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Wave fronts in bistable reactions with anomalous Le´vy-flight diffusion
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Shape-preserving traveling solutions of an equation describing the interplay of bistable reaction processes
and Lévy-flight anomalous diffusion are obtained and analyzed. The velocity of these wave fronts is deter-
mined as a function of the reaction parameters and the anomalous-diffusion exponent, and their shape is
characterized in terms of simple quantities.@S1063-651X~97!09701-8#

PACS number~s!: 05.20.2y, 82.20.Mj
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Anomalous diffusion is the underlying transport mech
nism in a variety of physical systems of both theoretical a
applied interest. It is characterized by a mean square
placement which depends on time as@1#

^r 2~ t !&}tn, ~1!

with nÞ1. More generally, this power-law dependence c
be replaced by a generic function of time@2#, but such a
possibility has been scarcely studied. Power-law anoma
hyperdiffusion (n.1) occurs, for example, in developed tu
bulence@3# and phase-space dynamics of chaotic syste
@4#, whereas the subdiffusive case (n,1) is found in motion
through highly heterogeneous media, such as disordered
faces, porous materials, and gels@1#.

A convenient model for anomalous diffusion is provid
by random walks in which the jump probabilityp(x) de-
pends on the jump lengthx as a decreasing power law; fo
instance, in one dimension and for largeuxu,

p~x!}uxu212g, ~2!

with 0,g,2. Lévy flights @5#, defined through the Fourie
transform ofp(x) as

p~k!5exp~2uk/k0ug! ~k05const!, ~3!

are a paradigm of such random walks. Forg>2, the one-
step mean square displacement of a Le´vy flight is finite and
ordinary diffusion is recovered. Forg,2, instead,̂ x2& is
infinite, and Lévy flights produce hyperdiffusion. Although
in this case the exponentn in Eq. ~1! is not defined, it has
been shown that a confinement of the random walk gi
place to a transitory regime in which one can ident
n52/g @6#. The combination of Le´vy flights with power-law
waiting time distributions makes it possible to consider
wider range of values ofn, including both hyperdiffusive
and subdiffusive regimes@3,4#.

It has been argued@6# that the one-dimensional ordinary
diffusion equation can be generalized to the case of Le´vy-
flight diffusion by writing, in the Fourier representation,
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] tf̃~k,t !52Dgukugf̃~k,t !, ~4!

where

f̃~k,t !5
1

A2p
E

2`

1`

exp~ ikx!f~x,t !dx ~5!

is the Fourier transform of the density of diffusing particl
f(x,t). The anomalous diffusion coefficient is given byDg
}t21uk0u2g, wheret is the ~mean! waiting time of the ran-
dom walk. The solution to Eq.~4! can be immediately writ-
ten as

f̃~k,t !5f̃~k,0!exp~2Dgtukug!, ~6!

but the antitransformed densityf(x,t) does not have a ge
neric analytical expression.

This Brief Report is devoted to the study of some so
tions of Eq. ~4! when it is extended to consider reactio
processes in the same spirit of ordinary reaction-diffus
equations. The interplay of anomalous diffusion and react
processes has been recently addressed in connection wit
anomalous kinetics of bimolecular reactions such
A1A→A, A1A→0, and A1B→0 @7,8#. The study of
such interplay in the frame of a formulation such as a g
eralized reaction-diffusion equation should provide insig
into the effect of anomalous diffusion on self-organizati
phenomena, which are the main manifestation of comp
behavior in reacting and diffusing systems@9,10#. One can
then propose, in the Fourier representation, the react
anomalous diffusion equation

] tf̃52Dgukugf̃1v f̃ , ~7!

where f̃ is the Fourier transform of the reaction termf (f),
andv is a constant that measures the strength of reacti
Note that, in general,f (f) is a nonlinear function and, there
fore, f̃ does not have an explicit form as a function off̃.

For bistable reaction models—wheref (f) has two roots
which correspond to homogenenous stable states—it is
known that the interplay of ordinary diffusion and reactio
determines, as generic behavior, the development of sm
wave fronts in the density profile@10#. These shape-
preserving fronts connect regions in which the density equ
one of the two stable states, and have a well defined cons
velocity, given by the parameters of the reaction functio

tı
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Depending on those parameters, one of the two stable s
dominates over the other, and the fronts move in such a
that the dominant state is eventually reached at any poin
the system. A convenient form of a bistable reaction term

f ~f!52f1fhu~f2fc!, ~8!

with 0,fc,fh , and whereu(f) is the Heaviside step
function. The corresponding homogeneous stable states
f50 andf5fh . This piecewise-linear reaction functio
preserves the nonlinear character of more complex mod
but makes possible an analytical treatment of the problem
has been extensively used in the literature@11#, along with
other piecewise linearized models. In the following, this
action model is considered in connection with Eq.~7!, and
wave-front solutions in bistable systems under the effec
anomalous diffusion are consequently obtained.

Shape-preserving wave fronts correspond to similarity
lutions of the formf(x,t)[f(x2vt), wherev is the front
velocity. In the Fourier representation, one h
f̃(k,t)[exp(ikvt)f̃(k). For these special solutions and f
the reaction term given in Eq.~8!, the reaction-anomalou
diffusion equation reads

ivkf̃52Dgukugf̃2vf̃2
1

ik

vfh

A2p
exp~ ikjc!. ~9!

Herejc is the point at whichf(j5x2vt) reaches the criti-
cal valuefc : f(jc)5fc . Since the problem is invarian
under spatial shifts, it is possible to fixjc50. With this
choice, the solution to Eq.~9! is

f̃~k!52
1

ik

vfh

A2p
@Dgukug1 ivk1v#21. ~10!

This solution has to be antitransformed to obtain the den
profile f(j). To proceed with this antitransformation, it
first necessary to fix the asymptotic values off(j) for
j→6`. Takingf(2`)→0 andf(1`)→fh , the density
profile can be expressed as

f~j!5
fh

2p
lim

e→01

E
2`

1` dk

2 ik1e

exp~2 iky!

ukug1 iuk11
, ~11!

where y5j/(Dg /v)
1/g and u5v/v121/gDg

1/g are adimen-
sionalized coordinate and front velocity, respectively.
more explicit, real form for the complex integral in Eq.~11!
makes it possible to write

f~j!5
fh

2p Fp12E
0

`

dk
k21~kg11!sinky1u cosky

~kg11!21u2k2 G . ~12!

The integral in this solution can be explicitly calculated on
for the case of ordinary diffusion (g52) and forg51, when
the Lévy distribution corresponds, in the coordinate space
a Cauchy distribution,p(x)}(11k0

2x2)21. Although for
g50 the integral can also be found, the limitg→0 is sin-
gular with respect to Le´vy distributions. In fact, forg50 Eq.
~3! implies p(k)5const and, therefore,p(x)}d(x), which
describes immobile particles. For noninteger values ofg, the
profile f(j) has to be calculated numerically.
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The conditionf(0)5fc , given above by the choice o
the critical pointjc , produces

fc5
fh

2p Fp12E
0

`

dk
u

~kg11!21u2k2G , ~13!

which can be rewritten as

z52
2u

p E
0

` dk

~kg11!21u2k2
, ~14!

with z5122fc /fh . This implicit equation determines th
value of the front velocityu as a function of the reaction
parameters—combined in a single quantityz—and the
anomalous-diffusion exponentg. The parameter z
(21,z,1) is a direct measure of the relative prevalence
the two stable states in the reaction model. Forz.0,
f5fh dominates overf50, and vice versa forz,0. In
fact, Eq.~14! shows that the sign ofz fixes the direction of
motion of the wave front, irrespectively of the value ofg.
For z.0 the front moves leftwards, and the density a
proaches the homogenenous statefh . For z,0 the front
velocity is positive, andf(x,t) vanishes asymptotically fo
all x.

In the case of ordinary diffusion, the adimensional fro
velocity is given by@11#

u~g52!52
2z

A12z2
, ~15!

whereas for a Cauchy jump distribution one obtains

u~g51!5cotFp2 z~12uzu21!G . ~16!

In Fig. 1, these two functions are plotted along with t
numerical calculation ofu(z) for g51.5 and 0.5. The curves
for g52 and 1.5 are practically indistinguishable. Appr
ciable differences appear only forg'1, and for decreasing
g the dependence of the velocity on the parameterz is less

FIG. 1. Adimensionalized wave-front velocityu in a piecewise
linearized bistable reaction model driven by Le´vy-flight anomalous
diffusion as a function of the reaction parameterz, for various val-
ues of the Le´vy exponentg.
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smooth. The qualitative behavior of these curves is, howe
independent on the anomalous diffusion exponent, and it
be proven from Eq.~14! that, for arbitraryg, u→7` as
z→61.

Focusing attention now on the form of the density profi
it is first possible to show that the asymptotic tail of t
solution given by Eq.~12!, f(j→2`), depends in a rathe
strong way on the anomalous-diffusion coefficientg. In fact,
for g.1 anduÞ0, one has

f~j→2`!}exp~2uy/uu!, ~17!

i.e., an exponential decay which depends on the value og
only through the velocityu. On the other hand, forg,1, the
asymptotic tail decays as a power law,

f~j→2`!}uyu2g, ~18!

which also holds forg.1 whenu50. Forg,1, therefore,
the density profile decays relatively slowly and, in fact,
tail is not normalized: the total number of diffusing particl
beyond a certain distance from the front is infinite. This co
trasts with the case ofg.1, where the exponential deca
corresponds to a finite total particle number. This differen
should be ascribed to the stronger effect of anomalous d
sion for lower values ofg. In the limit j→1`, the density
approaches its asymptotic valuefh , with the same func-
tional form as it vanishes forj→2`.

Since the form of the solution given by Eq.~12! is rela-
tively simple—it is a monotonic function with well defined
constant asymptotic values—the front profile can be qua
tively characterized by a single parameter, namely, its wi
D. A convenient definition for this quantity could be given
terms of the derivative off(j) at the origin: D21

}df/djuj50. However, it can be shown that, wheng,1
anduÞ0,

df

dj
5

fh

p S v

Dg
D 1/gE

0

`

dk
~kg11!cosky2uk sinky

~kg11!21u2k2
~19!

has a finite discontinuity precisely atj50. Although the
jump in this derivative is hard to obtain in an analytical wa
Eq. ~19! implies immediately that the average value
df/dj at the origin is given by

1

2 Fdf

dj
~01!1

df

dj
~02!G5

fh

p S v

Dg
D 1/g

3E
0

`

dk
kg11

~kg11!21u2k2
. ~20!

It is then convenient to define the adimensionalized wi
D according to

D215
1

2fh
Fdf

dy
~01!1

df

dy
~02!G

5
1

pE0
`

dk
kg11

~kg11!21u2k2
, ~21!

which is a function ofz through its dependence on the ad
mensional velocityu.
r,
an

,

-

e
-

-
h

,

h

Physically, the front width is defined by the combine
effect of reactions and transport. In fact, diffusion tends
widen the front steadily, and this effect should be enhan
for decreasingg, when the transport mechanism becom
more efficient. On the other hand, reaction processes d
the density to locally approach one of the two stable sta
making the fronts that connect such states sharper. In a
tion, the reaction rate is stronger when the difference
tween the actual value of the density and its stable stat
larger. Therefore, diffusion can contribute—through the d
balance of chemical equilibrium caused by the transpor
density—to the sharpening of the wave fronts by enhanc
the effect of reactions. This complex interplay is well illu
trated in Fig. 2, which shows the adimensionalized fro
width D as a function ofz for various values ofg. For
g.1, D has a finite minimum atz50, and increases asz
approaches its limiting values. For fixedz, moreover, it de-
creases for increasingg. In the case of Cauchy anomalou
diffusion, g51, the width vanished identically for allz,
D[0. This implies that, irrespectively of the reaction para
eters, the front is infinitely steep at the origin. Finally, f

FIG. 3. Normalized density profilef/fh as a function of the
adimensionalized coordinatey, for various values of the Le´vy ex-
ponentg andz50.5.

FIG. 2. Adimensionalized front widthD as a function of the
reaction parameterz, for various values of the Le´vy exponentg.
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g,1 and zÞ0, D is again finite, but vanishes forz50.
These generic properties can be analytically obtained f
Eq. ~21!.

Figure 3 shows the~normalized! density profiles for vari-
ous values ofg at a given value ofz. Some of the main
features discussed above are clearly displayed by these p
Although these features have been here derived for a spe
form of the reaction term, they are expected to be qual
tively reproduced for any bistable reaction model.

The shape-preserving wave fronts analyzed in this B
Report are a generalization of well-known structures
bistable reaction-diffusion systems, to the case of anoma
diffusion. In ordinary-diffusion systems of arbitrary dime
sion, these essentially one-dimensional structures constit
generic pattern, in the sense that~almost! any initial condi-
tion develops such fronts, whose further evolution gove
the long-time behavior of the bistable system. The ques
about whether the wave fronts studied here play the s
role of generic patterns in anomalous-diffusion syste
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arises then quite naturally. A more general question rega
the validity of Eqs.~4! and~7! as a mathematical descriptio
of real anomalous diffusion and reaction-anomalous dif
sion processes, respectively. Indeed, those equations a
principle valid for Lévy flights @6#, whose connection with
anomalous diffusion in the sense of Eq.~1! is only asymp-
totic. This question is also relevant to numerical simulatio
involving anomalous-diffusion transport. In fact, the Le´vy
distribution in coordinate space is extremely cumbersom
and such numerical simulations are generally performed
ing simpler jump distributions@8#, which coincide with
Lévy’s only in their asymptotic behavior, Eq.~2!. Answering
these questions is the subject of work in progress.
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