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Wave fronts in bistable reactions with anomalous Ley-flight diffusion
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Shape-preserving traveling solutions of an equation describing the interplay of bistable reaction processes
and Levy-flight anomalous diffusion are obtained and analyzed. The velocity of these wave fronts is deter-
mined as a function of the reaction parameters and the anomalous-diffusion exponent, and their shape is
characterized in terms of simple quantitigS1063-651X97)09701-9

PACS numbe): 05.20—y, 82.20.M]

Anomalous diffusion is the underlying transport mecha- (ytg(k,t): -D |k|7$(k,t), 4)
nism in a variety of physical systems of both theoretical and ’
applied interest. It is characterized by a mean square diswhere
placement which depends on time[43
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with v#1. More generally, this power-law dependence cang he Fourier transform of the density of diffusing particles

be replaced by a generic function of tii2], but such @ ;. ) The anomalous diffusion coefficient is given by,
possibility has been scarcely studied. Power-law anomalougT—1|k0|—y where is the (mean waiting time of the ran-

hyperdiffusion ¢>1) occurs, for example, in developed tur- 4,0 \yalk. The solution to Eq4) can be immediately writ-
bulence[3] and phase-space dynamics of chaotic systems, as
[4], whereas the subdiffusive case<1) is found in motion
through highly heterogeneous media, such as disordered sur- B(K,t)=d(k,00exp(— D, t|k|?), (6)
faces, porous materials, and ggl3. 4

A convenient model for anomalous diffusion is provided put the antitransformed densitj(x,t) does not have a ge-
by random walks in which the jump probability(x) de- neric analytical expression.
pends on the jump lengtk as a decreasing power law; for  This Brief Report is devoted to the study of some solu-

instance, in one dimension and for large, tions of Eq.(4) when it is extended to consider reaction
processes in the same spirit of ordinary reaction-diffusion
p(x)o|x| 7177, 2 equations. The interplay of anomalous diffusion and reaction

) . _ ~ processes has been recently addressed in connection with the
with 0<y<2. Levy flights [5], defined through the Fourier anomalous kinetics of bimolecular reactions such as

transform ofp(x) as A+A—A, A+A—0, and A+B—0 [7,8]. The study of
such interplay in the frame of a formulation such as a gen-
p(k)=exp(—|k/ko|”)  (ko=cons}, (3)  eralized reaction-diffusion equation should provide insight

into the effect of anomalous diffusion on self-organization
are a paradigm of such random walks. Fer2, the one- phenomena, which are the main manifestation of complex
step mean square displacement of ‘ay #ight is finite and  behavior in reacting and diffusing systeff®10]. One can
ordinary diffusion is recovered. Fop<2, instead,(x?) is  then propose, in the Fourier representation, the reaction-
infinite, and Levy flights produce hyperdiffusion. Although anomalous diffusion equation
in this case the exponentin Eq. (1) is not defined, it has - -~
been shown that a confinement of the random walk gives d¢p=—D,|k|"p+ of, (7)
place to a transitory regime in which one can identify -
v=2/y [6]. The combination of Ley flights with power-law ~ wheref is the Fourier transform of the reaction teffifx),
waiting time distributions makes it possible to consider aand w is a constant that measures the strength of reactions.
wider range of values of, including both hyperdiffusive Note that, in generaf(¢) is a nonlinear function and, there-
and subdiffusive regimes3,4]. fore, f does not have an explicit form as a functiondf
It has been arguel®] that the one-dimensional ordinary- For bistable reaction models—whefép) has two roots
diffusion equation can be generalized to the case afyte which correspond to homogenenous stable states—it is well
flight diffusion by writing, in the Fourier representation, known that the interplay of ordinary diffusion and reactions
determines, as generic behavior, the development of smooth
wave fronts in the density profilg10]. These shape-
*Permanent address: Consejo Nacional de Investigaciones-Cienpreserving fronts connect regions in which the density equals
ficas y Tenicas, Centro Atmico Bariloche and Instituto Balseiro, one of the two stable states, and have a well defined constant
8400 Bariloche, R Negro, Argentina. velocity, given by the parameters of the reaction function.
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Depending on those parameters, one of the two stable states 40
dominates over the other, and the fronts move in such a way
that the dominant state is eventually reached at any point in
the system. A convenient form of a bistable reaction term is

f()=—+ dnb(d— o), ®)

with 0<¢@.< ¢y, and whered(¢) is the Heaviside step = ool
function. The corresponding homogeneous stable states are
¢=0 and ¢= ¢y, . This piecewise-linear reaction function
preserves the nonlinear character of more complex models,
but makes possible an analytical treatment of the problem. It
has been extensively used in the literat[it&], along with
other piecewise linearized models. In the following, this re-
action model is considered in connection with Eg), and iy
wave-front solutions in bistable systems under the effect of
anomalous diffusion are consequently obtained.
Shape-preserving wave fronts correspond to similarity so-.
lutions of the form¢(x,t)=¢(x—vt), wherev is the front
velocity. In the Fourier representation, one has
d(k,t)=expikovt)p(k). For these special solutions and for

the reaction term given in Ed8), the reaction-anomalous  The condition$(0)= ¢, given above by the choice of

20 -

1.0

FIG. 1. Adimensionalized wave-front velocityin a piecewise
linearized bistable reaction model driven bywyeflight anomalous
diffusion as a function of the reaction parametefor various val-
ues of the Lgy exponenty.

diffusion equation reads the critical pointé,, produces
0kd= D KF- 0 T exgiiky).  (©) pe=gml w2 [Tl a9
7 \/_ ¢ 27 o (K"+1)*+u?k?]’
Here &, is the point at whichp(£é=x—uvt) reaches the criti- which can be rewritten as
cal value ¢.: ¢(&.)=¢.. Since the problem is invariant
under spatial shifts, it is possible to fig=0. With this _2uf= dk 14
choice, the solution to Eq9) is 2= o (K?+1)°+u’k®’ (14)

~ with z=1-2¢./ ¢y . This implicit equation determines the
p(k)=— m \/_[D7| K7 +ivk+ @] (10 value of the front velocityu as a function of the reaction
parameters—combined in a single quantity—and the
This solution has to be antitransformed to obtain the densitgnomalous-diffusion exponenty. The parameter z
profile ¢(&). To proceed with this antitransformation, it is (—1<z<1) is a direct measure of the relative prevalence of
first necessary to fix the asymptotic values of¢) for  the two stable states in the reaction model. For0,
&—+ oo, Taking ¢(—=)—0 andp(+=)— ¢y, the density  ¢$= ¢, dominates overp=0, and vice versa for<<0. In

profile can be expressed as fact, Eq.(14) shows that the sign df fixes the direction of
) motion of the wave front, irrespectively of the value of

¢(§)_ﬁ fim f*w dk  exp(—iky) 1y Forz>0 the front moves leftwards, and the density ap-
—w —ik+ € |k|"+iuk+1’ proaches the homogenenous staig. For z<0 the front

velocity is positive, andp(x,t) vanishes asymptotically for
where y=§/(D7/w)”7 and u=v/w'~" DY are adimen- all x.
sionalized coordinate and front velocity, respectively. A In the case of ordinary diffusion, the adimensional front
more explicit, real form for the complex integral in Ed.1) ~ Vvelocity is given by[11]
makes it possible to write

_ on
¢(§)—E T

2z

» Kk~ Y(k?+1)sinky+u coky u(y=2)=— >+ (15
Vi—2z

+2J T D7 e 12

) o ) o whereas for a Cauchy jump distribution one obtains
The integral in this solution can be explicitly calculated only

for the case of ordinary diffusiony=2) and fory=1, when T -

the Levy distribution corresponds, in the coordinate space, to u(y=1)=cot > z(1- 1275 (16)

a Cauchy distribution,p(x)=(1+k2x?) 1. Although for

y=0 the integral can also be found, the limit-0 is sin- In Fig. 1, these two functions are plotted along with the

gular with respect to ey distributions. In fact, fory=0 Eq.  numerical calculation ofi(z) for y=1.5 and 0.5. The curves
(3) implies p(k)=const and, thereforgy(x)&(x), which  for y=2 and 1.5 are practically indistinguishable. Appre-
describes immobile particles. For noninteger valueg,dhe  ciable differences appear only for~1, and for decreasing
profile ¢(&) has to be calculated numerically. v the dependence of the velocity on the parameter less
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smooth. The qualitative behavior of these curves is, however, 50
independent on the anomalous diffusion exponent, and it can :

be proven from Eq(14) that, for arbitraryy, u— ¥« as
z—=+1.

Focusing attention now on the form of the density profile,
it is first possible to show that the asymptotic tail of the
solution given by Eq(12), ¢(é— — =), depends in a rather

4ot

strong way on the anomalous-diffusion coefficientn fact, < ,
for y>1 andu#0, one has 20 p i
p(£——o)=exp(—|y/ul), a”
10
i.e., an exponential decay which depends on the valug of \\\ //
only through the velocity. On the other hand, fop<1, the T A
asymptotic tail decays as a power law, 00 5 BT o o
z
P(é——o) x|y, (18

FIG. 2. Adimensionalized front widtiA as a function of the

which also holds fory>1 whenu=0. For y<1, therefore, reaction parametex, for various values of the vy exponenty.
the density profile decays relatively slowly and, in fact, its
tail is not normalized: the total number of diffusing particles  physically, the front width is defined by the combined
beyond a certain distance from the front is infinite. This con-effect of reactions and transport. In fact, diffusion tends to
trasts with the case of>1, where the exponential decay widen the front steadily, and this effect should be enhanced
Corresponds to a f|n|te tOtal particle number. Th|S diﬁerenchr decreasingfy' When the transport mechanism becomes
Should be ascribed to the Stronger effect of anomalous difomore efﬁcient. On the Other hand' reaction processes drive
sion for lower values ofy. In the limit {— +, the density  the density to locally approach one of the two stable states,
approaches its asymptotic valug,, with the same func- making the fronts that connect such states sharper. In addi-
tional form as it vanishes fof — —c. tion, the reaction rate is stronger when the difference be-

Since the form of the solution given by E€L2) is rela-  tween the actual value of the density and its stable state is
tively simple—it is a monotonic function with well defined, |arger. Therefore, diffusion can contribute—through the dis-
constant asymptotic values—the front profile can be qualitahalance of chemical equilibrium caused by the transport of
tively characterized by a single parameter, namely, its widtijensity—to the sharpening of the wave fronts by enhancing
A. A convenient definition for this quantity could be given in the effect of reactions. This complex interplay is well illus-
terms of the derivative of#(é) at the origin: A™"  trated in Fig. 2, which shows the adimensionalized front
xd¢p/dé|.—o. However, it can be shown that, when<l  width A as a function ofz for various values ofy. For

andu#0, vy>1, A has a finite minimum at=0, and increases as
Uy ro, B ) approaches its limiting values. For fixad moreover, it de-
d_¢: ﬁ(ﬂ) yf (k”+1)cosky— uk sinky 9 creases for increasing. In the case of Cauchy anomalous
d¢ =« \D, 0 (K¥+1)%+u?k? diffusion, y=1, the width vanished identically for alt,

A=0. This implies that, irrespectively of the reaction param-

has a finite discontinuity precisely @=0. Although the eters, the front is infinitely steep at the origin. Finally, for

jump in this derivative is hard to obtain in an analytical way,
Eq. (19) implies immediately that the average value of
d¢/d¢ at the origin is given by

1[d¢ d¢ ¢h w Uy

Sl 5201+ —2(07)|= _(_) sl 05

2 df dg T Dy ______ Y=10
T R R B

010,

It is then convenient to define the adimensionalized width 4|
A according to

1 |d¢ . do
' [—(0 )+d—y(0 )}

“ 24| dy
B 1 ocdk k”+1 X . (3;) 10 20
—;fo K+ D)7+ 0K )

o _ ) ) FIG. 3. Normalized density profile/ ¢y, as a function of the
which is a function ofz through its dependence on the adi- adimensionalized coordinate for various values of the vy ex-
mensional velocityu. ponenty andz=0.5.
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y<1 andz#0, A is again finite, but vanishes far=0.  arises then quite naturally. A more general question regards
These generic properties can be analytically obtained fronthe validity of Eqs(4) and(7) as a mathematical description
Eqg. (21). of real anomalous diffusion and reaction-anomalous diffu-
Figure 3 shows thénormalized density profiles for vari- ~ sion processes, respectively. Indeed, those equations are in
ous values ofy at a given value ofz. Some of the main Principle valid for Levy flights [6], whose connection with
features discussed above are clearly displayed by these plo@omalous diffusion in the sense of Hd) is only asymp-
Although these features have been here derived for a speciffgtic: This question is also relevant to numerical simulations
form of the reaction term, they are expected to be qualital"v0lVing anomalous-diffusion transport. In fact, thewye
tively reproduced for any bistable reaction model. distribution in coordinate space is extremely cumbersome,

The shape-preserving wave fronts analyzed in this Briefnd such numerical simulations are generally performed us-
Report are a generalization of well-known structures in'"9 §|mpler' jump distributiong8], which coincide with
bistable reaction-diffusion systems, to the case of anomalodseVY's only in their asymptotic behavior, E(). Answering
diffusion. In ordinary-diffusion systems of arbitrary dimen- tN€se questions is the subject of work in progress.
sion, these essentially one-dimensional structures constitute a The author is grateful to the Alexander von Humboldt
generic pattern, in the sense tlfatmos) any initial condi-  Stiftung, Germany and to the Fritz Haber Institut der Max
tion develops such fronts, whose further evolution governslanck Gesellschaft for hospitality during his stay in Berlin.
the long-time behavior of the bistable system. The questioThis work was partially supported by Fundatiéntorchas,
about whether the wave fronts studied here play the samArgentina. Discussions with A. S. Mikhailov and L.
role of generic patterns in anomalous-diffusion systemsSchimansky-Geier are gratefully acknowledged.
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