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Persistence in Ley-flight anomalous diffusion
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The evolution of the number of persistent sites in a field governed by-flgght anomalous diffusion is
characterized. It is shown that, as in the case of ordinary diffusion, the number of persistent sites exhibits a
long-time power-law decay. For the case of white-noise initial conditions, the exponent in this power-law
decay can be numerically found from an algebraic equation as a function of Wigeekponenty. As expected,
the decay is faster as the transport mechanism becomes more efficient, #edeaseases. Numerical simu-
lations that validate the analytical results are also presef#dd63-651X97)04906-4

PACS numbds): 05.60+w, 05.20-y, 05.40:+j, 05.50+q

It has very recently been showa] that, rather surpris- which implies that(r?)—c, is the main ingredient for pro-
ingly, ordinary diffusion processes exhibit some featuresducing anomalous diffusion. In the limit of=2, the mean
whose evolution is not governed by the usual dynamical exsquare displacement becomes finite and ordinary diffusion is
ponent of diffusion, which relates time with the mean squaraecovered.
displacement, but by a new nontrivial exponéniThis new Recently, it has been show®,9] that Levy-flight (LF)
exponent characterizes the temporal decay of the number ahomalous diffusion admits a macroscopic description in
persistent sites from a noisy initial condition for the diffusion terms of a diffusionlike equation for a fielg(x,t) whose
equation. Considering an initial diffusing field with zero Fourier transform reads
mean value, persistent sites are the points where, up to a
given time, the field has never changed its sign. The number . -
of persistent points decays, for long timesN{$) ~t~ . For dp(k,t)+D,kYp(k,t)=0, (N
white-noise initial conditions in a one-dimensional system,
for instance, it has been found, both analytically and numeriWhereD

v, thatd~0 12 loselv related i th ,<bl7, with 7 the (mean time between jumps. This
cally, thatg~0.12. A closely related exponent appears in the, o510y 5-diffusion equation can be expressed in the origi-

spatial dependence of the cqrrelatiqn func.tion'of.persister“al X space in terms of fractional derivativERd]. The main
sites, and therefore characterizes their spatial distrib{iipn aim of this paper is to study the problem of persistence for

In ot_her works[3,4] it has been po_inted out that_nqntrivial_ Eqg. (1). It can be expected that, gsdecreases and anoma-

persistence exponents occur al_so in problems S|m|lar to .d'ffous diffusion becomes more and more efficient, the number

fusion, such as Glauber dynamics and other nonequilibriuny¢ o\ cistent sites decays faster. In the following, we charac-

phenom'ena. - . e terize this dependence of the persistence exponent on the
In spite of the ubiquity o_f ordinary dlffus_lon in natural évy exponenty.

processes, a variety of physical systems which have recentk/ First, we briefly review the lines along which the expo-

attracted a lot of gttention are driven by a differgnt class ofnent for persistence in ordinary diffusion was obtainefiih
transport mechanism, namely, by anomalous diffusih Consider a fieldp(x,t) whose evolution is governed by the

Like ordinary diffusion, this is an isotropic process, diffusi . nu2 :
_ ) . . ) iffusion equationd;p=DV~-¢ and whose initial state is a

i}x(t) X(r(i)l»_lir(l)' ?Utwlltti Ti?:n |S)’(qt'aiex dols|gla—0$nt]e2tKlts NOlandom function $(x,0) with deltalike correlation,

ecessarily linea e(Ix(t) —x(0)|%)=1(t) - L (%1,0)¢(X2,0)) = 78(x, — X,) . For some fixed poir, de-

Anomalous diffusion has been identified as the leading trans: : A 2 .
port mechanism, for instance, in fully developed turbulenczTlne the variableX(t) = ¢(x,t)/{[ #(x,t)]°). The stochastic

[6], where it is more efficient than ordinary diffusion processX(t) can be transformed into a stationary process by

lim,_.f(t)/t=>0, and in highy heterogeneous media such aSmtroducmg the change of variable=Int. In fact, it can be

porous substratd$], where it is less efficient than ordinary easily proven that the_: autocorrelation functionf) is, in

e ) terms of the new variable,
diffusion, lim,_,..f(t)/t=0.

The case of hyperdiffusion, lim.f(t)/t=%, can be

modeled at the mesoscopic level by means of a generaliza- T,—T,\%
tion of discrete-time random walks, which allows for jumps a(tlrt2)2<x(tl)x(t2)>:(SeChz—) , 2
with a long-tailed distributionp(r). These so-called lwy
flights are defined by a characteristic functioramely, the
Fourier transform ofp(r)] of the form p(q)=exp(~bg”")  which depends on the differencE=T,;—T, only. Note,
(0<y<2, b constant [7]. Although the explicit form of moreover, that it is independent of the diffusivity and of
p(r) is not known, it can be shown that(r)~r~9"7 for  the noise strengthy. It can also be shown that the correlator
larger (d is the spatial dimensign This power-law tail, of the processr(T)=sgri X(T)] is
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T\ 9?2 obtain ([¢(x,1)]1)=7"(2t)"Y” and the correlator
sech| a(ty,ty) for the variableX(t) = ¢(x,t)/{[ #(x,1)]?) at any
(3)  pointx reads

2 2
A(T)=(U(0)0(T))=;sm 1a(T):;sm 1

which is, in turn, related to the probability distribution 4t t, |92
P(T) of intervals between zeros &§(T). a,(t, ) =(X(t) X(t2)) = (t1+1t5)2 ®

The calculation of the connection between the correlator
of o(T) and P(T) requires introducing an approximation, again, X(t) can be converted into a stationary stochastic
however, namely, that the intervals between successive Zer?)?ocess with the change of variable=Int. In terms of the
of X(T) are statistically independent. This “independent- \\" \ariable. we havea (T)=[sech{T/2)]%?, with
interval approximation”(llA) neglects the fact that the evo- T=T.—T wh,ich generalizesy Ed2). For largeT this cor-
lution of ¢(x,t) is being driven by the diffusion equation, relati(l)n fLZJ;"ICtiOI’] behaves asy(T)~éxp(—Td/2y5=t‘d’27.

which imposes a deterministic correlation between the valueRIote that the decay od(T) is faster as the hey exponent

of ¢ at different points and times. Nevertheless, it has o -
Lo .y decreases and anomalous diffusion becomes more efficient
proven to be an excellent approximation in the case of ordi-

nary diffusion[1]. The IIA makes it possible to show that the as a transport mechanism.

. Now, we remark that the form of the correlator for
i_oaplace transforms oP(T) andA(T) are related according (T)=sgriX(T)] as a function ofa,(T) depends on the

definition of o only. Therefore, A (T)=(c(0)a(T))
< 2—(T)s[1-SA(s)] = (2/m)sin ta(T), and we have

P oL sA®) @

d/y

— 2 in—1 T
Ay(T)—;sm seclaz—

9)
where(T)=2/2/d is the mean interval size, which can be
readilxcalculated from the explicit form d&(T) [Eq. (3)]. This extends Eq(3) to the case of LF anomalous diffusion.

Now, P(s) has a simple pole at a real, negative value of itSThe next step in our derivation requires using the 1A ap-
variable, say, ats=-—¢. This singularity implies that proximation. As a matter of fact, we can argue that this ap-
P(T)~exp(-6T) for large T, which gives in turn proximation should be more accurate in the case of LF dif-
P(t)~t~’. This power-law decay dominates, as a consefusjon than for ordinary diffusion. This is due to the fact that

quence, the asymptotics of the probability tift) has not  |F diffusion acts over longer ranges and, therefore, correla-
changed its sign, which is closely relatedR(t). The deter-  tions in space and time arising from the evolution are more

mination of the persistence exponent for ordinary diffusionwidespread. As a consequence, successive values of the field
reduces then to the calculation of the root of the denominato&s(x,t) at a given point are relatively less correlated by the

in the right-hand side of Edq4), namely, of transport mechanism, and the statistical independence of suc-
25 [ cessive zeros inp(x,t) for fixed x is expected to hold, at
f(s)=2+ 2773\/%[1_ _f exp(—sT) least, as accurately as in ordinary diffusion. Within the I1A
mJo approximation for LF diffusion, we again encounter E4),

dr2 now with (T)=2m/y/d. The function whose root gives the
XSin‘l(sechZ—) dT}. (5)  value of the persistence exponent is then

This can be readily done by numerical means. éerl, for fy(s)=2+27rs\/m
instance, this yield9~0.1203.

In order to extend these results to the case of LF anoma-
lous diffusion, where the fieldb(x,t) is governed, through xsin 1
its Fourier transform, by Eq.), it is necessary to proceed

Er(;tlr(il)y in the Fourier representation. In fact, the solution to_l_hiS function diverges fos= — di2y, f(—d/2y)— — =, and

grows monotonically as approaches zero, with(0)=2. It
(K, ) =exp( — Dykyt)fz)(k,O), (6)  has, therefore, a root at some intermediate point, which, as in
the case of ordinary diffusion, can easily be found by nu-
cannot be explicitly antitransformed. Taking into merical means. The curve in Fig. 1 shows the result for the
account that, in the Fourier representation, the white-noisexponents as a function ofy with d=1. Fory<2, the value
correlation of the initial condition takes the form of ¢is given by Eq(10), whereas it is constant far=2. For
($(k1,0)0(k2,0))= 7' 8(k;+ky), the two-time correlation other spatial dimensions, the behavior &fy) is qualita-

1 Zsfoo
- Oexp( sT)

T d/y
sechz—> dT} . (10

function for ¢(x,t) is tively the same. Note, in fact, that far<2 the dependence
ond can be eliminated by redefining/d— y. We see that
(b(xt1) (X,tp)) = 77”_[ exg — D k¥(t; +1,)]dk 6 grows asy decreases, showing again that LF anomalous
diffusion gives rise to faster evolution than ordinary diffu-

sion.
7 . .
™ In order to check our analytical results, we have carried
where ', 7", and 5" are constants whose explicit values out a series of numerical simulations of LF anomalous dif-
are irrelevant in the following. From here, we immediately fusion on a discrete one-dimensionakite lattice with peri-

— n///(t1+t2)—d/y'
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FIG. 1. The persistence exponefitas a function of the Ley FIG. 2. The persistence indérormalized number of persistent
exponenty in one dimension. The curve corresponds, 6¥2, 0 siteg n(t) as a function of time for some typical realizations in a
the numerical calculation of the roots éf(s) in Eq. (10). For  one-dimensonal fGsite lattice. From bottom to topy=1.0, 1.2,
v>2, the value of¢ coincides with the one obtained for ordinary 1.5, 1.8, 2.0, and 3.0.

diffusion in[1]. Dots are results from numerical simulations of the o ] o
Lévy-flight process. averaged over a few realizations, is shown as dots in Fig. 1.

We find a very good agreement of numerical and analytical

odic boundary conditions. As stated above, the jump prob[esults, eSpeCiaIIy, for small and |arge In the transition

ability associated with Ley flights is defined through its "€gion,y~2, the agreement is not so good. The error, how-
Fourier transformp(q)=exp(bq?), and the explicit form  €Ver, should be ascribed to the numerical data. In that region,

of p(r) is not known. It is therefore usual to mimic e wherep(r) passes from being a regular jump distribution to

: : : S g ; being an anomalous one, the asymptotic slope is in fact not
flights taking a jump probability distribution with the same ; ; X .
asymptotics for — oo, namely,p(r)~r 17, In our simula- so reliably defined. On the other hand, simulations for

tions in one dimension, we USB(r)=(y/2)(1+|r[) "1~ y<<1, in which very long jumps have appreciable probabil-

P U ity, exhibit noticeable finite-size effects.
(0<y<2). Fory=2, the distributionp(r) has a finite sec- “\ys have shown here that the analysis of persistence fea-

ond moment and the resulting transport process is ordinanyres in ordinary diffusion can be readily generalized to the
diffusion. o ~ case of Ley-flight anomalous diffusion. This at once ex-
At each time step, a siteis chosen at random. The field tends some conclusions regarding the relevance of persis-
¢i(t) at that site, which, within the computer precision, is atence in diffusion problems to Mg flights. For instance, it
real number, is then decreased according to has been pointed o{it] that persistence is closely related to
some dynamical properties of systems of diffusing particles

1 subject to bimolecular reactions, such A4s-B—0, which
pi(t+Ay= §¢i(t)' (1) have also been studied in the case of anomalous diffusion by
other analytical meansl1].
The ammount of field extracted from sités equally distrib- An interesting question regards the possibility of extend-

uted in two equidistant siteis+[r] andi—[r], wherer is  ing this generalization to other types of anomalous diffusion,

chosen with the probability distributiop(r) and[r] indi- ~ Namely, to fractional subdiffusion. In this transport process,
cates its integer part. We have, therefore jump probability densities are regular, but, on the other hand,

waiting times have power-law distributions. The possibility
1 of having long waiting times, in fact, gives rise to slower
Gix () (t+HAD = i (1) + —i(1). (12) evolution than in ordinary diffusion. In principle, fractional
4 subdiffusion also admits a macroscopic description by means
of an equation of the type of Eql), but in the Laplace
We takeAt=L"" so that, on average, each site is visitedrepresentation with respect to the temporal varidi8le].
once at each time unit. The persistence indé®, namely,  This fact implies an operational drawback, since Laplace an-
the fraction of sites where;(t) has not changed its sign titransformation of the solution will generally give origin to
from the beginning of the evolution, is directly determinedtemporal nonlocalitf12], which will, in turn, make the cal-
by simple counting. culation of temporal correlators considerably more difficult.
Figure 2 shows some typical realizations wlitk 10°and The possibility of this generalization, then, deserves further
for several values ofy. The variation of the slopes in this analysis.

log-log plot as the Ley exponent changes is apparent. The  This work was partially carried out with a grant from the
temporal evolution of the slope for each curve can be nuajexander von Humboldt Foundation, Germany. The author
merically calculated, and its asymptotics can be evaluateg grateful to the Fritz Haber Institute for hospitality during
from extrapolation of a suitably fitted function in the region phjs stay in Berlin, and to FundacioAntorchas, Argentina,
where data are available. The result of this extrapolationor financial support.



55 PERSISTENCE IN LEY-FLIGHT ANOMALOUS DIFFUSION 6635

[1] S.N. Majumdaret al, Phys. Rev. Lett77, 2867 (1996. [7] M.F. Shlesinger, G.M. Zaslavsky, and J. Klafter, NatB63

[2] D.H. Zanette, Phys. Rev. 5, 2462(1997). 31 (1993.

[3] B. Derridaet al., Phys. Rev. Let#77, 2871(1996. [8] H.C. Fogedby, Phys. Rev. B0, 1657(1994.

[4] S.N. Majumdaret al, Phys. Rev. Lett77, 3704(1996. [9] A. Compte, Phys. Rev. B3, 4191(1996.

[5] J.P. Bouchaud and A. Georges, Phys. Ré&5, 127(1991); E. [10] S.G. Samko, A.A. Kilbas, and O.l. MaricheNractional Inte-
Guyon and J.P. Bouchaud, instabilities and Nonequilibrium gral and Derivatives—Theory and ApplicatiofGordon and
Structures |V edited by E. Tirapegui and W. ZelléKluwer, Breach, New York, 1993
Dordrecht, 1998 [11] G. Zumofen and J. Klafter, Phys. Rev5B, 5119(1994); P.P.

[6] M.F. Shlesinger, J. Klafter, and B.J. West, Physid@A, 212 Oliva and D.H. Zanettejbid. 51, 6258 (1999; P.P. Oliva,

(1986; M.F. Shlesinger, B.J. West, and J. Klafter, Phys. Rev. D.H. Zanette, and P.A. Alemanihid. 53, 228 (1996
Lett. 58, 1100(1987). [12] D.H. Zanette(unpublishegl



