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Fluidized bed spray agglomeration is an important industrial particle formation process. In particular, the
continuous operation mode is able to provide a constant stream of product particles with constant quality
in terms of particle properties. Mathematical process modeling represents a valuable tool for a thorough
analysis of the involved mechanistic processes and can further be used for process intensification and
control. Sophisticated models describing the quantitative effect of process conditions on particle proper-
ties are particularly important. Therefore, in this contribution the influence of the seven most important
operational parameters on the particle size distribution is modeled, including fluidization and binder
properties. To this end, a population balance process model with the three-parametric Kapur kernel is fit-
ted to experimental data. The first main result of this contribution is the quantitative description of the
dependency between the agglomeration rate and the process conditions by multidimensional parabo-
loids. The second main result is the introduction of a general method by which this quantitative formu-
lation is obtained.
� 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder
Technology Japan. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction

Since a large proportion of substances used in the chemical
engineering industry is particulate matter, there is great interest
in the investigation and understanding of the according production
processes. Fluidized bed spray agglomeration (FBSA) is such a par-
ticle formation process, which is widely used industrially, due to
the possibility of producing agglomerates with tailor-made proper-
ties, such as particle size and particle porosity [4]. Examples of
applications are the refinement of milk powder in the food indus-
try, production of fertilizers in the agricultural industry and pow-
dery drugs in the pharmaceutical industry [2,31,30].

In these processes a binder is sprayed into a fluidized particle
bed. Agglomerates are created from primary particles when the
binder solution between two particles in contact dries and solid
bridges are formed. The formed agglomerates can grow further
by coalescence with additional particles as presented in Fig. 1.
One advantage of continuous FBSA is the high production rate
due to large contact surfaces and good heat and mass transfer in
the fluidized bed. Another one is the possibility to adjust desired
particle properties such as size, porosity, flowability and hardness
by variation of several process conditions. While the latter is
accomplished by using simple heuristics in most industrial appli-
cations, more structured approaches are an active field of research
[6,7,41] with the ultimate goal of providing the possibility of pro-
ducing particles with specifically defined properties.

The goal of this contribution is to establish a method by which
the experimentally identified influence of process conditions on
particle properties can be incorporated in a mathematical process
model. Furthermore this method is applicable to a wide range of
particle processes such as polymerization, crystallization and cell
aggregation processes. In this contribution the experimental find-
ings in Strenzke et al. [38] are used to derive the process model
for FBSA.

A process model that incorporates the effects of process param-
eters on the process kinetics and product agglomerate properties
can be used for process design, optimization and model based con-
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Fig. 1. Process scheme including the three steps of agglomeration: Wetting,
collision and dyring.

Fig. 2. Schematic illustration of the process with particle feed and spraying into the
process chamber, fluidization and separating outlet.
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trol [3,29]. Modeling the influence of process parameters in flu-
idized bed processes has been investigated in numerous contribu-
tions mainly focusing on batch operation. In Murtoniemi et al. [26]
the influence of several process conditions on particle size and fri-
ability was modeled by artificial neural networks for fluidized bed
granulation, however only mean granule sizes were considered.
Tan et al. [39] used a physically based approach for fluidized bed
melt granulation in order to model the effect of process parameters
on the particle size distribution. In Terrazas-Velarde et al. [40]
Monte-Carlo-Simulations (MCS) were utilized for FBSA, using
knowledge of the underlying micro-processes. The Monte-Carlo
methods however, are inappropriate for model based control due
to the high computational effort. Furthermore, the underlying
micro-processes are very complex and not yet completely investi-
gated. Hussain et al. [17,18] used the MCS approach to parametrize
a differential equation and predict particle size distributions. Since
these approaches often rely on a profound understanding of the
underlying mechanisms, are computationally expensive or are
restricted to a very specific field of application, empirical models
present a commonly used alternative to describe the process
dynamics [14,32,1]. An established framework for modeling the
dynamics of agglomeration processes by partial differential equa-
tions is the population balance equation (PBE) [33]

@n
@t

¼ 1
2

Z v

0
bðt;u;v � uÞnðt;uÞnðt;v � uÞdu

�
Z 1

0
bðt;v ;uÞnðt;vÞnðt;uÞdu: ð1Þ

Here the so-called agglomeration kernel bðt;u;vÞ contains
information on the mechanisms of the agglomeration, e.g. depen-
dence on the particle volumes u and v and process parameters like
bed temperature. As previously pointed out, the direct mecha-
nisms are not known and thus empirical kernels are commonly
used. In the literature a variety of parame-trized kernel functions
is proposed.

In this contribution a new approach in kernel estimation based
on least-squares-function fitting [14] and utilizing the population
balance model of the continuous FBSA process is presented. It will
be shown that the kernel parameters are structurally identifiable
and, furthermore, a functional dependence between process and
kernel parameters is unveiled, which is crucial in order to use
the model for the intended purposes.

The remainder of this article is structured as follows: In Sec-
tion 2 the process itself and the process model are described
briefly. The subsequent chapter is concerned with presenting the
parameter estimation algorithm including the computation of
parameter confidence intervals as well as an investigation of struc-
tural identifiability. In Section 4 the experimental data and the
identification results are presented and the influence of the process
parameters is described as arguments in the kernel function. Fur-
2518
thermore the validity of the obtained parameters is discussed.
The contribution closes with conclusions and an outlook on further
research.

2. Process description and process model

In this section the process including the relevant process
parameters as well as the mathematical process model are pre-
sented briefly. A more detailed description including a discussion
of the influence of several process parameters on the product prop-
erties can be found in [38].

In the continuous operation mode, schematically presen-ted in
Fig. 2, primary particles with a specified volume are continuously
fed into the process chamber. The particle feed rate _Mfeed can be
adjusted. The bed is fluidized by a pre-heated air flowwith temper-
ature Tg;in and mass flow rate _MFA. The binder solution is sprayed
onto the particle bed through a nozzle with mass flow rate
_Mspray. The size of the dispersed droplets can be adjusted by varying

the air volume flow rate through the nozzle _VNA. The binder mass
content in the injected solution is denoted with xb. The particle
removal is handled by a classifying airflow whose velocity is
adjusted such that particles exceeding a certain mass fall through
a classifying tube. The respective volume flow rate is denoted by
_VCA.

In the following, a suitable mathematical process description is
presented. In order to characterize a collective of particles with dis-
tributed properties, the number density function (NDF) nðt;xÞ is
introduced, where x is a set of internal or external coordinates.
Internal coordinates are usually particle properties, external coor-
dinates specify the position in space. Since the fluidized particle
bed is assumed to be ideally mixed, the spatial (external) coordi-
nates are neglected. Furthermore, the agglomerate volume has
been shown to be a key property [4], having a significant impact
on other particle properties. Therefore, in this contribution this
property is considered, i.e. x ¼ v , where v is the characteristic
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particle volume v. A volume-equivalent representative diameter d
can be computed by using

v ¼ p
6
d3
: ð2Þ

The NDF nðt;vÞ describes the number density of particles with
volume interval v at time t in the fluidized bed. Alternatively the
particle collective can be characterized by its normalized volume
distribution (NVD) q3ðt; dÞ which is computed by

q3ðt; dÞ ¼
d3nðt; dÞR1

0 d3nðt;dÞdd
ð3Þ

with

nðt; dÞ ¼ nðt;vÞdv
dd

: ð4Þ

A standard approach for modeling the evolution of the NDF is
using the population balance equation (PBE) [33]

@nðt;vÞ
@t

¼ _nfeedðt;vÞ þ _naggðt; vÞ � _noutðt; vÞ ð5Þ

where the three terms on the right-hand-side describe fluxes by
particle feed _nfeed and removal _nout as well as particle aggregation
_nagg. The change in particle volume due to binder addition is
neglected in the PBE due to its low volume contribution. In the fol-
lowing, the three terms will be examined more closely.

The feed term

_nfeedðt; vÞ ¼ _NfeedðtÞq0;feedðvÞ ð6Þ

consists of the normalized number density distribution of the fed
particles

q0;feedðvÞ ¼
nfeedðvÞR1

0 nfeedðvÞdv
ð7Þ

and their number feed rate _Nfeed. Since the former is known, the lat-
ter can be computed from the mass feed rate _MfðtÞ which is con-
stant during the process.

The particle outlet is modeled by

_noutðt;vÞ ¼ KðtÞTðt;vÞnðt;vÞ; ð8Þ
where KðtÞ is the removal rate and Tðt;vÞ the separation function,
which accounts for the classifying character of the outlet. The term
TðvÞnðt; vÞ furthermore reflects the particle size distribution of the
product particles at time t. There are different approaches to the
modeling of K and T based on properties of the particle bed and
the classification air flow [15,27]. However, in this contribution
we choose to compute both functions based on the actual measured
product mass flow and the product particles’ size distribution. This
is motivated by the idea of minimizing the modeling error of the
outlet so that it does not affect the identification of the kernel
parameters.

Hence, Tðt;vÞ and KðtÞ are computed in two steps using the
measurements of the bed and product NVDs q3;bðt; dÞ and
q3;pðt; dÞ and the product mass flow rate _mpðtÞ. At first, the separa-
tion function is computed such that the measured product distri-
bution results from the measured bed distribution at every
measurement time instant. Then KðtÞ is computed such that the
measured product mass withdrawal _mpðtÞ results from the mea-
sured bed mass and volume distribution given the computed sep-
aration function. During the process simulation, KðtÞ and Tðt;vÞ are
interpolated linearly between the measurement times.

In order to compute the separation function with respect to par-
ticle diameter d, it is approximated by Nweighted ansatz-functions
2519
unðdÞ

Tðd; anÞ ¼
XN
n¼1

anunðdÞ: ð9Þ

The chosen ansatz functions are cumulative Gaussian functions
with the different mean values and same standard deviation scat-
tered on the expected diameter interval. In order to find the
weights an, the following optimization problem is solved at every
measurement time instant:

minan jjq3;pðdÞ �
Tðd; anÞd3nbðdÞR1

0 Tðd; anÞd3nbðdÞdd
jj22; ð10Þ

where nbðdÞ is computed from q3;bðdÞ. The separation function TðdÞ
is transformed into TðvÞ using Eq. 2. In the second step K is com-
puted such that the measured bed mass withdrawal rate _mp results
from the measured NDF and the computed separation function, i.e.
it solves

_mp ¼ .agg

Z 1

0
v KTðvÞnbðt;vÞð Þdv ; ð11Þ

where the integral term represents the total volume flow of product
particles. Since the particles are porous, the apparent agglomerate
density differs from the primary particle density. In this contribu-
tion an average agglomerate density is computed from the total
mass and volume of bed samples [38].

An alternative to the optimization approach presented here is
the use of online-parameter estimation algorithms for KðtÞ and
TðvÞ which have been shown to be effective for similar particle
processes [28,13,9].

The particle coalescence is modeled with the agglomeration
term _naggðt;vÞ. It is based on a binary aggregation where two par-
ticles with volume u and v � u form a new particle with volume v
[16]. The agglomeration term accounts for the ‘‘birth and ‘‘death”
of particles with volume v:

_naggðt; vÞ ¼ Bðt; vÞ � Dðt; vÞ ð12Þ
¼ 1

2

R v
0 bðt;u;v � uÞnðt;uÞnðt;v � uÞdu

� R1
0 bðt;v ;uÞnðt; vÞnðt;uÞdu;

where bðt;u; vÞ is the agglomeration kernel describing the probabil-
ity and frequency of a coalescence event as a function of the particle
size. The kernel is separated into a time- and a volume-dependent
part

bðt;u;vÞ ¼ b0ðtÞbðu;vÞ ð13Þ
as commonly assumed, whereby b0 denotes the agglomeration effi-
ciency and bðu;vÞ is called coalescence kernel [35].

As a key term for understanding the process of agglomeration,
the coalescence kernel can take various forms depending on the
actual process setting. In the literature kernels are proposed for
particles being subject only to Brownian movement [37] or gravi-
tational forces [42], or particles behaving according to kinetic the-
ory [36]. Generally, these kernel functions are limited to special
processes and not applicable to the FBSA process considered here,
where the interconnection of physical mechanisms is rather com-
plicated (collision dynamics, coalescence depending on material
properties of binder solution and particulate matter). Hussain
et al. [17,18] constructed a kernel specifically for FBSA in batch
operation based on a physically motivated MCS. However, as men-
tioned earlier the underlying micro-processes are not yet fully
investigated, therefore an alternative to this approach is the use
of purely empirical kernels customized for the respective process.
In the literature a variety of kernels, sometimes with adjustable
parameters, is proposed. In Table 1 a selection of commonly used



Table 1
Selection of empirical coalescence kernels from the literature.

Kernel Formula Source

Constant bðu; vÞ ¼ 1 Kapur and
Fuerstenau [21]

Sum bðu; vÞ ¼ uþ v Golovin [12]
Product bðu; vÞ ¼ uv Golovin [12]
Kapur bðu; vÞ ¼ ðuþvÞa

ðuvÞb
Kapur [20]

Polynomial bðu; vÞ ¼ a0 þ a1uþ a2v þ a3u�1 þ a4v�1 . . . Eisenschmidt
et al. [10]

E. Otto, R. Dürr, G. Strenzke et al. Advanced Powder Technology 32 (2021) 2517–2529
empirical coalescence kernels is presented. Due to the considera-
tions above this contribution focuses on empirical agglomeration
kernels.

3. Parameter identification

In this section the parameter identification algorithm, including
the computation of confidence intervals and checking structural
identifiability, is described.

In order to identify a vector p ¼ ðp1; . . . ; pNÞ of N free model
parameters from steady state data, such as the agglomeration rate
b0 and coalescence kernel parameters, from experimental data, the
following minimization problem has to be solved:

min
p

JðpÞ ð14Þ

with the objective function

JðpÞ ¼ umeasðdÞ � usimðd;pÞk k2 ð15Þ
where uðdÞ is defined as [14]

uðdÞ ¼ d3nðdÞ ð16Þ
and nðdÞ is the steady state size distribution in the fluidized bed as a
function of the particle diameter d. For the measurements umeas is
computed from CamSizer measurements of the steady state NVD
q3;measðdÞ, bed mass mmeas and mean agglomerate density . under
the assumption of spherical particles. The simulated counterpart
usim is computed by using Eqs. 16 and 2 for the steady state solution
of the PBE model. The latter is obtained by solving the partial differ-
ential equation numerically for a sufficiently long time, such that a
stable steady state is reached. In order to do this, the PBE is spatially
discretized using the cell-average technique introduced by Kumar
et al. [23]. The resulting ODE system is solved using the integrated
solver ode15s in MATLAB R2018b. The solution of the minimization
problem (Eq. 14) is obtained by using an interior-point algorithm
with quasi-Newtonian approximation of the Hessian matrix which
is implemented in MATLAB using fmincon. An alternative method
for parameter identification used for particle processes which is
additionally capable of identifying parameters online is described
in Golovin et al. [13].

In order to validate the meaningfulness of the identified param-
eters two additional properties are checked: Structural identifiabil-
ity of the parameters gives information about the uniqueness of
the estimated parameters [34,8], confidence intervals are intervals
around the parameter estimates to which the actual parameters
can be be narrowed with a certain probability.

Structural identifiability of a parameter pi is checked using pro-
file likelihoods. For an identified vector of optimal parameters
popt ¼ popt

1 popt
2 . . . popt

N

� �
the parameter pi is locally structurally

identifiable if its profile likelihood

JPLðpiÞ ¼ min
pj–pi

JðpÞ ð17Þ

has a unique minimum in the neighborhood of popt. The minimiza-
tion results in a one-dimensional curve for every parameter pi. The
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model is said to be structurally identifiable if every curve JPL has a
distinct minimum. Non-identifiability of a parameter means that
there exist multiple sets of parameters that minimize the objective
function.

Confidence intervals give information about the sensitivity of
the parameter estimation to measurement noise and are thereby
a measure of uncertainty of the determined estimates. Usually, a
large number of experiments is required in order to compute these
intervals. However, due to the high experimental effort and cost of
the agglomeration process only a limited number of experiments
can be conducted. In order to overcome this obstacle, bootstrap
methods with sets of artificial measurement can be exploited [19].

In a first step a large set of replicated measurements
Y ¼ y1 y2 . . . yMð Þ is created. Therefore an absolute, volume-
independent normal distribution of measurement errors Nðl;rÞ
is assumed and parametrized with the actual measurement data.
Then for every element of Y a new optimal parameter vector popt

is identified. The confidence intervals for parameters pi are calcu-
lated using the percentile method. If pa is the 100 � ð1� aÞ-
percentile of M bootstrap replications, then the confidence interval
is computed by

plo
i ;p

up
i

� � ¼ pa=2i ;p1�a=2
i

h i
: ð18Þ

Tight confidence interval bounds indicate low sensitivity of the
parameter identification with respect to measurement noise and
thereby reliable parameter estimates.

4. Results

In the following section the parameter estimation results are
presented and interpreted. At first a brief overview of the experi-
ments conducted and published in Strenzke et al. [38] is given
and presented in Table 2. In total 15 experiments were conducted
and seven parameters were varied. Every experiment took two
hours in which 28 samples of the particle bed and 14 samples of
the product were drawn. The particle size distribution of the last
sample represents the steady state and was used to conduct the
parameter estimation. The particle size distribution in these sam-
ples was measured with a CamSizer, based on image analysis.

4.1. Reference experiment

In the first subsection optimal parameters are identified for the
reference experiment. Then the structural identifiability is checked
and confidence intervals are computed.

4.1.1. Parameter identification
In the following the PBE is fitted to the reference experiment

measurements using different kernel functions. At first the coales-
cence kernel bðu;vÞ ¼ 1 is used, as the volume-independent kernel
has no parameters and is the simplest, empirical kernel function.
Since the time-independent agglomeration efficiency b0 is the only
parameter to be fitted, a globally optimal value is easy to obtain. In
Fig. 3 the normalized volume distributions q3ðxÞ at steady state,
simulated with the optimal parameter bopt

0 ¼ 0:248 � 10�10 is pre-
sented. Furthermore, it is compared to the measured PSD. Clearly,
the function fit is not satisfying. Since the volume-independent
kernel is not able to describe the agglomeration outcome appropri-
ately further investigations are not conducted.

Instead a more sophisticated coalescence kernel is used. The
Kapur kernel

bðu;vÞ ¼ b0
ðuþ vÞa
ðuvÞb

ð19Þ



Table 2
Overview of experiments and varied parameters.

Parameter

_Mfeed
_Mb Tg;in xb _VNA

_MFA
_VCA

g/min g/min �C % l/min kg/h l/min

REF 250 45 90 4 60 275 415
F1 150 45 90 4 60 275 415
F2 350 45 90 4 60 275 415
S1 250 40 90 4 60 275 415
S2 250 50 90 4 60 275 415
T1 250 45 80 4 60 275 415
T2 250 45 100 4 60 275 415
NA1 250 45 90 4 40 275 415
NA2 250 45 90 4 120 275 415
FA1 250 45 90 4 60 260 415
FA2 250 45 90 4 60 290 415
CA1 250 45 90 4 60 275 400
CA2 250 45 90 4 60 275 430
BC1 250 45 90 2 60 275 415
BC2 250 45 90 6 60 275 415

Fig. 3. Measured (black) and simulated (red) NVD at steady state for the reference
experiment with volume-independent kernel.
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is a two-parametric kernel first proposed in Kapur [20]. For a ¼ 1
and b ¼ 0 it reduces to the sum kernel, for a ¼ 0 and b ¼ �1 it
reduces to the product kernel. Previous research [32] has shown
that a PBM with this kernel is able to provide good fitting results
for FBSA, moreover with only three parameters to fit the computa-
tional effort is significantly smaller compared to a polynomial
approach. In the following the parameter vector p ¼ a; b;b0½ � is
estimated.

Solving the minimization problem (Eq: 14) for various initial
values shows that two problems can occur.

1. The optimization reaches a local minimum that is clearly not a
global minimum. An example for such an optimization result is
presented in the first row of Table 3. In the present case, an
explanation for this is that measurement noise induces local
minima at random points in the parameter space to which the
local solver converges. In order to overcome this problem, ‘1-
trend filtering [22] is applied to the measured data for this
Table 3
Optimal objective function values and optimal parameters for the reference experiment. The
measured particle size distribution. The optimizations runs in rows two and three reach two
the last optimization run a set of optimal parameters with a = 0 is found.

Optimization run Jopt

2 2.2387 0
3 0.473 �
3 0.467 0
4 0.468
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and every following optimization. This filter is chosen because
in contrast to many other filtering techniques, the primary par-
ticle peak in the particle size distribution is not reduced
significantly.

2. Different combinations of the three parameters minimize the
objective function equally good. Examples of two such combi-
nations are presented in rows two and three in Table 3.

The latter suggests that there exist multiple local minima in the
parameter space which indicates non-identifiability of the model
due to over-parametrization. In order to find an optimal solution
for Eq. 14 with the minimal number of necessary parameters, the
objective function is regularized according to the least absolute
shrinkage and selection operator (LASSO) method [5]:

J�ðpÞ ¼ JðpÞ þ ckpk1; ð20Þ

with c ¼ 0:01. Using the ‘1-regularization represented by the sec-
ond term in Eq. 20, an optimal solution with minimal cardinality
can be found, i.e. parameters that can be zero become zero. Solving
the regularized optimization problem gives the optimal parameters
presented in the fourth row of Table 3, where a ¼ 0 and the objec-
tive function value is still minimal. This suggests that ðuþ vÞa ¼ 1
holds for this FBSA process.

In order to further investigate this, J is sampled at selected
points in the parameter space ða; b; b0Þ 2 R3. Therefore the inter-
vals a; b 2 ð�1;1Þ are discretized into N ¼ 81 and the interval
log10ðb0Þ 2 ð�45;�5Þ into N ¼ 401 equidistant points. The result-
ing function of three arguments is reduced, by only considering
the minimal values of J with respect to b0 and presented in
Fig. 4. Clearly a distinct local minimum cannot be found. There is
a minimal flat profile (black in Fig. 4) on which the quality of the
function fitting is not distinguishable anymore. Furthermore we
see that there exists a unique minimum not only in ðb; b0Þ if
a ¼ 0 but also in ða; b0Þ if b ¼ 0. This suggests that either

ðuþ vÞa ¼ 1 or ðuvÞb ¼ 1 holds for this FBSA process. In order to
optimization run in the first row does not reach a global minimum due to noise in the
different sets of optimal parameters with nearly the same objective function value. In

aopt bopt log10b
opt
0

.41 �0.529 �21.85
0.024 0.275 �7.83
.502 0.553 �19.61
0 0.207 �14.7



Fig. 4. Sampled objective function values over parameters a and b for the reference
experiment. Only the optimal value with respect to b0 is presented on a logarithmic
scale. Shades from black to white correspond to low and high values of J. Parameter
combinations where the ode-solver did not converge are white. The black area
represents an optimal curve in the parameter space.

Fig. 6. Logarithmic contour plot of the identified kernel b ¼ b0bðd; d0Þ ind diameter
coordinates for the reference experiment.
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reduce the number of kernel parameters we chose (arbitrarily) to
set a ¼ 0 for the reference experiment.

Samplings for the other experiments show similar results.
Therefore the regularized objective function will be used for all fur-
ther parameter identifications. For the reference experiment the
measured steady state (NVD) is presented in Fig. 5 and compared
to the simulated NVD using the optimal parameter vector with
a ¼ 0. The function fit is, except for the primary particle peak,
nearly ideal. The resulting coalescence kernel is presented in
Fig. 6. For a better presentation the kernel is transformed into
diameter coordinates d and d0 using Eq. 2. Clearly the values of b
decrease with increasing particle diameter which is in agreement
with the physical model of particle coalescence presented in [11].
Fig. 7. Optimal objective function for fixed values of b .
4.1.2. Parameter identifiability and confidence intervals
In this section the structural identifiability of the parameters is

investigated. Fig. 4 suggests that the original parameter identifica-
tion problem with three parameters is overparametrized and
therefore structurally not identifiable. In order to overcome this
problem the optimization problem was regularized. In this subsec-
tion structural parameter identifiability is checked for the regular-
ized problem according to Section 3.
Fig. 5. Measured (black) and simulated (red) NVD at steady state for the reference
experiment with Kapur kernel.

2522
In Fig. 7 the re-estimated optimal objective function Jopt is plot-
ted over fixed values for b0. Since this function has a local mini-
mum, the parameter is structurally identifiable. The same holds
for parameter b, presented in Fig. 8. Since a is always equal to 0,
investigating the identifiability is omitted.
0

Fig. 8. Optimal objective function for fixed values of b.



Fig. 9. Mean values, confidence intervals and histograms for the parameter estimates.
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In order to asses the quality of the parameter identification with
respect to uncertainties resulting from measurement, confidence
intervals for b and b0 are presented. Here a 95%-interval is used
by setting a ¼ 0:05. The mean values and confidence intervals for
parameters b0 and b converge by increasing the number of boot-
straps used as presented in Fig. 9a. The corresponding histograms
are presented in Fig. 9b.

4.2. Experiments with one parameter variation

In the previous section a process model utilizing a Kapur kernel
was fitted to the reference experiment and good results were
achieved. In order to identify the influence of the process condi-
tions on the agglomeration kernel, the regularized parameter opti-
mization is conducted for every experiment presented in Table 2
and the results are interpreted. At the end of this subsection the
optimal parameters as well as the optimal objective function val-
ues are gathered in Table 4.

4.2.1. Influence of gas inlet temperature
In the experiments T1, REF and T2 the gas inlet temperatures is

varied from 80 �C to 90 �C and to 100 �C. The particles become
smaller with increasing temperature. While experiments T1 and
REF are clearly distinguishable, T2 and REF are not, however it is
Table 4
Optimal objective function values and optimal parameter values for the kapur kernel.
As expected the optimal values for parameter a are negligibly small for all
experiments and therefore neglected in the table.

Experiment Jopt bopt log10 bopt0

� �

REF 0.468 0.207 �14.7
T1 0.644 0.36 �17.5
T2 0.408 0.084 �11.9
F1 1.088 0.74 �24.1
F2 0.626 0.059 �11.9
NA1 0.615 0.29 �15.9
NA2 0.36 0.175 �14.3
S1 0.52 0.230 �15.4
S2 0.503 0.28 �15.8
FA1 0.421 0.200 �14.5
FA2 0.497 0.235 �15.3
BC1 0.531 0.062 �12.1
BC2 0.530 0.275 �15.8
CA1 0.600 0.37 �17.4
CA2 0.471 0.076 �12.39
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clear that higher temperatures lead to smaller particles. During
the process the temperature mainly influences the drying time of
the binder solution droplets on the particles. It is assumed that
the reduced drying time due to higher temperatures reduces the
probability of coalescence between particles [38].

In Fig. 10 the simulated NVDs are compared to the measure-
ments. Clearly the fittings are satisfactory, except for the primary
particle peaks. A nearly linear trend can be observed for the iden-
tified parameters as presented in Fig. 18.
4.2.2. Influence of primary particle feed rate

The primary particle feed rates are varied from 150 g min�1 to

250 g min�1 to 350 g min�1 in the experiments F1, REF and F2.
Interestingly a higher particle feed rate leads to smaller particles.
In Strenzke et al. [38] this is explained by a smaller spray-to-
surface ratio, i.e. an increased number of primary particles leads
to a higher total particle surface. In combination with a constant
spray rate the probability of a particle collision at a wet surface
spot is decreased. Therefore the particle feed rate has only an indi-
rect effect on the agglomeration kernel. However, under the rea-
sonable assumption that the primary particles are responsible for
Fig. 10. Measured (black) and simulated (red) particle size distribution steady
states for experiment T1, REF and T2 simulated with optimal Kapur parameters
obtained from the regularized parameter estimation algorithm.



Fig. 12. Measured (black) and simulated (red) particle size distribution steady
states for experiment NA1, REF and NA2 simulated with optimal Kapur parameters
obtained from the regularized parameter estimation algorithm.

Fig. 13. Measured (black) and simulated (red) particle size distribution steady
states for experiment S1, REF and S2 simulated with optimal Kapur parameters
obtained from the regularized parameter estimation algorithm.
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the majority share of the total particle surface, the influence of _Mf

on the kernel parameters can be investigated directly.
The simulated steady states of the particle size distributions

with identified parameters are presented in Fig. 11. The simula-
tions and measurements are in good agreement and a clearly linear
trend can be observed for b and b0 in Fig. 18.

4.2.3. Influence of nozzle air
In this section, the influence of the nozzle air volume flow rate

on the Kapur kernel parameters is investigated. The experiments
NA1, REF and NA2 where the nozzle air volume flows vary from

40 l min�1 to 60 l min�1 and to 120 l min�1 are considered. The
nozzle air flow determines the atomization of binder droplets.
Increasing _VNA leads to smaller spray droplets which again leads
to smaller particles. This is explained by the fast drying of small
droplets which effectively reduces the number of droplets avail-
able for coalescence [38].

The model clearly represents the influence of the nozzle air as
presented in Fig. 12. Parameters b and b0 are presented in Fig. 18.

4.2.4. Influence of binder spray rate
In the experiments S1, REF and S2 the binder mass flows are

varied from 40 g min�1 to 45 g min�1 to 50 g min�1. A lower spray
rate shifts the particle size distribution towards smaller particles.
This can be explained analogously to the nozzle air experiments
with a smaller spray-to-surface ratio.

In Fig. 13 the simulated NVDs are compared to the measure-
ments. The fits are satisfactory, again except for the primary parti-
cle peak. Parameters b and b0 are presented in Fig. 18 for all three
experiments.

4.2.5. Influence of fluidization air
In order to investigate the influence of the fluidization air mass

flow rate experiments FA1, REF and FA2 are considered. The respec-

tive nozzle air volume flows are 260k g min�1
;275k g min�1 and

290k g min�1. A difference in the steady state NVDs is difficult to
identify, however if the Sauter diameter is considered as in Strenzke
et al. [38], significant differences are visible. This is explained by the
concentrated occurrence of particle breakage due to higher air flow
velocities which leads to smaller particles. Therefore the identified
model with agglomeration kernel parameters presented in Fig. 18
implicitly accounts for breakage effects without an explicit break-
Fig. 11. Measured (black) and simulated (red) particle size distribution steady
states for experiment F1, REF and F2 simulated with optimal Kapur parameters
obtained from the regularized parameter estimation algorithm.

Fig. 14. Measured (black) and simulated (red) particle size distribution steady
states for experiment FA1, REF and FA2 simulated with optimal Kapur parameters
obtained from the regularized parameter estimation algorithm.
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age term in the PBE. The resulting simulations are in good agree-
ment with the measurements as presented in Fig. 14.
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4.2.6. Influence of binder content
For the investigation of the binder content influence, experi-

ments BC1, REF and BC2 are considered. The respective binder
mass contents are 2%;4% and 6%. Since the droplet viscosity is
increased by higher binder contents, the probability of complete
dissipation of kinetic energy at particle collisions is also increased
[11]. Therefore a higher initial binder concentration leads to bigger
particles. This dependency is captured by the fitted model, as pre-
sented in Fig. 15, the only exception is the primary particle peak in
experiment BC1. As in experiment F2 the Kapur kernel is not able
to capture the discontinuity between the large primary particle
peak and a product particle peak close to it. The identified param-
eters are presented in Fig. 18. The connection between xb and the
kernel parameters can be modelled approximately by a linear
function.
Fig. 16. Steady state classification functions for experiments CA1, REF and CA2. An
parametric influence on the classification function is not evident from these
functions.
4.2.7. Influence of classification air
The classification air flow affects the quality of separation of bed

and product particles [25,15] and therefore the bed PSD by influ-
encing the term _nout in Eq. 5. However the question is whether
_MCA also affects the agglomeration behavior and thus the agglom-
eration kernel. By computing the withdrawal term as described in
Section 2 the influence on the separation is taken into account.
Thus, only effects on the kernel should be detected by the param-
eter identification algorithm. If there is no (significant) influence
on the agglomeration itself, the kernel parameters should be close
to those of the reference experiment. However, an explicit influ-
ence of _MCA on Tsep can not be deduced from the identified separa-
tion functions presented in Fig. 16. Reasons for this non-ideal
classification are discussed for example in Müller et al. [24].

Nevertheless the kernel parameters are identified. Fig. 17 shows
that the parameter estimation provides a model in good agreement
with the measurements. The clearly distinguishable parameters in
Fig. 18 indicate a significant influence on the agglomeration behav-
ior, which is explained analogously to the fluidization air experi-
ments by occurrence of particle breakage [38].
Fig. 17. Measured (black) and simulated (red) particle size distribution steady
states for experiment CA1, REF and CA2 simulated with optimal Kapur parameters
obtained from the regularized parameter estimation algorithm.
4.2.8. Summary
The results from the experiments with only one varied param-

eter are summarized in Table 4. Overall the model is in good agree-
ment with the all experiments.

The parameter curves presented in Fig. 18 suggest that the
dependencies between the process parameters pi and the model
parameters when only one parameter is varied, can be modeled
as quadratic functions of the process parameters
Fig. 15. Measured (black) and simulated (red) particle size distribution steady
states for experiment BC1, REF and BC2 simulated with optimal Kapur parameters
obtained from the regularized parameter estimation algorithm.
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b0 ¼ f bðpiÞ ¼ c2;bp2
i þ c1;bpi þ c0;b ð21Þ

b ¼ f bðpiÞ ¼ c2;bp2
i þ c1;bpi þ c0;b; ð22Þ

whereas the second order coefficient is nearly equal to 0 for the
temperature and feed rate. This provides the opportunity to use
the model for predicting particle size distributions when the pro-
cess parameters are varied within the investigated bounds. For
extension to process parameter values outside these bounds, addi-
tional experiments need to be performed and incorporated into the
estimation procedure.

In order to validate these functions new experiments have to be
conducted where the process conditions are set to values inside
and possibly outside the respective intervals.

If the optimal parameters b and b0 are plotted against each
other on a logarithmic scale, a clear linear trend can be observed
(Fig. 19). A linear regression analysis gives a coefficient of determi-
nation R2 ¼ 0:994. While the linear trend is difficult to explain in
terms of process understanding, it still presents the possibility to
further reduce the number of model parameters to 1 by expressing
b in terms of b0 or vice versa.

4.3. Experiments with multiple parameter variations

One interesting question concerns the validity of functional
dependencies (Eq. 21 and 22) when more than one process condi-



Fig. 18. Identified parameters b and log10ðb0Þ for the seven sets of experiments.

Fig. 19. Identified parameters bopt over the logarithm of bopt
0 together with the

linear regression curve.
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tion is changed. It is natural to assume that additionally to the
polynomial behavior on the principal axes, coupled effects occur.
In order to investigate this case, additional experiments were con-
ducted. Due to the high number of possible experiments when
combinations of 7 parameters are varied, the number of regressors
was reduced to 3, namely the feed rate, gas inlet temperature and
spray rate. They were chosen because they have a significant effect
on the particle size distribution and are easy to adjust at the plant
and therefore are excellent candidates for manipulation in process
control applications. The parameters for the 8 experiments are pre-
sented in Table 5, however two of them had to be terminated early
and can not be used in this study. As in the previous section param-
eters b and b0 are identified by optimization.

Based on the one-dimensional case a multi-dimensional poly-
nomial of degree two is chosen as ansatz for f b and f b. The coeffi-
cients ai of the resulting polynomial function

b0 ¼ a1p2
1 þ a2p1 þ a3p2

2 þ a4p2 þ a5p2
3 þ a6p3 þ a7p1p2

þ a8p2p3 þ a9p3p1 þ a10 ð23Þ
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of the parameter vector

P ¼
p1

p2

p3

0
B@

1
CA :¼

_Mfeed

_Mspray

Tg;in

0
B@

1
CA ð24Þ

can be fitted by linear regression. The function for parameter b is
defined analogously.

The 10 coefficients in a were identified by using the 7 relevant
experiments from Table 2 and 6 experiments from Table 5 for b
and b0 respectively. The regression provides good results presented
in Fig. 20. Furthermore, the regression shows that parameters a3
and a7 are negligibly small for both b and b0, which means that

the terms T2
g;in and _MfeedTg;in

� �
in Eq. 23 are not relevant for the

computation of b0 and b. The former realization is in agreement
with the findings from the one-parameter-variation case. The latter
confirms the explanation of how the particle size is affected by
temperature and feed rate in Section 4.2. Since the temperature
does not change the total particle surface and the feed rate does
not influence the droplet drying there are no coupled effects and
both process conditions independently affect the evolution of the
particle size.

4.3.1. Parameter identification for the system dynamics
In the previous subsections, only the steady state of the process

was considered in the objective function. Hence, the identified
model only captures the system behavior near the steady state.
The focus of this subsection is on the dynamic behavior, which is
investigated for the reference experiment as an example.

In Fig. 21 the measured q3;measðt; xÞ is compared with the simu-
lated q3;simðt; xÞ at selected time instants. In order to compute
q3;measðt; xÞ the identified steady state parameters from Section 4.1
were used.

In the transition time between t ¼ 0min and t ¼ 20min the pro-
cess model does not capture the process behavior. Between
t ¼ 20min and t ¼ 80min the fit is good, while it is nearly optimal
when the system reaches the steady state around t ¼ 80min.

In order to find model parameters a; b and b0 that are able to
capture the non-steady state behavior of the process, the optimiza-



Table 5
Overview of experiments with multiple parameters varied simultaneously.

Experiments Process Conditions Comments

_Mfeed Tg;in _Mspray

g/min �C g/min

F1T1S1 150 80 40
F1T1S2 150 80 50 terminated early
F1T2S1 150 100 40 interrupted
F1T2S2 350 100 50
F2T1S1 350 80 40
F2T1S2 350 80 50
F2T2S1 350 100 40
F2T2S2 150 100 50

Fig. 20. Graphical presentation of the 3-dimensional linear regression for parameter b (top) and b0 (bottom), measurements are blue, predicted values red. The coefficients of
determination are R2 ¼ 0:985 for b and R2 ¼ 0:965 for b0.

Fig. 21. Comparison between measured (black) and simulated q3ðt; xÞ (red) for selected time steps within the whole experimental time domain.
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tion has been repeated considering the whole time domain in the
objective function. However, the optimal parameters do only
change negligibly compared to steady state identification and the
process model is still not able to capture the process dynamics at
the beginning of the measurements. Therefore, we conclude that
the process model with constant kernel parameters is not able to
capture the start-up dynamics appropriately. In accordance with
the results in Golovin et al. [14] there seems to be a fundamental
difficulty in predicting the first minutes of the process with a set
of constant parameters, however from a practical point of view
the first minutes of the process can be neglected if the process is
in stationary state for a much larger time.
5. Conclusion

This contribution dealt with the modeling of fluidized bed spray
agglomeration based on a population balance equation approach.
In particular, the parameters of the agglomeration kernel function
were identified. Therefore the PBE was fitted to a set of experi-
ments with varying process parameters by minimizing the least
square error. Process conditions like fluidization properties and
drying conditions were varied systematically by varying adjustable
parameters. These include the gas inlet temperature, fluidization
and classification air flows, binder concentration and atomization
as well as spray rate and the primary particle feed rate.

From a set of both, physically based and empirical kernel func-
tions, the three-parametric Kapur kernel was identified as the best
choice to represent the agglomeration behaviour in the model. In
the course of the identification procedure, the number of kernel
parameters could be reduced to only one which is a useful result
regarding future parameter identifications on the one hand and
general model reduction considerations on the other hand. The
first main result of this contribution is the qualitatively and quan-
titatively good agreement between the process model and the
experimental data for every experiment considered. Furthermore,
two basic requirements for the identified model parameters are
shown to be true. They are precise within a small confidence inter-
val with respect to a certain class of measurement noise and struc-
turally identifiable.

The second main result of this contribution is that the influence
of the seven process parameters on the steady state particle size
distribution can be mapped quantitatively onto the kernel param-
eters, i.e. the adjustable process conditions appear in the PBE. This
is always possible if one process parameter is varied at a time but
also for multiple parameter variations if only the spray and feed
rate as well as the gas inlet temperature are varied simultaneously.
The explanations for the influence of the temperature and the feed
rate on the agglomerate size presented in Strenzke et al. [38] are in
accordance with the parameter mappings in this contribution.

In summary, the population balance equation together with the
identified parameters and the connection to the process conditions
represent a sound base for subsequent applications in process opti-
mization and model-based control which is one possible future
research direction.

Additionally, the presented model can be extended in three pos-
sible directions: At first, the influence of further process conditions
can be examined, especially the interactions between different
process parameters have not been conclusively clarified. To this
end, further experimental efforts are required. Moreover, the tran-
sient process dynamics are not reflected by the process model
quantitatively. The current model can be extended in this direction
for example by introducing time-variant model parameters.
Finally, further important distributed particle properties such as
porosity could be incorporated as additional independent variables
into a multivariate PBE.
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