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Abstract 

Brazil is currently the largest contributor of land use and land cover change carbon dioxide net 

emissions worldwide, representing 17-29% of the global total. There is, however, a lack of 

agreement among different methodologies on the magnitude and trends in land use and land 

cover change emissions and their geographic distribution. Here we perform an evaluation of 

land use and land cover change (LULCC) datasets for Brazil, including those used in the annual 

Global Carbon Budget (GCB), and national Brazilian assessments over the period 2000-2018. 

Results show that the latest global HYDE 3.3 LULCC dataset, based on new FAO inventory 

estimates and multi-annual ESA CCI satellite-based land cover maps, can represent the 

observed spatial variation in LULCC over the last decades, representing an improvement on 

the HYDE 3.2 data previously used in GCB. However, the magnitude of LULCC assessed with 

HYDE 3.3 is lower than estimates based on MapBiomas. We use HYDE 3.3 and MapBiomas 

as input to a global bookkeeping model (BLUE) and a process-based Dynamic Global 

Vegetation Model (JULES-ES) to determine Brazil’s LULCC emissions over the period 2000-

2019. Results show mean annual LULCC emissions of 0.1-0.4 PgC/yr, compared with 0.1-0.24 

PgC/yr reported by the Greenhouse Gas Emissions Estimation System of Land Use Changes 

and Forest sector (SEEG/LULUCF) and by FAO in its latest assessment of deforestation 

emissions in Brazil. Both JULES-ES and BLUE now simulate a slowdown in emissions after 

2004 (-0.006 and -0.004 PgC/yr2 with HYDE 3.3, -0.014 and -0.016 PgC/yr2 with MapBiomas, 

respectively), in agreement with the Brazilian INPE-EM, global H&N book-keeping models, 

FAO and as reported in the 4th National GHG inventories (NGHGI). The inclusion of Earth 

observation data has improved spatial representation of LULCC in HYDE and thus model 

capability to simulate Brazil’s LULCC emissions. This will likely contribute to reduce 
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uncertainty in global LULCC emissions, and thus better constrains global carbon budget 

assessments. 

 

Keywords: Land-use and Land cover change, deforestation, land-use emissions, global carbon budget, Amazon forest 

 

1. Introduction 

Brazilian ecosystems and especially forests play a 

fundamental role in regional and global carbon stocks and 

natural land C sinks. The Amazon forest is estimated to 

contain around 229-280 PgC in living biomass and soils 

(Gloor et al 2012, Malhi et al 2006), representing ~10% of 

global land C stocks (Ciais et al 2013), and approximately 

60% of its area is in Brazil. Carbon stocks in Brazilian 

ecosystems have been negatively impacted by  significant land 

use and land cover change (LULCC) associated with 

demographic and agricultural expansion, resulting in large 

land-use emissions to the atmosphere (Aide et al 2013, 

Houghton 2012). Globally, in the last decade (2009-2018), a 

total of 1.5±0.7 PgC yr-1 was released to the atmosphere due 

to LULCC (Friedlingstein et al 2019). Despite a significant 

slowdown in deforestation in Brazil after a peak in 2004, 

mainly due to policy introduced to curb deforestation (Godar 

et al 2014, Arima et al 2014, West and Fearnside 2021), Brazil 

is still contributing with between 17 and 29% of global 

LULCC emissions (ELUC) (Friedlingstein et al 2019). 

However, divergent ELUC estimates for Brazil in the global 

carbon cycle budget have contributed to a large fraction of the 

corresponding overall global uncertainty  (Bastos et al., 2020).  

In the Global Carbon Budget (GCB2020), ELUC is 

defined as the net anthropogenic LULCC flux and includes 

removals (e.g. from forest regrowth after harvest and 

agricultural abandonment) and emissions e.g. from clearing 

natural vegetation and transitions (Friedlingstein et al 2020). 

These definitions are different from those used by countries 

and FAO to estimate and report emissions from LULCC 

within the IPCC Land Use, Land Use Change and Forestry 

(LULUCF) category of the National greenhouse gas inventory  

(NGHGI). Within the IPCC guidelines, LULCC is limited to 

emissions associated only to anthropogenic-related processes 

driven changes in land use and land cover (see SI Table 3). In 

the GCB, differently, the ELUC is estimated by two different 

bottom-up approaches, namely process-based and 

bookkeeping models (Friedlingstein et al 2019). An ensemble 

of process-based, Dynamic Global Vegetation Models 

(DGVMs) from the Trends in Net Carbon Exchange Project 

(TRENDY) (Sitch et al 2015), are applied using observed 

historical CO2 in atmosphere, climate and LULCC fields. 

An additional method is the carbon stock change approach 

of the IPCC (2003), followed by FAO for its ELUC estimates 

(Tubiello, et al., 2020). The advantage of this method is the 

possibility to perform complex calculations using a very small 

set of input data, while on the other hand it cannot distinguish 

necessarily between natural and anthropogenic fluxes. 

Bookkeeping models include Houghton and Nassikas 

(Houghton and Nassikas 2017) and Bookkeeping of Land Use 

Emissions (BLUE) (Hansis et al 2015). Both TRENDY and 

BLUE use the same LULCC dataset as spatially explicit input 

based on the History Database of the Global Environment 

(HYDE 3.2) (Goldewijk et al 2017) for annual change in 

pasture, rangeland and cropland area. There are many 

uncertainties related to these global LULCC datasets, since 

they use  FAO statistics as input, which are provided as 

national aggregates (FAO, 2020) and then rely on a suite of 

methods to disaggregate that information spatially. With the 

increasing availability of land cover datasets based on Earth 

Observation (EO) covering the last 30 years, it has been 

possible to integrate time varying remote sensing data with the 

FAO national statistics to generate new and improved 

spatially explicit global LULCC datasets. Several EO-based 

products of LULCC and deforestation have been developed in 

Brazil, such as the Amazon Deforestation Monitoring Project 

(PRODES) from the National Institute for Space Research 

(INPE), and the MapBiomas dataset, which was developed 

specifically for Brazilian biomes and provide annual LULCC 

maps for the whole of Brazil from 1985 up to present. 

However, these datasets have hitherto not been used to assess 

the impact of LULCC in global C-cycle assessments. 

Therefore there is an urgent need to improve estimates of 

ELUC for Brazil to better represent the spatio-temporal trends 

in future GCB annual assessments. Furthermore, accurate 

estimates of ELUC contribute to the quantification of 

emissions and removals from LULUCF processes that are 

needed to guide global and national policies to achieve the 

overarching goal of the Paris Agreement (UNFCCC 2015).  

Here we present a critical analysis and evaluation of 

LULCC in Brazil and associated C emissions over the 21st 

century (2000-2019). We use two versions of the HYDE land 

use dataset, HYDE 3.2 (Klein Goldwijk et al, 2017; used in 

Global Carbon Budget 2019) and the new HYDE 3.3 based on 

updated FAOSTAT statistics (FAO 2020a, 2020b) and time-

varying land cover data from the European Space Agency 

Climate Change Initiative (ESACCI-LC 2017). First, we 

evaluate the two versions of HYDE using the national LULCC 

MapBiomas product. Then, we compare simulated ELUC for 
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Brazil based on the two HYDE versions and MapBiomas 

using the process-based JULES-ES and BLUE bookkeeping 

models. Finally, we discuss simulated ELUC dynamics from 

BLUE and JULES-ES using HYDE 3.3 and MapBiomas with 

the other published estimates. 

2. Methods 

2.1 Land Use datasets 

2.1.1 HYDE 

HYDE is a spatially explicit dataset of historical 

population estimates and time-dependent weighting maps of 

land use categories (Goldewijk et al 2017). The period 

covered is 10,000 before the Common Era (BCE) to 2019 

Common Era (CE). The land use maps produced by HYDE 

are based on an allocation algorithm that uses country totals, 

FAOSTAT statistical data of ‘Cropland’ and ‘Permanent 

meadows and pastures‘ (henceforth indicated as grazing in 

HYDE dataset) available from 1961 up to present (FAO 

2020b). In addition, HYDE includes the ESA CCI Land Cover 

maps to spatially allocate the FAO land use areas. 

HYDE is available at 5 arc minutes (approximately 9-km 

at the equator) of spatial resolution. The grazing land use 

category has a distinction based on the intensity of use; 

grazing is divided in rangelands (extensive grazing on natural 

grasslands, shrublands, woodlands, wetlands and deserts), 

managed pastures (intensive grazing or mowing, on any 

natural vegetation type) and converted rangeland (located in 

forest biomes in areas with low human population density, and 

assumed to have undergone a conversion of natural 

vegetation, such as the Amazon biome).  

There are two major updates from HYDE version 3.2 to 

HYDE version 3.3. First, the ESA CCI land cover data is now 

used for allocation of cropland and grazing land on a yearly 

basis for the period 1992-2018, instead of only the base year 

2010 (HYDE 3.2). The method of reclassifying the ESA-CCI 

classes into cropland and grazing land remained the same and 

is described in Klein Goldewijk et al (2017). Second, updated 

FAO statistics for cropland and grazing land are used and 

extended to the year 2018 (the last available FAOSTAT year).  

Importantly, major FAOSTAT revisions made in 2019 for 

agricultural area in Brazil, reflecting new data from the 

national Census 2017 (e.g., see country notes in FAOSTAT, 

2020) impacted HYDE 3.3 total areas. The revised FAOSTAT 

data is  consistent with recent GIS-based data (Novaes et al., 

submitted).  

 

2.1.2.  MapBiomas 

The Brazilian Annual Land Use and Land Cover Mapping 

Project (MapBiomas) is an initiative to produce annual 

LULCC maps for Brazil for the Greenhouse Gas Emissions 

Estimation System (SEEG) (De Azevedo et al 2018) from the 

Brazil Climate Observatory's. This dataset is produced using 

the Google Earth Engine platform and the historical Landsat 

satellite images (Souza et al 2020). The classification process 

consists of using annual Landsat mosaics composed of pixels 

filtered by cloud coverage and anciliary information to 

classify each year. The LULCC maps produced by 

MapBiomas have a spatial resolution of 30 meters and span 

over the 1985-2019 period for the collection (5) used in this 

research (http://mapbiomas.org/). The overall accuracy 

reported for entire Brazil classification was 89%, the method 

and explanation of the validation process is on Souza et al 

(2020). Given its higher spatial resolution of 30m compared 

to the global products, such as ESA CCI LC at 300m (with 

change detection at 1km resolution), MapBiomas enables 

relatively small changes in LULCC to be detected across the 

whole country in both space and time. 

2.2 Estimates of ELUC 

2.2.1.  Process-based approach 

Process-based DGVMs simulate dynamics of carbon pools 

in vegetation, soil and wood products, and their response to 

changing environmental conditions. A consortium of 

international research groups (TRENDY) contributes annually 

to GCB with an ensemble of DGVMs, applying their models 

with common meteorological forcing and LULCC datasets to 

estimate the natural land sink and ELUC, and to attribute 

changes in the carbon cycle to individual environmental 

drivers at multiple temporal and spatial scales (Sitch et al 

2015). In this study we use the JULES-ES (Joint UK Land 

Environment Simulator - Earth System configuration) (Sellar 

et al 2019) model, which also contributes to TRENDY and 

GCB (Friedlingstein et al 2019). JULES-ES has detailed 

representation of land surface processes (e.g. surface energy 

balance, coupled carbon and water cycle) and includes recent 

developments in surface physical processes (Wiltshire et al 

2020b), the representation of plant physiology and plant 

functional types (Harper et al 2018, 2016), land use and 

nitrogen cycling (Wiltshire et al 2020a), dynamic vegetation 

(Cox 2001, Harper et al 2018), and wood products (Jones et al 

2011). Additionally, it simulates natural vegetation cover, and 

human activities (e.g. land-use) can be prescribed with 

anciliary data representing annual cropland and pasture 

fractions, for example from the HYDE dataset. 

 

2.2.2.  Bookkeeping approach 

Bookkeeping models track changes in the carbon stored in 

vegetation, soils and products before and after LULCC using 

prescribed rates of growth and decay through time. Unlike 

DGVMs they do not include the effect of changing 

environmental factors on vegetation growth rates (e.g. climate 

and CO2 fertilization). Instead of simulating carbon stocks, 

bookkeeping models use directly observational data for 
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carbon densities, such as literature-based biome-level values 

and from inventory data. Two main global bookkeeping 

models are used in GCB: the Houghton and Nassikas (H&N) 

model (Houghton and Nassikas 2017) and the BLUE model 

(Hansis et al 2015). There is also a regional bookkeeping 

model developed for Brazil by the National Institute for Space 

Research (INPE), INPE-EM bookkeeping model (Aguiar et al 

2012, Assis et al 2020).  

In this study we focus on BLUE to test the impact of the 

new HYDE 3.3 and MapBiomas, as it calculates ELUC on a 

spatially explicit basis for transitions from natural vegetation 

types to agricultural lands. Specifically, it considers 

transformations of natural vegetation to agriculture (cropland, 

pasture) and back, including gross transitions at the sub-grid 

scale (“shifting cultivation”), transitions between crop and 

pasture, and wood harvesting (Hansis et al 2015).  Biome-

level carbon densities are based on literature values and 

provided in Hansis et al (2015) (SI Figure 2). Similarly, the 

temporary evolution of carbon gain or loss, i.e. how fast 

carbon pools decay or regrow following a land-use change, is 

based on response curves derived from literature (Hansis et al., 

2015). The response curves describe decay of vegetation and 

soil carbon, including transfer to product pools of different 

lifetimes, as well as carbon uptake due to regrowth of 

vegetation and subsequent refilling of soil carbon pools. 

 

2.3.  Analyses 

2.3.1.  Land use change analysis 

To assess the differences between the LULCC products for 

Brazil and to understand LULCC dynamics, HYDE was 

evaluated against the national MapBiomas dataset. 

MapBiomas was processed as follows: first each category is 

reclassified with the proportion of crop and pasture at 30m 

spatial resolution. The following class aggregation applies to 

cropland for MapBiomas: the categories, Annual and 

Perennial Crop and Semi-Perennial Crop were defined to 

contain 100% cropland in each pixel; the category Mosaic of 

Agriculture and Pasture as 40% cropland. For pastures we 

consider Pasture category as 100% and Mosaic of Agriculture 

and Pasture to contain 60% of pasture as most of these mosaic 

categories are used in extensive cattle ranching and small-

scale agriculture. Then we re-grid to 0.5 degree to generate 

gridded maps of cropland and pasture cover fraction.  
The resulting maps were compared against ESA CCI 

cropland categories 10, 11, 12, 20 which contain 100% 

cropland (Table 1 SI description). Further categories were 

included, such as mosaic categories 30 (cropland >50%), 40 

(cropland<50%), assuming a cropland area proportion of 60% 

and 40%, respectively, based on (Liu et al 2018). Note, ESA 

CCI does not have an explicit ‘pasture’ category, rather it is 

included in the ‘cropland’ category. For representation, we 

report the sum of cropland and pasture categories. These maps 

between land cover and land use categories introduce a level 

of uncertainty that is currently poorly quantified. Furthermore, 

the choice of the underlying land cover map introduces 

uncertainties, for instance results discussed herein are likely 

different from those that would be obtained using MODIS 

land cover maps rather the ESA CCI (e.g., see FAO, 2020b). 
To test the spatial similarity of the LULCC maps from 

HYDE against MapBiomas we apply the fuzzy numerical 

method implemented in the Map Comparison Kit 3 (MCK) 

application (Visser and de Nijs 2006). It is a cell-by-cell 

comparison method for numerical maps that also considers the 

neighbourhood to show the similarity of each pair of grid-cells 

in a range between 0 (distinct) and 1 (identical). Here, we 

adopt the default settings provided by the algorithm, with an 

exponential decay function called Halving distance equal to 2 

and neighbourhood distance equal to 4 grid-cells. This 

provides a spatial assessment showing the location and 

severity of the disagreement between two maps.  

Since agricultural area change is currently used to infer 

tree cover loss in DGVMs, we calculated the pairwise Pearson 

correlation between increase of net land cover (cropland + 

pasture) with the vegetation cover loss (deforestation) from 

MapBiomas c5 including both primary and secondary 

vegetation and the following natural vegetation categories in 

MapBiomas: forest, savanna and natural grassland. We 

performed this correlation analysis for the changes between 

2000 and 2019 comparing the grid-cells with increase in 

LULCC from HYDE 3.2, HYDE 3.3 and MapBiomas to grid-

cells with vegetation cover loss for the same period.  

2.3.2.  Carbon emissions from LULCC  

HYDE 3.3 and MapBiomas fraction maps were re-gridded 

for using in JULES-ES at N96 resolution (1.25o latitude x 

1.875 o longitude) with CDO (Climate Data Operators) using 

first-order conservative remapping method. For this analysis, 

we also considered converted rangeland fraction from HYDE 

3.3 in order to better represent the LULCC changes across the 

Amazon arc of deforestation (low human population density 

but transitions to extensive pastures), which was not 

considered in JULES-ES, TRENDY-v9. We run JULES-ES 

using the LULCC fields (cropland, pasture and converted 

rangeland) from HYDE 3.3 and MapBiomas (cropland and 

pasture) with the same configuration as in TRENDY-v9 

(GCB2020), including time varying climate, CO2, and 

nitrogen deposition following the TRENDY protocol. The 

simulations using HYDE 3.3 extend over the period 1700-

2019 whereas the MapBiomas simulations are over the more 

recent period 1986-2019. JULES-ES is spun-up to steady state 

conditions and then we perform the following experiments: S2 

(CO2 and climate forcing varying, land-use constant at 1700 

for HYDE 3.3 and 1986 for MapBiomas) and S3 (CO2, climate 

and land-use time variant) over 1700 to 2019 for HYDE 3.3 

and 1986 to 2019 for MapBiomas. ELUC is diagnosed as the 
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difference in Net Biome Productivity (NBP) at a grid-cell 

level between the two runs, i.e. S2-S3: 

(S2) NBP=NPP-RH -HARVEST 

(S3) NBP=NPP-RH-HARVEST-PRODUCT_DECAY 

where NPP is Net Primary Productivity, RH is the 

heterotrophic respiration, and the human disturbances in this 

study are represented by Harvest which is the crop harvest and 

Product decay which is the decay flux from wood product 

pools (Jones et al., 2011). Further explanation on the 

MapBiomas legacy flux estimation can be found in the 

supplementary information and in SI Table 5.  

BLUE used the same configuration as in GCB2019, 

however land-use forcing (LUH2) was replaced by the two 

HYDE versions and wood harvest as well as sub-grid scale 

transitions (i.e. shifting cultivation) were consequently not 

considered because HYDE only provides net area changes per 

land cover category, and does not consider gross transitions 

within our large grid-cell areas (>27km). Both BLUE 

simulations were initialized in 1961 for HYDE and 1986 for 

MapBiomas. In order to minimize differences to the 

GCB2019 setup to allow a cleaner comparison, HYDE 3.2 and 

HYDE 3.3 were re-gridded to a spatial resolution of 0.25° x 

0.25° with CDO using first-order conservative remapping 

method. The re-gridded HYDE data was processed to match 

the pre-processing of the land-use forcing data used in other 

BLUE simulations. In particular rangeland areas were 

considered to imply clearing of natural vegetation only when 

the forest/non-forest map of LUH2 -original land cover data 

set in BLUE- indicates forest. Potential vegetated grid cell 

fractions not in cropland or pasture were split into primary and 

secondary land according to the proportion in LUH2. The set-

up of BLUE simulations can be found at SI Table 5. 

Finally, we discuss our new ELUC results using HYDE 

3.3, MapBiomas and other published estimates. We compared 

ELUC estimates from JULES-ES and BLUE (2000-2019) for 

the whole of Brazil with the H&N global bookkeeping model 

(Houghton and Nassikas 2017), the FAOSTAT (Tubiello, et 

al., 2020),  and national inventory datasets:  the 4th National 

Communication of GHG to the United Nations Framework 

Convention on Climate Change (UNFCCC) (Brazil MCTI 

2020)  and provides estimates up to 2016, and the SEEG Land 

Use Changes and Forest sector (LULUCF) estimates based on 

MapBiomas dataset (De Azevedo et al 2018). Comparison of 

ELUC for Amazonia and Cerrado is done using estimates 

from INPE-EM for the biome boundaries. The INPE-EM 

ELUC (Aguiar et al 2012) estimate is based on the official 

deforestation data from the National Institute for Space 

Research (INPE) for both biomes using the 2nd order estimates 

(i.e. instantaneous and legacy C emissions). A table with the 

model components considered to estimate ELUC is in SI 

Table 2.  

3. Results  

3.1 Land Use and Land Cover Changes in Brazil 

We find temporal agreement between both remote 

sensing-based products (ESA CCI and MapBiomas) and 

HYDE 3.3 at country level. The three datasets agreed on the 

peak LULCC in Brazil between 2003-2005 with a negative 

trend thereafter opposite to the positive trend shown by HYDE 

3.2 (Figure 1a). This period corresponds to the peak of 

deforestation in the Brazilian Amazon between 2003-2004 

and is followed by a slowdown in deforestation rates due to 

the implementation of governmental regulations to reduce 

deforestation thereafter. Additional economic factors (West 

and Fearnside 2021), and improvement in the use of 

verification and detection tools based on remote sensing, e.g. 

PRODES and the DETER program for near-real time 

deforestation detection also contributed to the deforestation 

slowdown in Brazil. However, both ESA CCI and 

consequently HYDE 3.3 showed lower LULCC after 2005 

compared to MapBiomas. This may partially be due to the 

pervasive increase in small-scale deforestation (<1ha) 

(Kalamandeen et al 2018), which may remain undetected 

using the 1km change detection implemented in ESA CCI LC 

methodology (ESACCI-LC 2017). In addition, the total 

LULCC in HYDE 3.3 reflected the updated cropland and land 

under permanent meadow and pasture area in FAOSTAT 

(FAO 2020b) based on the decadal Brazilian Agriculture 

census. To balance the total land area, FAO increased the 

residual area in another category called ‘Other land’ which is 

not used by the HYDE dataset and may include a proportion 

of the land use and land cover changes associated with 

deforestation. Further explanation of the Other land category 

can be found in the supplementary information. All these 

changes contribute to lower net LULCC observed using 

HYDE 3.3 data when compared to MapBiomas (Figure 1b).  

Spatially, there were large differences between the global 

LULCC products and MapBiomas (Figure 2). HYDE 3.2 had 

the largest LULCC located in SE Brazil associated with 

cropland expansion and lower changes in pasture area. These 

changes are not consistent with MapBiomas (Figure 2), were 

large losses of natural vegetation are found in Amazonia and 

the Cerrado biomes, and an intensification of cropland areas 

mostly concentrated in repurposed pastures in the SE Brazil 

(Zalles et al 2019). HYDE 3.2 used ESA CCI LC baseline for 

2010 but to estimate year-to-year changes it employs an 

algorithm to allocate transitions within a country giving 

preference for conversion of lands near existing agriculture 

and with high NPP. This may not be sufficient to capture 

deforestation in more remote regions in a large country like 

Brazil, hence the LULCC allocation in HYDE 3.2 was centred 

in SE Brazil in consolidated areas.  

Although HYDE 3.3 showed lower magnitude change 

compared to MapBiomas, the main gain with the updated 
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version was the spatial allocation of LULCC. The similarity 

analysis showed that 20.2% of the grid-cells from HYDE 3.2 

are dissimilar (similarity = 0) when compared to MapBiomas 

in grid-cells mainly located in the SE and NW Brazil (SI 

Figure 3) indicating a larger spatial inconsistency in the 

LULCC for this region. HYDE 3.3 on the other hand, had only 

2.2% of the grid-cells with similarity index equal to 0 when 

compared with MapBiomas and those grid-cells tend to be 

spatially spread, indicating an improvement on the spatial 

allocation. The spatial distribution of the similarity index and 

the frequency histogram is shown in SI Figure 3. Additionally, 

the net changes from MapBiomas and natural vegetation cover 

loss showed a strong correlation (R=0.94; SI Figure 4), with 

net changes mainly due at expense of forest loss. This 

indicates that net observed LULCC change can be used as a 

proxy of the deforestation process. A pixelwise correlation 

comparison between both HYDE net LULCC versions and 

MapBiomas vegetation loss, indicated a superior performance 

in HYDE 3.3 (R=0.55, SI Figure 4) compared with HYDE 3.2 

(R=0.094; SI figure 4). This result demonstrates that although 

HYDE 3.3 still underestimates the changes, it is able to better 

reproduce and allocate spatially the deforestation pattern than 

HYDE 3.2. 

 

 

 

Figure 1. Annual land use change in Brazil (km2/year) considering only the two main forcing: Cropland and Pasture* for 

HYDE 3.2, HYDE 3.3, ESA LC CCI and MapBiomas c5. a) Net change (sum of cropland and pasture); b) Cropland category 

change and c) Pasture category change. *Pasture for both HYDE versions include pasture + converted rangeland categories.  
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Figure 2. Spatial land use change fraction (0-100% of grid-cell converted to 0-1) between 2000 and 2017 for Brazil. a) Net 

land use change in HYDE 3.2; b) Net land use change in HYDE 3.3; c) Net land use change MapBiomas c5; d) Cropland 

change HYDE 3.2; e) Cropland change HYDE 3.3; f) Cropland change MapBiomas c.5; g) Pasture change HYDE 3.3; h) 

Pasture change HYDE 3.3; i) Pasture change MapBiomas v.4.  *Net land use change = cropland + pasture. **Pasture for both 

HYDE versions include pasture+converted rangeland categories. 

3.2 Land Use and Land Cover Change Emissions 

(ELUC) in Brazil 

Simulated average ELUC for Brazil after the peak in 2004 

was 0.34 PgCyr-1, 0.18 PgCyr-1 and 0.32 PgCyr-1 in JULES-

ES simulations with HYDE 3.2 (2005-2017), HYDE 3.3 and 

MapBiomas (2005-2019), respectively.  ELUC with the 

BLUE model was 0.19 PgCyr-1 , 0.11 PgCyr-1 and 0.39 PgCyr-

1 for HYDE 3.2. HYDE 3.3 and MapBiomas, respectively (SI 

Table 4). Although simulations based on HYDE 3.2 showed 

higher emissions than HYDE. 3.3-based, both models when 

forced with HYDE 3.3 showed a negative trend after 2004. 

This is in agreement with the trend from our reference run 

based on MapBiomas LULCC forcing. Therefore, differences 

between MapBiomas and HYDE 3.3 simulations can reach up 

to 0.3 PgC/yr in some years due the higher LULCC in 

MapBiomas than HYDE datasets (Figure 3a). 

At the biome level, simulations with HYDE 3.3 and 

MapBiomas agreed on a downward trend after 2004 (p<0.05, 

Figure 3b) for the Amazon biome which is also consistent with 

INPE-EM bookkeeping model based on official deforestation 

data. However, for the same period simulations with HYDE 

3.2 had an opposite direction and showed an increase of ELUC 

in both the Amazon and Cerrado biomes with the greatest 

increase in the latter (Figure 3c). The update in HYDE also 

reflects an improvement in the contribution of each biome to 

the country total ELUC. Our results indicated that with the 

HYDE 3.2 version the Cerrado biome (Brazilian savannas) 
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was the highest contributor (40.7%-61%) in contrast to 

Amazon (14.6%-22.5%) (SI Figure 5). This is opposite to data 

from INPE-EM, which confirms that Amazon emissions are 

on average 59% higher than Cerrado emissions. The spatial 

improvement in the allocation method of HYDE 3.3 increased 

the contribution of Amazon biome to the total ELUC, now 

responsible for about 40% and the Cerrado 24-32% of the 

country’s total (SI Figure 5). These improvements are 

important to better represent spatially the human disturbances 

across the Brazilian biomes.  

Spatially, the main differences between the HYDE-based 

simulations are in SE Brazil and the arc of deforestation in 

Amazonia (Figure 3d-i). Both models using HYDE 3.2 

simulate higher emissions concentrated in the SE Brazil (i.e. 

Sao Paulo, Mato Grosso do Sul and Parana states) (Figure 3b, 

d) when compared to the Amazon region, which is unrealistic 

given the dynamic of recent trends in deforestation hotspots in 

Brazil (i.e. Amazon and north of Cerrado regions as shown in 

SI Figure 4). Therefore, both HYDE-based simulations still 

spatially underestimate the emissions in the Amazon ‘Arc of 

deforestation’ as shown by the spatial simulated emissions 

based on MapBiomas (Figure 3f and i).  
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Figure 3. a) Brazil total ELUC (PgC/yr) from 2000 and trendline from 2004 onwards; b) Amazon biome ELUC (PgC/yr); c) 

Cerrado biome ELUC (PgC/yr); d) Simulated spatial explicit mean ELUC (gC/m2/yr) for Brazil (2000-2016*) by JULES-ES 

TRENDYv8 with HYDE 3.2; e) JULES-ES with HYDE 3.3; f) JULES-ES with MapBiomas c5 + Legacy; g) BLUE with 

HYDE 3.2; h) BLUE with HYDE 3.3; i) BLUE with MapBiomas c5. *Here we spatially show 2000-2016 mean and 

difference because BLUE (HYDE 3.2) was only available up to 2016. 

4. Discussion

The goal of this study was to evaluate global land use 

products used to estimate Brazil ELUC emissions comparing 

with additional country-specific data (MapBiomas) and 

estimate the impact of the new HYDE 3.3 dataset on the 
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simulated ELUC. One of the factors of uncertainty and 

disagreement in the mean and trends in ELUC for Brazil is the 

driving LULCC dataset (Bastos et al 2020, Gasser et al 2020). 

Our results show that the HYDE 3.3 including updated FAO 

statistics and an improvement in the allocation method using 

multi-annual remote sensing-based ESA CCI land cover) 

product better distributed the LULCC and consequently 

ELUC across Brazil compared to the previous version. Unlike 

ELUC based on HYDE 3.2, our new HYDE 3.3-based 

estimates now agree on an overall negative trend after 2004 as 

shown in our reference MapBiomas simulation and other 

national datasets (NGHGI and SEEG LULUCF), FAOSTAT 

and H&N global bookkeeping models (Figure 4 and SI table 

4). Although there are still differences in the scale of 

emissions between the estimates in Figure 4, these can be 

attributed to different methodological approaches, processes 

considered, and input data used to estimate ELUC (SI Table 

3).  

 

 

Figure 4. a) Brazil ELUC from both models used in this study with HYDE 3.3 and MapBiomas and other estimates including 

the Houghton & Nassikas (H&N), the FAOSTAT, the 4th National Communication of the Brazilian estimates on GHG 

estimates (NGHGI 4th NC) and 8th edition of SEEG LULUCF. A table with the average estimates for Brazil and the trend are 

in SI Table 4.

Challenges remain in order to further improve 

representation of LULCC and ELUC in regional and global 

assessments. In general, DGVMs and some bookkeeping 

models use change in agricultural areas based on statistical 

data reported by countries to FAO as a forcing for tree-cover 

loss. By using only the agricultural areas based on FAOSTAT 

such as in HYDE dataset, our results demonstrated that we 

underestimate the ELUC compared to remote sensing-based 

data. This occurs because of the limitation of relying on the 

country reports and the assumption that all changes in natural 

vegetation loss can be inferred from changes in agricultural 

land without consideration of part of the ‘other land’ category 

which may be associated to the deforestation process.  A 

recent study showed that about 13% of the tree cover loss in 

Brazil goes into a long transitional land category which is land 

not converted to be used by agricultural activities and may be 

associated to land grabbing (Zalles et al 2021). Thus, these 

areas are potentially included as a residual in the ‘other land’ 

category from FAO and not being considered in the ELUC 

estimates based on HYDE dataset. When using a remote 

sensing-based product to extract the observed changes in 

LULCC areas, such as the MapBiomas, the models were able 

to reproduce the overall pattern of vegetation loss and 

consequently ELUC trends over Brazil. Another caveat is that 

as we do not consider gross land cover changes and expect 

lower simulated ELUC in the early 2000s using the HYDE 3.3 

dataset, also the regrowth sink in the late 2000s will likely be 

underestimated (Arneth et al 2017). A future challenge to the 

DGVMs and bookkeeping models such as BLUE will be to 
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incorporate tree-loss directly from remote-sensing products. 

Nonetheless, this presents other challenges, such as the 

representation of legacy fluxes which occur on a timescale 

longer than the current availability of remote sensing datasets 

(Pongratz et al 2014). We believe this shortcoming will be 

overcome on the medium-term as longer time-series become 

available from satellite data. Moreover, global LULCC 

products with medium to coarse spatial resolution may not 

capture the increasing small-scale deforestation in Amazon 

(Kalamandeen et al 2018) which can contribute to an 

underestimate in the LULCC and its interannual variability. 

Variations in vegetation cover loss are associated with 

economic changes and environmental policy (Macedo et al 

2012, West and Fearnside 2021), climatic events such as 

ENSO (El Niño–Southern Oscillation), which can contribute 

to spread of fires in intact forests (Aragão et al 2018, Alencar 

et al 2006), facilitating land cover conversion through fire, and 

also government decisions (Barlow et al 2020, Cardil et al 

2020), which can lead to a high interannual variability. Using 

datasets based on semi- and decadal scale values such as in the 

updated version of FAO land-use statistical data for Brazil will 

result in lower year-to-year variation in vegetation loss and 

ELUC variability from DGVMs and Bookkeeping models. As 

shown in SI table 3 approaches vary in terms of LU processes 

included, e.g. shifting cultivation/sub-grid transitions, wood 

harvest, each of which could lead to an increase in ELUC 

estimates (Arneth et al 2017). In addition, forest degradation 

(selective logging, forest fire, edge-effects and fragmentation) 

is a growing threat, and may surpass deforestation in terms of 

both area and C emissions in several recent years (Aragão et 

al 2018, Bullock et al 2020, Silva Junior et al 2020, Matricardi 

et al 2020, Assis et al 2020), but is still not included in global 

DGVMs, bookkeeping models nor in national inventories. 

Hence improvements in DGVMs and global Bookkeeping 

models to explicitly use remote sensing derived tree-cover loss 

dataset and represent degradation processes are needed to 

further improve the representation of human disturbances on 

ecosystems and deliver better estimates of ELUC. Further 

efforts are still needed to better align (or map) the concepts 

between ELUC and LULUCF (Grassi et al 2018). 

5. Conclusion 

This study used a new global LULCC dataset based 

on the integration of time varying remote sensing data with 

updated national statistics to generate a new global land use 

dataset. HYDE 3.3 is shown to be superior in the spatial 

allocation to an earlier version based on only a single year 

satellite baseline. In particular, it reproduces the general 

spatial pattern of LULCC across Brazil when compared with 

national datasets, however it still underestimates the LULCC 

changes due to limitations associated with the assumption of 

a one-to-one correspondence between natural vegetation loss 

and changes in agricultural land based on statistical reports. 

When HYDE 3.3 was applied as input to a processed-based 

DGVM and a global bookkeeping model, both simulated a 

negative trend in ELUC for Brazil, in agreement with national 

and other global estimates. The simulations with both HYDE 

3.3 and MapBiomas also identify the Brazilian Amazon as the 

largest contributor to the total country ELUC. In summary, 

improvements in LULCC datasets have resulted in consistent 

estimates of ELUC trends across different methodologies for 

Brazil. These advances will likely improve GCB estimates, 

contributing to reduced uncertainty in the global estimates and 

improve our understanding of the global carbon cycle. 
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