! ZG˛/;

where the differentials are given by multiplication with �˛ WD g˛ � 1˛ and �˛ WDPp˛�1
iD0 .g˛/

i , respectively. With the augmentation map "˛ W ZG˛!Z induced by the
group homomorphism G˛! f1g we obtain an exact sequence

� � � ! ZG˛
�˛
�! ZG˛

�˛
�! ZG˛

�˛
�! ZG˛

�˛
�! ZG˛

"˛
�! Z! 0:

In other words, .F.˛/�; @�/ is a ZG˛–free resolution of the ZG˛–module Z; see [7,
(I.6.3)]. Note the canonical isomorphism of chain complexes C.˛/�DF.˛/�˝ZG˛ Z.

Let ˛; ˇ; � 2N>0 with pˇ j � �p˛ , and consider the group homomorphism

� WG˛!Gˇ ; g˛ 7! .gˇ /
�:

Then each ZGˇ –module can be regarded as a ZG˛–module via the ring map

Z� W ZG˛! ZGˇ :

With this convention the assignments (using � �p˛�ˇ 2N>0 )

�2m.1˛/ WD .� �p
˛�ˇ /m � 1ˇ ; �2m�1.1˛/ WD .� �p

˛�ˇ /m�1 �

��1X
iD0

.gˇ /
i

uniquely extend to ZG˛–linear maps ZG˛! ZGˇ and the explicit computation

�2m�1.�˛ � 1˛/D .�p
˛�ˇ /m�1 �

p˛�1X
iD0

.gˇ /
i�
�

��1X
jD0

.gˇ /
j

D .�p˛�ˇ /m �

pˇ�1X
iD0

.gˇ /
i
D �ˇ ��2m.1˛/;

and similar to obtain �2m.�˛ � 1˛/ D �ˇ � �2mC1.1˛/, shows that we obtain an
augmentation-preserving map of ZG˛–linear chain complexes

� � � // ZG˛

�4
��

�˛ // ZG˛

�3
��

�˛ // ZG˛

�2
��

�˛ // ZG˛

�1
��

�˛ // ZG˛

�0DZ�
��

� � � // ZGˇ
�ˇ // ZGˇ

�ˇ // ZGˇ
�ˇ // ZGˇ

�ˇ // ZGˇ

After applying the functor �˝ZG˛ Z we obtain the following result:
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Proposition 6.4 The induced chain map �� W C.˛/�! C.ˇ/� is given by

�2m.c2m/D .� �p
˛�ˇ /m � c2m for m� 0;

�2m�1.c2m�1/D � � .� �p
˛�ˇ /m�1 � c2m�1 for m� 1:

Note that the map induced in homology by �� can be identified with the map

.B�/� W H�.BG˛/! H�.BGˇ /I
compare [7, (II.6.1)].

Lemma 6.5 Consider the diagonal map � WG˛ ! G˛ �G˛ , g 7! .g; g/. Then the
induced map in homology �� W H�.C.˛/�/! H�.C.˛/�˝C.˛/�/ satisfies

��.Œc2mC1�/D

� 2mC1X
iD0

ci ˝ c2mC1�i

�
:

Proof Obviously
P2mC1
iD0 ci˝c2mC1�i is a cycle in C.˛/�˝C.˛/� . It is enough to

show Lemma 6.5 after passing to coefficients Z=p˛ . Using the Künneth isomorphism
H�.BG˛�BG˛IZ=p˛/ŠH�.BG˛IZ=p˛/˝H�.BG˛IZ=p˛/ the claim now follows
from the well-known ring structure of H�.BG˛IZ=p˛/.

Definition 6.6 A cycle c 2 C.˛1/�˝� � �˝C.˛n/� is called positive if the homology
class Œc� 2 H�.B�/ is positive with respect to Q in the sense of Definition 3.12.

Obviously the cycles c2m�1 2 C.˛/2m�1 are positive for m � 2 since these can be
represented by classifying maps of lens spaces S2m�1=.Z=p˛/ ! BG˛ . Further-
more, the tensor product of two cycles, one of which is positive, is itself positive by
Corollary 5.5(i), and for m1; m2�2 the cycle T .c2m1�1; c2m2�1/2C.˛1/�˝C.˛2/�

is positive by Corollary 5.5(ii). We will now identify some more positive cycles in
C.˛1/�˝C.˛2/� .

Proposition 6.7 For m� 2 the following cycles in C.˛1/�˝C.˛2/� are positive:

(i) p �T .c1; c2m�1/ and p �T .c2m�1; c1/;

(ii) T .c1; c2m�1/ and T .c2m�1; c1/ if ˛1 < ˛2 .

Proof Given 
 2N>0 we consider the group homomorphism �
 WG˛1!G˛2 defined
by g˛1 7! .g˛2/


 �.p˛2�˛1 / and the resulting homomorphism

f
 WG˛1
�
�!G˛1 �G˛1

id˝�

���!G˛1 �G˛2 :
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We claim that for m � 1 the image of .f
 /�.Œc2mC1�/ in H�. zC.˛1/�˝ zC.˛2/�/ is
equal to

(9) 
 � ŒT .c2m�1; c1/�C � � �C 

m
� ŒT .c1; c2m�1/�:

This follows from Lemma 6.5 and Proposition 6.4 (with ˛ D ˛1 , ˇ D ˛2 and � D

 �p˛2�˛1 ), which gives us

.id��
 /�

� 2mX
iD1

ci ˝ c2mC1�i

�

D

mX
jD1

.c2m�2jC1˝ .

j c2j /C c2m�2jC2˝ .p

˛2�˛1
j c2j�1//

D

mX
jD1


j � .c2m�2jC1˝ c2j C c2m�2jC2˝p
˛2�˛1c2j�1/

D

mX
jD1


j �T .c2m�2jC1; c2j�1/;

where the last equation uses Construction 6.1.

For m� 2 we have p j .pm�p/, but p2 − .pm�p/. Together with (9) and the fact that
c2mC1 and T .c2s�1; c2t�1/ for s; t � 2 are positive, this implies that suitable linear
combinations of .f1/�.Œc2mC1�/ and .fp/�.Œc2mC1�/, which define positive classes
in H2mC1.C.˛1/�˝C.˛2/�/, map to p � ŒT .c2m�1; c1/� and to p � ŒT .c1; c2m�1/�
in H�. zC.˛1/�˝ zC.˛2/�/.

Since all cycles in C.˛1/2mC1˝C.˛2/0 and C.˛1/0˝C.˛2/2mC1 are positive this
finishes the proof of part (i).

For part (ii) let ˛1 < ˛2 ; consider the group homomorphism � WG˛2 !G˛1 defined
by g˛2 7! g˛1 and the resulting homomorphism

f WG˛2
�
�!G˛2 �G˛2

��id
��!G˛1 �G˛2 :

We claim that for m� 1 the image of f�.Œc2mC1�/ in H�. zC.˛1/�˝ zC.˛2/�/ is equal
to

(10) ŒT .c1; c2m�1/�C � � �Cp
.m�1/.˛2�˛1/ � ŒT .c2m�1; c1/�:

Geometry & Topology, Volume 25 (2021)



528 Bernhard Hanke

We argue similarly as before, observing that by Proposition 6.4 (with �D 1) we get

.� � id/�

� 2mX
iD1

ci ˝ c2mC1�i

�

D

mX
jD1

.p.j�1/.˛2�˛1/c2j�1˝ c2m�2jC2Cp
j.˛2�˛1/c2j ˝ c2m�2jC1/

D

mX
jD1

p.j�1/.˛2�˛1/ � .c2j�1˝ c2m�2jC2C c2j ˝ .p
˛2�˛1c2m�2jC1//

D

mX
jD1

p.j�1/.˛2�˛1/ �T .c2j�1; c2m�2jC1/:

Equation (10) together with part (i) implies that for m� 2 there is a positive cycle in
C.˛1/�˝C.˛2/� that maps to ŒT .c1; c2m�1/� 2 H�. zC.˛1/�˝ zC.˛2/�/. Similar as
before this implies that the cycle T .c1; c2m�1/ 2 C.˛1/�˝C.˛2/� is positive.

By (9) applied to 
 D 1 and the positivity of c2mC1 and T .c2s�1; c2t�1/ for s; t � 2
there is a positive cycle in C.˛1/�˝C.˛2/� that maps to

ŒT .c1; c2m�1/�C ŒT .c2m�1; c1/� 2 H�. zC.˛1/�˝ zC.˛2/�/

and hence (since T .c1; c2m�1/ has already been verified as positive) a positive cycle
that maps to ŒT .c2m�1; c1/� 2 H�. zC.˛1/�˝ zC.˛2/�/. Similar as before this implies
that T .c2m�1; c1/ 2 C.˛1/�˝C.˛2/� is positive, finishing the proof of part (ii).

We also need to consider iterated Toda brackets of degree 1 cycles.

Lemma 6.8 Let 1� ˛1 � ˛2 � ˛3 . Then the cycles

T .c1; c1; c1/ 2 C.˛1/�˝C.˛2/˝C.˛3/� and T .c1; c1/ 2 C.˛1/�˝C.˛2/�

are positive.

Proof First let ˛ WD˛1D˛2D˛3 . The diagonal map � WG˛! .G˛/
3 , g 7! .g; g; g/,

satisfies
��.Œc5�/D

� X
.d1;d2;d3/2D

cd1 ˝ cd2 ˝ cd3

�
;

where D contains all triples .d1; d2; d3/ with 0� di � 5,
P
di D 5 and precisely one

odd di . This follows from the ring structure of H�.BG˛IZ=p˛/ and the assumption
that p is odd. For 1 � i < j � 3 let �.i;j / WG˛ ! .G˛/

3 denote the diagonal map
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ı WG˛ ! .G˛/
2 composed with the embedding .G˛/2 ! .G˛/

3 to the i th and j th

factors. Since ı�.Œc5�/D
�P5

iD0 ci ˝ c5�i
�

a direct calculation shows

��.Œc5�/D ŒT .c1; c1; c1/�

C

X
1�i<j�3

�
.i;j /
� .Œc5�/� Œc5˝ c0˝ c0C c0˝ c5˝ c0C c0˝ c0˝ c5�:

Since c5 is positive this implies positivity of T .c1; c1; c1/ 2 .C.˛/�/
3 . Now let

1� ˛1 � ˛2 � ˛3 and let

ˆ WG˛1 �G˛1 �G˛1
�1��2��3
�������!G˛1 �G˛2 �G˛3 ;

where �i WG˛1!G˛i is induced by g˛1 7! .g˛i /
p˛i�˛1 , 1� i � 3. By Proposition 6.4

we obtain

ˆ�.T .c1; c1; c1//D c1˝ c2˝ c2Cp
˛2�˛1c2˝ c1˝ c2Cp

˛3�˛1c2˝ c2˝ c1

D T .c1; c1; c1/:

This implies the first assertion. The proof of the second assertion is similar.

We obtain the following conclusive result on the positivity of iterated Toda bracket
cycles (which may contain degree one cycles):

Proposition 6.9 Let n � 2, 1 � ˛1 � � � � � ˛n and m1; : : : ; mn � 1. Then the
following cycles in C.˛1/�˝ � � �˝C.˛n/� are positive:

(i) p �T .c
.1/
2m1�1

; : : : ; c
.n/
2mn�1

/ if ˛1 D � � � D ˛n ;

(ii) T .c
.1/
2m1�1

; : : : ; c
.n/
2mn�1

/ if ˛1 < ˛n .

Proof Let 1 � i1 < � � � < ir � n be those indices with mij D 1 (where 0 � r � n).
Note that for all 1� k� n which are different from any ij the cycle c.k/2mk�1 is positive.
We consider the following cases:

� If r D 0 then T .c
.1/
2m1�1

; : : : ; c
.n/
2mn�1

/ represents an iterated Toda product of
positive classes and is hence positive by Corollary 5.5(ii).

� If r >1 then T .c
.i1/
1 ; : : : ; c

.ir /
1 / is positive by Lemma 6.8 by grouping the cycles

c
.ij /

1 for 1 � j � r into families of two and three, and applying the fact that
Toda brackets of positive classes are positive. Hence T .c

.1/
2m1�1

; : : : ; c
.n/
2mn�1

/

represents an iterated Toda bracket of positive classes, and is therefore positive.

� If r D 1, let 1 � i � n be the unique index with mi D 1. If ˛1 < ˛n , we find
1� k � n with ˛i ¤ ˛k . Then T .c

.i/
2mi�1

; c
.k/
2mk�1

/ (resp. T .c
.k/
2mk�1

; c
.i/
2mi�1

/
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if k<i ) is positive by Proposition 6.7(ii). If ˛1D˛n then p�T .c.i/2mi�1; c
.k/
2mk�1

/

is positive for any 1� k � n with k ¤ i by Proposition 6.7(i). The proof can
now be finished as before.

For � � 1, 
 2N>0 and mD p� we get 
m� 
 mod .p/ in (9). Hence the following
problem cannot be answered with the methods developed in this section and enforces
us to restrict to p–divisible cycles in Proposition 6.9(i), in general:

Question 6.10 Let ˛; � � 1. Is the p–atoral (for odd p ) cycle T .c1; c2p��1/ 2

C.˛/�˝C.˛/� positive?

7 Generalized products of lens spaces in group homology

Let p be an odd prime, let ˛; n� 1, and let � WD .G˛/n . For our proof of Theorem 1.6
we will argue that certain p–atoral cycles such as the one in Question 6.10 are not
contained in the image of �SO

� .B�/! H�.B�/ and can therefore be ignored. In this
section we will approach this issue, which is related to the classical Steenrod problem
on the realization of homology classes by smooth manifolds, in terms of natural stable
homology operations defined for any topological space X,

@.�;`/ W H�.X IZ=p`/! H��2p�C1.X IZ=p`/; �; `� 1;

which by construction vanish on classes coming from �SO
� .X/. In Proposition 7.9, the

main result of this section, we will show that the vanishing of the operations @.�;˛/ ,
together with the vanishing of a suitable Bockstein operation, is indeed sufficient to
detect elements in the image of �SO

� .B�/!H�.B�IFp/, and that these elements can
be represented by products of standard Z=p˛–lens spaces.

Since we prefer to avoid a discussion of stable (co)homology operations with coefficients
Z=p` , for which we did not find a handy account in the literature, we construct the
operation @.�;`/ as a differential in the Atiyah–Hirzebruch spectral sequence of a
homology theory derived from Brown–Peterson theory at the prime p , whose well-
known structure allows us to derive some crucial properties of @.�;`/ .

Recall that the coefficient ring for Brown–Peterson theory at the prime p is isomorphic
to a polynomial ring

BP� Š Z.p/Œv1; v2; : : : �;

where vi 2 BP2pi�2 . As usual we set v0 D p . For �; `� 1 we define the ideal

I.�; `/ WD .p`; v1; : : : ; v��1; v
2
� ; v�C1; : : : /� BP� :
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Proposition 7.1 There is a multiplicative homology theory BP.�;`/ with coefficient
ring

BP.�;`/� Š Z.p/Œv1; v2; : : : �=I.�; `/

together with a natural transformation of multiplicative homology theories BP !
BP.�;`/ , which on the level of coefficients induces the projection Z.p/Œv1; v2; : : : �!

Z.p/Œv1; v2; : : : �=I.�; `/.

Proof Recall the construction of a (homotopy) commutative ring spectrum BP repre-
senting Brown–Peterson theory for odd p in [27, Corollary 6.7], which is based on
bordism theory with Baas–Sullivan singularities killing the polynomial generators xj ,
for j ¤ pi � 1 with i � 1, of ��.MU/.p/ Š Z.p/Œxj j j � 1; deg.xj / D 2j �. Here
MU denotes the unitary bordism spectrum.

We construct BP.�;`/ in a similar fashion as a bordism theory with Baas–Sullivan
singularities, killing the regular sequence .p`; x1; : : : ; .xp��1/2; : : : / in ��.MU/.p/ .
It follows from [27, Theorem 6.2] (and the assumption that p is odd) that this theory
is represented by a commutative ring spectrum BP.�;`/ . Furthermore, by construction,
there is a canonical map of ring spectra BP! BP.�;`/ with the stated property on the
level of coefficients.

We have BP.�;`/� Š h1; v�iZ=p` , the free graded Z=p`–module with generators 1
in degree 0 and v� in degree 2p� � 2, with multiplication satisfying v2� D 0. The
theory BP.�;`/ may be considered as a form of extraordinary K–theory, where we
have introduced the additional truncation v2� D 0 for computational purposes; compare
Lemma 7.3.

Let X be a topological space and consider the Atiyah–Hirzebruch spectral sequence

E2s;t D Hs.X IBP.�;`/t /) BP.�;`/sCt .X/:

The term E2s;t is nonzero precisely for t D 0 and t D 2p� � 2, and in these cases is
canonically isomorphic to Hs.X IZ=p`/ (depending on the choice of v� ). In particular
we have E2s;t DE

2p��1
s;t and we define

(11) @.�;`/ W H�.X IZ=p`/! H��2p�C1.X IZ=p`/

as the differential @2p
��1 WE

2p��1
s;0 ! E2p

��1
s�2pkC1;2p��2

. It is immediate from this
construction that @.�;`/ is natural in X, is stable with respect to suspensions, and is a
derivation with respect to the homological cross product. Since the natural transforma-
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tion �SO
� .X/!H�.X IZ=p`/ factors through BP.�;`/.X/, all classes in H�.X IZ=p`/

coming from �SO
� .X/ lie in the kernel of @.�;`/ .

Remark 7.2 The cohomology operation H�.X IFp/! H�C2p
��1.X IFp/ dual to

@.�;1/ can be identified with the �th Milnor basis element Q� 2A
2p��1
p in the mod.p/

Steenrod algebra.

For evaluating the operations @.�;`/ for X D BG˛ we need to determine the BP.�;`/–
theoretic Euler class of the fibration S1 ,! BG˛!CP1 . This is based on a formal
group law computation. For � � 1 we define the ideal

I.�/ WD .v1; : : : ; v��1; v
2
� ; v�C1; : : : /� BP� D BP��

and set cBP� WDBP� =I.�/. Let xBP 2fBP2.CP1/ be the standard complex orientation
and recall BP�.CP1/Š BP�ŒŒxBP��.

Lemma 7.3 Let ˛; �� 1 and let p˛ WCP1!CP1 be the map induced by S1!S1 ,
t 7! tp

˛

, using the identification BS1DCP1 . Let .p˛/� W BP�.CP1/!BP�.CP1/
be the induced map in BP–cohomology. Then in cBP�ŒŒxBP�� we obtain the equation

.p˛/�.xBP/D p˛ � xBP
Cp˛�1 � v� � .x

BP/p
�

CR˛;

where R˛ 2 p˛ �cBP�ŒŒxBP��.

Proof We use induction on ˛ . We write x instead of xBP and carry out the following
computations in cBP�ŒŒx��. For ˛ D 1 the p–typical formal group law of BP yields
.p/�.x/D pxC v� � x

p� (possibly after multiplying v� with a unit in Z.p/ ). Hence
the assertion holds for ˛ D 1.

Using v2� D 0 2 cBP� we inductively obtain, for ˛ � 1,

.p˛C1/�.x/D .p/�..p˛/�.x//

D p �.p˛ �xCp˛�1v� �x
p�
CR˛/Cv� �.p

˛
�xCp˛�1v� �x

p�
CR˛/

p�

D p˛C1 �xCp˛ �v� �x
p�
CR˛C1;

where R˛C1 WD p �R˛Cv� � .p˛ �xCp˛�1v� �xp
�

CR˛/
p� 2 p˛C1 �cBP�ŒŒxBP��.

Convention 7.4 Let x 2H2.CP1IZ/ be the complex orientation induced by xBP and
for m� 0 let y2m 2H2m.CP1IZ/ be the generator dual to xm . For any commutative
ring R with unit we obtain an exact Gysin sequence

� � �!H�.BG˛IR/
��
�!H�.CP1IR/ �\e��!H��2.CP1IR/ ���!H��1.BG˛IR/!� � � ;
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where e D p˛ � x 2 H2.CP1IZ/ is the Euler class of the S1–principal fiber bundle

S1 ,! BG˛
�
�!CP1

equipped with its canonical orientation induced by the inclusion S1 � C , and �� is
the homological transfer in this fiber bundle.

For m � 0 we obtain specific generators c2mC1 D �2m.y2m/ 2 H2mC1.BG˛IZ/Š
Z=p˛ and c2m 2 H2m.BG˛IZ=p˛/Š Z=p˛ with

��.c2m/D y2m 2 H2m.CP1IZ=p˛/:

Furthermore, for 1� `� ˛ , these generators induce generators cd 2 H�.BG˛IZ=p`/
for d � 0.

We can and will assume that the generators

cd 2 C.˛/d D Hd ..BG˛/
.d/=.BG˛/

.d�1/
IZ/

of the cellular chain complex introduced at the beginning of Section 6 map to these
specific generators of Hd .BG˛IZ=p`/ after passing to coefficients Z=p` .

Proposition 7.5 Let ˛; � � 1 and 1� `� ˛ . Then the operation

@.�;`/ W H�.BG˛IZ=p`/! H��2p�C1.BG˛IZ=p`/;

viewed as a map C.˛/�˝Z=p`! C.˛/��2p�C1˝Z=p` , is given by

@.�;`/.cd /D

�
p˛�1 � cd�2p�C1 for even d � 2p� and `D ˛;
0 otherwise:

Proof Using the canonical isomorphism

H�.CP1IBP.�;`/� .S1//Š BP.�;`/� .CP1IH�.S1//

we may write the BP.�;`/–homology spectral sequence for the fiber bundle S1 ,!
BG˛!CP1 as

E2s;t D BP.�;`/s .CP1IHt .S1//) BP.�;`/sCt .BG˛/:

The only nonvanishing differential is given by @2 WE2s;0!E2s�2;1 , c 7! .c\e/˝ ŒS1�,
where c 2 BP.�;`/s .CP1/, e 2 .BP.�;`//2.CP1/ is the BP.�;`/–theoretic Euler class
of S1 ,! BG˛ ! CP1 , and ŒS1� 2 H1.S1IZ/ is the given orientation class. Note
that this spectral sequence induces the BP.�;`/–theoretic Gysin sequence for the fiber
bundle S1 ,! BG˛!CP1 .
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Let x 2 .BP.�;`//2.CP1/ be the class induced by xBP . Viewing v� 2 BP.�;`/2p��2 Š

.BP.�;`//�2p
�C2 , Lemma 7.3 implies

(12) e D

�
p˛�1 � v� � x

p� for `D ˛;
0 for 1� ` < ˛:

Now consider the isomorphisms

E2�;0 Š H�.CP1IBP.�;`/ev .S1//Š Hev.BG˛IZ=p
`/˝h1; v�iZ=p` ;

E2�;1 Š H�.CP1IBP.�;`/odd .S1//Š Hodd.BG˛IZ=p
`/˝h1; v�iZ=p` ;

the first one of which is induced by the projection BG˛!CP1 and the second one
by the homological transfer �� for the bundle S1 ,! BG˛ ! CP1 . Under these
isomorphisms the differential @2 WE2s;0!E2s�2;1 , c 7! .c\ e/˝ ŒS1�, corresponds to
the differential

@2p
��1
W Hs.BG˛IBP.�;`/t /! Hs�2p�C1.BG˛IBP.�;`/tC2p��2/

in the Atiyah–Hirzebruch spectral sequence E2s;tDHs.BG˛IBP.�;`/t /)BP.�;`/sCt .BG˛/.
Since this differential defines @.�;`/ , Proposition 7.5 follows.

Example 7.6 Let ˛; � � 1 and � D .BG˛/2 . Then in H�.B�IZ=p˛/ we get

@.�;˛/.T .c1; c2p��1//D @
.�;˛/.c2˝ c2p��1C c1˝ c2p� /D p

˛�1
� .c1˝ c1/¤ 0;

and hence the cycle T .c1; c2p��1/ 2 C.˛/� ˝ C.˛/� appearing in Question 6.10
does not lift to �SO

2p�C1.B�/. For p D 3 and ˛; � D 1 this reproduces the class in
H7.B.Z=3/2IZ/ considered in [29, page 62], which was the first example of an integral
homology class that cannot be represented by a smooth manifold.

For a topological space X and `�1 we denote by ˇ.`/ W H�.X IZ=p`/!H��1.X IFp/

the Bockstein operation for the exact coefficient sequence 0! Z=p
�p`
�! Z=p`C1!

Z=p`! 0. Note that ˇ.`/ vanishes on classes that lift to integral homology.

Definition 7.7 Let `� 1. We call the submodule

RH�.X IZ=p`/ WD kerˇ.`/\
\
��1

ker @.�;`/ � H�.X IZ=p`/

the almost representable homology in H�.X IZ=p`/.

Let ˛; n� 1 and � D .G˛/n . It follows from Proposition 7.5 that p �H�.B�IZ=p˛/
is contained in RH�.B�IZ=p˛/. The same holds for the image of �SO

� .B�/ !

H�.B�IZ=p˛/. In Proposition 7.9 we will show a weak converse of the last statement.
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We first define specific elements in the group homology H�.B�IFp/, which are repre-
sented by smooth manifolds.

Definition 7.8 For m� 1 denote by L2m�1 D S2m�1=.Z=p˛/ the standard Z=p˛ –
lens space. Let 1� k � n and let � W .G˛/k! .G˛/

n be some group homomorphism.
For m1; : : : ; mk � 1 we obtain the map

ˆ W L2m1�1 � � � � �L2mk�1
‰
�! B.G˛/

k B�
�! B.G˛/

n
D B�;

where ‰ is the product of classifying maps.

The class ˆ�.ŒL2m1�1�� � ��L2mk�1�/ 2H�.B�IFp/ is called a generalized product
of lens spaces. Obviously this element lifts to �SO

� .B�/.

We can now state the main result of this section:

Proposition 7.9 The image of RH�.B�IZ=p˛/ ,! H�.B�IZ=p˛/! H�.B�IFp/
is generated by generalized products of Z=p˛–lens spaces.

Remark 7.10 It was observed first in [5, Theorem 5.6] that generalized products of
lens spaces generate the image of �SO

� .B.Z=p/
n/! H�.B.Z=p/nIFp/. A complete

proof of this statement was given in [12]. Already for ˛D 1 Proposition 7.9 is stronger
than [5, Theorem 5.6] as it is not clear a priori that all classes in RH�.B.Z=p/nIFp/
lift to �SO

� .B.Z=p/
n/.

The proof of Proposition 7.9, which will be given at the end of this section, requires
some preparation. Our argument is mainly algebraic and in principle carried out in the
reduced homology zH�. cB� IFp/, which is reflected in the following notation: let

� C� D zH�.BG˛IFp/ be the free Z–graded Fp–module with one generator cd
in each degree d � 1;

� .C�/
n D zH�. cB� IFp/ be its n–fold tensor product, with n� 0;

� @.�/ for � � 0 be the differential on .C�/n of degree �2p� C 1, which acts as
a derivation and satisfies

@.�/.cd / WD

�
cd�2p�C1 for even d � 2p� � 1;
0 otherwiseI

� C
n;r
� WD

T
0���r ker @.�/ � .C�/n for r � 0, and C

n;1
� D

T
��0 ker @.�/ .
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Proposition 7.11 The canonical map

.C.˛/�˝Z=p˛/n! . zC.˛/�˝Fp/
n
D .C�/

n

sends RH�.B�IZ=p˛/ onto C n;1 .

Proof The Bockstein operation ˇ.˛/ W H�.BG˛IZ=p˛/! H��1.BG˛IFp/ is given
by C.˛/�˝Z=p˛!C.˛/��1˝Fp , c0 7!0, c2m�1 7!0 and c2m 7! c2m�1 for m�1.
Hence its n–fold tensor product derivation restricts to a map . zC.˛/�˝Z=p˛/n!.C�/

n

whose kernel goes onto ker @.0/ � .C�/n under tensoring the domain with Fp .

For � � 1 the computation of @.�;˛/ W H�.BG˛IZ=p˛/!H��2p�C1.BG˛IZ=p˛/ in
Proposition 7.5 implies that the n–fold tensor product derivation of @.�;˛/ restricts to a
map . zC.˛/�˝Z=p˛/n! . zC.˛/�˝Z=p˛/n whose kernel goes onto ker @.�/� .C�/n

under tensoring the domain with Fp .

From these facts Proposition 7.11 follows, using p�H�.B�IZ=p˛/�RH�.B�IZ=p˛/.

We will now analyze the submodule C
n;1
� � .C�/

n . For this aim we define the
Z–graded Fp–modules

� N� WD spanfc2m�1 jm� 1g D zHodd.BG˛IFp/� C� ;

� L� WD spanfy2m jm � 1g D zHeven.CP1IFp/, where y2m are free generators
of degree 2m;

� L<pk WD spanfy2m j 1�m< pkg � L� for k � 0.

Note that the canonical projection C�! L� , c2m 7! y2m , c2m�1 7! 0 (which on the
topological side is induced by BG˛!CP1 ) commutes with the differentials @.�/ for
� � 0, which we define as zero on L� .

Let .N�/n be the n–fold tensor product of N� for n � 0. For every 1 � k � n and
every group homomorphism � W .G˛/

k! .G˛/
n D � we obtain an induced map

(13) �� W .N�/
k ,! zH�.B.G˛/kIFp/

.B�/�
���! zH�.B�IFp/! zH�.cB�IFp/D .C�/n:

Definition 7.12 For n� 1 we set

L n
� WD spanf��..N�/k/ j � W .G˛/k! .G˛/

n group homomorphism; 1� k � ng

� .C�/
n:

Geometry & Topology, Volume 25 (2021)



Positive scalar curvature on manifolds with odd order abelian fundamental groups 537

Since the generators of N� are represented by Z=p˛ –lens spaces we have L n
� �C

n;1
�

by Proposition 7.11. The crucial step for the proof of Proposition 7.9 consists in
showing that here equality holds; see Proposition 7.16. We first derive a lower bound
for the size of L n

� � C
n;1
� .

Proposition 7.13 For n � 1 the canonical projection L nC1
� ! .N�/

n ˝ L<pn is
surjective.

Proof Essentially the proof for ˛D 1 in [12, Proposition 5.3.] generalizes to larger ˛ .
For notational reasons we work with the additive group Z=p˛ instead of G˛ .

For 0� �1; : : : ; �n � p� 1 we consider the group homomorphism

�.�1;:::;�n/ W .Z=p
˛/n! .Z=p˛/nC1;

.x1; : : : ; xn/ 7! .x1; : : : ; xn; �1x1C � � �C�nxn/:

For all 
 � 1 we have an Fp–algebra isomorphism

H�.B.Z=p˛/
 IFp/Š FpŒt1; : : : ; t
 �˝ƒ.s1; : : : ; s
 /;

where t1; : : : ; t
 are indeterminates of degree 2 and s1; : : : ; s
 are indeterminates of
degree 1.

The map induced in Fp–cohomology by B�.�1;:::;�n/ W B.Z=p
˛/n ! B.Z=p˛/nC1

satisfies

(14) .t
m1
1 s1 � � � t

mn
n sn/ � t

�
nC1 7! .t

m1
1 s1 � � � t

mn
n sn/ � .�1t1C � � �C�ntn/

�

for � � 0. This computation uses the ring structures of H�.B.Z=p˛/
 IFp/ for 
 D
n; nC 1.

The pn �pn Vandermonde matrix

V WD
�
1 �1t1C� � �C�ntn � � � .�1t1C� � �C�ntn/

pn�1
�
0��1;:::;�n<p

(where the subscript parametrizes the rows) with entries in FpŒt1; : : : ; tn� has determi-
nant Y

.�1;:::;�n/<.�1;:::;�n/

..�1��1/t1C � � �C .�n��n/tn/¤ 0;

applying the lexicographic order to the index set. Hence the column vectors of V are
linearly independent over FpŒt1; : : : ; tn�.
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Setting N � WD Hodd.BZ=p˛IFp/ this means, in view of (14), that the mapM
0��1;:::;�n<p

��.�1;:::;�n/ W .N
�/n˝H0�2m<2p

n

.BZ=p˛IFp/!
M

0��1;:::;�n<p

.N �/n

is injective. Dualizing this statement over Fp we conclude that the mapX
0��1;:::;�n<p

.��1;:::;�n/� W
M

0��1;:::;�n<p

.N�/
n
! .N�/

n
˝ spanFpfc0; : : : ; c2.pn�1/g

is surjective.

The modules .N�/n ˝L<pn play an important role in the determination of C n;1 ,
which we will carry out in two steps. First note that we have a canonical direct sum
decomposition

.C�/
n
D

nM

D0

.C�/
n
.
/;

where .C�/n.
/ � .C�/
n is generated by those elementary tensors cd1 ˝ � � � ˝ cdn

involving 
 components of even degree. For example, .C�/n.0/ D .N�/
n . Since the

differentials @.�/ map .C�/n.
/ to .C�/n.
�1/ we get induced direct sum decompositions
of C n;r for r � 0.

The next, somewhat involved, proposition takes care of the particular component

Dn;r� WD C n;r� \ .C�/
n
.1/ � C n;r�

for certain r . The full structure of C
n;1
� will afterwards be determined in Proposition

7.16. Note that for r � 0 the differential @.r/ W .C�/n ! .C�/
n induces a map

@.r/ W D
n;r�1
� ! .N�/

n with kernel D
n;r
� . Here and later we set D

n;�1
� WD .C�/

n
.1/

.

Proposition 7.14 For n� 0 the following holds:

(i) The canonical projection � W DnC1;n�1� ! .N�/
n˝L� is surjective and there

exists a surjective map @.n/ W .N�/n˝L�! .N�/
nC1 such that the following

diagram commutes:

D
nC1;n�1
�

�
//

@.n/

&&

.N�/
n˝L�

@.n/

xx

.N�/
nC1

(ii) The projection ker.@.n//! .N�/
n˝L<pn is an isomorphism.

(iii) D
nC1;n
� .D ker.@.n///D D

nC1;1
� .
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Proof We apply induction on n. For nD 0 the proposition holds as

� D
1;�1
� D L� D .N�/

0˝L� and � is an isomorphism,

� @.0/ W D
1;�1
� !N��1 is an isomorphism and hence D

1;0
� D 0D .N�/

0˝L<p0 .

Now assume that n � 1 and Proposition 7.14 has been shown up to n � 1. Let
c D c2d1�1˝ � � � ˝ c2dn�1 2 .N�/

n and let m> 0. We will show c˝ y2m 2 im.�/.
Let 0� � � n� 1. Using the inductive assumption (i) we find c.�/ 2 D

�C1;��1
� with

@.�/.c.�//D c2d1�1˝� � �˝c2d�C1�1 . Setting c.�/ WD c.�/˝c2d�C2�1˝� � �˝c2dn�1
we then have c.�/2D

n;��1
deg.c/C2p��1 and @.�/.c.�//Dc . Using the induction assumption

again several times in order to balance @.j /.c.�// for j D �C 1; : : : ; n� 1 we can
arrange furthermore that @.j /.c.�// D 0 for � < j � n� 1. Summarizing we have
@.j /.c.�//D 0 for 0� j � n� 1 with j ¤ � , while @.�/.c.�//D c .

With these choices we get

(15) c˝ c2mC .�1/
nC1
�

n�1X
�D0

c.�/˝ c2m�2p�C1 2 DnC1;n�1�

and � indeed sends this element to c˝y2m2 .N�/n˝L� . This shows surjectivity of � .

If c 2 D
nC1;n�1
� \ ker.�/, then c 2 D

n;n�1
� ˝N� by the definition of D

n;n�1
� and

hence c 2 D
n;1
� ˝N� , using the inductive assumption (iii). We conclude @.n/.c/D 0,

and hence @.n/ is well defined.

Next let c 2 .N�/n and let m> 0. We claim c˝c2m�1 2 im.@.n//, showing that @.n/ ,
and hence @.n/ , is surjective. The proof is by induction on deg.c/. As in (15) we find
c.�/ 2 D

n;��1
deg.c/C2p��1 for 0� � � n� 1 with

c˝ c2mC2pn�2C .�1/
nC1
�

n�1X
�D0

c.�/˝ c.2mC2pn�2/�2p�C1 2 DnC1;n�1� :

We have @.n/.c˝ c2mC2pn�2/D .�1/nc˝ c2m�1 and

@.n/
� n�1X
�D0

c.�/˝ c2mC2pn�2p��1

�
D

n�1X
�D0

@
.n/
� .c.�//˝ c2mC2pn�2p��1:

For 0� � � n� 1 we compute

deg
�
@.n/.c.�//

�
D deg.c.�//� .2pn�1/D .deg.c/C2p� �1/� .2pn�1/ < deg.c/:

Hence @.n/� .c.�//˝ c2mC2pn�2p��1 2 im.@.n// by induction on deg.c/. Altogether
we see c˝ c2m�1 2 im.@.n//, as required. The proof of (i), the most difficult part of
Proposition 7.14, is now complete.
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For (ii) we first observe that dim ker.@.n//d D dim..N�/n˝L<pn/d for d � 0, since,
by an elementary dimension count,

dim..N�/n˝L�/d D dim..N�/n˝L<pn/d C dim..N�/nC1/d�2pnC1

and @.n/ is surjective by (i). Furthermore,

L nC1
� � C nC1;n�

proj
��! DnC1;n�

�
�! .N�/

n
˝L�! .N�/

n
˝L<pn

is surjective by Proposition 7.13, so that also the projection ker.@.n//! .N�/
n˝L<pn

is surjective. Since domain and target of this map have the same dimension in each
degree this implies assertion (ii).

For assertion (iii) let c 2 D
nC1;n
� . Since L nC1

� � C
nC1;1
� , Proposition 7.13 implies

that there exists x 2 D
nC1;1
� such that the projection of c C x to .N�/n ˝ L<pn

vanishes. Since @.n/� .cCx/D 0 and ker.@.n// maps isomorphically to .N�/n˝L<pn
we obtain �.cCx/D 02 .N�/n˝L� . We conclude cCx 2D

n;n
� ˝N�DD

n;1
� ˝N�

by the induction assumption (iii). Since D
n;1
� ˝N� � D

nC1;1
� and x 2 D

nC1;1
�

assertion (iii) follows.

Corollary 7.15 ker.C nC1;1� ! .N�/
n˝L<pn/� ker.C nC1;1� ! .N�/

n˝L�/.

Proof Let c 2 ker.C nC1;1� ! .N�/
n˝L<pn/. We decompose c D c0C c00, where

c0 2 D
nC1;1
� and c00 is a linear combination of elementary tensors cd1 ˝ � � �˝ cdnC1

with 0 or at least 2 even degree components.

Obviously c00 2 ker.C nC1;1 ! .N�/
n ˝ L�/. This fact and the assumption on c

imply c0 2 ker.DnC1;1� ! .N�/
n˝L<pn/. But by Proposition 7.14(ii) the projection

.N�/
n˝L�! .N�/

n˝L<pn induces an isomorphism �.D
nC1;n
� /Š .N�/

n˝L<pn .
Hence we must also have c0 2 ker.DnC1;1� ! .N�/

n˝L�/.

We finally obtain a precise description of C
n;1
� and of L n

� � C
n;1
� (recall Definition

7.12), showing in particular that the last inclusion is an equality:

Proposition 7.16 Let Jn denote the set of families J D .J1; : : : ; Jn/, where Ji DN�
or Ji DL<pk and k is the number of Jj for j < i with Jj DN� . Then the canonical
map (induced by projections C�!N� and C�! L� )

‰n W C n;1� !

M
Jn

J1˝ � � �˝Jn

is an isomorphism. The restriction of ‰n to L n
� � C

n;1
� is still surjective , and hence

also an isomorphism. In particular , L n
� D C

n;1
� .

Geometry & Topology, Volume 25 (2021)



Positive scalar curvature on manifolds with odd order abelian fundamental groups 541

Proof Since source and target of ‰1 are equal to L 1
� DN� , the assertions are clear

for nD 1. By induction we assume that they hold for some n� 1.

For J D .J1; : : : ; Jn/ 2 Jn let k.J / denote the number of components Ji D N� .
Furthermore, we set J 0i D C� for Ji D N� and J 0i D L<pk for Ji D L<pk . In the
induction step we first prove injectivity of ‰nC1 .

Let c 2 ker‰nC1 . We study the image of c under the composition of projections

C nC1;1�

�1
�!

�M
Jn

J 01˝ � � �˝J
0
n

�
˝C�

�2
�!

�M
Jn

J1˝ � � �˝Jn

�
˝L�:

Note that �1 commutes with the differentials @.�/ for � � 0 (with zero differentials
on L<pk ).

Let c0 2J 01˝� � �˝J
0
n˝C� be one component of �1.c/, where J 2Jn . By assumption

the image of c0 under the map

J 01˝ � � �˝J
0
n˝C�! J1˝ � � �˝Jn˝L<pk.J/

is zero. By Corollary 7.15 we have

ker
�
C
k.J /C1;1
� ! .N�/

k.J /
˝L<pk.J/

�
� ker

�
C
k.J /C1;1
� ! .N�/

k.J /
˝L�

�
and hence �2.c0/D 0 (recall that k.J /C 1 is the number of factors C� in J 01˝ � � �˝
J 0n ˝ C� and that all other factors are equal to some L<pk with zero differential).
Applying this argument to all components c0 of �1.c/, we conclude �2.�1.c//D 0.

Let � W C nC1;1� !C
n;1
� ˝L� be the projection (recall again that C�!L� commutes

with all differentials @.�/ for � � 0). Since .‰n˝ id/ ı � D �2 ı �1 our induction
assumption (injectivity of ‰n ) implies �.c/D 0. Hence c 2 ker‰n˝N� , which is
equal to 0, again by the induction assumption. This shows that ‰nC1 is injective.

We next show that ‰nC1 maps L nC1
� �C

nC1;1
� surjectively onto

L
JnC1

J1˝� � �˝

JnC1 , completing the induction step.

Let .J1; : : : ; JnC1/ 2JnC1 . We have to show J1˝� � �˝JnC1 �‰
nC1.L nC1

� /. By
induction we have J1˝ � � �˝Jn �‰n.L n

� /. In particular,

J1˝ � � �˝Jn˝N� �‰
nC1.L n

� ˝N�/:

Since L n
� ˝N� �L nC1

� we can hence restrict to the case JnC1 D L<pk.J/ , where
J WD .J1; : : : ; Jn/. For each group homomorphism � W .G˛/

k.J /! .G˛/
k.J /C1 we

obtain an induced map .N�/k.J /! .N�/
k.J /˝L<pk.J/ (compare (13)) and hence an

induced map J1˝� � �˝Jn! J1˝� � �˝Jn˝L<pk.J/ equal to the identity on factors
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Ji D L<pk for some k and i D 1; : : : ; n. Using the proof of Proposition 7.13, the
images of these maps for different � span J1˝� � �˝Jn˝L<pk.J/ . Since J1˝� � �˝Jn�
‰n.L n

� / by induction, we conclude J1˝� � �˝Jn˝L<pk.J/ �‰
nC1.L nC1

� / by the
functoriality of group homology.

Remark 7.17 The formulation of Proposition 7.16 is inspired by [14, Theorem 5.1];
also see [12, Theorem 1.2]. In contrast to these sources the algebraic argument above
does not rely on the solution of a Conner–Floyd conjecture for �SO

� .B�/, which seems
to be inaccessible at present for ˛ > 1. Indeed we believe that our approach may be
a first step towards an algebraic proof of the Conner–Floyd conjecture (for ˛ D 1),
which was resolved in [19; 22] by topological methods.

Proof of Proposition 7.9 The decomposition of .C.˛/�/n from (8) (after tensoring
with Z=p˛ and Fp , respectively) is compatible with the operations ˇ.˛/ and @.�;˛/ .
By induction on n it is hence sufficient to show that the image of the composition

 W RH�.B�IZ=p˛/� .C.˛/�˝Z=p˛/n! . zC.˛/�˝Fp/
n
D .C�/

n

is generated by generalized products of Z=p˛ –lens spaces L2m1�1�� � ��L2mk�1!
B� for 1� k � n. Propositions 7.11 and 7.16 imply that the image of  is equal to
C
n;1
� DL n

� , from which this claim follows.

8 Proof of Theorem 1.6

Let 1� ˛1 � � � � � ˛n , let � DG˛1�� � ��G˛n and let h2H�.B�IZ/ be contained in
the image of �SO

� .B�/!H�.B�IZ/. Using the decomposition from (8) we represent
h by a cycle in

C.˛1/�˝ � � �˝C.˛n/� D
M
zC.˛i1/�˝ � � �˝

zC.˛ik /�:

Proposition 8.1 Let 1 � k � n and 1 � i1 < � � � < ik � n. Then the .i1; : : : ; ik/–
component of this cycle in zC.˛i1/� ˝ � � � ˝ zC.˛ik /� � C.˛i1/� ˝ � � � ˝ C.˛ik /� is
positive.

Mapping the resulting positive classes in H�.BG˛i1 � � � � �BG˛ik IZ/ to H�.B�IZ/
by the canonical subgroup inclusions, this implies that h 2 H�.B�IZ/ is positive,
finishing the proof of Theorem 1.6.

Proof of Proposition 8.1 It is enough to deal with the case k D n; the other compo-
nents of h are treated in an analogous fashion. For this aim let c2 zC.˛1/�˝� � �˝ zC.˛n/�
represent the corresponding component of h.
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Let 1�n0�n be maximal with ˛n0D˛1 , that is, ˛1D� � �D˛n0<˛n0C1�� � ��˛n . We
set � 0 WD .G˛1/

n0, regarded as a subgroup of � in the obvious way. By Proposition 6.2
we may assume that c is a linear combination of special cycles

T .c
.i1D1/
2m1�1

; : : : ; c
.ij /

2mj�1
/˝ c

.s1/

2d1�1
˝ � � �˝ c

.sn�j /

2dn�j�1
:

We write

(16) c D c0˝ c
.n0C1/
1 ˝ � � �˝ c

.n/
1 CR;

where c0 is a linear combination of special cycles in . zC.˛1/�/n
0

and R is a linear
combination of special cycles

T .c
.i1D1/
2m1�1

; : : : ; c
.ij /

2mj�1
/˝ c

.s1/

2d1�1
˝ � � �˝ c

.sn�j /

2dn�j�1
2 zC.˛1/�˝ � � �˝ zC.˛n/�

such that ij � n0C 1 or there exists 1� �� n� j with s� � n0C 1 and d� � 2.

By Proposition 6.9(ii) and Corollary 5.5(i) the cycle R 2 zC.˛1/�˝ � � �˝ zC.˛n/� �

C.˛1/�˝ � � �˝C.˛n/� is positive. For completing the proof of the positivity of c it
hence remains to show that also the cycle c0 2 . zC.˛1/�/n

0

� .C.˛1/�/
n0 is positive.

We will argue that by the results of Section 7 the cycle c0 is positive modulo some
p–divisible, p–atoral cycle, which can then be dealt with by Proposition 6.9(i). The
next lemma ensures the crucial property of c0 needed for this argument:

Lemma 8.2 We have Œc0� 2 RH�.B� 0IZ=p˛1/.

Proof Since Œc0� lifts to an integral class it lies in the kernel of the Bockstein operation
ˇ.˛1/ W H�.B� 0IZ=p˛1/! H�.B� 0IFp/. In the remainder of this proof we will work
with coefficients Z=p˛1 . It remains to show that @.�;˛1/.c0/ D 0 2 .C.˛1/�/n

0

for
all � � 1.

Since by Proposition 7.5 the cycle c0 is not hit by a differential @.�;˛1/ , it is suf-
ficient to show this vanishing property after projection to . zC.˛1/�/

n0 . The class
Œc� 2 H�. zC.˛1/�˝ � � � ˝ zC.˛n/�/ Š zH�. cB�/ is equal to the image of h under the
projection B�! cB� . Since h lifts to �SO

� .B�/ we conclude that @.�;˛1/.c/D 0 2
zC.˛1/� ˝ � � � ˝ zC.˛n/� . (Recall that ˛n0C1; : : : ; ˛n > ˛1 and we use coefficients
Z=p˛1 .) Since @.�;˛1/ acts as a derivation and trivially on c.s/1 for n0C1� s � n, the
claim @.�;˛1/.c0/D 0 2 . zC.˛1/�/

n0 therefore follows from the assertion

@.�;˛1/.R/ 2S� WD spanfcd1 ˝ � � �˝ cdn j di > 1 for some n0C 1� i � ng:

In order to show this assertion let � be one of the special cycles appearing in R . The
following computations are based on Proposition 7.5 with `D˛1 and ˛ 2 f˛1; : : : ; ˛ng.
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If there exists a 1��� n�j with s� � n0C1 and d� � 2, then @.�;˛1/.�/ 2S� , as
@.�;˛1/ acts as a derivation and @.�;˛1/.c.s�/

2d��1
/D 0.

We will now consider the case ij � n0C 1. By definition,

T .c
.i1D1/
2m1�1

; : : : ; c
.ij /

2mj�1
/D

jX

D1

p˛i
�˛i1 � .c
.i1D1/
2m1

˝ � � �˝ c
.i
 /
2m
�1

˝ � � �˝ c
.ij /

2mj
/:

We distinguish the following cases:

� Let 1� i
 � n0. Since ˛ij > ˛1 , hence @.�;˛1/.c.ij /2mj
/D 0, we see that

@.�;˛1/.c
.i1/
2m1
˝ � � �˝ c

.i
 /
2m
�1

˝ � � �˝ c
.ij /

2mj
/

is a sum of elementary tensors each of which contains a component c.ij /2mj
.

� Let n0C 1� i
 � n. Then ˛i
 �˛i1 � 1 and

@.�;˛1/.p˛i
�˛i1 � c
.1/
2m1
˝ � � �˝ c

.i
 /
2m
�1

˝ � � �˝ c
.ij /

2mj
/D 0:

We conclude @.�;˛1/.�/ 2S� in the case ij � n0C 1 as well, finishing the proof.

By Lemma 8.2 and Proposition 7.9, the image of Œc0� in H�.B� 0IFp/ is a linear
combination of generalized products of Z=p˛1 –lens spaces L2m1�1�� � ��L2mk�1!
B� 0 for 1� k � n0.

The cycle R occurring in (16) is p–atoral, since each summand is of degree larger
than n and p is odd. Since also c is p–atoral we conclude that c0 2 .C.˛1/�/n

0

is
p–atoral (here we use again that ˛n0C1; : : : ; ˛n>˛1 ). We can therefore assume that in
the generalized products of lens spaces appearing before, the case m1 D � � � Dmk D 1
does not occur.

In summary, modulo some p–atoral positive cycle (represented by a linear combination
of generalized products of lens spaces) we can assume that c0 is a p–atoral cycle in
. zC.˛1/�/

n0 � .C.˛1/�/
n0 that maps to 0 2 H�.B� 0IFp/.

Since H�.B� 0IZ/˝Fp!H�.B� 0IFp/ is injective we get Œc0�Dp � Œ�� for a cycle � 2
. zC.˛1/�/

n0. According to Proposition 6.2 we can assume that � is a linear combination
of special cycles, and hence p � � is a linear combination of cycles

p �
�
T .c

.i1/
2m1�1

; : : : ; c
.ij /

2mj�1
/˝ c

.s1/

2d1�1
˝ � � �˝ c

.sn0�j /

2dn0�j�1

�
2 . zC.˛1/�/

n0 :

Proposition 6.9(i) implies that such cycles are positive in .C.˛1/�/n
0

whenever j � 2.
Since these cycles are also p–atoral for j � 2 (for p–odd) we can assume that p � �
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is a linear combination of cycles c2d1�1˝ � � �˝ c2dn0�1 with at least one di � 2 (by
p–atorality of c0 ). This shows that p � � and hence c0 are positive.

In summary we have shown that c 2 zC.˛1/�˝� � �˝ zC.˛n/��C.˛1/�˝� � �˝C.˛n/�
is positive, finishing the proof of Proposition 8.1 and hence of Theorem 1.6.
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