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POSITIVE SCALAR CURVATURE ON MANIFOLDS WITH ODD ORDER
ABELIAN FUNDAMENTAL GROUPS

BERNHARD HANKE

ABSTRACT. We introduce Riemannian metrics of positive scalar curvature on manifolds with
Baas-Sullivan singularities, prove a corresponding homology invariance principle and discuss
admissible products.

Using this theory we construct positive scalar curvature metrics on closed smooth manifolds
of dimension at least five which have odd order abelian fundamental groups, are nonspin and
atoral. This solves the Gromov-Lawson-Rosenberg conjecture for a new class of manifolds with
finite fundamental groups.
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1. SUMMARY
We will show the following existence result for positive scalar curvature metrics.

Theorem 1.1. Let M be a closed connected smooth manifold of dimension at least 5 with odd
order abelian fundamental group. Assume that M is nonspin and p-atoral for all primes p dividing
the order of w1 (M). Then M admits a Riemannian metric of positive scalar curvature.

For the notion of p-atorality see Definition For example, a closed connected oriented
manifold M whose fundamental group is generated by fewer than dim(M) elements is p-atoral for
all odd primes p, see Remark DZI

Theorem [[T] contributes to the Gromov-Lawson-Rosenberg conjecture concerning the existence
of positive scalar curvature metrics on closed smooth manifolds, see Rosenberg [23, Conjecture
1.22]. Tt solves Problem 5.11 of Botvinnik and Rosenberg [5] for odd p.

For finite fundamental groups of odd order the Gromov-Lawson-Rosenberg conjecture can be
formulated in the following concise way, see Rosenberg [22] Conjecture 1.2].

Conjecture 1.2. Let M be a closed connected smooth manifold with finite fundamental group of
odd order. If the universal cover of M admits a positive scalar curvature metric, then M admits
a positive scalar curvature metric.
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Connected manifolds with odd order fundamental groups are orientable, and they are spin if and
only if their universal covers are spin. Furthermore simply connected closed nonspin manifolds of
dimension at least 5 admit positive scalar curvature metrics by Gromov and Lawson [I1], Corollary
C]. Hence, if Conjecture holds, then each closed connected nonspin smooth manifold of dimen-
sion at least 5 with fundamental group of odd order admits a positive scalar curvature metric,
thus strengthening Theorem [L1]

Conjecture holds in dimensions 1 and 2, and it holds in dimension 3 by the geometrization
theorem. In dimension 4 it is false — see Hanke, Kotschick and Wehrheim [I3] — hence this case
must be excluded. In dimensions larger than or equal to 5 it holds for p-atoral manifolds whose
fundamental groups are elementary abelian p-groups, where p is an odd prime. This result is due
to Botvinnik and Rosenberg [5l[6] and the author [I2], who discovered and corrected a gap in the
original argument in [5[6].

By Kwasik and Schultz [16, Theorem 1.8], which can be generalized to the nonspin case, Con-
jecture holds for manifolds of dimension larger than or equal to 5 whose fundamental groups
have periodic cohomology.

Conjecture is false without assuming that 71 (M) is of odd order, see the remarks after
[22] Theorem 1.3]. Both this fact and the failure of the conjecture in dimension 4 illustrate that
the metric obtained from (M )-averaging a positive scalar curvature metric on the universal
cover of M is in general not of positive scalar curvature. Conjecture remains open in general
in dimensions larger than 4.

Definition 1.3. Let X be a topological space and let p be a prime. A homology class h € Hy(X; Z)
is called p-toral, if there exist £ € N, £ > 1, and classes c1,. .., cq € H (X;Z/p%) such that

(c1U---Ueca)(h) #£0 € Z/p".

Otherwise h is called p-atoral.
A closed oriented manifold M of dimension d is called p-atoral or p-toral, respectively, if the
fundamental class [M] € Hy(M;Z) has the corresponding property.

Remark 1.4. (i) The d-torus T¢ = (S x --- x S1)? for d > 1 is p-toral for all p, and so are
all closed manifolds which are oriented bordant, over the classifying space B(Z/p)?, to the
canonical map 7% = BZ? — B(Z/p)".

(ii) The p-atoral homology classes form a subgroup of Hg(X;Z).

(iii) A closed connected oriented manifold M¢ is p-toral if and only if ¢ ([M]) € Haq(Bmy(M);Z)
is p-toral, where ¢ : M — Bmi(M) is the classifying map of the universal cover of M.
This uses the fact that ¢* : H'(Bm(M); Z/p*) — H'(M;Z/p") is an isomorphism for all
£>1.

(iv) Let M? be closed connected oriented with finite abelian fundamental group 71 (M). Let
Y : M — M be a connected cover corresponding to a Sylow p-subgroup of 71 (M). Then
M is p-toral, if and only if M is p-toral. This follows from the relation

(¥ (e1) U+ U™ (ca)) ([M]) = deg(sh) - (1 U -+ U ca) ([M])

and from the fact that «* : H(M;Z/p*) — H'(M;Z/p") is an isomorphism for all £ > 1
by our assumption on 71 (M).

(v) Let M? be closed connected oriented and let p be an odd prime. Furthermore assume
that 71 (M) is generated by fewer than d elements. This implies that the abelianization of
m1(M) is a product of fewer than d cyclic groups. Then M is p-atoral since for ¢ > 1 the
cohomology group H'(M;Z/p") is generated by fewer than d elements and each element
in H'(M;Z/p") has square zero for odd p.

(vi) In contrast the orientable real projective space R is 2-toral for all m > 1.

(vii) One may speculate that p-toral manifolds for odd p do not admit positive scalar curvature
metrics. This would yield counterexamples to Conjecture

PQm—l

In the spirit of other existence results for positive scalar curvature metrics on high dimensional
manifolds the proof of Theorem [[.T]is based on the propagation of positive scalar curvature metrics
along surgeries of codimension at least three; see Gromov and Lawson [I1] and Schoen and Yau
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[26]. In the paper at hand this technique is combined with the realization of singular homology
classes by manifolds with Baas-Sullivan singularities [I]. To this end we introduce and discuss
the concept of positive scalar curvature metrics on manifolds with Baas-Sullivan singularities in
Sections Bl and [4] which includes the discussion of admissible products. In some particular cases
positive scalar curvature metrics on simply connected manifolds with Baas-Sullivan singularities
were studied by Botvinnik [4].

The main steps of the proof of Theorem [Tl are as follows. Let Q° denote the oriented bordism
ring and fix a family 2 = (Q4;)i>1 of closed oriented manifolds of dimension 4¢ whose bordism
classes form a set of polynomial generators of Q25© /torsion, and each of which is equipped with
a metric of positive scalar curvature. Such families exist by the results in [11]. By [I], after
inverting 2 oriented bordism with singularities in 2 is naturally isomorphic to singular homology;
see Section

Given a topological space X we will define a subgroup H;@’+(X; Z) C H,(X;Z), called the pos-
itive homology of X with respect to 2, see Definition Elements in this group are represented
by maps from Baas—Sullivan manifolds admitting positive scalar curvature metrics to X. In par-
ticular positive homology classes need not be representable by smooth manifolds. An important
ingredient for the proof of Theorem [Tl is the following homology invariance principle, which we
show at the end of Section [3

Theorem 1.5. Let M be a closed connected oriented smooth manifold of dimension d > 5 with
odd order fundamental group and which is nonspin. Let ¢ : M — Bmy (M) be the classifying map.
Then M admits a metric of positive scalar curvature if and only if ¢.([M]) € Hf’Jr(Bm (M); 7).

It hence remains to show that under the conditions of Theorem [[I] we have ¢.([M]) €
Hf"”(Bm (M); Z) for some orientation [M] of M. For this goal we first study the positive homol-
ogy H;@""(Bl"; Z) for finite abelian p-groups T

In this case the homology of BT can inductively be computed by an exact Kiinneth sequence
(with @ > 1)

0 — H,(BT) ® H,(BZ/p*) = H,(BT x BZ/p") — Tor(H,(BT),H,(BZ/p®))s—1 — 0.

The cross product can be realized by admissible products of manifolds with Baas-Sullivan sin-
gularities, and the same is true for the torsion product, which is related to a homological Toda
bracket. The construction of admissible products and Toda brackets for Baas-Sullivan manifolds
with positive scalar curvature is non-trivial and will be developed in Sections [ and [Hl of our paper.

By a variant of the well known “shrinking one factor” argument (see Proposition 7)) the cross
product of two homology classes is positive, if one of the factors is positive. However we can in
general show positivity of Toda brackets only if both of the factors are positive; compare Corollary
This does not cover Toda brackets involving homology classes of degree one (represented by
circles), even though these Toda brackets are p-atoral. Although we can show the positivity of
many Toda brackets involving degree one classes by a systematic use of group homomorphisms
in Proposition [6.7, there are some Toda brackets whose positivity remains obscure; see Question
0. 10!

In order to bypass this issue we use the fact that the homology class ¢ ([M]) € Hy(Bm (M); Z)
is of a restricted type, since M is assumed to be a smooth manifold. This fact is explored in the
following result.

Theorem 1.6. Let p be an odd prime and let T' be a finite abelian p-group. Then all p-atoral
classes in the image of Q2°(BT) — H.(BT;Z) are positive.

The proof of Theorem will be provided in Section Bl As a preparation we investigate the
(ordinary) homology of abelian p-groups I' in Section[@l For I' = (Z/p®)™ and p-atoral homology
classes not divisible by p the proof of Theorem [[.6]is especially difficult and relies on the fact that
these homology classes can be represented by generalized products of Z/p®-lens spaces modulo
elements divisible by p. We refer to Section [ for further details.

Now let M be a manifold as in Theorem [Tl Let p be an (odd) prime dividing the order of
71 (M), let M — M be the connected cover corresponding to the inclusion of a Sylow p-subgroup
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I' Cc 7 (M) and let ¢ : M — B be the classifying map. By Remark [LA[(iv)| the manifold M is
p-atoral, and by construction ¢, ([M]) € Hy(BT) lies in the image of Q5°(BI") — Hy(BT). Using
Theorem [[6 the class ¢, ([M]) € Hq(BT') is positive. Hence also the class

[m(M) : T] - ¢ ([M]) = ¢ (6. ([M])) € Ha(Bm(M))
is positive, where [m1 (M) : I'| denotes the index of I" in 71 (M) and ¢ : BI' — Bmy (M) is induced
by the subgroup inclusion I' C 7 (M).
By the Chinese remainder theorem we find «, € Z, where p runs through the primes dividing
the order of 71 (M), such that 1 = 3>« - [m1(M) : T'p] where I', C m1(M) denotes some Sylow
p-subgroup. Hence

6. (IM]) =" ap - [ (M) : Ty - ¢ ([M]) € HY (B (M): Z)

finishing the proof of Theorem [Tl

We conjecture that Theorem [[LT] also holds for spin manifolds with vanishing a-invariants. A
proof should be based on real connective K-homology instead of ordinary homology; compare
Rosenberg and Stolz [25]. However our homological computations do not carry over to this case
in an obvious way. Hence we leave the spin analogue of Theorem [[.1] for later investigation.
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some years ago. To Stephan Stolz I owe the idea to study positive scalar curvature metrics on
manifolds with Baas-Sullivan singularities for proving Theorem [[LJ] Substantial parts of this
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(NYU). The hospitality of the named institutions is gratefully acknowledged. I appreciate a
number of helpful suggestions by an anonymous referee, which led to a significant improvement of
the manuscript. Many thanks also go to John Bourke from the MSP production team.

This research has been supported by the Special Priority Programme SPP 2026 Geometry at
Infinity funded by the DFG.

2. REVIEW OF MANIFOLDS WITH BAAS-SULLIVAN SINGULARITIES

We recall some terminology, following mainly [8, Section 3.3], and fix some notation. Smooth
d-dimensional manifolds with corners V are modeled on subsets N(k,U) = U x [0,1)k ¢ R? for
0 < k < d, where U C R?* is open, with smooth transition maps of the form (z,t1,...,tx)
(@', t5(1), - - - » to(k)) for some permutation o. For a precise definition we refer to [8, Definition 3.14.]
and the subsequent discussion. In particular, manifolds with corners are equipped with preferred
local collar structures. [ The subset U x {0} C N(k,U) defines the points of codimension k in
N(k,U).

Let V be a d-dimensional manifold with corners. Every point # € V¢ has a codimension
0 < ¢(x) < d, defined with respect to any local chart around z. This induces a decomposition
of V into smooth (in general non-compact) connected submanifolds of V, called strata, of various
codimensions. Each stratum admits a canonical completion (by adding boundary points to local
models), which is itself a manifold with corners, see [8, Definition 3.17]. The union of strata of
codimension at least 1 in V' is denoted by OV

As usual we require by definition that each « € V lies in the closure of exactly ¢(x) codimension-
1 strata of V. In this case the completions of strata coincide with their respective closures in V'
(note that this is not true for the 1-gon, for example), which are called connected faces of V.

Manifolds with Baas-Sullivan singularities were introduced in [I]. Let us recall some features
of the theory which are relevant for our discussion. A decomposed manifold is a manifold V' with
corners together with a decomposition

oV =00VU---Ug,V,

for some n € N, where each 9;V is a disjoint union of connected codimension-1 faces of V' which is
globally collared in V' and each connected codimension-1 face of V' is contained in exactly one 9;V,

LSome authors use different conventions, compare, for instance, [I5, Definition 2.2] .
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see [I, Definition 2.1]. Each 9;V has an induced structure of a decomposed manifold by setting
0;(0;V) = 0;V No;V for j # i, and 0;(9;V) = 0 for 0 < j < n, compare [I, page 283].

Definition 2.1. We call the decomposed manifold 9V the boundary of V. If V is compact and
0oV =0, then V is called closed.

Similar to [Il Definition 2.2] we fix a family of closed smooth manifolds & = (Py = , P, Py, .. .),
called singularity types. For n € N we set &, = (P, ..., P,). By definition, a &,,-manifold is a
family of decomposed manifolds

A= (A@))ocio,.n,
where 0A(w) = GpA(w) U -+ U dpA(w), with §;A(w) = @ for i € w, together with isomorphisms
0;A(w) =2 A(w,1) x P; of decomposed manifolds for i € {0,...,n} \ w. 4 Here we set 9;(A(w,1) x
P;) == 0;A(w,i) x P; for 0 < j < n and we write A(w,?) instead of A(w U {i}). We also use the
shorthand A for the decomposed manifold A(0).
By definition the following compatibility condition is required to hold.

Condition 2.2. For all 4,j ¢ w with ¢ # j the isomorphisms
0;A(w) N0;A(w) = 0;(0;A(w)) = 0;(A(w,i) x P;) = 0jA(w,1) x P, = A(w,1,j) x Pj X P;,
0iA(w) N9 A(w) = 0;(0;Aw)) = 0;(Alw,j) X Pj) = 0;A(w,j) X P; 2 A(w, j,i) X P; x P;
coincide after composing one of them with the interchange map P; x P; — P; x P;.

Note that each &2,-manifold A can be regarded as a &, i-manifold in a canonical way by
setting 9,414 := 0. For a &,,-manifold A we define the union of singular strata of A as
Sing(4) == [ ai4,
1<i<n
so that, obviously, 04 = 9y A U Sing(A) and Sing(9pA) = dpA N Sing(A).

There is a bordism theory Q7 n(—), which we call bordism with singularities in &, — compare
[1L page 284 fI.], where this theory is denoted by M(£2,,).(—). Given a pair of topological spaces
(X,Y C X) elements in ng’" (X,Y) are by definition represented by continuous maps f : A9 — X,
where (see [I, Definitions 2.2. and 2.3.])

(i) Ais a compact d-dimensional Z,,-manifold;
(ii) on local models U x [0,1)* the map f factors through the projections

U x [0,1)" 2% U;

(iii) for all 4 € {1,...,n} the restriction f|s, 4 factors as
Pra(s)

0;AX A(G) x P, — A(i) — X
(iv) f(GoA) CY.

Definition 2.3. A continuous map f : A? — X with properties and is called compatible
with the singularity structure of A

Definition 2.4. The homology theory obtained in the limit n — oo is called bordism with singu-
larities in 2 and denoted by Q7 (—).

There is a straightforward generalization to bordism with tangential structures. In this paper
we will be working with oriented bordism with singularities Q507 (=) with n > 0 or Qfo"@(—),
where we assume that

e all singularity types P; are even dimensional;

e all P, and A(w) are oriented;

o for i ¢ w and with respect to the induced orientation on 9;A(w) (determined by the
outward normal) the given isomorphism 9;A(w) = A(w,i) x P; is orientation preserving,
if an even number of elements in w are larger than ¢, and orientation reversing otherwise.

2Some authors use the “Bockstein” notation B, A instead of A(w).
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In a similar way one may define spin bordism with singularities prin’g’(—), but this theory will
not be considered in this paper.

Construction 2.5. For n > 0 we shall define natural transformations of homology theories
u: QS0P () 5 Hy(— 7).

Let (X, Y) be a pair of topological spaces and let f : A% — X represent an element in QZO"@" (X,Y)
with a connected oriented compact &2,,-manifold A.

Let A’ be obtained from A by passing to the quotient space resulting from the identifications
(x,p) ~ (z,p)) on ;A= A(i) x P, fori =1,...,n,x € A(i) and p,p’ € P;. Intuitively this process
may be regarded as “coning off” the singularity types Pi,..., P, in A and thereby introducing
genuine singularities. It is shown by a straightforward computation that Hy(A', (00A)';Z) = Z
(recall dim P; > 2 for ¢ > 1), with a preferred generator [A’, (0pA)’] corresponding to the given
orientation of A. By assumption f factors through a map f' : (4’,(004)") — (X,Y), and we
define

1) u(lf : A X)) i= FLA (DA)]) € Ha(X, Y3 7Z).
Passing to the limit n — oo we also obtain a natural transformation
u: QSO (—) 5 Ho(—; 7).

By [21] the oriented bordism ring 25° modulo torsion is a polynomial ring. There are closed
oriented manifolds @1, Qs, ... with dim ); = 44 such that

Q59 /torsion = Z[[Q1], [Q2), - . ],

where [Q;] € Q39 denotes the bordism class represented by @;. Since Q5° contains no odd torsion
[17] the sequence ([Q;])i>1 is a regular sequence in Q39 ®Z[1/2]. Setting 2 := (Qo = *, Q1, Qa, .. .)
we arrive at the following fundamental result from [I].

Proposition 2.6. For all (X,Y) the natural transformation u defined in ([Il) induces an isomor-
phism
uw: Q32 (X)Y)®Z[1/2] — Ho(X,Y;Z[1/2]).

Corollary 2.7. Let ' be a finite group of odd order. Then the map
u: Q392(BT) — H,(BI;Z)
18 surjective.

Proof. This holds in degree 0, when source and target of u are equal to Z. Let d > 1. Since I is of
odd order the homology group Hy(BI'; Z) is abelian of odd order. Hence for any mg > 0 and any
x € Hy(BT';Z) there exists m > mg with 2™ - z = z. The claim is hence implied by Proposition
by clearing denominators. O

In other words: Each homology class in H,(BT;Z) is represented by a 2,,-manifold for some
n (which has to be larger than 0 in general, compare Example 7.6). Next we will introduce and
study the notion of positive scalar curvature metrics on these objects.

3. POSITIVE SCALAR CURVATURE ON MANIFOLDS WITH BAAS-SULLIVAN SINGULARITIES

Definition 3.1. An admissible Riemannian metric on a manifold with corners V¢ is a smooth
Riemannian metric g on V which on each local model U x [0,1)¥ restricts to a product metric
gV @ 7. Here and in the following 1 denotes the standard Euclidean metric and ¢V is some
Riemannian metric on U C R47F,

Definition 3.2. A family of Riemannian singularity types is a family of singularity types & =
(Po = *, P, Ps,...) together with Riemannian metrics h; on P; for ¢ > 1.

We call a family of Riemannian singularity types positive if each metric h; for i > 1 is of positive
scalar curvature.
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Definition 3.3. Let & be a family of Riemannian singularity types and let A be a &,,-manifold,
possibly with boundary. An admissible metric g on A = A(() is called &-compatible if for each
w C {1,...,n} there is an admissible metric g(w) on A(w) such that g = g(@) and the metric g(w)
restricts to the product metric g(w,i) @ h; on 0;A(w) = A(w,i) x P; fori e {1,...,n}\w.

Lemma 3.4. Fach &,-manifold admits a &-compatible metric.
Proof. Use downward induction on the cardinality of w C {1,...,n}, starting with |w| = n. O

Construction 3.5 (Scaling &-compatible metrics). Let & be a family of Riemannian singularity
types and let A be a &,-manifold together with a &?-compatible metric g. For A > 0 the scaled
metric A - g is not &-compatible unless A = 1. The following construction will resolve this issue.

We fix, once and for all, a smooth cut-off function ¢ : [0,1] — [0, 1] equal to 0 on [0,1/3] and
equal to 1 near 1.

Let A > 0 and § > 3 real numbers. For w C {1,...,n}, say w = (i1,...,ix) with 1 < 43 <

- < ix < n, we obtain a k-parameter family (gt)t:(til7“.7tik)e[0,5]k of Riemannian metrics on
iy -0, A Alw) X Py X -+ X Py,
(2) gtz)\'g(w)@@(¢(ti/5)')\+ (1_¢(ti/6)))hi-

PEW

We abbreviate P, := P;, x - -+ x P;,. With the Euclidean metric 7 on [0, 6]]€ we obtain a smooth

Riemannian metric g, x5 on A(w) x P, x [0,d]* defined by

where

gurs(a,p,t) = gi(a,p) 1.

Choose some monotonically increasing diffeomorphism y : [0,1] — [0,d] which has derivative
VX near 1 and denote the induced diffeomorphisms [0, 1]* — [0, 6]* by x as well.

For w C {1,...,n}, if |w| = k, then we replace the metric A - (g(w) ® @;c,, hi 1) on the
local model A(w) x P, x [0,1)¥ C A by the metric g, x5 pulled back along the diffeomorphism
idxidx y : A(w) x P, x[0,1)* = A(w) x P, x [0,9)*. Continuing with increasing k = 0, ...,n this
construction results in a smooth metric on A. Furthermore, by the choice of ¢ and since § > 3,
there are induced local corner models on A with respect to which this metric is #-compatible.

This new metric on A is denoted by g(» 5) and is called the (), §)-scaling of g. The diffeomor-
phism y and hence the metric g(y 5) can be assumed to depend smoothly on A and ¢. Note that
Ione) (W) = g(Ww)s) forw C {1,...,n}.

For n = 2 and ¢ = 3 the situation is illustrated in Figure[Il where the shaded region indicates
the collar near Sing(A) for the scaled metric g(y,s)-

Definition 3.6. Let & be a family of Riemannian singularity types, let A be a &2,-manifold and
let g be a &-compatible metric on A. We say that g is singularity-positive, if for all 1 < ¢ < n the
product metric g(¢) @ h; on ;A = A(i) X P; is of positive scalar curvature.

Proposition 3.7. Let & be positive, let A be a compact P, -manifold, and let g be a P -compatible
metric on A. Then there exists A > 1 and 69 > 3 such that for all 6 > &y the metric I(r,5) 8
singularity positive.

Proof. Since the metrics hy, ..., h, are of positive scalar curvature and A is compact we find some
A > 1 such that the metric A - g(i) @ h; on ;A = A(i) x P; is of positive scalar curvature for all
1<i<n.

By the additivity of scalar curvature in Riemannian products and since A > 1 the metric g; in
(@) is of positive scalar curvature whenever t;; < /3 for some 1 < j < k.

For w C {1,...,n} with |w| = k, we obtain Riemannian submersions

(Aw) x P x[0,6]%, guns) — (0.6]%1)

whose fibers are equipped with the metrics g;.
By the O’Neill formula for the scalar curvature in Riemannian submersions [2] (9.37)], we find
dp > 3 such that for all § > dp the metric g, x5 is of positive scalar curvature on the subset

{(a,p,t) € A(w) x P, x [0,6]" | 0 < t;; < /3 for some 1 < j < k}.
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/\g(l) @hl Ag(l,?)@hl @)\hg )\g(172)@h1 @hQ
Ag(1) ® Ahy Ag(1,2) @ Ahy B Aho Ag(1,2) @ Ahy @ ho
....... .
Ag(0)
)\Q(Q) @ Aho )\g(2) @ ha

FIGURE 1. %3-manifold A with scaled metric gy s)

This implies the assertion of Proposition 31 d
We need the following variation of Definition

Definition 3.8. Let &2 be a family of Riemannian singularity types, let A be a &,,-manifold and
let g be a &2-compatible metric on A. We say that g is positive, if for all w C {1,...,n} (including
w =) the metric g(w) on A(w) is of positive scalar curvature.

This condition, which is stronger than just requiring the metric g on A to be of positive scalar
curvature, will become important in the proof of the next proposition. Note that positive metrics
are singularity positive in the sense of Definition

Proposition 3.9. Let & be a family of singularity types and A be a compact &, -manifold together
with a P-compatible positive metric g. Let A C (0,00) be a compact subset and let s > 0.
(i) Let & be positive. Then there exists do > 3 such that for all X € A and § > &y the scaled
metric gia,s) 1S positive.
(i) There exists 0 < Ag < 1 such that for all 0 < A < Ao there exists o > 3 such that for all
6> 09 and w C {1,...,n} we have scalgwé)(w) > s.

Proof. For w C {1,...,n} the metric g(w) is of positive scalar curvature by assumption and hence
@) implies, assuming positivity of & in case (a):

(a) For all A € A and t € [0,8]* we have scalg, > 0.

(b) There exists 0 < A9 < 1 such that for all 0 < A < A and ¢ € [0, 6]* we have scal,, > s.

Using the O’Neill formula and the compactness of A this implies, on A = A():

(a) There exists o > 3 such that for A € A and § > Jo we have scal,, ; @) > 0.
(b) There exists 0 < Ag < 1 such that for all 0 < A < A\ there exists §y > 3 such that for all
0 > 0o we have scaly,  (9) > s.

Now, for any § C {1,...,n}, a similar argument applies to A(6) instead of A = A(()) so that we
can pass to the maximum of the resulting constants dg in@ and to the minimum of the resulting
constants Ag and the maximum of the resulting constants Jg in in order to prove the required
lower estimates of scalar curvatures on all A(#). O

Corollary 3.10. Let & be positive, let A be a compact P, -manifold, and let g be a & -compatible
metric on A. Furthermore, let C C JyA be a union of components of Oy A and assume that the
restriction of g to C is positive (in the sense of Definition [38).
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Then there exists A > 1 and 6o > 3 such that for all 6 > do the scaled metric gy s) s singularity
positive and still restricts to a positive metric on C'.

Proof. Let \ and dp be chosen as in Proposition B.7l The claim follows from Proposition IBEI.
applied to A := C and A := {\}, possibly after passing to some larger dg.

We can now show the following bordism principle.

Proposition 3.11. Let & be a positive family of singularity types and let V be a compact P, -

manifold with dimV > 6. Assume that the boundary 0oV decomposes as a disjoint union OV =

AU M, where A is a closed &, -manifold equipped with a &-compatible positive metric, and M

is a closed smooth manifold. Furthermore assume that the inclusion M — V is a 2-equivalence.
Then M carries a Riemannian metric of positive scalar curvature.

Proof. By CorollaryB.I0we find a &?-compatible singularity-positive metric g on V' which restricts
to a positive metric on A C 9yV.
For 1 </ <k <n+1 we consider the face

0[0,1]% := {(t1,...,tr) € [0,1]F | t, =1} C [0,1]*

Each 9;]0,1]* can be identified with [0,1]*~! in a canonical way and 9,[0, 1]* is equipped with a
collar of width 0.1 equal to

20[0,1]% x (0.9,1] = {(t1,...,tx) € [0,1] | 0.9 < t, <1} C [0,1].

For 1 < k < n+ 1 we fix smooth hypersurfaces #*~1 C [0,1]¥ homeomorphic to compact

(k — 1)-balls subject to the following conditions:

20 ={1/2} C [0,1].

e %=1 is invariant under permutations
[0, 1]k — [0, 1]k, (tl, . ,ﬁk) — (ta(l)a . ata(k))-

e For 2 < k < n + 1 the hypersurface 5%~ is of product form in the collar neighborhood
of width 0.1 of each codimension 1 face 9,[0,1]* C [0,1]* for 1 < £ < k, and meets this
face in S+ —2;

e the metric v,_; on s#*~! induced from the Euclidean metric 7 on [0, 1]* is of nonnegative
scalar curvature.

One explicit construction of s#*~1 is by attaching a C'-collar of width 1/5 to the shifted
spherical segment (4/5,...,4/5) — {t € [0,1]* | ||t = 3/10} C [0, 1]* and smoothing.

Replacing U x [0,1)¥ by U x 5%~ in local models of V for increasing 1 < k < n+ 1 we obtain
a smooth hypersurface OW C V contained in the collar neighborhood of 9V, where we recall that
OV is the set of points of codimension at least 1 in V. (We write 5%~ for s#*~1 N [0,1)*.) The
hypersurface OW is the boundary of a smooth embedded codimension zero submanifold W of V',
which we may think of V' with “smoothened corners”.

We obtain a decomposition OW = Cy LI C; where Cy and Cj are disjoint smooth submanifolds
of OW with C; = M. Furthermore C; — W is a 2-equivalence.

We claim that the smooth manifold Cy carries a Riemannian metric of positive scalar curvature,
such that Theorem BTl follows from the usual bordism principle for positive scalar curvature
metrics, see [28, Extension Theorem 3.3].

By assumption the induced metrics on the local models V(w) x [T;c,, P x [0,1)% of V for
wCA{0,...,n}, wn{l,...,n} # 0 with |w| = k are of product form g(w) ®© P, hi n (here we
set ho = 0) and of positive scalar curvature, as g is singularity-positive. Furthermore the metric g
is of positive scalar curvature in the collar neighborhood A x Py x [0,1) = A x [0,1), as g restricts
to a positive metric on A.

Since the metrics yx_1 on #*~! have nonnegative scalar curvature this implies that the re-
stricted metrics g(w) ® P, ¢,, hi ®ve—1 are of positive scalar curvature on V(w) x [,¢,, P x A#7!
for these w as well as on A x Y = A x {1/2}.

Altogether we obtain a positive scalar curvature metric on Cy as required. (I
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Let 2 :=(Qo = *,Q1,Qx2,...) be a family of singularity types as in Proposition 2.6l For ¢ > 1
we can assume that @; is equipped with a positive scalar curvature metric h; — compare [I1] —
such that 2 is a positive family of singularity types in the sense of Definition

Definition 3.12. Let X be a topological space. A homology class h € Hy(X;7Z) is called positive
with respect to 2, if there is a bordism class [f : A9 — X] € QgO’Q(X) with the following
properties:

e A admits a 2-compatible positive metric (see Definition [B.8]).
o u([f: A9 — X]) = h, where u : QgO’Q(X) — Hy(X;Z) is as defined in Construction 25

The subgroup of all positive homology classes with respect to 2 is denoted by Hf’Jr(X AR

Note that a priori the subgroup of positive homology classes depends on the choice of the
metrics h;, and that positive homology is functorial in that a map X — Y of topological spaces
induces a map H2"(X;Z) - HZ (Y Z).

Proof of Theorem[1.d First assume that M is equipped with a positive scalar curvature metric g.
Regarding M as a Baas-Sullivan manifold with no singular strata, g is a positive metric on M in
the sense of Definition B.8 Hence ¢, ([M]) € Hd"@’Jr(Bm (M);Z) as required.

For the other implication assume ¢.([M]) € Hf’Jr(Bm (M);Z). We write ¢, ([M]) = u([f :
A? — Bri(M)]) where A is equipped with a 2-compatible positive metric.

Using an inclusion * — By (M) the manifold M represents a class

[M] € Q5°(Bm (M)).

Then 8 := [¢p : M — Bmi(M)] — [M] € Q5°(Bm;(M)), the reduced oriented bordism group of

B (M). Since QS°(Bm; (M)) is a finite abelian group of odd order by assumption on 1 (M) and

by the Atiyah-Hirzebruch spectral sequence, we find, for each mg > 0, an m > mg with 2™.8 = 3.
Each element in the kernel of the map

w: Q592 (B (M)) — Hy(Bry (M); Z)

in Corollary 7 is 2-power torsion by Proposition [Z6] and hence, using d > 0, there is some
mg > 0 with

2m0 . ([f : AY = Bm(M)] - 8) = 0 € Q322 (Bmi(M)).
Hence there is an m > mg with
3)  2m-[f: A= Bm (M) =B =[¢p: M = Bm(M)] — [M] € Q5°2(Br (M)).

Since d > 5 we can represent [M] € ng by a closed oriented smooth d-manifold N with a positive
scalar curvature metric by [II, Corollary C]. By (8] there exists a compact connected oriented
2-bordism V' — Bmy(M) between M UN — Bm(M) and [[,m(f : A — Bmi(M)). Here N
denotes N with the reversed orientation.

We can assume that the inclusion M < V is a 2-equivalence by applying surgeries to the
interior of V. For this we observe that the induced homomorphism 71 (V) — m(Bm(M)) is
surjective and has finitely generated kernel since 71(V') is finitely generated and 1 (M) is finite
by assumption. This kernel can hence be killed by surgeries along finitely many embedded circles
in the interior of V' with trivial normal bundles, thus achieving 71 (M) = 71 (V). Since now 1 (V')
is finite and V' is compact, mo(V) is finitely generated and so is the cokernel of mo(M) — ma (V).
Moreover each element in this cokernel can be represented by an embedded 2-sphere in the interior
of V with trivial normal bundle, the universal cover of M being nonspin since M is nonspin and
m1(M) is of odd order. We can hence apply finitely many surgeries to the interior of V' to make
7o (M) — w2 (V') surjective, thus achieving our goal.

Now the assertion of Theorem follows from Proposition 3.1l

Remark 3.13. The language developed in this section allows an alternative approach to the
results in [10].
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4. ADMISSIBLE PRODUCTS

The cartesian product of two manifolds A and B with corners carries an induced structure of
a manifold with corners. However, the construction of the product of &,-manifolds as a -
manifold is more involved.

In order to illustrate the issue let A and B be smooth manifolds with boundaries diffeomorphic
to the closed manifold P;. This induces the structure of %;-manifolds on A and B where A(1) =
B(1) = {*}. We obtain d(Ax B) = (P; x B) U (A x Py ), but this does not induce the structure of a
Z1-manifold on A x B (even after straightening the 7/2-angle at A x 9B), since the P;-factors on
the two pieces of 9(Ax B) correspond to different P;-factors in the intersection (Py x B) N (Ax Py) =
P, x P;. Therefore an additional construction is required, which, roughly speaking, interchanges
these two factors at the glueing region.

This problem was discussed in [3L18,20,27], resulting in an obstruction of order at most 2 if
P, is of even dimension. In the following we present an explicit geometric construction, which
somewhat differs from the mentioned sources and is well adapted to our purpose. We will work
in an oriented setting and in particular assume that all singularity types P; for ¢ > 1 are even
dimensional.

In the following we fix n > 0. Let A and B be &,-manifolds with decompositions

0A=0yAU---U0,A, O0B=0BU---U0,B.

This includes the case that ;4 = () or ;B = ) for some ¢ = 0,...,n. In particular, A or B are
allowed to be smooth manifolds without singular strata.

In the remainder of the construction we fix a two dimensional compact hexagonal manifold X
with corners, see the dark grey region in Figure

Forw C {1,...,n} we will construct a manifold with corners Ax,, B, which, intuitively speaking,
is the cartesian product Ax B with all codimension 2-singularities 9; Ax0; B = (A(i) x B(i))x P; x P;
for i € w resolved. The construction runs by induction on the cardinality of w.

For w = () we set Ax,, B := A x B, the cartesian product of A and B with its induced structure
of a manifold with corners. In addition we smoothen the 7/2-angle appearing at 9y A x 9y B.

Assume that 1 < ¢ < n and A X, B has been constructed whenever |w| = ¢ — 1. Let w C
{1,...,n} with |w| = ¢.

Choose some i € w and consider the collar neighborhood

(&A X [0, 1)) X w\{i} (&B X [0, 1)) = (&A X w\{i} azB) X [0, 1)2 CA X w\{i} B

of the codimension-2 face 0; A X\ i} 0;B C A X\ ;3 B. The manifold A x, B is obtained by
removing this collar neighborhood from two disjoint copies of A X\ ;3 B and gluing in the handle
(0:A X\ 15y 0:B) x X as indicated in Figure 2] where X is drawn in dark grey color. The factor
P; x P; appearing in

6114 Xw\{i} aiB = (A(Z) Xw\{i} B(’L)) X Pz X Pz

is glued to the left hand copy of (A X w\ {i} B) \ ((&A X\ {i} &-B) x [0, 1)2) by the identity map,

and to the right hand copy by the interchange map (p1,p2) — (p2,p1).
The interchange map P; x P; — P; X P; is orientation preserving, since P; is even dimensional,
and hence the manifold A x,, B carries an induced orientation.

Remark 4.1. (i) If ;A = @ or ;B = 0, then A x,, B consists of two disjoint copies of
A Xw\{i} B.
(ii) The manifold A x,, B does not depend on the choice of i € w, up to canonical diffeomor-
phism.

For 7 € w we set
81(14 X w B) =2 ((&A Xw\{i} B) UaiAXu\{i}aiB (A Xw\{i} GZB)) R

where the two copies on the right hand side correspond to the upper and lower thick boundary
pieces in Figure 2l Notice that

(0:A X\ iy B) N (A X\ iy 0iB) = 0;A X\ 3y 0; B = (A(i) X\ iy B(i)) x P x P;
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(0; A X\ {i} 0;B) x [0, 1)2

(&A Xw\{i} B) X [0, 1) (A Xw\{i} &B) X [0, 1)

(A Xy BiB) x [0,1) = o (BiA Xy B) X [0,1)

(C{)lA X\ {i} C{)zB) x X
F1GURE 2. Construction of admissible products

and that the identification along this subspace interchanges the two factors in P; X P;, thus realizing
our initial goal.
In particular we get an induced isomorphism

0i(A x, B) 2 (A x, B)(i) x P,
where

(4) (A X w B)(l) =2 ((A Xw\{i} B(’L)) U(A(i)xw\{i}B(i))xPi (A(’L) Xw\{i} B)) .
This concludes the induction step.

Definition 4.2. The manifold AxB := A X{1,..,.n} B is called the admissible product of A and B.

.....

Proposition 4.3. The admissible product AXB carries an induced structure of a &,-manifold.

Proof. By construction Ax B carries the structure of a manifold with corners (with respect to ap-
propriate local models) and is a decomposed manifold with decomposition d(Ax B) = 9y(Ax B) U
U 8, (AxB), where we set

80(A>~<B) = (80A>~<B) U60A>~<6()B (A>~<80B) .

(Recall the smoothening of the 7/2-angle at dyA X JpB at the initial stage of the inductive
construction).

It remains to define the decomposed manifolds (Ax B)(w) for w C {1,...,n} in such a way that
the compatibility Condition for decomposed manifolds holds. First we study the case when w
has two elements.

Let 4,5 € {1,...,n} =: [n] with ¢ # j. By (@) we have
0;0,(Ax B) ( (A iy BO) Yo, 4oy oy 501, 05 (AWD Xy B)) P
=2+ (A Xty BO)G) Yoo 50) 01 (AD Xinvgiy B)()) x Py x B,
and likewise
0;0;(AxB) ( i (A x5y B(9)) Y(0.(AG) % s 15y BG)) ) < Py 9:(A(G) a5y B ) x P,
=2 ( (A X5y BE) ) Y agi ey BG) )iy py (AU )X[n]\{J} B)( ) x P x Pj.
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Furthermore
(A Xy B(0))(4) =2 ((A X {ig) B 1)) YAy o860 <P, (A0) Xy B(i))),
(AG6) % sy B)G) = 2+ (A0 X (i) BU)) Yty oy ) <y (AlE0) Xpu iy B))
and likewise
(A xpap gy BG)) () =2 ((A Xt B 1) Y(agi) s oy B xpe (A0 Xl i) B(J))) :
(AG) Xpnggy B)(6) =2 ((A(J') X} B) Ya s 0 80)x P, (A 3) Xnn i) B)) :

Similar computations apply to (A(Z) Xn)\{i} B(Z))(]) and (A(j) Xn\ {5} B(]))(Z)
Defining (Ax B)(i, j) as

4 (A gy BGD) U (AGD) X iy BG)) U (AG) X iy BO) U (A6 ) X iy B) )
where we glue

A X\ i,y B(i,§) and A(i) X qi53 B(4) along (A(4) X gi,53 B, 7))

A X[n]\{i,j} B(Z,j) and A(_j) >< n)\{i,5} B(Z) along (A(j X[n]\{z i} B(’L,j))
A(’L,j) X[n]\{i,j} B and A(_j) >< n)\{i,5} B(Z) along (A(Z,j X[n]\{z i} B(’L)) X Pi,
A(i, ) X np\gi,1 B and A(i) X g5,y B(j) along (A(i, §) X (i1 B())

we hence obtain

Arguing in a similar manner for arbitrary w C {1,...,n} we can work with
(5) (AxB)(w) := = 2lwl. U Aw ><{1,...,n}\w B(w\w')
w'Cw

with gluings of components associated to w’,w” C w with |w’ A w”| =1 (cardinality of symmetric
difference) in order to identify AX B as a Z,-manifold.
[l

Let X and Y be topological spaces, let A% and B¢ be closed oriented Z2,,-manifolds of dimensions
dand eand let « : A — X and 8 : B — Y be maps which are compatible with the singularity
structures of A and B (see Definition 2Z3]). Then the induced map a x §: Ax B — X x Y is
compatible with our inductive construction of Ax B and we obtain an induced map ax3 : AxB —
X x Y. This results in a bilinear map of bordism theories

= . SO,2, , S0, 2,

SRR (X) x QZO7(Y) — Qe "(X xY),
(the theories Q5" (=) were introduced after Definition E4) and this construction extends to
relative bordism groups. With the natural transformation u : Q%7 (=) — H,(—) from Con-
struction we hence obtain the following result.

Proposition 4.4. Let x denote the cross product in singular homology. Then for all pairs of
topological spaces (X, S) and (Y,T) we have a commutative diagram

Q302 (X, ) x QS0P (Y, T) —— Qii’f” (X xY,XxTUSXY)

luxu Ju
(a,b)—2"-(axb)
E——

Hy(X,S) x Ho(Y, T) = Hyre( X xY,X xTUS xY).

Remark 4.5. The factor 2" appears even if A or B are without singular strata, see Remark [£1]
In particular the product on Q50 7n (—) is not unital for n > 1.
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Now, choose Riemannian metrics h; on P; € & for i > 1. Let A and B be £2,-manifolds and
let g and h be &-compatible metrics on A and B in the sense of Definition B3l Let A, > 0 and
§,€ > 9. With this choice of § and €, the local models U x [0,1)* on A and B, equipped with
the scaled metrics g(x,5) and h, ) from Construction [3.5] can be canonically extended to local
models U x [0, 3)* on which these scaled metrics still restrict to product metrics gV ®n and RV ©n,
respectively, with the Euclidean metric n on [0, 3)*.

We equip the hexagonal manifold X with some admissible Riemannian metric o (see Definition
[BI)) with respect to which each side has length 3.

With these data we construct a metric g\ 5y®h(,,) on AXB along the inductive construction
of Ax B before Definition 22, starting with the product metric g ® h on A x B and working with
collar factors [0,3)? and [0,3) instead of [0,1)? and [0,1) in Figure2l Here it is important that
the interchange map on P; X P; is an isometry with respect to h; ® h;.

By the choice of § and € and the metric ¢ on X we hence obtain a #-compatible metric
g()\ﬁg)EBh(#ye) on AXB.

Definition 4.6. We call g(Ayg)éh(#ﬁe) the admissible product metric of g(x 5y and h, -
We obtain the following version of the well known “shrinking one factor” principle.

Proposition 4.7. Assume that A and B are compact and g is positive (see Definition[3.8). Then
for any u > 1 and € > 9 there exists 0 < A < 1 and § > 9 such that for all 8’ > § the following
holds:
(i) The metric gox.snDh(ue) on AXB is positive.
(ii) The metric g(x 51y s positive.
(i1i) Let C be a compact P,,-manifold, let k be a P-compatible metric on C, and let v > 0 and
0 > 9 be such that the scaled metric k, ) is positive. Then g(A,(;/)@k(%g) 1S positive.

Proof. Set min(scaly) := mingex{scal,(x)} € R. We will use a similar notation for other metrics
instead of 0. Note that min(scal,) < 0 by the Gauss-Bonnet formula, since the boundary pieces
of X are totally geodesic and meet at angles /2.

At each inductive step in the construction of AxB we replace two collar factors [0,3)? (with
zero scalar curvature) by a factor X equipped with the metric o. Hence, and more generally for
w C {1,...,n}, we obtain with (&

min (Scal(g(x,a)éh(u,e))(u})) = f;r/lé%{min(scalg(x,a)(w’))+min(scalh(u,e)(‘*’\w’))+(n_ |w[)-min(scals)} .

By Proposition applied to

5= wcr{rﬁ%’n}ﬂ min(scalhwe)(wm + n - | min(scaly)|},
we find 0 < A <1 and ¢ > 9 with the stated properties. O

5. POSITIVE CROSS PRODUCTS AND T'ODA BRACKETS

Let X and Y be topological spaces and consider the Kiinneth sequence of singular homology
groups

0 — Ho(X) @ H(Y) =5 Hy(X x Y) — Tor(H,(X) ,H,(Y))s1 — 0.

In this section we study positive homology classes (see Definition B12)) related to the homological
cross product X and the Tor-term in this sequence.

Setting 5.1. Let
s A= X] € Q%% (X) and [8: B Y] € Q7%(Y)

with 2,,-manifolds A and B and let a € Hg(X) and b € H.(Y) be the images of these bordism
classes under the natural transformation u from Construction

Propositions .4 and E7[(i)] imply the following result.
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Proposition 5.2. Assume that at least one of the Baas-Sullivan manifolds A or B is equipped
with a 2-compatible positive metric (see Definition[38). Then the class 2"+ (axb) € Hyqe(X xY)
18 positive.

Next we discuss the Tor term in the Kiinneth sequence. Let > 2 be an integer with ra =0 =
rb. Let (C4(X),0) and (C«(Y),0) be the integral chain complexes of X and Y. We pick chains
@ € Cg1(X) and b € Cey1(Y) whose boundaries represent ra and rb respectively. The cycle

(6) % (@R D) € (Co(X) @ ColY))drer

represents a Toda bracket coset

(a,r,b) C Haperr (X xY)
with respect to the submodule (a x Hey1(Y)) & (Hat1(X) x b) C Hater1(X x Y), which is
independent from the choice of @ and b. It is well known [9, Section 12] that such Toda brackets
generate a submodule of Hyy.41(X X Y) which maps surjectively onto Tor(H, (X ), Hi(Y))dte. In

the following we give a bordism theoretic description of Toda brackets.
By Proposition there exists m > 0 such that

2" .r-Ja: A= X]=0and 2™ -r-[: B—Y]=0.
Hence, possibly after passing to some larger n, there are compact oriented 2,,-manifolds V and W
with boundaries 9V = [[ym., A and W = [[,m ., B such that [[om (4 = X) and [[ym..(B LA

Y’) can be extended to maps @ : V — X and B:W — Y where @ and /3 are compatible with the
singularity structures of V and W.

By (@) and Proposition B4 the coset 2™ - (a,r,b) C H.(X x Y) is represented by
(7) (@xB) U (axpB): (VXB) Uy yxp—azow AXW) = X x Y.

Let A and B be equipped with 2-compatible positive metrics g and h. The metrics [[ym.,. g
on [ym.,. Aand []ym.,. b on [[5m.,. B, can be extended to (not necessarily positive) 2-compatible
metrics g and h on V and W (compare the proof of Lemma [3.4)).

By Proposition we find &g, €9 > 9 such that for all 6 > §y and € > ¢¢ the scaled metrics
9a1,5) and hy ) are positive.

Choose (), ) for A according to Proposition 7] for the scaled metric E(Lﬁo) on W, and in
an analogous fashion choose (u,€) for B for the scaled metric 9(1,50) o0 V. With these choices
the admissible product metrics gy 5,)®h(u,e) on Vx B and 9(0,6) DR (1,e0) 0N AXW are positive by
Proposition II'_Z| In order to glue the induced metrics on the common boundary [[y. . AxB
we need the following result.

Lemma 5.3. The metrics 9(1750)6~9h’(u,€) and g(/\75)®h(1760) on AxB are isotopic, and hence con-
cordant, through positive 2-compatible metrics.
Proof. Set A = [A,1] C R and choose §) > dp,d according to Proposition for this A. We
find isotopies through positive 2-compatible metrics on A:

e from g(1,6,) t0 g(1,6;), by the choice of do;

e from g(1,5,) to g(r,s;), by the choice of dp;

e from g(»s;) to g(x,s), by the choice of (), d) and by Proposition IZE
Hence, by the choice of (u,€), we obtain a smooth isotopy from g1 s0)Bh(ue) t0 gix.6)Bh(u.e)
through positive 2-compatible metrics, see Proposition IZ:Z|

In an analogous fashion we find a smooth isotopy from g §)Dh(1,e,) 10 g(r,5)Bh(u,e) through

positive 2Z-compatible metrics, thus finishing the proof of Lemma [5.3

We obtain the following counterpart of Proposition

Proposition 5.4. We work in Setting[51 and assume in addition that both of the Baas-Sullivan
manifolds A and B are equipped with 2-compatible positive metrics. Let r > 2 be such that
ra = 0 = rb. Then for each element x € {(a,r,b) C Hyrer1(X X Y) there exists £ > 0 such that
20 . x is positive.
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Proof. Using the notation introduced after Proposition the 2,-manifold
(VXB) Ugyv zp=azaw (AXW)

in (7)) carries a 2-compatible positive metric by Lemma [5.31 Hence the class 2’ € 2™+™ - (a,r, b)
represented by (VxB) U (AXxW) — X x Y is positive.

It is enough to show Proposition B4l for x € 2m%" . (a,r,b). Given such z we have x — 1’ €
(@ x He41(Y)) @ (Hg41(X) x b) C Ho(X x Y), and by Propositions 2.6] and 5.2 and since a and
b are positive there exists £ > 0 such that 2¢ - (z — ') is positive. Using that 2’ is positive we
conclude that 2¢ - z is positive. (I

LeNt I'y and I's be finite groups of odd order and set X = BI'; and Y = BI'5. Then each
x € H (X xY) is of odd order and hence for all my > 0 there exists m > mg with 2™ -2 = x. By
Corollary 27 and Propositions and [5.4] we conclude:

Corollary 5.5. Let a € Hq(BT'1) and b € H.(BT'2) where d,e > 0.
(i) If either a or b is positive, then a X b is positive.
(i) Letr > 2 withra =0 =rb and let a and b be positive. Then {(a,r,b) C Hgtetr1(BT'1x BI'y)
only contains positive classes.

This result will be crucial for the computations in the next sections.

Remark 5.6. One can show that the product x on (relative) bordism groups Q597 considered
in Proposition [£4lis graded commutative and associative. Corollary[5.5] which is sufficient for the
remainder of our paper, does not depend on these facts.

6. HOMOLOGY OF ABELIAN GROUPS

Let p be an odd prime. Given an integer o > 1 we denote by G, the cyclic group of order p“
with generator g, and neutral element 1,. The group operation in G, is written multiplicatively.
We denote by ZG,, the integral group ring of G,.

Let (C(a)«,0x) be the Z-graded Z-free chain complex with one generator ¢4 in each degree
d > 0 and differential

(0%

p*-cq_q forevend>2,
d(eq) =
0 for odd d and for d =0.
This is the cellular chain complex with integer coefficients of the standard CW-model of the

classifying space BG, with one cell in each non-negative dimension. We hence recover the well
known computation (see [7, (11.3.1)])

Z = ([co]) for d =0,
Ha(C()«,0x) = Ha(BGa) = { Z/p™ = ([ca])  for odd d,
0 for even d > 2.

Forn>1land 1 <a; <--- < a, we consider the abelian p-group
I'=Gq, x--- xGaq,

and obtain
H.(BT) = H.(C" @ - @ ™),

where O\ = C(ai)s, i =1,...,n, refers to the ith cyclic factor in the group T

Sometimes we will work with the reduced chain complex C(a), := C(a)./(co) of C(a).. Note
the canonical direct sum decomposition C(a), = C(a). @ (co) of chain complexes and the iso-
morphism ﬁ*(ﬁ") >~ H,(Cla1)e ®--- @ Clay)s), where Bl = BG,, A--- A BG,, is the smash
product of pointed classifying spaces. In general we obtain a direct sum decomposition of chain
complexes

(8) Clan)® - ®C(am)= P Clai)® - ®Clai)s,

0<k<n
1<ip < <ipg<n
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where the summand for & = 0 is equal to {cg ® - - - ® cp) C C(a1)x ® -+ ® C(an)«, by definition.
For analyzing H,(C(a1)« ® -+ ® C(ay)«) it is hence important to provide convenient generators
of Hu(C(ai,)s @ -+~ @ Claviy)s), for 1 <k <mand 1<4; <...<i, <n. In Proposition 6.2 we
will do this for H,(C(a1)« ® - -- @ C(am)«), the other cases are analogous. We first we write down
cycle representatives of iterated Toda brackets.

Construction 6.1. Let k> 1, hgt 1< 61 <--- < Bk and let my, ..., mg be positive integers. We
define a cycle in C(B1)« ® - - ® C(B)« of degree 2my + --- 4+ 2my — 1 by

k

1 k 1 1 k _ 1 ¢ k

y(cgn)nfl’ ce ’céﬂikfl) = p,ﬁ’l a(céﬂ)%l@' ’ '®Céﬂ1k) = Zpﬁ[ ﬁl'(cén)n(g)' ’ '®C§%F1®' ) ®anzbk>
=1

Clearly the corresponding homology class satisfies p°! - [ﬂ(cgzl_l, ey cgf%k_l)] =0. Fork=1

(1)

2mq1—17

setting h; := [nguq] € Hopm,_1(C(B:)) for i =1,..., k, we obtain

we have 7 (0517)11—1) =c and for £ > 2 we obtain iterated Toda brackets. More precisely,

[ (o1 5] € (i p™ 97 7P (i p™ o (i pP o p PPty )

We can now construct specific generators of Hy(C(a1)s @ --- ® Can)s). Let 1 < j < n,
let 1 <4 < --- < i; < n and let my,...,m; be positive integers. Let (si,...,s,—;) with
1<s1 <+ < 8p—j <n be the unique family complementary to (i1,...,%;) (this family is empty
for j =n) and let dy,...,d,—; be further positive integers. Suppressing a signed permutation of
tensor factors we obtain a cycle

T (1o o ) @k @@y eV @ 9 O € Clar) @ -+ @ Clan)..

2mq—1> —j

In the following we will call cycles of this sort special.
Proposition 6.2. H,(C(a;1). ® --- @ C(an)s) is generated by special cycles with i, = 1.

Proof. We apply induction on n. In the induction step we set %" := C‘il) R -® C'i") and consider
the exact Kiinneth sequence

0 — H,(€") @ Ho(C"™) — H (€7 @ ") — Tor(H, (€7), Ho (CTY)), -1 — 0.

*

By the induction hypothesis, the construction of Tor(H. (%)), H. (é£"+1))) and the assumption
that a; < ap41, Toda brackets of the form

(7 (W, ..., 1))@l @ ... @cln-a)] por pontr=ar[cnFD)])

map to a generating set of Tor(H, (€7), H,(C{"™)).

This Toda bracket contains [7(c(V), ..., cll) c"+t1)) @ 1) @ ... @ >»=3)] (up to sign), and
hence special cycles .7 (cM), ..., cl) D)) @ 1) @ ... @ ¢»-i) map to a generating set of
Tor(H, (€"), H, (C{" ™))

The image of the left-hand map in the Kiinneth sequence satisfies the claim by the induction
assumption. (I

Example 6.3. Let n =3 and a; = 1, as = 2 and a3 = 3. Then
0# [P, ) @ V] € Hy(BT).
Proposition [6.2] can be illustrated in this case by computing .7 (052), cf’)) ® cgl) as
) 0l —p T ) 0. =~ 7D, )0 - 0 0 P 0 ).

Next we will derive some explicit formulas for maps in group homology induced by group
homomorphisms. We consider the homological chain complex in non-negative degrees

(F(a)s,0) == (++ — ZGo = LGo = LG o — LG —= LGy,



18 BERNHARD HANKE

where the differentials are given by multiplication with 7, := g4 — 14 and v, := Zfio_ 1(go‘)i,
respectively. With the augmentation map ¢, : ZG, — Z induced by the group homomorphism
G, — {1} we obtain an exact sequence

e TGy 25 TG 15 TG 2 TG = TG =7 — 0.

In other words (F(a)«,0s) is a ZG4-free resolution of the ZG4-module Z, see [7, (1.6.3)]. Note
the canonical isomorphism of chain complexes C(a), = F (o). ®z¢a, Z.
Let o, 8, A € Nyg with p? | - p®, and consider the group homomorphism

¢:Go = Gg, gar—>(g3)/\.
Then each ZGg-module can be regarded as a ZG,-module via the ring map
29 : LGy — ZGg.
With this convention the assignments (using A - p®~# € Ny)

$om(la) = (A-p* )™ 1g,
A—1
om-1(la) = (A-p* )13 (gp)’
i=0
uniquely extend to ZG,-linear maps ZG, — ZGg and an explicit computation
p&—1 A—1
Gam—1(Va - 1a) = Ap* )" " (gp)"™ > (gp)
i=0 j=0
-1
= ()‘paiﬁ)m : Z (gﬁ)i =g ¢2m(1a>a
i=0

and similar to obtain ¢om(7a - la) = 78 - d2m+1(la), shows that we obtain an augmentation
preserving map of ZGy-linear chain complexes

Vo Ta Vo Ta

7.G, 7.G o Z.G, Z.G V/EN
l@ l% ldm l% ld)o—zd)
ZGs —— IG5 —— LGy —— LGy —— LGy

After applying the functor — ®z¢q,, Z we obtain the following result.
Proposition 6.4. The induced chain map ¢ : C(a). — C(B)« is given by
B2m (cam) = (A-p )™ - com Jorm >0,
Gam—1(cam—_1)= A-(A-p*B)y"L.co v form>1.
Note that the map induced in homology by ¢. can be identified with the map
(Bo). : H.(BG.) — H.(BGy),
compare [7, (I1.6.1)].

Lemma 6.5. Consider the diagonal map A : Go — Go X Go, g — (g,9). Then the induced map
in homology A, : Hy(C(a)+) = Ho(Cla). ® C(a).) satisfies

2m—+1
E C; Q Comt1—i| -
i=0

Proof. Obviously fooﬂ ¢i ® Cam+1—i 18 a cycle in C(a), ® C(a)«. It is enough to show Lemma
after passing to coefficients Z/p®. Using the Kiinneth isomorphism H,(BG, X BGy;Z/p®) =
H.(BGy;Z/p*) @ Hyi(BGq; Z/p*) the claim now follows from the well known ring structure of
H*(BGa:Z/p%). O

A([cam+1]) =
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Definition 6.6. A cycle ¢ € C(ag)s ® -+ ® C(ay)« is called positive, if the homology class
[c] € H.(BT') is positive with respect to 2 in the sense of Definition

Obviously the cycles cam—1 € C(a)am—1 are positive for m > 2 since these can be represented
by classifying maps of lens spaces S?™~1/(Z/p®) — BG,,. Furthermore the tensor product of two
cycles, one of which is positive, is itself positive by Corollary B.5l|(1)} and for mq, ma > 2 the cycle
T (Camy—15C2ama—1) € C(a1)s @ C(az)s is positive by Corollary B.H|(i1)} We will now identify some
more positive cycles in C(aq ). ® Clag)..

Proposition 6.7. For m > 2 the following cycles in C(a1)« @ C(az)« are positive:

(i) p- T (c1,cam-1) and p- T (cam-1,¢1),

(ZZ) y(cl,Cmel) and y(Cmel,Cl), Z'fOél < Q9.
Proof. Given v € N5 we consider the group homomorphism ¢, : Go, — G, defined by go, —
(gar)Y P ") and the resulting homomorphism

A id®de
fy 1 Gy — Go, X Gq, —" Goy X Ga, -

We claim that for m > 1 the image of (f5)«([cam+1]) in Ha(C(a1)s ® C(az).) is equal to
9) v [T (cam-1, )] - +9™ - [T (e1, cam—1)]-

This follows from Lemma and Proposition (with & = aq, 8 = a9, A = v - p*2~°1) which
gives us

2m m
(id X &)« <Z ¢ ® 02m+1i> = (02m72j+1 ® (Y c25) + com—2j12 ® (parm’yjczjfl))
i=1 j

Il
-

¥ - (C2m72j+1 ® c2j + Com—2j42 ®pa27o‘102j71)

.

1

J

7j : y(c2m72j+1a02j71);

.

1

J
where the last equation uses Definition [G.11
For m > 2 we have p | (p™ — p), but p? { (p™ — p). Together with (@) and the fact that copm 1
and J (cas—1,cot—1) for s,t > 2 are positive, this implies that suitable linear combinations of
(f1)+([cam+1]) and (fp)«([c2m+1]), which define positive classes in Hayp41(C(aq)s ® Claz)s), map
to p- [T (cam—1,c1)] and to p- [T (c1, cam—1)] in Hi(Clan)s ® Claz)y).
Since all cycles in C(aq)am+1 ® Clag)g and C(aq)g ® C(ag)2m+1 are positive this finishes the

proof of part |(i)
For part |(ii)| let @1 < o, consider the group homomorphism ¢ : G,, — G4, defined by
Jas — Ga, and the resulting homomorphism
FiGay 25 Goy X Goy P8 Gy X Gy .
We claim that for m > 1 the image of f.([cam1]) in Hy(C(n)s ® C(az)) is equal to
(10) [T (c1, com—1)] + -+ p" D27 (T (g g, 1))

We argue similarly as before, observing that by Proposition [6.4] (with A = 1) we get

2m m
(d) X ld)* (Z Ci @ C2m+1i> = Z (p(j_l)(cw_al)Cijl X Com—2542 +pj(a2_a1)02j ® 02m72j+1)

i=1 j=1

pli—Dlez=en), (c2j—1 ® Com—2j42 + C2; @ (P** ™ Y Cam—2j+41))

I
NE

<.
Il
—_

p(j_l)(arm) - T (C2j-1, Cam—2j+1) -

I
NE

<.
Il
—_
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Equation () together with part implies that for m > 2 there is a positive cycle in C(a1). ®
C(a). that maps to [7 (c1,cam—1)] € Ho(C(a1)s ® C(az).). Similar as before this implies that
the cycle T (c1,cam—1) € C(a1)« ® Claz)s is positive.
By (@) applied to v = 1 and the positivity of co;m41 and F (cas—1,c2:—1) for s,¢ > 2 there is a
positive cycle in C(aq)« ® C(asg). that maps to
[T (c1,c2m—1)] + [T (cam—1,¢1)] € Hi(Ca1)s ® Claz)s)

and hence (since 7 (c1, cam—1) has already been verified as positive) a positive cycle that maps
to [T (cam—1,¢1)] € Hi(C(a1)x ® C(az)«). Similar as before this implies that 7 (cam—1,¢1) €
C(a1)« ® C(az)« is positive, finishing the proof of part O

We also need to consider iterated Toda brackets of degree one cycles.

Lemma 6.8. Let 1 < a1 < as < ag.
T (c1,c1,¢1) € Clan)s @ Ca2). @ Claz)s and T (c1,c1) € Clag)s @ Claz)
are positive.

Proof. First let a := a1 = ag = a3. The diagonal map A : G, — (Go)3, g+ (9,9, 9), satisfies
Ales) =1 > ca, ®ca, ®cay),

(dl,dQ,dg)ED

where D contains all triples (di,dz2,d3) with 0 < d; < 5, > d; = 5 and precisely one odd d;.
This follows from the ring structure of H*(BGy;Z/p*) and the assumption that p is odd. For
1<i<j<3let AW G, — (Ga)? denote the diagonal map & : G, — (Gg)? composed with
the embedding (G4)? — (G4 )? to the ith and jth factors. Since d.([cs]) = [Z?:o ci®cs—4] a direct
calculation shows

Aulles) = [T (erene)l+ Y A ([es]) ~ s @ co@eo +co @ es @ e + o B o D e

1<i<j<3
Since c5 is positive this implies positivity of 7 (c1,c1,¢1) € (C()«)3. Nowlet 1 < a3 < as < a3
and let
D Gay X Gay X Gay "2 Gl X Gay X Gay ,

where ¢; : G, — Ga, is induced by go, — (go,)?"" ', 1 <i < 3. By Proposition [5.4] we obtain

Q. (T (c1,c1,01)) =1 @2 @ca+p™?* " Mea®er @ca +p™ T M2 ®ea®er = T (e, e1,01).
This implies the first assertion. The proof of the second assertion is similar. ([

We obtain the following conclusive result on the positivity of iterated Toda bracket cycles (which
may contain degree one cycles).

Proposition 6.9. Letn >2, 1 <a; <--- < ay and my,...,my > 1. Then the following cycles
in Ca1)x ® - @ C(an)« are positive:
. 1 n .
(i) - T (¢, —1s- - 1) if ar = = a,

(i1) 9(0&2171, e cézznfl), if o < ap.

Proof. Let 1 < iy < ... < i, < n be those indices with m;, = 1 (where 0 < r < n). Note that
(k)

omy—1 18 positive. We consider the

for all 1 < k£ < n which are different from any ¢; the cycle ¢
following cases:

o If r = 0 then ﬂ(céi)“fl, . .,cgfgnil) represents an iterated Toda product of positive

classes and is hence positive by Corollary

o If r > 1 then f(cgil), ceey cgm) is positive by Lemma [6.8 by grouping the cycles ngj) for
1 < 7 < r into families of two and three, and applying the fact that Toda brackets of
positive classes are positive. Hence ﬂ(cgﬁl_l, Cey cgfin_l
bracket of positive classes, and is therefore positive.

) represents an iterated Toda
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e lfr=11let1 <i<nbe fche unique index with m; = 1. Iflal <a,wefindl <k<n
with o # . Then f(cgz“fl, cg;)%fl) (resp. ﬂ(cg;)%fl, cggﬂfl) if k < ) is positive by
Proposition If oy = vy, then p- f(cgglﬁl, cg;)%fl) is positive for any 1 <k <n

with k # ¢ by Proposition The proof can now be finished as before.
O

For k > 1, v € Nyg and m = p* we get v =~ mod (p) in ([@). Hence the following problem
cannot be answered with the methods developed in this section and enforces us to restrict to
p-divisible cycles in Proposition in general.

Question 6.10. Let «,x > 1. Is the p-atoral (for odd p) cycle J (c1,copr_1) € C(a)x @ C(a)s
positive?

7. GENERALIZED PRODUCTS OF LENS SPACES IN GROUP HOMOLOGY

Let p be an odd prime, let a,n > 1, and let T' := (G,)". For our proof of Theorem we
will argue that certain p-atoral cycles such as the one in Question are not contained in the
image of Q59 (BI") — H,(BI") and can therefore be ignored. In this section we will approach this
issue, which is related to the classical Steenrod problem on the realization of homology classes
by smooth manifolds, in terms of natural stable homology operations defined for any topological
space X,

oD HL(X;Z/pY) = Haopn 1 (X;2)p%) k0> 1,

which by construction vanish on classes coming from Q7°(X). In Proposition [ the main
result of this section, we will show that the vanishing of the operations 0(®) together with the
vanishing of a suitable Bockstein operation, is indeed sufficient to detect elements in the image
of Q%°(BT) — H., (BT} F,), and that these elements can be represented by products of standard
Z/p-lens spaces.

Since we prefer to avoid a discussion of stable (co-)homology operations with coefficients Z/p*,
for which we did not find a handy account in the literature, we construct the operation 9(*-*)
as a differential in the Atiyah-Hirzebruch spectral sequence of a homology theory derived from
Brown-Peterson theory at the prime p, whose well known structure allows us to derive some crucial
properties of 90,

Recall that the coefficient ring for Brown-Peterson theory at the prime p is isomorphic to a
polynomial ring

BP, = Z(p)[vl, v, . . ] R

where v; € BPgy,i_o. As usual we set vg = p. For x,£ > 1 we define the ideal
I(k,0) :== (p*,v1,. .. S Uk—1,02, V1, ...) C BP, .

()

Proposition 7.1. There is a multiplicative homology theory BP with coefficient ring

BPiH’Z) = Z(p) [’Ul, V2, .. ]/I(FL, f)

together with a natural transformation of multiplicative homology theories BP — BP(“’Z), which
on the level of coefficients induces the projection Zyy[v1, vz, ...] = Zp)[v1,va, .. .]/I1(k,£).

Proof. Recall the construction of a (homotopy) commutative ring spectrum BP representing
Brown-Peterson theory for odd p in [27, Corollary 6.7], which is based on bordism theory with
Baas-Sullivan singularities killing the polynomial generators x; for j # p* — 1 with i > 1, of
T (MU) () = Zpy [ | 7 > 1,deg(z;) = 2j]. Here MU denotes the unitary bordism spectrum.

We construct BP9 in a similar fashion as a bordism theory with Baas-Sullivan singularities,
killing the regular sequence (p*,z1,..., (zpx—1)%,...) in m,,(MU),). It follows from [27, Theorem
6.2] (and the assumption that p is odd) that this theory is represented by a commutative ring
spectrum BP9 Furthermore, by construction, there is a canonical map of ring spectra BP —
BP"* with the stated property on the level of coefficients. (I
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We have BPSK“’Z) = (1,0s)z/pt, the free graded Z/ pf-module with generators 1 in degree 0 and
vy, in degree 2p™ — 2, with multiplication satisfying v2 = 0. The theory BP0 may be considered
as a form of extraordinary K-theory, where we have introduced the additional truncation v2 = 0
for computational purposes, compare Lemma [7.3]

Let X be a topological space and consider the Atiyah-Hirzebruch spectral sequence

E?, = H (X;BP{"") = BP"(X).

The term Eit is non-zero precisely for t = 0 and t = 2p” — 2, and in these cases is canonically
isomorphic to Hy(X;Z/p") (depending on the choice of v,). In particular we have E?, = Ei’f*l
and we define

(11) 0 Ha(X;2/p") = Hamaprn (X3 2/p)
as the differential 92P" 1 Ef%n_l — E? f;_kl «_o- 1t is immediate from this construction that
s s—2pk41,2pr—2

("0 ig natural in X, is stable with respect to suspensions, and is a derivation with respect to
the homological cross product. Since the natural transformation Q5°(X) — H,(X;Z/p") factors
through BP9 (X) all classes in H,(X;Z/p") coming from Q5°(X) lie in the kernel of 90,

Remark 7.2. The cohomology operation H*(X;F,) — H*+2p~*1(X;IFp) dual to "1 can be
identified with the xth Milnor basis element Q,; € %QPf"_l in the mod(p)-Steenrod algebra.

For evaluating the operations 9% for X = BG,, we need to determine the BP9 _theoretic
Euler class of the fibration S' < BG, — CP*°. This is based on a formal group law computation.
For k > 1 we define the ideal

I(K) :== (V1, .., Vu1,02,Vpy1,...) C BP, =BP~*
~ % —~ 2
and set BP := BP* /I(k). Let 28" € BP (CP*°) be the standard complex orientation and recall
BP*(CP>) = BP*[[«B"]].
Lemma 7.3. Let a,k > 1 and let p® : CP>® — CP*> be the map induced by S* — S, t — t*°,
using the identification BS' = CP*°. Let (p®)* : BP*(CP>) — BP*(CP*>) be the induced map in
BP-cohomology. Then in BP [[zBT]] we obtain the equation
(pa)*(xBP) —_ pa . :L'BP +pa71 T (xBP)pN + Ra ,
where R, € p® ~I§ID*[[:EBP]].
Proof. We use induction on o.. We write z instead of 2" and carry out the following computations

in BD" [[z]]. For o = 1 the p-typical formal group law of BP yields (p)*(x) = px+v, -2P" (possibly
after multiplying v, with a unit in Z,)). Hence the assertion holds for a = 1.

Using v2 =0 € BP we inductively obtain, for oo > 1,
P (@) = ()" (") (2)) =
—p- (0 w4 p -2+ Ra) 4 (0% w4 p* w2+ Ra)T
=p*™ 2 +p* ve 2 4 Raga,
where Roy1 :=p- Ry + vy - (pa cx 4 p* o, 2P + Ra)pN € pott ~]§f’*[[zBP]]. O

Convention 7.4. Let x € H2((CP°°; 7) be the complex orientation induced by " and for m >0
let Yo, € Hap, (CP™°; Z) be the generator dual to 2™. For any commutative ring R with unit we
obtain an exact Gysin sequence

- — H,(BGa; R) =5 H,(CP®; R) " H, _4(CP*®; R) = H,_1(BG4; R) —> - --
where e = p® - € H*(CP>; Z) is the Euler class of the S'-principal fiber bundle

St < BG, 5 CP>
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equipped with its canonical orientation induced by the inclusion S' C C, and 7, is the homological
transfer in this fiber bundle.
For m > 0 we obtain specific generators comi+1 = Tom(Yam) € Homy1(BGa;Z) = Z/p* and
cam € Hom (BGo; Z/p*) = Z/p® with
Ty (Cgm) = Yam € Hgm((cpoo; Z/pa).
Furthermore, for 1 < £ < «, these generators induce generators ¢y € H,(BG; Z/pé) for d > 0.
We can and will assume that the generators

Ccq € C(a)d = Hd((BGa)(d)/(BGa)(d_l); Z)

of the cellular chain complex introduced at the beginning of Section [l map to these specific
generators of Hy(BGy;7Z/p’) after passing to coefficients Z/p’.

Proposition 7.5. Let a,x > 1 and 1 < ¢ < «. Then the operation

9" H(BGo; Z/p") — Haeopri1 (BGas Z/pY),
viewed as a map C(a), @ Z/p" — C(Q)w—ape11 @ Z/p’, is given by
8(“’6)(0(1) _ p>L. Ci—2pr41  for even d > 2p™ and £ = a,
0 otherwise .

Proof. Using the canonical isomorphism

H., (CP>; BP"9(51)) = BP9 (CP>; H,(5"))

we may write the BP(”’Z)—homology spectral sequence for the fiber bundle S! — BG, — CP™ as
B2, = BP9 (CP*; Hy(S')) = BP\/(BG.,).

The only nonvanishing differential is given by 0* : E2; — E7 5, ¢ = (cNe) ® [S'], where

¢ € BPUO(CP>), e € (BP"9)2(CP>) is the BP"™") theoretic Euler class of S* < BG4 — CP>,

and [S'] € H1(SY;Z) is the given orientation class. Note that this spectral sequence induces the

BP9 _theoretic Gysin sequence for the fiber bundle S! «— BG, — CP>.

Let z € (BP")2(CP*>) be the class induced by 2BP. Viewing v, € BPé’;’sz >~ (Bp(®9)~2p"+2
Lemma [7.3] implies

(12) e=
Oforl1 </<a.

{p”‘l v 2P for 0 = a,

Now consider the isomorphisms
E? 2 H,(CP>;BP(Y(S)) 2 Hey(BGa; Z/p") @ (1,v4)z/p¢ »
B2, 2 H.(CP*; BP0 (5Y)) 2 Hoaa(BGai /") & (1,0a)zpe

the first one of which is induced by the projection BG, — CP* and the second one by the
homological transfer 7, for the bundle S' < BG, — CP*>. Under these isomorphisms the
differential 9% : E2 — E2 , 1, ¢+ (cNe) ® [S'], corresponds to the differential

0" 1 Hy(BGa; BPY™) = Hy_op41(BGa; BPTY). )
in the Atiyah-Hirzebruch spectral sequence EZ, = H,(BGq4;BP™Y) = BPg’j_’f) (BG4). Since
this differential defines 99, Proposition [Z5 follows. O
Example 7.6. Let o,k > 1 and I' = (BG,)?. Then in H,(BT;Z/p®) we get
O (T (er, capr—1)) = O (cg @ copn 1 + €1 @ Cope) = P21 - (c1 ® 1) # 0,

and hence the cycle 7 (c1,copn—1) € C(a). ® C()s« appearing in Question does not lift to
Qgg’NH(BF). For p = 3 and a,k = 1 this reproduces the class in Hy(B(Z/3)?;Z) considered in
[29, page 62], which was the first example of an integral homology class that cannot be represented
by a smooth manifold.
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For a topological space X and £ > 1 we denote by 8*) : H.(X;Z/p") — H._1(X;F,) the

P4
Bockstein operation for the exact coefficient sequence 0 — Z/p 2 Z/p*™! — Z/p* — 0. Note that
B vanishes on classes that lift to integral homology.

Definition 7.7. Let ¢ > 1. We call the submodule
RH..(X;Z/p") :=ker ) n (1) ker0"") C H.(X;Z/p")

rk>1
the almost representable homology in H,(X;Z/p").

Let o,n > 1and I’ = (G,)". It follows from Proposition [[Hl that p - H.(BT'; Z/p*) is contained
in RH, (BT';Z/p®). The same holds for the image of Q5°(BT) — H.(BT;Z/p®). In Proposition
[7.9] we will show a weak converse of the last statement. We first define specific elements in the
group homology H..(BT;F,), which are represented by smooth manifolds.

Definition 7.8. For m > 1 denote by L*™~1 = §?m~1/(Z/p®) the standard Z/p“-lens space.
Let 1 <k <mnandlet ¢:(Gy)* — (G4)™ be some group homomorphism. For my,...,m; > 1 we
obtain the map

O LM 1P Y B(GL)R 24 B(GL)" = B

where VU is the product of classifying maps.

The class @, ([L¥™ 1 x ... x L?™~1]) € H,(BI;F,) is called a generalized product of lens
spaces. Obviously this element lifts to Q5©(BT).

We can now state the main result of this section.

Proposition 7.9. The image of RH.(BI';Z/p*) — H.(BT';Z/p*) — H.(BT';F,) is generated by
generalized products of Z/p“-lens spaces.

Remark 7.10. It was observed first in [5, Theorem 5.6] that generalized products of lens spaces
generate the image of Q$°(B(Z/p)") — H.(B(Z/p)™;F,). A complete proof of this statement was
given in [12]. Already for o = 1 Proposition [[9is stronger than [5, Theorem 5.6] as it is not clear
a priori that all classes in RH..(B(Z/p)"; F,) lift to Q5°(B(Z/p)").

The proof of Proposition[7.9] which will be given at the end of this section, requires some prepa-
ration. Our argument is mainly algebraic and in principle carried out in the reduced homology
H, (B/T‘, F,), which is reflected in the following notation. Let

e C, = H.(BG4;F,) be the free Z-graded F,-module with one generator ¢, in each degree
d>1;

o (C)"= I:I*(ﬁ", F,) be its n-fold tensor product, with n > 0;

e 9% k> 0, be the differential on (Cy)™ of degree —2p™ + 1, which acts as a derivation
and satisfies

8(“)(cd) ) Cd—2prt1 for even d > 2p~ — 1,
' 0 otherwise ;

o G = No<pen ket o) c (C.)"™ for r > 0, and €L = N0 ker o),
Proposition 7.11. The canonical map
(Cla)s ®Z/p™)" — (Cla)x ®Fp)" = (C.)"
sends RH,(BT'; Z/p*) onto €™°.

Proof. The Bockstein operation () : H,(BG4;Z/p®) — H._1(BG4;F,) is given by C(a), ®
Z/p* — C(a)s—1 @ Fp, o = 0, com—1 + 0, and cap, > com—1 for m > 1. Hence its n-fold
tensor product derivation restricts to a map (C(a), ® Z/p®)" — (C,)
ker 99 C (C,)™ under tensoring the domain with F,.

For x > 1 the computation of 9% : H,(BGy; Z/p®) — Ha_gpr41(BGy; Z/p®) in Proposition

[Z5implies that its n-fold tensor product derivation restricts to a map (C'(a).®Z/p*)" = (C(a).®
Z,/p®)" whose kernel goes onto ker %) C (C.)"™ under tensoring the domain with F,,.

"™ whose kernel goes onto
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From these facts Proposition [T.11] follows, using p - H.(BT'; Z/p®) C RH.(BT;Z/p%). O

We will now analyse the submodule %, C (C.)". For this aim we define the Z-graded
Fp-modules:
e N, :=span{com_1 |m>1}= I:L)dd(BGa;Fp) c Cy;
e L. :=span{yom | m > 1} = Heyen(CP™; F,), where ya,, are free generators of degree 2m;
o Lk :=span{yz, | 1 <m < p*} C L, for k > 0.
Note that the canonical projection Cy — Ly, C2m — Y2m, Cam—1 — 0 (which on the topological
side is induced by BG, — CP°) commutes with the differentials %) for k > 0, which we define
as zero on L.
Let (N.)™ be the n-fold tensor product of N, for n > 0. For every 1 < k < n and every group
homomorphism ¢ : (G)*¥ — (G4)™ =T we obtain an induced map

(13) bo  (N2)* = L (B(Ga)"Fy) 2 B (BTSF,) — ML (BTSF,) = (C.)".
Definition 7.12. For n > 1 we set
2= span{¢. (N.)*) | ¢ : (Ga)* — (Ga)™ group homomorphism, 1 < k < n} C (C,)".

Since the generators of N, are represented by Z/p®-lens spaces we have £ C €, by Propo-
sition [Z.IT} The crucial step for the proof of Proposition [[.9 consists in showing that here equality
holds, see Proposition [[.T6l We first derive a lower bound for the size of £" C €, .

Proposition 7.13. Forn > 1 the canonical projection L1 — (N.)" @ Leyn is surjective.

Proof. Essentially the proof for & = 1 in [12] Proposition 5.3] generalizes to larger a. For notational
reasons we work with the additive group Z/p® instead of G,.

For 0 < Aq,..., A < p—1 we consider the group homomorphism
Brgrn) P (Z/p™)" — (Z/p*)"+!
(1, Tn) = (T, Tp, 121 + -+ A

For all v > 1 we have an [Fp-algebra isomorphism

H*(B(Z/p®)";Fy) 2 Fyltr, ... 1] @ Als1,..., 5),

where ¢1,...,t, are indeterminates of degree 2 and s1,...,s, are indeterminates of degree 1.
The map induced in Fj-cohomology by B¢y, ..z, : B(Z/p*)" — B(Z/p>)" ! satisfies
(14) (B sy - ms,) 80 (M sy s,) - (At 4 - 4 Antn)”

for v > 0. This computation uses the ring structures of H*(B(Z/p®)";F,) for v = n,n + 1.
The p™ x p™ Vandermonde-matrix

V= ( 1 Mtr+-+ Mty - (/\1t1+...+)\ntn)pnfl )
(where the subscript parametrizes the rows) with entries in F,[¢1, ..., ¢,] has determinant
H ((:Ul 7)‘1)t1+"'+(,un*>‘n)tn) #0,
(A17~~~1An)<(ﬂlv~~7lln)

applying the lexicographic order to the index set. Hence the column vectors of V are linearly
independent over Fplti,...,t,].
Setting N* := H°Y(BZ/p®;F,) this means, in view of (), that the map

@ Qﬁ?)\h,,,,kn) . (N*)n ® H0S2m<2pn (BZ/pa;Fp) SN @ (N*)n

0< A1, A <p 0< A1, A <p

is injective. Dualizing this statement over IF, we conclude that the map

Y (D)t B (N — (N @spang {co, .-, agn1)}

is surjective. (I
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The modules (N,)" ® L<,» play an important role in the determination of ™, which we will
carry out in two steps. First note that we have a canonical direct sum decomposition

n

(C)" = P(CE)
v=0
where (C*)?v) C (C,)™ is generated by those elementary tensors ¢4, ® -+ ® ¢g, involving v com-
ponents of even degree. For example (C*)?O) = (N,)". Since the differentials 9*) map (C*)?v) to
(O*)?'y—l) we get induced direct sum decompositions of €, for r > 0.
The next, somewhat involved, proposition takes care of the particular component

PP = C 0 (Ol CET

for certain r. The full structure of €, will afterwards be determined in Proposition Note
that for » > 0 the differential ) : (C,)™ — (C,)" induces a map 0" : 21"~ — (N,)" with
kernel Z:"". Here and later we set 21" := (C)y-

Proposition 7.14. For n > 0 the following holds.

gf+1,n71

(i) The canonical projection T : — (N.)"™ ® L, is surjective and there exists a

surjective map ™ : (N,)" ® L, — (N,)" "1 such that the following diagram commutes:

gpttn=t T (N,)" ® L,

(N*)n-i-l

(ii) The projection ker(9(™) — (N,)" ® L<pn is an isomorphism.
(iii) 270" (= ker(9™)) = 20T,

Proof. We apply induction on n. For n = 0 the proposition holds as
e 27 =L, =(N,)®L, and 7 is an isomorphism,
e 00 : 27" & N,_; is an isomorphism and hence 2% = 0 = (N,)° ® L.
Now assume that n > 1 and Proposition [.T4] has been shown up to n — 1. Let ¢ = cog,—1 ®
- ® cad,—1 € (Vi)™ and let m > 0. We will show ¢ ® ya,, € im (7). Let 0 < Kk < n — 1.
Using the inductive assumption we find ¢(k) € 200 with 0% (e(k)) = cag,-1 ®@ -+ @
C2d, 41 —1. Setting c(k) := ¢(k) @ €24, ,,—1 ® -+ @ C24,,—1 we then have ¢(k) € @ge’g(_c)lmpnq and
9" (c(k)) = c. Using the induction assumption again several times in order to balance 8\ (c(k))
for j = k+1,...,n — 1 we can arrange furthermore that 9U)(c(k)) = 0 for k < j < n — 1.
Summarizing we have ) (c(k)) = 0 for 0 < j <n — 1 with j # &, while 9% (c(r)) = c.
With these choices we get
n—1
(15) c® com + (—1)" > e(k) @ com_gpri1 € 2L
k=0
and 7 indeed sends this element to ¢ ® Yo, € (Ni)™ ® L. This shows surjectivity of 7.
If c € 200" N ker(n), then ¢ € 22" @ N, by the definition of 2" " and hence ¢ €
1 ® N,, using the inductive assumption ((iii)). We conclude ™ (¢) = 0, and hence (™ is
well defined.

Next let ¢ € (N,)"™ and let m > 0. We claim c® a1 € im (9™)), showing that 9™, and hence
(™) is surjective. The proof is by induction on deg(c). As in (I5) we find c(k) € @;Lég(_c)lwpnq
for 0 <k <n—1 with

n—1
C ® 02m+2p"—2 + (—1)n+1 . Z C(H) ® C(2m+2pn,2),2pm+1 (S @ll-‘rl,n—l .
K=0
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We have 8(")(0 ® Comtopr—2) = (—1)"c ® cam—1 and

n—1

n—1
o ( Z (k) ® Comgapn—2pr—1) = Z G,En)(c(m)) ® Comt2pn—2pr—1 -
k=0 k=0

For 0 <k <n — 1 we compute
deg (0™ (c(r))) = deg(c(r)) — (2p" — 1) = (deg(c) +2p" — 1) — (2p" — 1) < deg(c).

Hence 9" (c(K))®cams2pn —2pr—1 € im (0)) by induction on deg(c). Altogether we see c@cam—1 €
im (0(™) as required. The proof of the most difficult part of Proposition[7.14] is now complete.

For [(ii)] we first observe that dimker(8()y = dim (V)™ @ L<P")d for d > 0, since, by an
elementary dimension count,

dim ((N.)" ® L), = dim ((N+)" ® Lepn) , + dim ((N*)”“)ddpnﬂ

and 9() is surjective by Furthermore
gl cgrtin POL gntln T (N L s (N,)" ® Lepn

is surjective by Lemma [[.T3] so that also the projection ker(W) — (V)™ ® Lepn is surjective.
Since domain and target of this map have the same dimension in each degree this implies assertion
(i)

For assertion [(ii)] let ¢ € 28" Since £ ¢ €T Proposition [13 implies that there
exists & € 20T such that the projection of ¢+ to (N.)"® L, vanishes, Since o (c+2)=0
and ker((™) maps isomorphically to (N,)"” ® Lpn we obtain m(c + ) =0 € (N,)" ® L,. We
conclude ¢+ x € 2" @ N, = Z,"°° ® N, by the induction assumption [(iii)} Since 2" @ N, C
20 and x € P8 assertion [(fii)] follows. O

Corollary 7.15. ker (6071 — (N.)" @ Lepn) C ker (€071 — (N.)" @ L.).

Proof. Let ¢ € ker(€"T1™ = (N,)" @ Lpn). We decompose ¢ = ¢/ + ¢’ where ¢ € 201> and
¢” is a linear combination of elementary tensors ¢4, ® - -+ ® cq,, ., with 0 or at least 2 even degree
components.

Obviously ¢’ € ker(¢"T+>° — (N,)" ® L*). This fact and the assumption on ¢ imply
¢ € ker(207° = (N,)™ @ Lepn). But by Proposition [I4I[(ii)] the projection (N.)" ® L. —
(N,)® @ Lepn induces an isomorphism 7(284"") 22 (N,)® @ Lopn. Hence we must also have
¢ € ker(Z0TH° 5 (N)" ® L,). O

We finally obtain a precise description of ;"™ and of £ C %" (recall Definition [T.12]),
showing in particular that the last inclusion is an equality.

Proposition 7.16. Let ¢, denote the set of families J = (Ji,...,Jn), where J; = N, or J; =
Loy and k is the number of J; for j < i with J; = N,.. Then the canonical map (induced by
projections Cx — N, and Cy, — L,)

U S Phe- e,
jn

is an isomorphism. The restriction of U™ to L™ C €. is still surjective, and hence also an
isomorphism. In particular L" = €, .

Proof. Since source and target of ¥! are equal to .2} = N, the assertions are clear for n = 1. By
induction we assume that they hold for some n > 1.

For J = (J1,...,Jn) € # let k(J) denote the number of components J; = N,. Furthermore
we set J{ = C, for J; = N, and J; = L, for J; = L_ . In the induction step we first prove
injectivity of ¥n+!,
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Let ¢ € ker U1, We study the image of ¢ under the composition of projections

gl T, (EBJ{@)...@J;L)@@& (@J1®~~~®Jn)®L*.
jn fn,

Note that 7, commutes with the differentials ) for £ > 0 (with zero differentials on L_x).
Let ¢ € J] ® --- ® J), ® Cx be one component of 7 (c), where J € _#,. By assumption the
image of ¢/ under the map

J{@"'@J&@C* *)J1®"'®Jn®L<pk(.l)
is zero. By Corollary [[.T5 we have
ker (€X' 5 (NP @ L) € ker (€8T 5 (NP @ L)

and hence m2(¢’) = 0 (recall that k(J) + 1 is the number of factors Cy in J} ® --- ® J, ® C, and
that all other factors are equal to some L. with zero differential). Applying this argument to
all components ¢ of m1(c) we conclude w3 (m1(c)) = 0.

Let 7 : €/ — € @ L, be the projection (recall again that C,, — L, commutes with all
differentials (%) for x > 0). Since (¥" @ id) o 7™ = my o 71 our induction assumption (injectivity
of U™) implies w(c¢) = 0. Hence ¢ € ker U™ ® N,, which is equal to 0, again by the induction
assumption. This shows that ¥"*+! is injective.

We next show that "1 maps £t c €7 surjectively onto ®/n+1 J1® - ® Jnga,
completing the induction step.

Let (J1,...,Jnt1) € Znt1. We have to show J; ® -+ ® Jppq C U"H (L0 ). By induction
we have J; ® --- @ J, C ¥*(£"). In particular J; ® -+ ® J, ® N, C UM (£" @ N,). Since
£ ® N, C Z"! we can hence restrict to the case J,,1 = Lk, where J := (Jiyooydn).
For each group homomorphism ¢ : (G )*?) = (G4)*Y)*! we obtain an induced map (N,)*/) —
(N*)k(‘l) ® L . presy (compare ([[3)) and hence an induced map J1 ®---®@J, = J1®- - ®@J, @ L k()
equal to the identity on factors J; = L.p» for some k and ¢ = 1,...,n. Using the proof of
Proposition the images of these maps for different ¢ span J1 ® -+ ® J;, ® L k(. Since
J1 @@ J, C UML) by induction we conclude J; ® -+ ® Jp, @ L i C Yrtl(#ntl) by the
functoriality of group homology. O

Remark 7.17. The formulation of Proposition is inspired by [I4, Theorem 5.1], also see
[12, Theorem 1.2]. In contrast to these sources the algebraic argument above does not rely on the
solution of a Conner-Floyd conjecture for Q5C(BT'), which seems to be inaccessible at present for
a > 1. Indeed we believe that our approach may be a first step towards an algebraic proof of the
Conner-Floyd conjecture (for o = 1), which was resolved in [I9/24] by topological methods.

Proof of Proposition [7.9. The decomposition of (C(a)«)™ from (§) (after tensoring with Z/p®,
respectively Fp,) is compatible with the operations B and 9", By induction on 7 it is hence
sufficient to show that the image of the composition

¢ : RHL(BT; Z/p%) C (Cla)« @ Z/p®)" — (Cla)x @ Fp)" = (C)"

is generated by generalized products of Z/p®-lens spaces L?>™1~! x ... x L[?2™=1 — BT for 1 <
k < n. Propositions [Z.11] and [Z.16 imply that the image of v is equal to 64" = £/, from which
this claim follows. (|

8. PROOF OF THEOREM

Let 1 < a3 < - < ap, let T'= Gy, X -+ X Gq, and let h € H,(BT';Z) be contained in the
image of Q$O(BT") — H,(BI;Z). Using the decomposition from () we represent h by a cycle in

Clon)e @+ @ Clom)e = P Clai)e @+ @ Claviy)s -

Proposition 8.1. Let 1 <k <nand 1 <i <...<ir <n. Then the (i1,...,ix)-component of
this cycle in Clag, )x @ -+ @ Clay, )« C Cla )s @ -+ @ Clay, )« is positive.



POSITIVE SCALAR CURVATURE AND ODD ORDER ABELIAN FUNDAMENTAL GROUPS 29

Mapping the resulting positive classes in H.(BGq,, X --- X BGa, ;Z) to H, (BT;Z) by the
canonical subgroup inclusions this implies that h € H,(BT;Z) is positive, finishing the proof of
Theorem

Proof of Proposition[81l Tt is enough to deal with the case k = n, the other components of h
are treated in an analogous fashion. For this aim let ¢ € C‘(al)* - C‘(an)* represent the
corresponding component of h.

Let 1 < n/ < n be maximal with o,y = a1, that is a1 = -+ = ap < a1 < - < ay,. We
set IV := (Gal)"/, regarded as a subgroup of I' in the obvious way. By Proposition we may
assume that c is a linear combination of special cycles

i1=1 i s Sn—j
I (e gﬁh )1 e acgm)j—ﬂ ® ngll)q Q- Cédn,j)q

We write

(16) c= c’®c§n,+1) ®---®c§n) + %

where ¢ is a linear combination of special cycles in (C'(a;).)" and Z is a linear combination of
special cycles

TS ey Dedt o dy) e Cla). @@ Clan).

such that ¢; > n’ + 1 or there exists 1 < p <n —j with s, >n’+1 and d,, > 2.
By Proposition B3[(ii)] and Corollary the cycle Z € C(a1)s @ --- @ Can)« C Clar)s ®
-+ ® C(a, )« is positive. For completing the proof of the positivity of ¢ it hence remains to show
that also the cycle ¢’ € (C(a1)«)" C (C(an)s)" is positive.
We will argue that by the results of Section [1 the cycle ¢’ is positive modulo some p-divisible,
p-atoral cycle, which can then be dealt with by Proposition Iﬂl The next lemma ensures the
crucial property of ¢/ needed for this argument.

Lemma 8.2. We have || € RH.(BI';Z/p*).
Proof. Since [¢] lifts to an integral class it lies in the kernel of the Bockstein operation §(®1)
H.(BI";Z/p**) — H.(BT';F,). In the remainder of this proof we will work with coefficients

Z/p™. It remains to show that 8% (¢/) = 0 € (C(av),)™ for all k> 1.
Since by Proposition[ZH the cycle ¢g is not hit by a differential (1) it is sufficient to show this

vanishing property after projection to (Can)s)™ . The class [c ] € Ho(Cla1)w @ --- @ Clay)s) =
H. (Bl") is equal to the image of h under the projection BI' — BT. Since h lifts to QSO(BF) we
conclude that (1) (¢) = 0 € C(a1)s @ -~ @ Can)«. (Recall that ayryy,...,n > a; and we

use coefficients Z/p®!.) Since 9(ma1) aets as a derivation and trivially on cgs) forn’ +1<s<n,
the claim 82 (¢/) = 0 € (C(ay).)™ therefore follows from the assertion

0" )(#) € F, = span{cq, @+ ®cq, | d; > 1 for some n' +1<i<n}.

In order to show this assertion let 7 be one of the special cycles appearing in #Z. The following
computations are based on Proposition [[5 with £ = a; and « € {a1,...,a,}.
If there exists a 1 < p < mn — j with s, > n’ + 1 and d,, > 2, then 8(”’0‘1)(7) € .7, as Otma)

acts as a derivation and awm)(cgj;;ll) =0.

We will now consider the case i; > n’ 4+ 1. By definition
Tl e )= Zp%rail (Ve e o wdl)).
We distinguish the following cases:
e Let 1 <i, <n'. Since a; > a1, hence 8(“7”‘1)(0%;3],) = 0, we see that
O () ® @) @ @)

(i )

is a sum of elementary tensors each of which contains a component ¢,
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o Letn +1<i, <n. Then o, — a;, > 1 and

oD (e ) @@y @@y ) =0.

2ma~—1
We conclude 9(%%1) (1) € .7, in the case i; > n/ + 1 as well, finishing the proof of Lemma 82 O

By Lemma and Proposition the image of [¢/] in H,(BI";F,) is a linear combination of
generalized products of Z/p®-lens spaces L?™ =1 x ... x [?2™~1 — BI' for 1 <k < n/.

The cycle Z occurring in (I6) is p-atoral, since each summand is of degree larger than n and
p is odd. Since also ¢ is p-atoral we conclude that ¢’ € (C'(aq))™ is p-atoral (here we use again
that a1, .., an > a1). We can therefore assume that in the generalized products of lens spaces
appearing before the case m; = ... = my = 1 does not occur.

In summary, modulo some p-atoral positive cycle (represented by a linear combination of gener-

’
n

alized products of lens spaces) we can assume that ¢ is a p-atoral cycle in (C(ay).)™ € (C(a1)s)™
that maps to 0 € H.(BI";F)).

Since H,(BI";Z) ® F, — H,.(BI";F,) is injective we get [¢'] = p-[{] for a cycle £ € (Clan))™
According to Proposition we can assume that £ is a linear combination of special cycles, and
hence p - £ is a linear combination of cycles

i1 i s1 (sn/—j) ~ n’
p- (y(cgm)l—lﬂ e Cgm)j—ﬂ ® ngl)q ®- - ®Cyy, 1) € (Claa)s)"

Proposition implies that such cycles are positive in (C (041)*)"/ whenever j > 2. Since these
cycles are also p-atoral for j > 2 (for p-odd) we can assume that p - £ is a linear combination of
cycles caq, 1 ® -+ @ 24,1 With at least one d; > 2 (by p-atorality of ¢’). This shows that p -,
and hence ¢’ are positive.
In summary we have shown that ¢ € C(a1)®---®@C(an)« C C(a1)« @ - @ C(ay,) is positive,
finishing the proof of Proposition [B1] and hence of Theorem
|
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