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Impact of partially bosonized collective fluctuations on electronic degrees of freedom
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In this work we present a comprehensive analysis of collective electronic fluctuations and their effect on
single-particle properties of the Hubbard model. Our approach is based on a standard dual fermion and boson
scheme with the interaction truncated at the two-particle level. Within this framework we compare various
approximations that differ in the set of diagrams (ladder vs exact diagrammatic Monte Carlo), and/or in the
form of the four-point interaction vertex (exact vs partially bosonized). This allows to evaluate the effect of
all components of the four-point vertex function on the electronic self-energy. In particular, we observe that
contributions that are not accounted for by the partially bosonized approximation for the vertex have only a
minor effect on electronic degrees of freedom in a broad range of model parameters. In addition, we find that
in the regime, where the ladder dual fermion approximation provides an accurate solution of the problem, the
leading contribution to the self-energy is given by the longitudinal bosonic modes. This can be explained by
the fact that contributions of transverse particle-hole and particle-particle modes partially cancel each other. Our
results justify the applicability of the recently introduced dual triply irreducible local expansion (D-TRILEX)
method that represents one of the simplest consistent diagrammatic extensions of the dynamical mean-field
theory. We find that the self-consistent D-TRILEX approach is reasonably accurate also in challenging regimes
of the Hubbard model, even where the dynamical mean-field theory does not provide the optimal local reference
point (impurity problem) for the diagrammatic expansion.
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I. INTRODUCTION

Long-range correlations play a crucial role in strongly
interacting electronic systems. They are responsible for var-
ious phenomena as, for instance magnetism, charge density
waves, and superconductivity. A consistent treatment of non-
local collective electronic fluctuations often appears to be a
challenging task. It is important for an accurate description
not only of these effective bosonic modes themselves, but also
of their influence on the single-particle characteristics of the
system.

A consistent model description of strongly correlated ma-
terials should be able to identify leading collective instability
channels governing physical processes in the system. Apart
from giving physical insight, this often drastically diminishes
technical efforts required for solving the problem. The Hub-
bard model is a minimal model that accounts for the interplay
between kinetic energy and Coulomb interaction of electrons.
For infinite number of spatial dimensions, the Hubbard model
can be solved exactly by means of the dynamical mean-field
theory (DMFT) [1], where the self-energy becomes purely
local [2]. DMFT is a nonperturbative method that accurately
accounts for local correlations by mapping the original lattice
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model onto an auxiliary local impurity problem, which can
be solved numerically exactly. In finite dimensions DMFT
turns out to be a good approximation for single-particle quan-
tities, in particular when local correlations are strong [3,4].
However, DMFT reaches its limits when spatial fluctuations
become large [5].

Further, cluster extensions of DMFT [6-12] have been
introduced to consider nonlocal correlation effects. However,
the range of spatial correlations captured by these meth-
ods is limited by the size of the cluster. For this reason,
long-range collective fluctuations are usually described by
various diagrammatic extensions of DMFT [13]. Some of
these approaches, such as the GW +DMFT [14-20], the triply
irreducible local expansion (TRILEX) [21-23], and the dy-
namical vertex approximation (DI"A) [24,25], as well as most
applications of the dual fermion (DF) [26-29] and the dual
boson (DB) [30-34] theories, take into account only a partic-
ular subset of diagrams corresponding to certain channels of
instability. Others are based on the exact diagrammatic Monte
Carlo (DiagMC) method [35,36], which allows to consider all
diagrammatic contributions [37-39].

GW +DMFT is a simple method that is widely used for
calculating properties of realistic materials [40—-44]. However,
among various long-range fluctuations this approach consid-
ers only collective charge excitations and does not account
for vertex corrections. The latter are important for an accurate
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description of magnetic, optical, and transport properties of
the system [45-55]. More elaborate theories like DF, DB,
and DT"A, which address all leading collective fluctuations on
equal footing, account for vertex corrections and appear to be
in a good agreement with numerically exact methods [4,37—
39,56]. However, the use of the renormilized local four-point
vertex makes all these methods numerically expensive for
application to realistic materials [57-59]. At the same time,
this vertex cannot be simply neglected because it represents
the screened local interaction between electrons. Therefore,
a consistent description of the long-range collective fluctu-
ations requires a theory that combines the simplicity of the
GW+4DMFT diagrammatic scheme with vertex corrections
and the equal-footing description of the leading collective
modes provided by more elaborate approaches.

To resolve this issue, a simple consistent diagrammatic
extension of DMFT, dubbed “dual TRILEX” (D-TRILEX),
has recently been proposed in Ref. [60]. This method is
a derivative of the DB approach and is based on a set
of Hubbard-Stratonovich transformations of fermionic and
bosonic variables. This allows to consider local correlation
effects exactly within the impurity problem of DMFT, and
nonlocal effects perturbatively. The resulting approach con-
siders all leading collective electronic fluctuations on equal
footing without any limitation on the range. Unlike the
DB method, the D-TRILEX approach relies on a partially
bosonized representation for the renormalized local four-point
vertex [60] that uncovers explicit contributions of different
collective modes. A single (spin or charge) mode approxi-
mation of the vertex can be found in prior works [33,61,62].
Similar approximations for the four-point vertex have also
been discussed in Refs. [63—66]. However, only the special
form of the partially bosonized approximation introduced in
Ref. [60] allows to derive the D-TRILEX theory that with
a low computational complexity comparable to GW +DMFT
or TRILEX methods reproduces the result of the much more
elaborate DB theory even in the strongly interacting regime.
Additionally, unlike the TRILEX method, the D-TRILEX ap-
proach accounts for vertex corrections for both lattice sites
that are involved in nonlocal diagrams for the self-energy
and the polarization operator. For instance, this allows to pre-
serve the correct orbital structure of considered diagrams [67].
Furthermore, the D-TRILEX approach does not suffer from
the famous Fierz ambiguity problem [68—70], which plagues
many theories that perform a partially bosonized description
of collective modes.

The D-TRILEX theory was introduced only recently [60],
and although it has already been extended to a multiorbital
case [67], its limits of applicability have not been studied in
details so far. In this work we address this important question
and justify the validity of the theory in a broad range of phys-
ical parameters. To this aim we consider a two-dimensional
(2D) Hubbard model on a square lattice and compare the
performance of the D-TRILEX approach with its parental
DB method and the numerically exact DiagMC theory. Note
that in this case the absence of the nonlocal interaction and
the bosonic hybridization function identically reduces the DB
theory to the DF approach. To evaluate the impact of dif-
ferent collective fluctuations on the self-energy, we exploit a
partially bosonized representation of the full local four-point

vertex and obtain the exact solution of the dual problem with
the DiagMC @DF method [38,39], as well as the approximate
ladder DF solution of the problem. In particular, we explicitly
investigate the effect of particle-particle fluctuations that enter
the four-point vertex function since they are believed to be
negligibly small at standard fillings [71]. As the result, we
show that exclusion of the irreducible part and transverse
contributions from the four-point vertex function often does
not lead to a noticeable change of the result, but significantly
reduces costs of numerical calculations.

The paper is organized as follows: Section II contains
a brief derivation of the D-TRILEX theory presented in
Ref. [60]. In Sec. III we compare the D-TRILEX self-energy
with the ladder DF, the DiagMC @DF, and the exact DiagMC
results in a broad range of temperatures and local interactions.
Finally, Sec. IV is devoted to conclusions.

II. THEORY

In this section we highlight the key points of the deriva-
tion of the D-TRILEX method. We begin with the extended
Hubbard model described by the following lattice action:

Stat = — Z Cltagl:alcka +U ZnZTnCN
k,o q
+) MoV o]} M
q,9

Here, the Grassmann variable c,(;? with the combined index

k = {k, v} describes the annihilation (creation) of an electron
with momentum k, fermionic Matsubara frequency v, and
spin 0 = {1, l}. Gio = [iv+ 1 — ]! is the bare lattice
Green’s function, where ¢, is the dispersion of electrons, and
W is the chemical potential. U describes the onsite Coulomb
interaction between electron densities n,, = ), ¢f, 7.0Cko
that depend on momentum q and bosonic Matsubara fre-
quency o through the combined index g = {q, w}. For the
sake of generality, we also introduce a nonlocal interaction Vg
in different bosonic channels ¢ = {¢, s}, where “¢” denotes
the particle-hole channel with density (¢ = d) and magnetic
(¢ = m = {x, y, z}) components, and “s” labels the particle-
particle singlet channel. For numerical calculations we restrict
ourselves to the Hubbard model and set these nonlocal inter-
actions to zero at the end of the derivation. To shorten the
expression for the action we introduce the prefactor £7 that

for the particle-hole and particle-particle channels, respec-
1

tively, reads as £ = 5 and &° = 1. Corresponding composite
bosonic variables p) = n)) — (n”) are introduced as follows:
ng =Y Chigo Osorha @
koo’
S l Zz
ng = 5 Z Cq—k5 90 Cka> 3
koo’
*S 1 * Z *
n, = 5 Z Cko an’cq—k,?” @)
koo’

where 0% are Pauli matrices in the spin space, o¢ is the
identity matrix in the same space, and o is the opposite spin
projection to o. The variable n;¢ can be found from the
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relation n*S = n® o and is introduced to unify notations. Note
that in the single-band case considered here the composite
bosonic variables for the triplet channel are identically equal
to zero.

The D-TRILEX approach, as well as its parental DB the-
ory, performs a diagrammatic expansion around a reference
system [29], which in this particular work is given by the
exactly solvable effective local impurity problem of DMFT

[1]:

Simp == Y Chpliv+ = AJe,, +U Y nin,,. (5)

v,0

Here, we introduce the fermionic hybridization function A,
that aims to describe the screening effect of “bath” electrons
that surround the given lattice site, which plays a role of the
local impurity. Note that in this work we do not consider
the bosonic hybridization function, which is usually intro-
duced for the impurity problem of the extended dynamical
mean-field theory (EDMFT) [72-76]. In DMFT the fermionic
hybridization is determined self-consistently demanding that
the local part of the dressed lattice Green’s function Gy, is
equal to the Green’s function g,, of the impurity problem
(5). To be consistent, the same hybridization function A, has
to be subtracted from the remaining part of the lattice action
Stem = Siat — _; Simp s0 that the original lattice problem (1)
remains unchanged.

The impurity problem (5) can be solved numerically
exactly using, e.g., continuous-time quantum Monte Carlo
(CTQMC) solvers [77-80]. This allows to obtain not only
the single-particle Green’s function g,, and the correspond-
ing self-energy X,o°, but also the two-particle quantities in
all bosonic channels ¢+ of interest. The latter include the
susceptibility x,, the r@normalized interaction w,,, and the
polarization operator I, ", as well as the renormalized local
four-point T',,, and three-point A*) vertex functions. The
remaining part of the lattice action Sy, cannot be taken into
account exactly. Instead, it is treated diagrammatically per-
forming an expansion around the impurity problem (5). In a
consistent way, this procedure can be carried out with the help
of a Hubbard-Stratonovich transformation. The latter allows
to rewrite the Sy in terms of new fermionic f and bosonic
¢ fields that are dual to original electronic ¢ and composite
p variables. After that, the impurity problem (5) with all
original variables can be integrated out, which excludes the
possibility of the double counting between S, and Syer, parts
of the lattice problem. This yields the dual boson action (see
Ref. [60] and Appendix A)

S==Y 116 fio — D& 0} W) o)} + F LS 0.
k.o q,0
(6)

Here, the bare dual fermion Qk(, = Gk(, — gvs and boson
"WZ = Wqﬂ — w) propagators are given by the difference
between corresponding EDMFT and impurity quantities. To
prevent misunderstanding, by the EDMFT Green’s function
Gy and the renormalized interaction Wqﬁ we understand the
bare lattice Green’s function and the bare interaction that are

dressed, respectively, in the local impurity self-energy and
polarization operator via Dyson equations

Gio =Gig = Zit" 0

vo

v —1 —1 .
W] =@W’+v))y —n)m™. (8)
In this way, bare dual quantities that describe spatial fluctua-
tions already take into account the effect of local correlations.
Note that in the dual problem (6) the bare local interaction U?
is introduced as a fictitious quantity that does not affect the re-
sult for physical observables (see Appendix A). This directly
follows from the fact that the DB theory is free from the Fierz
ambiguity in decoupling of the local Coulomb interaction U
into different channels (see, e.g., Ref. [60]).

For actual numerical calculations, the dual interaction
FLf, ¢] is truncated at the two-particle level, which contains
only the four-point T',,,, and three-point A%) vertices of the
impurity problem (5). These quantities are explicitly defined
in Appendix A. With this approximation the theory shows
a good agreement with the exact benchmark results [4,37—
39,56]. However, it still remains relatively complex due to
the presence of the four-point vertex function I',,,. The latter
depends on three frequencies, so calculating and using it in
realistic multiorbital simulations, which involve the inversion
of the Bethe-Salpeter equation in the frequency-orbital space,
becomes time consuming numerically [57-59]. To cope with
this problem, one can make use of yet another Hubbard-
Stratonovich transformation over bosonic variables ¢ — b
that generates an effective four-point interaction in a partially
bosonized form

d ~ d d m S
Fuv’w — 2Mvv/w - Mu,v+w,v/—v - 3Mv,v+w,v’—v + Mv,v’,w+v+v”
m ~ m m d s
Fvv’w — 2Mvv’w + Mv,erw,v’fv - Mv,era),v’fv - Mv,v’,w+v+v”
1
s ~ MS - d d
Fvv/w - Mvu’w + 2 (Mv,v’,w—v—v’ + Mv,a)—v/,v’—v)
— g(Mm +M" ) )
2 vV, wo—v—v’ v,o—v' VvV —v)*

This approximation uncovers the underlying structure of the
vertex, which consists of all possible collective electronic
fluctuations

Ml?

e

=N al AP (10)
that behave as bosonic modes
wy =w;, —U*®/2, (11)

s = w’ — U®. (12)

As Ref. [60] shows, the partially bosonized representation
(9) for the four-point vertex can be fine tuned in such a way
that it nearly cancels the exact four-point vertex from the dual
action. Indeed, this approximation does not take into account
contributions to the vertex function that cannot be reduced to a
single boson propagator. However, this irreducible part can be
completely excluded on the level of the ladder approximation
for the vertex by a special choice of bare local interactions
in different channels U™ = 4-U/2 and U® = U. The precise
effect of nonladder irreducible contributions on the electronic
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self-energy is investigated below. As a consequence, this spe-
cific choice for the bare interactions UV provides the most
accurate partially bosonized approximation for the four-point
vertex function given by Eq. (9). In addition, it also leads
to a correct high-frequency (v — oo or w — 00) asymptotic
behavior of the three-point vertex A%) — 1 [60].

At the same time, it should be noted that this special
choice of the bare interaction U” cannot be obtained by any
decoupling of the local Coulomb interaction U into different
bosonic channels [60]. Therefore, it results in a double count-
ing of U in the vertex function, which is explicitly subtracted
from the renormalized interaction w” of the impurity problem
in Egs. (11) and (12). As follows from these equations and
the fact that w’(w — oo) = U, we prefer to keep the bare
Coulomb interaction U only in the particle-hole channel. In
this way, it does not contribute to the renormalized singlet
interaction @;, (12), and becomes equally distributed between
density and magnetic channels. The reason for such decom-
position lies in the fact that the renormalization of the bare
interaction in the particle-particle channel is believed to be
negligibly small at standard fillings [71]. Therefore, the cor-
responding singlet contribution M*, which in the considered
form (12) does not contain the bare interaction U*, can be
excluded from the theory, as it was consciously done in the
previous work [60]. To clarify this statement, we explicitly
introduce and investigate the effect of singlet terms in this
work. Note that although the bare interaction is (partially or
fully) subtracted from the local renormalized interactions (11)
and (12), the partially bosonized approximation (9) for the
four-point vertex has a correct asymptotic behavior at high
frequencies '™ — U and 'S — U. This follows from the
fact that the four-point function does not depend on the way
how the onsite Coulomb interaction U is distributed between
different bosonic channels [60]. For example, although the
singlet bosonic mode w* does not contain the constant con-
tribution U*®, the latter is still present in the singlet vertex
function I"® (9) due to transverse charge and spin fluctuations.

After the last Hubbard-Stratonovich transformation the
dual problem (6) reduces to a simple action of a partially
bosonized dual theory (PBDT) written in terms of fermion f
and boson b variables, and the local three-point interaction
vertex A%) only [60]:

Spp ==Y i Grofro — _E{b; W) b}
k,o q,0

+ ) &'{A

q.k, 0

a)nqzlzbﬁ Af)g)bzﬂnq,k}’ (13)

where, similarly to Egs. (2), (3), and (4), we define

ng i = ka’iq,a 0% fro (14)
0 = qu k5 O fars (15)

* = _kaa

) (16)

The bare Green’s function Gy, of this new problem (13)
remains unchanged, and the bare bosonic propagators become

W =W,

; ~Us)2, (17)

W, =W, —U", (18)

where the same exclusion of the double counting between
different bosonic channels as in Egs. (11) and (12) takes place.
The simplest set of diagrams for the self-energy and polar-

ization operator used in the D-TRILEX approach [60]
—- ol

*g S A S A%S
51+k ‘T A Avaq—/ﬁEWq Avw } )

(19)

M5 =+ A5G Gyino A, (20)
k,o

= NG Gy A, 2D

k

can be obtained from the analog of the Almbladh functional
[81]1 W[G, W, Al=1GA’W? A*’G introduced in the dual
space. This ensures the consistency between single- and two-
particle quantities produced by the theory. Here, Gy, and Wj
are full propagators of the fermion-boson problem (13) given
by Dyson equations

Gl =G — S, (22)
9 -1 _ ¥ —1 S 4
WP =W’ -t - (23)

This simple GW -like diagrammatics (19), (20), and (21) of
the D-TRILEX approach can also be related to its parental
DB theory. For simplicity, the main text of the paper contains
only a sketch of this derivation presented in Fig. 1. Also, here
we only consider the case when the nonlocal interaction is
discarded (Vq" = 0). Then, the DB theory (6) identically co-
incides with the DF approach, and the dual self-energy in the
ladder approximation takes the form of £PF [28] displayed
in the first line of Fig. 1. This expression can be obtained
using the Schwinger-Dyson equation for the dual self-energy
[82]. As the result, the second-order contribution £ has a
“ l ” prefactor that does not appear for the rest of the ladder

self energy £ [27]. As two subsequent lines in Fig. 1
show, if one uses the partially bosonized representation (9) for
every vertex function that enters PF and keeps only longitu-
dinal contributions in this approximation, the dual self-energy
immediately reduces to the D-TRILEX form (19). By longi-
tudinal contributions we understand Mfu, » terms, where the
bosonic propagator @? carries the main bosonic frequency w.
The exclusion of transverse particle-hole and particle-particle
fluctuations from the four-point vertex can be motivated by the
fact that their contributions to the self-energy partially cancel
each other, which is demonstrated in Sec. III B. The explicit
analytical derivation of the relation between D-TRILEX and
ladder DB (LDB) self-energies for the general case when the
nonlocal interaction is not neglected is shown in Appendix
C. This result demonstrates the important advantage of the
D-TRILEX theory over its parental LDB method, which dras-
tically reduces costs of numerical calculations. Thus, although
the D-TRILEX approach accounts for the main longitudinal
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FIG. 1. Top row shows the ladder dual fermion self-energy %'°F, which consists of the first-order Hartree-type term, second-order diagram
5@ and the rest of the ladder 4+, Keeping only longitudinal modes of the partially bosonized representation for the four-point vertex I
(black squares), the LDF self-energy reduces to the self-energy of the D-TRILEX approach (red diagram at the end of the top row). For
5@ and £@* the result of this approximation is explicitly shown in the middle and bottom rows, respectively. Red parts of these diagrams
that consist of two triangles (three-point vertices) connected by two solid lines (dual Green’s functions) is the polarization operator of the
D-TRILEX theory. Wiggly line corresponds to the renormalized interaction.

part of the full two-particle ladder fluctuation, the calculation
of the self-energy (19) and polarization operators (20) and
(21) does not require the inversion of the Bethe-Salpeter equa-
tion in the momentum-frequency space. In the ladder DF/DB
theory the inversion of the Bethe-Salpeter equation in the
frequency space cannot be avoided due to a three-frequency
dependence of the local vertex function I',,,.

We note that the diagrammatic expansion in DF, DB, and
D-TRILEX methods is performed in the dual space. The self-
energy of the original lattice problem (1) can be obtained from
the following exact relation [30,32,33]:

i:/«7

Zlatt — Zimp + .
ko “7 I+ 8vo Eka

(24)

Here, the dual contribution to the lattice self-energy comes
with the denominator (1 + g, S0 ) that excludes unphysical
terms from the Dyson equation for the lattice Green’s function
[29]. Note that the expression (24) requires the explicit cal-
culation of the impurity self-energy that cannot be measured
directly as a single-particle correlation function. Instead, %"
is usually obtained by inverting the Dyson equation for the
full impurity Green’s function g,,, which makes the result
noisy at high frequencies. The noise in the self-energy can be
reduced using the improved estimators method that, however,
requires the measurement of higher-order correlations func-
tions [83—85]. Therefore, for calculation of the lattice Green’s
function it is more convenient to use another exact relation

imp

that does not involve %,, [30,86]:

_ < -1
Gkgl = [gvn + &vo Ekagva] + Ay — &k (25)

This expression for the dressed lattice Green’s function Gy,
completes the derivation of the D-TRILEX approach.

III. RESULTS
A. Comparing different methods

In this section we consistently investigate the effect of
different contributions that make up the renormalized local
four-point vertex on the electronic self-energy. To this aim
we consider a two-dimensional (2D) Hubbard model on a
square lattice with the nearest-neighbor hopping amplitude
t = 1 and different values of the onsite Coulomb potential U.
Numerical calculations are performed at half-filling unless the
other filling is explicitly specified. All nonlocal interactions
are set to zero Vq" = 0. Note that in this case the renormalized

interaction of EDMFT W,” (8) coincides with the impurity
2, and the dual boson propagator W, becomes zero. As

w?

w

TABLE I. Summary of considered methods that specifies the
form of the local four-point vertex and types of diagrams that are
used for the diagrammatic expansion. The square corresponds to
the exact four-point vertex I, of the impurity problem. Lon-
gitudinal and transverse components M, that enter the partially
bosonized approximation for the vertex (9) are depicted by two tri-
angles connected by the wavy line placed horizontally and vertically.
The “—” sign in front of the transverse contribution corresponds to
the antisymmetric form of the vertex (9). The DiagMC@PBDT-s
approximation can be obtained from the DiagMC@PBDT method
by excluding the singlet contribution M; , . . from the partially
bozonized vertex (9).

Method Four-point vertex | Types of diagrams
D-TRILEX M ladder
LDF D ladder
DiagMC@DF D all
DiagMC@PBDT | | - ¥ all
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D-TRILEX —— LDF DiagMC@QDF DiagMC@PBDT + DiagMC@QPBDT-s X
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FIG. 2. The lattice self-energy ;™ obtained for the first Matsubara frequency vy = 7/ for the inverse temperature 8 = 2 along the
high-symmetry path in momentum space k. The value of the onsite Coulomb potential U for which the calculation was performed is specified
in panels. Upper and lower parts of each panel correspond to real and imaginary parts of the self-energy, respectively. Results are obtained
using D-TRILEX (red line), LDF (dark blue line), DiagMC @DF (light blue line), DiagMC @PBDB (purple crosses), and DiagMC @PBDB-s

(green crosses) methods.

a consequence, the DB action (6) reduces to the DF prob-
lem [26]. Restricting the interaction Fl f] to the four-point
vertex function I'y,,, the dual problem (6) can be solved
numerically exactly within the diagrammatic Monte Carlo
method for dual fermions (DiagMC@DF) [37-39]. In this
work we perform DiagMC@DF calculations on the basis
of the converged DMFT solution of the lattice problem (1).
The corresponding single-site impurity problem of DMFT
(5) is solved numerically exactly using the open source CT-
HYB solver [87,88] based on ALPS libraries [89]. After that,
the calculated bare dual Green’s function Qka and the local
four-point vertex function I',,,, are used as building blocks
for a diagrammatic expansion. A detailed description of the
DiagMC @DF method can be found in Ref. [38]. For physical
parameters considered in this work, the converged result for
the dual self-energy is achieved at the fifth order of expansion.

Different levels of approximation for the four-point vertex
can be investigated to reveal the effect of contributions that are
not accounted for in the D-TRILEX theory. In particular, the
contribution to the self-energy that stems from the irreducible
part of the four-point vertex function can be identified by com-
paring the exact DiagMC@DF solution of the dual problem

(6) with the result of another DiagMC calculation, where the
exact local vertex I',,,, is replaced by its partially bosonized
approximation (9). Hereinafter this method is referred to as
DiagMC@PBDT and corresponds to the exact evaluation of
the self-energy of the partially bosonized dual theory (13).
The next level of approximation that allows to observe the
effect of collective fluctuations in the singlet channel can be
achieved by performing DiagMC calculations with the par-
tially bosonized vertex (9) where all M® terms are neglected.
This calculation is referred to as DiagMC@PBDT-s.

We note that the DiagMC@DF method does not distin-
guish between longitudinal and transverse components of the
four-point vertex because the Monte Carlo sampling considers
all possible topologies of diagrams. As has been discussed
in the Sec. II, the contribution of these modes can be disen-
tangled comparing the self-energy of the ladder dual fermion
(LDF) approach, which exploits the exact local four-point
vertex, with the result of the D-TRILEX theory, where only
longitudinal modes are taken into account. These calculations
are also performed on the basis of the converged DMFT so-
lution, so that the local impurity problem remains the same
for all compared theories. Note that the LDF and D-TRILEX
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results for the self-energy are obtained within the self-
consistent scheme in terms of dressed fermionic (22) and
bosonic (23) propagators. When possible, we compare our
results with the exact DiagMC solution [90-92] of the lat-
tice problem (1) that was kindly provided by the authors of
Refs. [4,93]. All methods are summarized in Table 1.

B. Effect of the local interaction

First, we make a scan over a broad range of local Coulomb
interactions U at a fixed temperature. We note that in two
dimensions DMFT predicts the Néel transition at a finite
temperature. This transition is forbidden by Mermin-Wagner
theorem [94] and thus is an artifact of the DMFT theory.
However, since the DiagMC@DF method uses the DMFT
impurity problem as a starting point for the diagrammatic
expansion, the DiagMC@DF theory shows difficult conver-
gence or even divergent result close to the DMFT Néel point
[37,38]. For this reason, calculations are performed at the
inverse temperature 8 = 2, so that the DiagMC results are
not affected by any convergence issue. Figure 2 shows the
lattice self-energy (24) calculated for all above-mentioned
approaches (see Sec. IIT A). Note that the self-energy does
not contain the constant Hartree part that is equal to U/2
at half-filling. The results are obtained for the first Matsub-
ara frequency vy = /8 along the high-symmetry path that
connects I' = (0,0), X = (0, ), and M = (7, ) points in
momentum space k = (k, k).

Let us first consider the effect of the irreducible part
of the four-point vertex comparing the self-energy of Di-
agMC@DF (light blue line) and DiagMC@PBDT (purple
crosses) approaches shown in Fig. 2. We find that at U = 2
both methods produce identical results, which means that in a
weakly correlated regime the irreducible contributions to the
vertex do not affect the self-energy. Upon increasing the local
interaction, the discrepancy between these two methods also
increases and is noticeable the most in the strongly correlated
regime at U = 8, which is equal to the bandwidth. After that,
at very large interactions U = 10 and 12 the real part of
the DiagMC@PBDT self-energy again nearly coincides with
the one of the DiagMC@DF approach. The agreement
in the imaginary part of the self-energy also improves, but the
discrepancy between these two methods remains noticeable.

To quantify the difference of the given self-energy from
the reference DiagMC @DF result we calculate the following
normalized deviation:

=%

k

ref
Ek,w - X
ref
k,l)[)

k,Vo

(26)

A similar quantity but for only one k-point was introduced
in Ref. [39]. The corresponding result for all considered ap-
proaches is presented in Fig. 3. We find that the normalized
deviation of the DiagMC@PBDT method reaches its maxi-
mum value § = 15% at U = 8. As has been pointed out in
the Sec. II, the irreducible part can be excluded from the
renormalized four-point vertex only in the ladder approxima-
tion. In the strongly correlated regime nonladder diagrams
become important [37-39], which is also confirmed by the in-
crease of the normalized deviation of the LDF approach (blue
line in Fig. 3). Consequently, the contribution of the irre-

6 0ol DF(®) | AFM le. —eo— l'e'
LDF —e—
B2 D-TRILEX —e—+ 1.0
04l I DiagMC@PBDT —e—
0.3 r . DiagMCQPBDT-s —— | o g
s

0.0 ‘ ‘ : 0.0

2 4 6 8 10 12

FIG. 3. The normalized deviation § calculated for LDF (blue),
D-TRILEX (red), DiagMC@PBDT (purple), and DiagMC@PBDT-
s (green) approximations with respect to the reference Diag@DF
result. The black line shows the leading eigenvalue (l.e.) of AFM
fluctuations. The vertical left axis shows the scale for the normal-
ized deviation, while the vertical right axis displays values for the
leading eigenvalue. The inset compares § obtained for D-TRILEX
and second-order DF (DF®, orange) approaches for different in-
verse temperatures S = 2 (circles), B = 4 (triangles), and 8 = 10
(squares).

ducible part of the vertex to the electronic self-energy also
becomes noticeable. We would like to emphasize that by
the strength of electronic correlations we mean not only the
strength of the interaction, but also the proximity of the system
to an instability. The latter can be estimated by the leading
eigenvalue (l.e.) of the Bethe-Salpeter equation of the LDF
theory [28,95] (black line in Fig. 3), which in our case indi-
cates the strength of antiferromagnetic (AFM) fluctuations.
In the next step we investigate the effect of an addi-
tional exclusion of all singlet contributions from the partially
bosonized four-point vertex (9). At small (U = 2) and mod-
erate (U = 4) interactions this immediately leads to a large
discrepancy between DiagMC@PBDT-s (green crosses) and
DiagMC@PBDT (purple crosses) results for the self-energy
presented in Fig. 2. In addition, from Fig. 3 we find that for
these values of the interaction the DiagMC @PBDT-s strongly
differs from the reference result, while the DiagMC@PBDT
performs reasonably well. Therefore, one can conclude that
singlet fluctuations play an important role in weakly and mod-
erately correlated regime. At a first glance this observation
is in a contradiction with the statement that particle-particle
fluctuations are believed to be negligibly small at stan-
dard fillings [71]. This point is clarified below when we
discuss the result of the D-TRILEX approach. Increasing
the interaction to U = 6 makes the discrepancy between
DiagMC@PBDT and DiagMC@PBDT-s results rapidly de-
crease, and in the strongly correlated regime (U = 8) both
methods produce identical results. Remarkably, for U = 10
and 12 the DiagMC@PBDT-s method shows the best agree-
ment with the DiagMC@DF result among all considered
DiagMC-based approximations. This result suggests that in
the regime of very large interactions contributions to the
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self-energy that stem from the irreducible and singlet parts of
the renormalized four-point vertex, which are not considered
in the DiagMC @PBDT-s theory, nearly cancel each other.

Finally, let us consider the D-TRILEX method that can be
obtained from the LDF theory excluding the irreducible part
and neglecting transverse particle-hole and particle-particle
fluctuations from the exact local impurity four-point vertex.
As Fig. 2 shows, the best agreement between the D-TRILEX
(red line) and the reference DiagMC@DF (light blue line)
results for the imaginary part of the self-energy occurs at U =
2. At small and moderate values of U, the D-TRILEX self-
energy seems to be pinned to the LDF result (dark blue line)
at I and M points. Therefore, the difference between these
two methods is mostly visible around local minima located
at antinodal AN = (0, ) and nodal N = (7 /2, 7 /2) points.
This difference increases with the interaction, and the ob-
served trend persists up to U = 6. At larger interactions, when
the value of the self-energy at local minima becomes similar,
the D-TRILEX result shifts downwards, and at U = 12 be-
comes pinned to the LDF result at N and AN points.

The discrepancy between the D-TRILEX and the reference
results for the real part of the self-energy also increases with
the interaction up to U = 8, and after that decreases again
for very large interaction strengths. However, here the best
agreement with the exact result is achieved at U = 4 (see red
line in Fig. 2). It can be explained by the fact, that in the
perturbative regime of small interactions (U = 2) and high
temperatures (8 = 2) the second-order dual self-energy %
gives the main contribution to the nonlocal part of the total
self-energy [3,37-39]. The D-TRILEX theory is not based on
a perturbation expansion because it takes into account only
a particular (GW-like) subset of diagrams. For this reason,
this simple theory does not fully reproduce the second-order
self-energy £, which leads to a slight underestimation of
the result as discussed in Appendix C. On the contrary, the
D-TRILEX approach correctly accounts for the screening of
the interaction that is represented by longitudinal part of the
infinite two-particle ladder in all bosonic channels. At lower
temperatures and/or larger interactions, when the system en-
ters the correlated regime, these types of diagrams become
more important than the second-order self-energy. To illus-
trate this point, we also obtained the normalized deviation for
the D-TRILEX approach for 8 =4 (for U =2 and 4) and
B = 10 (for U = 2), and compared it with § calculated for the
second-order DF (DF®) approximation that considers only
2 ® contribution to the dual self-energy. The corresponding
result is shown in the inset of Fig. 3. As expected, the ac-
curacy of the DF® approximation rapidly decreases with the
temperature and becomes § = 16.5% (for 8 = 10 and U = 2)
and § = 22.5% (for § =4 and U = 4) in the regime, which
is yet above the DMFT Néel point Sy >~ 12.5 for U = 2 and
By =~ 4.3 for U = 4. At the same time, the D-TRILEX theory
remains in a reasonable agreement with the reference result.

Figure 3 shows that in the regime of weak and moderate
interactions the D-TRILEX self-energy is relatively close to
the DiagMC@DF result (§ = 2% for U = 2 and § = 3% for
U = 4). This fact looks paradoxical at a first glance because
the D-TRILEX method does not take into account singlet
fluctuations that were found to be important in this regime of
interactions. To explain this result, let us first note that at U <

4 the LDF method is in a very good agreement with the Di-
agMC@DF theory. Therefore, in the weakly and moderately
correlated regime ladder diagrams provide the most important
contribution to the self-energy. This fact allows for a direct
comparison of the self-energies produced by ladder DF and
D-TRILEX methods with the result of DiagMC@ methods
that account for all diagrammatic contributions. Note, how-
ever, that all DiagMC-based schemes tend to overestimate the
reference result, while ladderlike approaches underestimate it.
Therefore, the normalized deviation presented in Fig. 3 should
be compared cautiously. Figure 2 shows that D-TRILEX and
DiagMC@PBDT self-energies obtained at U = 2 and 4 are
very close to the reference result. Both methods do not take
into account the irreducible part of the four-point vertex func-
tion, but the D-TRILEX approach additionally neglects all
transverse particle-hole and particle-particle modes. Keeping
in mind that for these interaction strengths the exclusion of
only singlet fluctuations leads to a large overestimation of the
self-energy, we can conclude that transverse particle-hole and
particle-particle fluctuations partially screen each other. This
means that the exclusion of both types of vertical insertions
in diagrams, as it is done in the D-TRILEX theory, turns out
to be a good approximation in the weakly and moderately
correlated regimes. On the other hand, excluding only one
channel leaves the other channel unscreened, which results in
a large contribution to the self-energy.

Remarkably, the normalized deviation for all considered
approximations shown in Fig. 3 resembles the behavior of
the leading eigenvalue of the magnetic channel (black line).
For instance, the D-TRILEX and LDF methods show the
largest discrepancy with the DiagMC@DF result exactly in
the region where the l.e. is maximal. As has been pointed
out in Ref. [5], approaching an instability leads to collective
fluctuations becoming strongly anharmonic, which cannot be
captured by simple diagrammatic theories. Consequently, in
this regime transverse momentum-dependent fluctuations are
expected to be important. At U = 10 and 12 the agreement of
the D-TRILEX theory with the DiagMC @DF result improves
again. Above we have found that at very large interaction
strengths contributions to the self-energy that stem from sin-
glet and irreducible parts of the vertex partially cancel each
other. This result suggests that the effect of remaining trans-
verse particle-hole fluctuations becomes weaker at very large
interactions, which again justifies the applicability of the D-
TRILEX theory.

We would like to note that the largest discrepancy between
the D-TRILEX and reference DiagMC@DF result § = 18%
corresponds to the most correlated regime (U = 8). At small
and moderate interactions the normalized difference does not
exceed 3.5% (U = 4). At the same time, the maximal dif-
ference from the parental LDF is only around 10% (U = 8),
which can be considered as relatively good result for such a
simple theory. Finally, we looked at the contribution of the
longitudinal particle-particle fluctuations to the D-TRILEX
self-energy (19) and, as expected, found it to be negligi-
bly small. Indeed, the renormalized singlet interaction in the
D-TRILEX form (18) does not contain the bare constant in-
teraction U® and therefore describes only the screening of
the Coulomb interaction by particle-particle fluctuations. As
the result, we observe that the part of the self-energy that
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FIG. 4. Imaginary part of the lattice self-energy as the func-
tion of Matsubara frequency v obtained for U = 2 at the antinodal
AN = (0, ) (top row) and nodal N = (7 /2, 7 /2) (bottom row)
points. Results are calculated at the inverse temperature 8 = 10 (left
column) and B = 15 (right column) using D-TRILEX (red line),
scD-TRILEX (red stars), and LDF (dark blue line) approaches. The
DiagMC results (light blue line) are provided by the authors of
Ref. [4].

stems from the singlet bosonic mode makes only 3% of
the D-TRILEX self-energy at U = 2, and does not exceed
1% for other interaction strength. Taking into account all
above discussions, this result confirms that all particle-particle
fluctuations can indeed be safely excluded from the simple
D-TRILEX theory, which, however, does not hold for every
diagrammatic approach.

C. Low-temperature regime

In the previous section we considered only the high-
temperature regime (8 = 2), where AFM fluctuations are not
very strong especially at U =2 and 4. As the next step,
we perform calculations at substantially lower temperatures

B =10 —a— B =15 ——t— B =20
-0.02 — -0.07

-0.04 kyn -0.08 kan
-0.09

FIG. 5. Imaginary part of the D-TRILEX self-energy as the func-
tion of Matsubara frequency v obtained for U = 2 at the nodal
N = (7 /2, 7 /2) (left panel) and antinodal AN = (0, ) (right panel)
points for different inverse temperatures 8 = 10 (red line), 8 = 15
(dark blue line), and 8 = 20 (light blue line).

D-TRILEX =—e= DiagMC@DF

LDF —e= scD-TRILEX %

Im>% (ky, v)

FIG. 6. Imaginary part of the lattice self-energy as the function of
Matsubara frequency v obtained for U = 4 at the AN (top row) and N
(bottom row) points. Results are calculated at the inverse temperature
B = 4 (left column) and 8 = 6 (right column) using D-TRILEX (red
line), scD-TRILEX (red stars), and LDF (dark blue line) approaches.
The reference DiagMC @DF result (light blue line) is presented only
for B = 4 and is reproduced by the scD-TRILEX method.

around the DMFT Néel point for the interaction strengths up
to a half of the bandwidth (U < 4). A detailed investigation of
the Hubbard model for U = 2 and different temperatures has
been performed in the recent work [4]. This allows for a direct
comparison of LDF and D-TRILEX results with the exact
DiagMC solution of the lattice problem (1) presented in that
paper. For U = 4 we consider only the LDF, the D-TRILEX,
and the DiagMC@DF methods due to the lack of the lattice
DiagMC reference data. The LDF, the D-TRILEX, and the Di-
agMC@DF results are obtained on the basis of the converged
DMEFT solution in the same way as in the previous section.
In addition, we also performed fully self-consistent (sc) D-
TRILEX calculations, for which the fermionic hybridization
function A, of the impurity problem was updated imposing
the following self-consistency condition on the local part of
the dual Green’s function ), Giv = 0 (see, e.g., Ref. [26]).
As has been demonstrated in Ref. [4], upon lowering the
temperature even a weakly interacting system goes from a
metallic regime, which is characterised by the imaginary part
of the self-energy extrapolating to zero at low Matsubara
frequencies, to a correlated regime where a pseudogap opens.
The latter can be explained by a Slater mechanism [96] as-
sociated with the increase of long-range AFM fluctuations of
itinerant electrons. The pseudogap opens first at the AN point,
which can be detected by the change of the sign in the slope
of the self-energy between the first and the second Matsubara
frequency. This N/AN dichotomy appears due to additional
suppression of the coherence of single-particle excitations due
to the presence of the van Hove singularity at the AN point.
Figure 4 shows that despite a small mismatch at the
first Matsubara frequency the LDF and D-TRILEX methods
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correctly reproduce the DiagMC result at U =2 and 8 = 10
above the DMFT Néel point (8y =~ 12.5). Moreover, both
D-TRILEX approaches provide identical results for the self-
energy, which almost exactly coincides with the one of the
LDF approach. Below the DMFT Néel point at 8 = 15 the
DiagMC self-energy already shows the formation of a pseu-
dogap at the AN point, while the D-TRILEX and the LDF still
exhibit a metallic behavior. However, for all other frequencies
than the first one the LDF self-energy remains in a very good
agreement with the exact result. In its turn, the D-TRILEX
self-energy starts to deviate from the LDF result, and this
discrepancy is more visible at the AN point. We recall that
close to the AFM instability collective fluctuations become
strongly anharmonic [5]. In particular, this anharmonicity is
significant in the Slater regime of weak interactions, where the
magnetic fluctuations are formed by itinerant electrons. As a
consequence, one can expect that in this regime the transverse
modes start to play an important role [37-39]. We note that
in the D-TRILEX method these transverse contributions are
fully discarded, while the LDF approach at least accounts for
them in the local four-point vertex function of the impurity
problem. This fact explains why the LDF shows the formation
of the pseudogap at the AN point at a bit lower tempera-
ture TAN = 0.059 (B = 17, see Ref. [97]) than the one of
the DiagMC method T*AN = 0.065 [4], and the D-TRILEX
approach captures it at TAN = 0.050 (8 = 20, see Fig. 5).
This also explains the result that the most noticeable deviation
of the self-energy from the exact result corresponds to the
D-TRILEX method and appears at the AN point where the
pseudogap opens first.

Now we increase the strength of the interaction to U = 4
(Fig. 6) and find that at 8 = 4 slightly above the DMFT
Néel point (By =~ 4.3) the D-TRILEX self-energy is in a good
agreement with the LDF result for the AN point and shows
the beginning of the formation of a pseudogap. In its turn, the
LDF approach agrees with the DiagMC@DF theory for all
frequencies except for the first one. At the N point the LDF
self-energy lies on top of the DiagMC@DF curve, but the
deviation of the D-TRILEX method from the reference result
is more visible. However, the fully self-consistent calculation
strongly improves the D-TRILEX self-energy, which now per-
fectly agrees with the DiagMC@DF result. At 8 = 6 below
the DMFT Néel point the DiagMC@DF result suffers from
the convergence issue [37,38] and is not shown here. All other
considered methods show an insulating self-energy at the AN
point, while the N point remains metallic. This result confirms
the N/AN dichotomy in the formation of a pseudogap. Also,
this result suggests that at moderate interactions collective
magnetic fluctuations are less anharmonic in contrast to the
weakly interacting regime. This fact can be attributed to a
more localized behavior of electrons when going away from
Slater towards Heisenberg regime of magnetic fluctuations.
As a consequence, for stronger interactions the formation of
the AFM pseudogap can be captured by simpler ladderlike
theories. We also note that at moderate interactions the dis-
crepancy between the D-TRILEX and the LDF approaches
slightly increases upon lowering the temperature. However,
the self-consistent update of the hybridization function A,
again improves the agreement between both methods. As
explicitly stated in Sec. II, in dual theories the hybridization

function A, is added to the reference system Siy, and sub-
tracted from the remaining part of the action S, so that the
initial problem (1) remains unchanged. Therefore, if the dual
problem (6) is solved exactly, A, can be taken arbitrarily.
At the same time, any approximate solution depends on the
choice for the hybridization function. In the latter case, the
imposed self-consistency condition aims at tuning A, in such
a way that it accounts for the effect of missing diagrams.
In this context the fact that at U = 2 both sc and non-sc
D-TRILEX methods produce identical results demonstrates
that the impurity problem of DMFT serves as good reference
system in the weakly interacting regime. On the contrary,
already for moderate interaction U = 4 the self-consistency
clearly improves the result of the D-TRILEX approach, which
shows that in this case the DMFT impurity problem does not
provide the best possible starting point for partial diagram-
matic resummations.

D. Doped regime of the ¢+ Hubbard model

The two-dimensional Hubbard model on a square lattice
with nearest-neighbor ¢ and next-nearest-neighbor ¢ hop-
ping amplitudes is widely known as a prototype model for
high-temperature superconducting cuprate compounds. The
opening of a pseudogap and the dichotomy between the N
and AN points in this model has been studied recently in
Ref. [93] in the framework of the exact DiagMC method.
There, the authors considered the following set of model
parameters ¢ = —0.3, U = 5.6, B = 5, and 4% hole doping
that leads to a largest onset temperature for the pseudogap.
In our work we address this physically interesting regime for
a comparable hole doping of 3.4% within the scD-TRILEX
and DiagMC @DF approaches. The obtained self-energies are
compared with the exact result of DiagMC method that was
provided by the authors of the Ref. [93]. For the sake of con-
sistency, the DiagMC@DF expansion was performed based
on the impurity problem of the scD-TRILEX approach.

In Fig. 7 we compare the imaginary part of the non-
local self-energy E“"“l"c calculated for the first Matsubara
frequency along the hlgh symmetry path in momentum space
for all three approaches. To obtain this quantity we subtract

the local part EIOC from the lattice self-energy E}fﬁfo, where

T = )31““ Due to the lack of reference DiagMC data,
the sum over the ‘Brillouin zone in this expression is approxi-
mated by the sum over the high-symmetry path in momentum
space. We find that the nonlocal part of the DiagMC@DF
self-energy is in a very good agreement with the reference
DiagMC result. The scD-TRILEX approach also performs
remarkably good in this physically nontrivial regime, espe-
cially given that the considered value of the local Coulomb
interaction U = 5.6 exceeds the half of the bandwidth.
This good agreement in Im E“"“l‘m indicates that the simple
ladderlike scD-TRILEX method accurately captures the
N/AN dichotomy in the formation of a pseudogap in this
regime [93]. This fact additionally confirms our finding that
going away from the Slater regime allows to use less sophisti-
cated methods to capture the effect of collective fluctuations.

At the same time we find that the DiagMC@DF and the
scD-TRILEX methods do not provide a good value for the
local part of the lattice self-energy. Indeed, Im Ellgf}n of the
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FIG. 7. Imaginary part of the nonlocal self-energy obtained for
the zeroth Matsubara frequency vy = /8 along the high-symmetry
path in momentum space k. Calculations are performed for U =
5.6, = —0.3, and B =5 using scD-TRILEX (red line) and Di-
agMC@DF (light blue line) methods for 3.4% hole doping. The
DiagMC result (dark blue line) for 4% doping is provided by the
authors of Ref. [93].

DiagMC@DF calculated for the zeroth Matsubara frequency
is equal to —0.77. The corresponding value for the scD-
TRILEX approach is —0.80, while the exact DiagMC result
reads as —1.04. This discrepancy can again be explained by
the fact that DMFT impurity problem does not provide a good
starting point for a diagrammatic expansion already for mod-
erate interactions. To address this issue, we exploited the dual
self-consistency condition to update the fermionic hybridiza-
tion as an attempt for the improvement of the reference system
(see Sec. III C). However, the result obtained in this section
clearly demonstrates the need for an even better starting point,
which should be able to provide more accurate local quantities
to reproduce the exact result.

IV. CONCLUSION

To conclude, in this work we investigated the effect of dif-
ferent collective fluctuations on the single-particle properties
of correlated electronic systems. In order to disentangle local
and nonlocal effects, we introduced an effective reference
system: a local impurity problem. This effective local problem
has been solved numerically exactly providing building blocks
for a diagrammatic expansion aiming at describing nonlocal
correlation effects. Following the dual fermion and boson
idea, we performed this diagrammatic expansion in the dual
space truncating the interaction at the two-particle level and
thus preserving only the local renormalized four-point ver-
tex function. Using the partially bosonized representation for
this four-point vertex, we investigated the effect of different
bosonic modes contributing to the vertex on the electronic
self-energy. Performing a comprehensive analysis based on
DiagMC, DiagMC@DF, LDF, and D-TRILEX approaches,
we have found that irreducible contributions that are not ac-
counted for by the partially bosonized vertex function can be
excluded from the theory in a broad range of physical param-
eters. Indeed, they can be completely eliminated in the ladder
approximation by a special choice of the bare local interac-

tion in different channels. In a weakly interacting regime, the
remaining nonladder contributions have only a minor effect
on the electronic self-energy, and at large interactions these
contributions are nearly canceled by transverse singlet fluctu-
ations. In turn, these transverse singlet modes partially cancel
transverse particle-hole fluctuations in weakly and moder-
ately interacting regimes. Finally, longitudinal singlet bosonic
modes have been found to be negligibly small in all consid-
ered cases. All these results confirm that in a broad regime of
physical parameters the leading contribution to the self-energy
is given by the longitudinal particle-hole bosonic modes. This
important statement allows for a drastic simplification of the
diagrammatic expansion, which implies a huge reduction of
computational efforts. Consequently, the D-TRILEX theory,
which appears as the result of this simplification, looks as a
very promising and powerful tool for solving a broad class of
interacting electronic problems.

At the same time, the theory should not be oversimplified.
Thus, we have shown that considering only second-order dual
self-energy does not provide a good result even at weak and
moderate interactions when the system enters the correlated
regime lowering the temperature. Instead, the D-TRILEX
method performs remarkably good even below the DMFT
Néel temperature in the regime where the AFM pseudogap
starts to develop. A good performance of the D-TRILEX the-
ory has been confirmed in the moderately correlated half-filled
regime of the Hubbard model, and in the case of a -t model
for hole-doped cuprate compounds. Importantly, in the latter
case we have found that the D-TRILEX approach provides
a reasonably accurate result for the nonlocal part of the self-
energy, while the local part is not reproduced correctly. This
fact indicates that DMFT does not always provide an optimal
way of constructing the local reference (impurity) problem.
We have also found that the simple ladderlike D-TRILEX
theory fails to correctly reproduce the pseudogap formation in
the weakly interacting Slater regime of magnetic fluctuations.
This can be explained by a strong anharmonicity of collective
fluctuations of itinerant electrons close to the AFM instability.
On the contrary, increasing the local Coulomb interaction
drives the system away from the Slater regime. Thus, the
electrons become more localized and their collective behavior
turns more harmonic, which can be captured by less demand-
ing ladderlike methods.
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APPENDIX A: DUAL BOSON THEORY

The explicit derivation of the DB method can be found
in many previous papers on the topic [30-34,60]. However,
for the purpose of this work we have to additionally intro-

Let us perform two Hubbard-Stratonovich transformations:

exp{ZcZa[Av — sk]ckg} = z)f/D[f*, flexp {—
k,o
exp{ Zsﬁ p*z?Vﬁ )}

k,o

q,0

duce bosonic variables for the singlet channel. For this reason
here we present a brief derivation of the dual boson theory
one more time. We start with the remaining part of the lattice
action (1)

Srem = — ZCZG[A
k,o

= ade, + Yo"V el (A1)
q,0

Z (fkag [A - ek] gvafka + fkagvacka + Ckagvafka)} (A2)

/D[(ﬂ ]exp[2§19 (p*ﬁ 79—1V19 -1 Z—lwq ¢;19 (zz—lp(z; ,O;;ﬁ Z—l(pg)} (A3)

Here, quantities g, and w? are the full Green’s function and the renormalized interaction of the local impurity problem, respec-

tively, and o) = w? /U”. Terms Dy = det[g, (A,

—ex)gy] and D' =

—Vdet[a) V)] can be neglected when calculating

expectation values. After these transformations the action takes the form

Siem - Zsl(rlr)lp + Z fk(fgwrck(r + ckagwrflm + ZE M“Z

i

_kaagva[gk A] 8 fka

k,o

Then, the impurity problem can be integrated out as

k,o

/D[c c exp{ ZSEQP—Z (fi 8o Cro + Cio8rafic) = D& (@3 el ™ ) + 3 ) ‘w;’)}
q,0

=-Zimp Xexp{ kaag fka ZE *190[

where Zimp and x2 = —(p2 p2*) are the partition function

and the susceptibility of the impurity problem, respectively.
This results in the dual boson action
S == ka*aG;;fka - Zéﬂ
k.o q,%

W el + FLS 0l

(A6)

The explicit form of the bare fermionic and bosonic propaga-
tors of the dual problem is
(AT)

~ _ —1 v
gka = gva[[gk - Av] : _gva] 8vo = Gka — 8vo>

W2 = a2V

1= o _ o »
4 _Xw] a, =W' —w,,

4 (A8)

where Gy, and Wq” are the Green’s function and renormalized
interaction of EDMFT.

The interaction part of the action [ f, ¢] being truncated
to the two-particle level explicitly reads as

FLf ol = Y &N nziel + Al nl) )
q,k,v
1 '
+ Z Z F;;Lr \()rv(:u fkafk+q,a’fk*’+q,a’”fk’a”’ (A9)
q,{k}.{o}

v —

oy 405 al " o))
q,9
Zé‘ [asvas] ™ es). (Ad)
o xSl T el) = FLS w} (AS5)

(

where nzqk have been defined in Egs. (14), (15), and (16).
The four-point vertex functions in the particle-hole I',, and
particle-particle I',, form are defined as

* *
01020304 __ <Cv01 Cerw,cfzcv’,asCV’-kwm)c
h, o T ’
P gualgv+w,azgv/oggv/+w,o4
* *
01020304 __ <CV01 C0o—,6, 003 Co—v',04 )c (AlO)
ppwWeo T ’

8vo18w—v,0:8v' 03 8w—v' 04

where (...). denotes the connected part of the correlation
function. The following relation between two representations
holds:

r 01020304 __

=T 010304072 —
pp, V'

_ F 01040302
ph,v,o—V' V' —v

ph, v,V ,0—v—v'"

(Al1)

Density (d), magnetic (m), singlet (s), and triplet (t) compo-
nents of the four-point vertex are defined as

d/m _ 111 Tl
Fuv’w th e + th w'e’
. 1 1
s/t _ N T
Fw’w - Erpp, vwe 2Fpp o (AIZ)
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The three-point interactions in the channel representation are
defined as

. (CvTct+wT p:f)_ <Cv+wTC\>§T pf))

S
Vo

G —

gngerwTag) ' gv+ngv¢a5) ’

A = (CUT%—W pis). . (c:)—u¢cf¢ pZ;)
b guTgw—v¢a2, gw—vigvﬁaz,

In the particle-hole channel the three-point vertex obeys the
useful relation A*S = A, _,,. The three-point vertex in the
triplet channel is not introduced because the composite vari-
able p' is identically zero in the single-band case.

It is important to note that in dual diagrams the bosonic
line always connects two three-point vertex functions. Using
Egs. (A8) and (A13), one finds that

R

This relation shows that «”, which is the only quantity that
explicitly contains the bare local interaction U?, drops out
from the dual diagrammatics. Therefore, physical observables
that can be found via the exact relation between correlation
function written in terms of dual f and original ¢ fermion
variables also do not depend on the choice of the bare in-

- |

*S
vw

(A13)

= 1% _ -1
Al?;quﬁAtZ) ~ afw lwﬁaﬂ 1 .

(A14)

Zéﬁ * 10 Wl? 1 ww 1]()0‘117

q,0

teraction U for different bosonic channels. This fact is not
surprising because the onsite Coulomb interaction U is fully
accounted by the impurity problem and is already contained
in the four-point vertex.

APPENDIX B: D-TRILEX THEORY

In this Appendix we explicitly show the transformation
that reduces the dual boson problem (6) to the fermion-boson
action (13) of the D-TRILEX theory. The key idea is to find
such Hubbard-Stratonovich transformation that produces the
interaction in the partially bosonized form of Eq. (9) that
nearly cancels the exact four-point vertex function from the
theory. To this aim let us first add and subtract the term

Zé ")

from the dual action (A6). At this step one can consider W,
as an arbitrary function that will be determined later. This
procedure will allow us to integrate out dual bosonic fields
@ with respect to the arbitrary Gaussian part of the action
introduced in Eq. (B1). To illustrate this point, we make use
of following Hubbard-Stratonovich transformations:

19119
wy,

(B

*x U = 0 — U — _ 9171719 — * - * U —
= z)b/D[bl’]exp {—Zgl’(bql’wj) Wyt @) ) e — el ) — b)) '<pg)} (B2)
q,9
where D, ! = det[w], (Wﬂ !+ @2 ~1y@?]. The action transforms to
kaagkc}fka DI LA LA A
q,9
+Zs 2 0o ey =g Wy by = by el + F LS ). (B3)
Finally, dual bosonic fields ¢ can be 1ntegrated out with respect to the new Gaussian part of the dual action as
[Pt exn = 32 & o3 0l e = o3 0710 Aol = (8 il )e])
q.k, 0
=Z, xexpy Y &N(brT W) TB) = A miib) — AT nd i AL mD A ) (B4)

q.k,0

where Z, is a partition function of the Gaussian part of the
bosonic action. Being written in the antisymmetrized form,
the quartic term 7} A", @) A%)n)  in Eq. (B4) makes the
partially bosomzed representation for the four-point vertex
specified in Eq. (9) [60]. Since this effective vertex function
is generated with the opposite sign, it cancels the exact four-
point vertex if w is defined as in Eqgs. (11) and (12). After
that, the dual problem reduces to the action of the D-TRILEX

theory (13).

(

APPENDIX C: RELATION BETWEEN DB AND D-TRILEX
DIAGRAMS

In this Appendix we establish the relation between ladder
DB and D-TRILEX diagrams for the self-energy. As shown in
Ref. [32], the LDB diagrams for the self-energy and polariza-
tion operator can be obtained form the dual functional, which
yields

2 LDB

ELDF+ Emlx. (Cl)
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The ladder DF self-energy

SLDF _ Sldd _ & l({i) (C2)
is given by the two-particle ladder diagram
S = — 3" Gy o P SboerSagr.  (C3)
9.k {0}

As follows from the Schwinger-Dyson for the dual self-
energy, the ladder diagram accounts for twice the contribution
of the second-order self-energy [82]

2) _ 1 oo'c"a"” A ~ ~ 0’0" o0’
Eka - _z th we Gk'vff”Gk/*qﬁmGkJrq,U' ph, Vv
q.k' {o}
(C4)

which has to be excluded from the expression (C2) in order
to avoid the double counting. The mixed diagram that addi-
tionally appears in the DB theory due to the presence of the
bosonic propagator Wg is as follows:

Emix — _ ZLUquJ,k oWELLE. (C5)

Dressed dual fermionic and bosonic propagators can be found
using corresponding Dyson equations

Gl =G — S, (C6)
e -
Wt =ws -1, (C7)

where the dual polarization operator in the ladder approxima-
tion reads as

15 = A5G Gyinolsy,. (C8)
k,o

The screened three- and four-point vertices in the horizontal
particle-hole (charge and spin) and particle-particle (singlet)
channels are

ot vawq ki.q ww’ (€9)
9
vaq vva) + ZPUVH] k1,9 vlvw (CIO)
Here, X,gg = GkGGHqJ and X',g; Gqu r.- The

screened vertices in the vertical P° and horizontal PS

partlcle -hole channels are connected via the relation
P, = —P; i Note that the DB theory does not
account for fluctuations in the particle-particle channel
because they are negligibly small in the ladder approximation.
Therefore, the LDB self-energy (C1) contains the three- and
four-point vertices that are screened only in the particle-hole
(¢) channel. Diagrammatic expressions for the LDB
self-energy and polarization operator, as well as for the
screened three- and four-point vertices, are shown in Fig. 8.

B -K A -
> =D+l D> -0l

FIG. 8. Top row: ladder 21"““ (C3) and mixed E""" (C5) contri-
butions to the LDB self-energy, and the LDB polarlzatlon operator

lzlg (C8). Bottom row: Screened three-point L v (C9) and four-point
(C10) vertex functions in the LDB appr0x1mat10n

S~ladd
z"ka'

vuq

Let us derive D-TRILEX diagrams for the self-energy as
an approximation of the ladder DB theory. To this aim, one
can use the partially bosonized representation for the four-
point vertex function (9) and keep only longitudinal bosonic
fluctuations.

1. First-order self-energy

The first-order contribution to the ladder part of the self-
energy (C3) written in the channel representation becomes

S (1 ~ o’
2:\(Ja) == Z Gk+q o’ Fl?\f(i)a
1 ~
2 Z Gk+q~,0rv§‘)w
9.5
Z Gk+q anvw + Z G vvw
z G i

| 2

S ” S
A qkow vw}

(C11)

Here, a trivial Hartree-type contfibution to the dual self-
energy & =2A9 0§ >, AY (Gr, that appears due to
M, »4w,v—y terms in Eq. (9) have been omitted for simplicity.

2. Second-order self-energy

The second-order self-energy (C4) can be simplified in the
same way. Equation (C4) can first be rewritten in the channel
representation as

1 ~ U
2 _ S S
B = -1 > G UGGl e
K.q.s

(C12)

We omit spin labels for Green’s functions in this expression
because in the considered paramagnetic case the Green’s func-
tion does not depend on the projection of spin. One can again
use the partially bosonized representations for the four-point
vertex function (9), which leads to

$(2) d d
Zk = 2{42 [IRTIND) uvw+Mv§v+a)v—vMugv+wv v)+4Mvv v+v+wM1§vv+v+w 4Mvv a)M\J DV 4o, v—y'
d -~ o~ ~
+ 12M11Jnv legr’]v-ﬁ-wu v 24M1:nv va W, v—v +8Mv v, M;’vv+v+a) 24M15nv a)M\j RIRTERYY +w} Gr Gk”rl] GkJrlI'

(C13)
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Shifting momentum and frequency indices as k' — k + ¢” and g — k”

— k one can show that the product of two transverse

fluctuations results in the same contribution to the self-energy as the product of two longitudinal ones

c ~ ~ ~
z :Mv V4w,V —v v v'4w,v—v’ Gk Gk +‘IGk+q - 2 :M\J V" " Mv+w”,v”+w”,7w”Gk+qHGk”+4”Gk”

G ~ o~ ~
- Z Mv V" v”,v,w” Gk"Gk"-HI” Gk+(i"'

//r

The last relation can be obtained imposing the symmetry of
the four- and three-point vertex functions (A10) and (A13).
The product of two singlet fluctuations can also be simplified
shifting ¢ — ¢ — k — k' as

2 [PRVIRTERYS +a) v v,v+v’+ka'Gk’+‘1Gk+‘1

— ZMS_V,’ M o Gy Gq qu,k_ (C15)

K.q"

Then, keeping only longitudinal contributions in E( ) > one
gets the second-order self-energy of the D-TRILEX approach

2 ~ ~
E( ) Z Gk+q ‘TAvwwlf) (Z Af)’ngk"T’Gkurq,U’AS]‘)’w)
k.o’

S A*S
X wwAvw

(C16)

Neglecting nonlongitudinal contributions in Eq. (C13) ex-
plains the mismatch in the real part of the D-TRILEX
self-energy in the trivial regime of high temperatures (8 = 2)
and weak interactions (U = 2).

3. Remaining part of the LDB self-energy

The D-TRILEX form of the remaining part of the LDB
self-energy can be obtained preserving only longitudinal fluc-
tuations in the partially bosonized representation for the
four-point vertex (9) I's, =~ 2M; , . Then, the renormalized

three-point (C9) and four-point vertices (C10) become

L, ~ A, (1+ WeITs), (C17)
PS,, = 205, WiNS, (C18)
where
cel_ el =
we T =wg ! - 1. (C19)

k” /"

(C14)

(

Substituting these expressions to the remaining part of the
ladder contribution to the self-energy (C3), one gets

ZA

+ ZA GyraWy T ), T W), A%

3+ G
E( ) q+k(r

(C20)

In this expression we additionally introduced the screening of
the four-point vertex in the particle-particle channel, which
is usually not accounted for the LDF theory. Combining all
ladder terms (C11), (C16), and (C20) together, the LDF self-
energy simplifies to
B = = D {8 Garna Wy AL, —
4.5

Asvaq,k,gW;A’;;}.

(C21)

Under the same approximation, the mixed diagram (C5) be-
comes

Smix — _ ZAngGquk o(L+ W)W (14 IEWS) AL

+ZA Gt (14 WIS (1 4+ TIWS) A,

(C22)

where we also added the contribution from the particle-
particle channel. Using the Dyson equation (C7) for the dual
bosonic propagator W(f with the approximate dual polariza-
tion operator (C8)
iy =11+ w,/y), (C23)
the total self-energy reduces to the D-TRILEX result (19)
SDIRILEX _ $LDF 2:mlx

=Y {25, G WE NS,

— K, GoraWy A - (C24)

The renormalized interaction of the theory can be found as
follows:

O -1 _ ey —1 _ 7o
w, =W, -1, (C25)
where the partially dressed bosonic propagator [see Eqgs. (17)

and (18)] is

W) =W, +w). (C26)
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