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Dynamics of globally coupled bistable elements
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The macroscopic dynamics of a large set of globally coupled, identical, noiseless, bistable elements is
analytically and numerically studied. Depending on the value of the coupling constant and on the initial
condition, all the elements can either evolve towards the same individual state or become divided into two
groups, which approach two different states. It is shown that at a critical value of the coupling constant the
system undergoes a transition from bistable evolution, where the two behaviors described above can occur, to
coherent evolution, where the convergence towards the same individual state is the only possible behavior.
Connections of this system with the real Ginzburg-Landau equation and with the sociological problem of
opinion formation are discussed.@S1063-651X~97!10505-0#

PACS number~s!: 05.20.2y, 05.70.Fh, 87.10.1e, 89.90.1n
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I. INTRODUCTION

The study of complex behavior in extended systems
based on the analysis of large sets of elements whose
dynamics is coupled through some interaction mechani
Much effort has been devoted in the last two decades to
investigation of extended systems with short-range inte
tions, whose main manifestations of complex behavior are
now well understood. Reaction-diffusion systems constit
the paradigm of this problem. More recently, other coupl
mechanisms—in particular, global coupling@1#—have also
been considered. Global coupling plays a relevant role
models of many real systems driven by long-range inter
tions, able to generate strong correlations between hig
interconnected elements. Instances of such systems are
lating catalytic surface reactions@2#, neural networks@3,4#,
and allosteric enzymic reactions@5#.

Forms of collective behavior produced by global coupli
have been well characterized in the case of systems for
by limit-cycle oscillators. In these systems, long-range int
actions can give rise to synchronized oscillations@1,6#. This
kind of ordered entrained evolution—which has been
served in systems formed by either identical or slightly d
ferent elements—is part of a wide class of possible behav
with nontrivial features, including clustering, chaotic colle
tive dynamics, and desynchronization@7,8#.

Although much attention has recently been paid to th
sets of globally coupled oscillators, a full understanding
the role of global coupling in the dynamics of extended co
plex systems—to the levels already reached in the cas
diffusive coupling—will require one to study other types
local dynamics. In particular, one should be interested
characterizing the forms of collective evolution that occur
systems of elements whose individual dynamics differ fr
limit-cycle oscillations. In this spirit, this paper is devoted
the analysis of the evolution of a set of globally coupl
bistable elements. This should be relevant to the study
spin systems@9# and neural networks@10#, where closely
related models have already been considered.

Models of coupled bistable elements have been addre
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in the study of critical phenomena under the effects of ex
nal noise@11#. Internal deterministic noise has also been co
sidered in systems of coupled chaotic elements with sim
symmetry properties@12#. In this frame, it has been show
that a ferromagneticlike transition occurs as the no
strength is varied. The same models, added with suita
harmonic forcing, have been very recently studied in conn
tion with stochastic resonance in extended systems@13#. In
this paper, instead, the attention is focused on qualita
changes in the macroscopic behavior of a set of noise
bistable elements upon variation of the coupling strength
Sec. II, the mathematical model is presented and it is s
gested that a critical phenomenon takes place as a coup
constant is varied. Section III is devoted to the character
tion of this critical phenomenon, which is a kind of firs
order phase transition. Finally, results are summarized
discussed in Sec. IV.

II. GLOBAL COUPLING OF BISTABLE ELEMENTS

Consider a set ofN identical elements, each of them cha
acterized by a state variablexi(t), with 21<xi<1. In the
absence of coupling the individual dynamics is bistable, a
the evolution ofxi is governed by the equation

ẋ5x2x3, ~1!

which corresponds to overdamped motion in the o
dimensional potentialV(x)52x2/21x4/4. The solution to
Eq. ~1! is

x~ t !5sgn~x0!@12~12x0!
22exp~22t !#21/2, ~2!

with x05x(0). During the evolution,x(t) preserves its sign
and approaches the asymptotic valuexu t→`5sgn(x0)561.
The stationary statex50 is unstable.

Global coupling is now introduced in the usual way@1#,
as a term describing relaxation towards the mean va
x̄(t)5N21( ixi(t):
5315 © 1997 The American Physical Society
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ẋi5xi2xi
31k~ x̄2xi !5~12k!xi1kx̄2xi

3 . ~3!

In the following, the ~positive! coupling constantk is re-
stricted to the interval@0,1#. In fact, as shown below, the
behavior of the coupled system fork51 is essentially the
same as for larger values of the coupling constant. For la
k, the evolution proceeds in two well-defined stages. Up
t'k21, the effect of coupling is dominant and eachxi rap-
idly approaches the mean valuex̄(t). From then on, the
coupled set evolves coherently—i.e., the statesxi(t) of all
the elements coincide, andx̄(t)5xi(t) for all i . The subse-
quent behavior is thus mainly governed by the individu
dynamics, and the whole set approaches one of the
stable states. Note that, as in the evolution of a single
ment, this asymptotic state is selected by the initial con
tion.

In the case ofk51, Eq. ~3! reduces to

ẋi5 x̄2xi
3 . ~4!

Let r5xi2xj be the difference between the states of any t
elements in the system and, without loss of generality, s
poser.0. According to Eq.~4!, this quantity satisfies

ṙ52r ~xi
21xixj1xj

2!. ~5!

Now, since 21<xi ,xj<1, the inequalities r 2/4<xi
2

1xixj1xj
2<3 hold and, at each time,

23r< ṙ<2
r 3

4
. ~6!

The inequality signs are inverted ifr,0. In the (r , ṙ ) plane,
therefore, the trajectory corresponding to the solution of
~5! must lie between the graphs of the functions appearin
Eq. ~6!, which intersect each other atr50. As a conse-
quence,r vanishes fort→`. Hence, fork51 the coupled
elements evolve coherently and a single asymptotic valu
xi is approached for alli .

In agreement with these results, numerical calculati
show that, fork>1, the system converges to coherent beh
ior as time elapses. On the other hand, fork50 each elemen
evolves independently according to Eq.~2! and, from a ge-
neric initial condition, the set becomes divided into tw
groups, each of them approaching one of the two sta
states. Figure 1 shows the evolution of a set of 103 bistable
elements in the casesk50 andk51—although, for the sake
of clarity, only 102 trajectories are plotted. Both plots corr
spond to exactly the same initial uniform random distributi
in (21,1).

The qualitative change in the evolution betweenk50 and
k51 suggests that some kind of transition between both
haviors should occur at some intermediate value of the c
pling constant. This transition is characterized in the follo
ing.

III. TRANSITION BETWEEN BISTABLE
AND COHERENT BEHAVIOR

According to numerical calculations, for sufficiently sma
values of the coupling constant the global behavior of
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system qualitatively reproduces the evolution of the set
uncoupled elements (k50). In fact, depending on the initia
distribution of the coordinatexi , all the elements converg
to one of the extreme valuesxi561—as when, fork50, all
the coordinates have the same sign—or become divided
two groups, which approach two different values of t
coordinate—as when, fork50, both signs are present in th
initial distribution. The coupled system is therefo
‘‘bistable’’ in the sense that two qualitatively differen
asymptotic states can be observed, depending on the i
condition: either the elements behave coherently, all of th
approaching the same final state, or they are divided into
groups. On the other hand, as stated above, for larger va
of k only coherent behavior is observed.

The transition between bistable and coherent behavio
characterized by a stability change in the possible asympt
states of the whole system. Suppose that, as the sy
evolves, theN elements are divided into two groups. One
them, containingpN elements (0,p,1) approaches the co
ordinateX1, whereas the other, with (12p)N elements, ap-
proachesX2. It has to be stressed that the value ofp is
determined—in a nontrivial way—by the initial condition
According to Eq.~3!, the following identities should hold a
N→`:

05~12k!X11k@pX11~12p!X2#2X1
3 ,

~7!

05~12k!X21k@pX11~12p!X2#2X2
3 .

Note that the case of coherent evolution can be taken

FIG. 1. Temporal evolution of the coordinatesxi(t) for a set of
bistable elements with random homogeneous initial distributi
21,xi(0),1, and two values of the coupling constant,~a! k50
and~b! k51. For clarity, only 102 curves are displayed in each plo
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55 5317DYNAMICS OF GLOBALLY COUPLED BISTABLE ELEMENTS
account by puttingX15X2. The solutions to Eqs.~7! are,
therefore, the whole set of stationary states of the coup
system. Their stability can be studied from Eq.~3! in the
standard linear approximation.

Independently of the value ofp, Eqs.~7! have nine solu-
tions. The trivial one, (X1 ,X2)5(0,0), is unstable. The re
maining eight solutions can be grouped into symmetri
pairs, (X1 ,X2) and (2X1 ,2X2), both with the same stabil
ity properties. It is therefore enough to analyze, for instan
the four solutions with X1>0. ~i! The first one,
(X1 ,X2)5(1,1), is stable and corresponds to the asympt
state of coherent evolution.~ii ! The second solution is rea
for all k. It approaches the unstable solution (0,21) for
k→0 and the trivial solution (0,0) fork51. This solution is
unstable for allk. ~iii ! Another solution, which is also un
stable for allk, approaches the unstable solution (1,0)
k→0. ~iv! Finally, there is a stable solution that approach
(1,21) ask→0. This solution corresponds to the state
which the elements have become divided into two subse

Figure 2 shows the numerical calculation of the pa
(X1 ,X2) given by Eq.~7! for p50.55 as the coupling con
stant varies fork50 to k51. Arrows indicate the direction
of increasingk. Solid ~dashed! lines and solid~open! circles
stand for stable~unstable! equilibrium states.

As the coupling constant grows, there is a critical va
kc at which the two solutions~iii ! and ~iv! ‘‘collide’’ and
become complex. At this critical value, then, the solution
which the whole set becomes divided into two groups dis
pears. The value ofkc is related top according to

154kc218kc
2p118kc

2p2127kc
4p2254kc

4p3127kc
4p4. ~8!

Thus, for a given value ofp—which is determined by the
initial condition—andk,kc two qualitatively different be-
haviors can occur, as suggested by the numerical sim
tions. EitherX15X2561 and the system evolves cohe
ently, or X1ÞX2 and the elements are divided into tw
groups. Fork.kc , instead, only the coherent evolution
possible. Figure 3 shows a phase diagramk versusp, where

FIG. 2. Solutions to Eqs.~7! for p50.55 and 0,k,1. Full dots
and lines correspond to stable solutions whereas empty dots
dashed lines stand for unstable states. The arrows indicate th
rection of growingk.
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the boundary between the regions of bistability and coh
ence given by Eq.~8! has been plotted.

A characterization of this transition in terms of a sing
order parameter is achieved by introducing the mean sq
displacement of the asymptotic distribution of coordina
xi with respect to their mean valueX̄5pX11(12p)X2,
namely,

s5Ap~X12X̄!21~12p!~X22X̄!25Ap~12p!uX12X2u.
~9!

Figure 4 shows the value ofs as a function ofk, for fixed
p. Solid ~dashed! lines stand for stable~unstable! states; the
horizontal axis s50 corresponds to the stable stat
X15X2561. The dependence ofs on k suggests classify-
ing the transition between bistable to coherent behavior a
subcritical first order transition. Note, however, that, sin

nd
di-

FIG. 3. Phase diagram in the (p,k) plane. The curve divides the
zones of bistability—where according to the initial condition, t
set of elements is divided into two groups or approaches a si
value ofxi—and of coherent behavior, where all the elements
always attracted to the same state.

FIG. 4. Mean square dispersion for the solutions to Eq.~7! with
p50.55, as a function of the coupling constantk. Full ~dotted! lines
correspond to stable~unstable! states. Coherent evolution corre
sponds tos50.
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5318 55D. H. ZANETTE
coherent behavior is stable for any value of the coupl
constant, hysteresis effects cannot occur.

As already stated, the ratiosp and 12p into which the set
of coupled elements is divided into the bistable regime
pend in a nontrivial way—which, unfortunately, cannot
fully described in analytical terms—on the initial conditio
In order to illustrate this dependence, consider a set of
ments initially distributed at random, according to a pro
ability distribution given by

P~xi !5H 12p0 for 21,xi,0

p0 for 0,xi,1,
~10!

with 0,p0,1. In this initial condition, a fractionp0
(12p0) of the elements have positive~negative! coordinate.
In the absence of coupling, then, the asymptotic distribut
corresponds top5p0.

Note that forp051/2 the symmetry of the whole problem
implies that, in the limitN→`, the distribution of elements
is symmetric along the entire evolution. In particula
x̄(t)50 for all t. As stated before, however, this state
unstable for k.kcup51/2'0.67. Therefore, for any finite
value ofN and fork.kc , the ~statistical! symmetry of the
initial condition will break down as time elapses and t
mean valuex̄ will asymptotically approach a nonvanishin
value, x̄561. Global coupling is thus able to amplify th
microscopic fluctuations in the homogenenous~but random!
initial distribution, giving rise to an asymmetry at the ma
roscopic level.

In Fig. 5 the evolution of a set of 103 coupled elements is
displayed forp050.55 and two values ofk. Both plots show
102 trajectories only, evolving from the same initial cond
tion. For k50.45, the asymptotic valuep'0.58 is reached
For p50.58 the critical value of the coupling constant
kc'0.48. In fact, Fig. 5~b! shows that, fork50.55, the sys-
tem behaves coherently.

Finally, Fig. 6 shows the results of a series of numeri
calculations in which a set of 103 coupled elements was bui
according to the initial condition~10!. The asymptotic value
of the ratiop was determined as a function of the coupli
constant, averaging over some 102 realizations of the initial
condition for each value ofp0 andk. As indicated before, the
value of p0 coincides with the value ofp obtained for
k50. The sharp transition to coherent behavior (p51) at a
critical value ofk is apparent.

IV. SUMMARY AND DISCUSSION

In this paper, the noiseless dynamics of a set of glob
coupled identical bistable elements has been considered.
coupling mechanism is a kind of mean-field diffusionlik
process, already considered in the literature in connec
with other types of individual dynamics, especially oscill
tors and excitable elements@1,2,4,6–8#. It has been shown
that the elements can either become divided into two grou
which approach two different states, or behave cohere
and evolve towards a completely homogeneous state. Be
a certain critical value for the coupling constant, and depe
ing on the initial condition, both behaviors can occur and
g
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system is therefore ‘‘bistable.’’ Above this value, instea
when the coupling is strong enough, only coherent beha
is possible. The transition between bistable and cohe
evolution is similar to a first-order phase transition.

Coherent evolution of the bistable elements is qual
tively similar to the synchronization observed in globa
coupled limit-cycle oscillators. In both cases, a sufficien
strong coupling forces each element to become entraine
the average motion of the set. Dissipative effects then m

FIG. 5. Temporal evolution of the coordinatesxi(t) for a set of
bistable elements with random initial distribution as given in E
~10! for p050.55 and two values of the coupling constant,~a!
k50.45 and~b! k50.55. For clarity, only 102 curves are displayed
in each plot.

FIG. 6. Asymptotic value ofp as a function ofk for different
values ofp0. Each dot has been obtained from an average o
;102 realizations of the initial condition for a set of 103 elements.
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55 5319DYNAMICS OF GLOBALLY COUPLED BISTABLE ELEMENTS
the system evolve as a single element. Thus, an impor
common feature in the evolution of coherent bistable e
ments and synchronized limit-cycle oscillators is that, a
consequence of global coupling, the details of the individ
dynamics are manifested at a macroscopic level.

Since the coupling mechanism considered here is a k
of long-range diffusion process, it is worthwhile to compa
the present results with those corresponding to a system
bistable elements coupled through near-neighbor, ordin
diffusion. Such a system is described by the real Ginzbu
Landau equation

] tx5D¹ r
2x1x2x3, ~11!

where the diffusivityD plays the role of coupling constan
This equation is widely used as a description of the ord
parameter dynamics of second-order phase transtions@14#. It
is well known that the Ginzburg-Landau equation predi
the formation of spatial domains where the fieldx(r ,t)
adopts one of the two stables valuesx561. A plane isolated
domain wall is in principle stationary but, by interaction b
tween neighboring walls, the domains change their fo
move, and eventually, after a long time, coalesce in a ho
geneous state, which involves the whole system.

The phase separation observed in the Ginzburg-Lan
equation is in principle analogous to the division in tw
groups of elements observed in the globally coupled sys
for k,kc . However, two important differences exist. In th
first place, global coupling forces the asymptotic state
each element to differ from the stable states of isolated
ments,xi561. Second, the long-range character of glo
interactions does not allow domain formation, i.e., spa
ordering, which is instead a typical feature in systems driv
by ordinary diffusion. On the other hand, when the coupl
constant is greater than the critical valuekc , the whole set of
elements form a single domain in a time comparable to
temporal scales of individual evolution.

Besides this connection with the theory of second-or
spatially inhomogeneous critical phenomena, as mentio
in the Introduction, the present model of globally coupl
bistable elements is related to the description of spin syst
and neural networks. This relation has already been
cussed in the literature@9,10#. Beyond these applications t
physical systems, the model could also be useful in the st
of a sociological problem, namely, the problem of pub
ce
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opinion formation and social decision making. Suppose th
at a certain moment in the future, a social group has to
between two instances by means of individual voting. In
absence of interaction between individuals, it is most like
that a person will maintain his or her present preference
one of the options up to the moment of the election—just
in the absence of coupling, the variablexi(t) preserves its
sign along the whole evolution. Nowadays, however, in
vidual opinion is strongly exposed to the influence of ma
communication media@15#. In the best~fairest! cases, this
influence occurs through the publication of opinion surve
and polls during the period previous to the election@16#. No
doubt, mass media provide a class of global interaction
tween individuals and, under its action, a plausible assu
tion is that the individual opinion is to some extent driven
the average opinion. This assumption is precisely descri
by the kind of global coupling considered here.

This interpretation of the model of globally couple
bistable elements inspires the proposal of several genera
tions that are indeed worth considering. For instance
would be interesting to analyze the effect of an asymmetry
the potential of Eq.~1!, such that only one stationary state
truly stable whereas the other becomes metastable. Thi
trinsic preference for one of the states can be compared
the evolution in the bistable symmetric potential from
asymmetric initial condition, as described by Eq.~10!. The
question on the equivalence between these two source
asymmetry—the potential or the initial condition—aris
then quite naturally. A second generalization, which is c
tainly relevant to the model of opinion formation, is to adm
the possibility that the coupling constant is not the same
all the elements, but is chosen at random for each elem
from a prescribed distribution. In physical models, this fo
of quenched disorder would represent some kind of spa
inhomogeneity. To the author’s knowledge, the effects
inhomogeneities in the coupling strength has not been c
sidered, up to this moment, in the literature on globa
coupled systems.
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