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Persistence in Lévy-flight anomalous diffusion
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The evolution of the number of persistent sites in a field governed by Le´vy-flight anomalous diffusion is
characterized. It is shown that, as in the case of ordinary diffusion, the number of persistent sites exhibits a
long-time power-law decay. For the case of white-noise initial conditions, the exponent in this power-law
decay can be numerically found from an algebraic equation as a function of the Le´vy exponentg. As expected,
the decay is faster as the transport mechanism becomes more efficient, i.e., asg decreases. Numerical simu-
lations that validate the analytical results are also presented.@S1063-651X~97!04906-4#
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It has very recently been shown@1# that, rather surpris-
ingly, ordinary diffusion processes exhibit some featu
whose evolution is not governed by the usual dynamical
ponent of diffusion, which relates time with the mean squ
displacement, but by a new nontrivial exponentu. This new
exponent characterizes the temporal decay of the numbe
persistent sites from a noisy initial condition for the diffusio
equation. Considering an initial diffusing field with zer
mean value, persistent sites are the points where, up
given time, the field has never changed its sign. The num
of persistent points decays, for long times, asN(t);t2u. For
white-noise initial conditions in a one-dimensional syste
for instance, it has been found, both analytically and num
cally, thatu'0.12. A closely related exponent appears in
spatial dependence of the correlation function of persis
sites, and therefore characterizes their spatial distribution@2#.
In other works@3,4# it has been pointed out that nontrivia
persistence exponents occur also in problems similar to
fusion, such as Glauber dynamics and other nonequilibr
phenomena.

In spite of the ubiquity of ordinary diffusion in natura
processes, a variety of physical systems which have rece
attracted a lot of attention are driven by a different class
transport mechanism, namely, by anomalous diffusion@5#.
Like ordinary diffusion, this is an isotropic proces
^x(t)2x(0)&50, but its mean square displacement is n
necessarily linear with time,̂ ux(t)2x(0)u2&5 f (t)ÞKt.
Anomalous diffusion has been identified as the leading tra
port mechanism, for instance, in fully developed turbulen
@6#, where it is more efficient than ordinary diffusion
limt→` f (t)/t5`, and in highy heterogeneous media such
porous substrates@5#, where it is less efficient than ordinar
diffusion, limt→` f (t)/t50.

The case of hyperdiffusion, limt→` f (t)/t5`, can be
modeled at the mesoscopic level by means of a genera
tion of discrete-time random walks, which allows for jum
with a long-tailed distributionp(r ). These so-called Le´vy
flights are defined by a characteristic function@namely, the
Fourier transform ofp(r )# of the form p(q)5exp(2bqg)
(0,g,2, b constant! @7#. Although the explicit form of
p(r ) is not known, it can be shown thatp(r );r2d2g for
large r (d is the spatial dimension!. This power-law tail,
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which implies that̂ r 2&→`, is the main ingredient for pro-
ducing anomalous diffusion. In the limit ofg52, the mean
square displacement becomes finite and ordinary diffusio
recovered.

Recently, it has been shown@8,9# that Lévy-flight ~LF!
anomalous diffusion admits a macroscopic description
terms of a diffusionlike equation for a fieldf(x,t) whose
Fourier transform reads

] tf̂~k,t !1Dgk
gf̂~k,t !50, ~1!

whereDg}b/t, with t the ~mean! time between jumps. This
anomalous-diffusion equation can be expressed in the o
nal x space in terms of fractional derivatives@10#. The main
aim of this paper is to study the problem of persistence
Eq. ~1!. It can be expected that, asg decreases and anoma
lous diffusion becomes more and more efficient, the num
of persistent sites decays faster. In the following, we char
terize this dependence of the persistence exponent on
Lévy exponentg.

First, we briefly review the lines along which the exp
nent for persistence in ordinary diffusion was obtained in@1#.
Consider a fieldf(x,t) whose evolution is governed by th
diffusion equation] tf5D¹2f and whose initial state is a
random function f(x,0) with deltalike correlation,
^f(x1,0)f(x2,0)&5hd(x12x2). For some fixed pointx, de-
fine the variableX(t)5f(x,t)/^@f(x,t)#2&. The stochastic
processX(t) can be transformed into a stationary process
introducing the change of variableT5 lnt. In fact, it can be
easily proven that the autocorrelation function ofX(t) is, in
terms of the new variable,

a~ t1 ,t2!5^X~ t1!X~ t2!&5S sechT12T2
2 D d/2, ~2!

which depends on the differenceT5T12T2 only. Note,
moreover, that it is independent of the diffusivityD and of
the noise strengthh. It can also be shown that the correlat
of the processs(T)5sgn@X(T)# is
6632 © 1997 The American Physical Society
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A~T!5^s~0!s~T!&5
2

p
sin21a~T!5

2

p
sin21S sechT2D d/2,

~3!

which is, in turn, related to the probability distributio
P(T) of intervals between zeros ofX(T).

The calculation of the connection between the correla
of s(T) and P(T) requires introducing an approximation
however, namely, that the intervals between successive z
of X(T) are statistically independent. This ‘‘independen
interval approximation’’~IIA ! neglects the fact that the evo
lution of f(x,t) is being driven by the diffusion equation
which imposes a deterministic correlation between the va
of f at different points and times. Nevertheless, it h
proven to be an excellent approximation in the case of o
nary diffusion@1#. The IIA makes it possible to show that th
Laplace transforms ofP(T) andA(T) are related according
to

P̃~s!5
22^T&s@12sÃ~s!#

21^T&s@12sÃ~s!#
, ~4!

where^T&52pA2/d is the mean interval size, which can b
readily calculated from the explicit form ofA(T) @Eq. ~3!#.
Now, P̃(s) has a simple pole at a real, negative value of
variable, say, ats52u. This singularity implies that
P(T);exp(2uT) for large T, which gives in turn
P(t);t2u. This power-law decay dominates, as a con
quence, the asymptotics of the probability thatX(t) has not
changed its sign, which is closely related toP(t). The deter-
mination of the persistence exponent for ordinary diffus
reduces then to the calculation of the root of the denomin
in the right-hand side of Eq.~4!, namely, of

f ~s!5212psA2/dF12
2s

p E
0

`

exp~2sT!

3sin21S sechT2D d/2dTG . ~5!

This can be readily done by numerical means. Ford51, for
instance, this yieldsu'0.1203.

In order to extend these results to the case of LF ano
lous diffusion, where the fieldf(x,t) is governed, through
its Fourier transform, by Eq.~1!, it is necessary to procee
entirely in the Fourier representation. In fact, the solution
Eq. ~1!,

f̂~k,t !5exp~2Dgk
gt !f̂~k,0!, ~6!

cannot be explicitly antitransformed. Taking in
account that, in the Fourier representation, the white-no
correlation of the initial condition takes the form

^f̂(k1,0)f̂(k2,0)&5h8d(k11k2), the two-time correlation
function forf(x,t) is

^f~x,t1!f~x,t2!&5h9E exp@2Dgk
g~ t11t2!#dk

5h-~ t11t2!
2d/g, ~7!

whereh8, h9, andh- are constants whose explicit value
are irrelevant in the following. From here, we immediate
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obtain ^@f(x,t)#2&5h-(2t)2d/g and the correlator
a(t1 ,t2) for the variableX(t)5f(x,t)/^@f(x,t)#2& at any
point x reads

ag~ t1 ,t2!5^X~ t1!X~ t2!&5F 4t1t2
~ t11t2!

2Gd/2g

. ~8!

Again, X(t) can be converted into a stationary stochas
process with the change of variableT5 lnt. In terms of the
new variable, we haveag(T)5@sech(T/2)#d/g, with
T5T12T2, which generalizes Eq.~2!. For largeT, this cor-
relation function behaves asag(T);exp(2Td/2g)5t2d/2g.
Note that the decay ofa(T) is faster as the Le´vy exponent
g decreases and anomalous diffusion becomes more effic
as a transport mechanism.

Now, we remark that the form of the correlator fo
s(T)5sgn@X(T)# as a function ofag(T) depends on the
definition of s only. Therefore, Ag(T)5^s(0)s(T)&
5(2/p)sin21ag(T), and we have

Ag~T!5
2

p
sin21FsechT2Gd/g. ~9!

This extends Eq.~3! to the case of LF anomalous diffusion
The next step in our derivation requires using the IIA a
proximation. As a matter of fact, we can argue that this
proximation should be more accurate in the case of LF
fusion than for ordinary diffusion. This is due to the fact th
LF diffusion acts over longer ranges and, therefore, corre
tions in space and time arising from the evolution are m
widespread. As a consequence, successive values of the
f(x,t) at a given point are relatively less correlated by t
transport mechanism, and the statistical independence of
cessive zeros inf(x,t) for fixed x is expected to hold, a
least, as accurately as in ordinary diffusion. Within the I
approximation for LF diffusion, we again encounter Eq.~4!,
now with ^T&52pAg/d. The function whose root gives th
value of the persistence exponent is then

f g~s!5212psAg/dF12
2s

p E
0

`

exp~2sT!

3sin21S sechT2D d/gdTG . ~10!

This function diverges fors52d/2g, f (2d/2g)→2`, and
grows monotonically ass approaches zero, withf (0)52. It
has, therefore, a root at some intermediate point, which, a
the case of ordinary diffusion, can easily be found by n
merical means. The curve in Fig. 1 shows the result for
exponentu as a function ofg with d51. Forg,2, the value
of u is given by Eq.~10!, whereas it is constant forg>2. For
other spatial dimensions, the behavior ofu(g) is qualita-
tively the same. Note, in fact, that forg,2 the dependence
on d can be eliminated by redefiningg/d→g. We see that
u grows asg decreases, showing again that LF anomalo
diffusion gives rise to faster evolution than ordinary diff
sion.

In order to check our analytical results, we have carr
out a series of numerical simulations of LF anomalous d
fusion on a discrete one-dimensionalL-site lattice with peri-
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odic boundary conditions. As stated above, the jump pro
ability associated with Le´vy flights is defined through its
Fourier transform,p(q)5exp(2bqg), and the explicit form
of p(r ) is not known. It is therefore usual to mimic Le´vy
flights taking a jump probability distribution with the same
asymptotics forr→`, namely,p(r );r212g. In our simula-
tions in one dimension, we usep(r )5(g/2)(11ur u)212g

(0,g,2). Forg>2, the distributionp(r ) has a finite sec-
ond moment and the resulting transport process is ordina
diffusion.

At each time step, a sitei is chosen at random. The field
f i(t) at that site, which, within the computer precision, is
real number, is then decreased according to

f i~ t1Dt !5
1

2
f i~ t !. ~11!

The ammount of field extracted from sitei is equally distrib-
uted in two equidistant sitesi1@r # and i2@r #, wherer is
chosen with the probability distributionp(r ) and @r # indi-
cates its integer part. We have, therefore,

f i6[ r ]~ t1Dt !5f i6[ r ]~ t !1
1

4
f i~ t !. ~12!

We takeDt5L21 so that, on average, each site is visite
once at each time unit. The persistence indexn(t), namely,
the fraction of sites wheref i(t) has not changed its sign
from the beginning of the evolution, is directly determine
by simple counting.

Figure 2 shows some typical realizations withL5105 and
for several values ofg. The variation of the slopes in this
log-log plot as the Le´vy exponent changes is apparent. Th
temporal evolution of the slope for each curve can be n
merically calculated, and its asymptotics can be evaluat
from extrapolation of a suitably fitted function in the region
where data are available. The result of this extrapolatio

FIG. 1. The persistence exponentu as a function of the Le´vy
exponentg in one dimension. The curve corresponds, forg<2, to
the numerical calculation of the roots off g(s) in Eq. ~10!. For
g.2, the value ofu coincides with the one obtained for ordinary
diffusion in @1#. Dots are results from numerical simulations of th
Lévy-flight process.
-

ry
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averaged over a few realizations, is shown as dots in Fig
We find a very good agreement of numerical and analyt
results, especially, for small and largeg. In the transition
region,g'2, the agreement is not so good. The error, ho
ever, should be ascribed to the numerical data. In that reg
wherep(r ) passes from being a regular jump distribution
being an anomalous one, the asymptotic slope is in fact
so reliably defined. On the other hand, simulations
g,1, in which very long jumps have appreciable probab
ity, exhibit noticeable finite-size effects.

We have shown here that the analysis of persistence
tures in ordinary diffusion can be readily generalized to
case of Le´vy-flight anomalous diffusion. This at once ex
tends some conclusions regarding the relevance of pe
tence in diffusion problems to Le´vy flights. For instance, it
has been pointed out@1# that persistence is closely related
some dynamical properties of systems of diffusing partic
subject to bimolecular reactions, such asA1B→0, which
have also been studied in the case of anomalous diffusio
other analytical means@11#.

An interesting question regards the possibility of exten
ing this generalization to other types of anomalous diffusi
namely, to fractional subdiffusion. In this transport proce
jump probability densities are regular, but, on the other ha
waiting times have power-law distributions. The possibil
of having long waiting times, in fact, gives rise to slow
evolution than in ordinary diffusion. In principle, fractiona
subdiffusion also admits a macroscopic description by me
of an equation of the type of Eq.~1!, but in the Laplace
representation with respect to the temporal variable@8,9#.
This fact implies an operational drawback, since Laplace
titransformation of the solution will generally give origin t
temporal nonlocality@12#, which will, in turn, make the cal-
culation of temporal correlators considerably more difficu
The possibility of this generalization, then, deserves furt
analysis.
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FIG. 2. The persistence index~normalized number of persisten
sites! n(t) as a function of time for some typical realizations in
one-dimensonal 105-site lattice. From bottom to top,g51.0, 1.2,
1.5, 1.8, 2.0, and 3.0.
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