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Natural things are midway between the knowledge of God and our knowledge;
for we receive knowledge from natural things, of which God is the cause by His
knowledge. Hence, as the natural objects of knowledge are prior to our knowledge,
and are its measure, so the knowledge of God is prior to natural things and is the
measure of them; as, for instance, a house is midway between the knowledge of the
builder who made it and the knowledge of the one who gathers his knowledge of the
house from the house already built.

St. Tomas Aquinas, Summa Theologiæ, Part I, Question 14, Article 8.
Translation by the Fathers of the English Dominican Province.
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Abstract
Scale-dependent statistics, i.e. intermittency, are a hallmark of fully developed tur-
bulence. In hydrodynamical turbulence this means a transition from Gaussian statis-
tics on large scales to non-Gaussian statistics on small scales. The Fourier modes of
a Gaussian random field are statistically independent. Conversely, it has been shown
that, under quite general conditions, Fourier modes with random phases produce
approximately Gaussian real-space statistics. This motivates the study of intermit-
tency in turbulent fluids as a scale-dependent coherence phenomenon of the Fourier
phases.
To better understand this relation between real-space intermittency and spectral-
space coherence, a simple but novel coupled oscillator model is proposed. It is
reminiscent of the phase-phase coupling present in the spectral space formulation of
the Navier-Stokes equations, in which sets of three phases are coupled in so-called
triads.
By studying this model we show that the three-oscillator PDFs can be completely
identified with their triad PDFs. A convenient parametrization allows for a very
good description of each triad’s PDF using only one parameter. Using this parame-
ter we can isolate each triad’s contribution to real-space skewness. This establishes a
relation between three-oscillator coherence phenomena and real-space intermittency.

Keywords: Intermittency, turbulence, coupled oscillators, triads
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f̂1 Fine-grained one-oscillator PDF
f1 One-oscillator PDF
f̂3 Fine-grained triad PDF
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f1×1×1 Three-oscillator PDF
f3×3 Two-triad PDF
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1. Introduction

The study of fluids dates back several centuries, and its growth and development has
been intimately related with the development of physics and mathematics. Ideas
from fluid dynamics have found their use in other areas of physics, which originally
were thought to be of a more abstract nature; for example the electromagnetic fields
are described with equations whose interpretation resembles one of a flow. On the
side of mathematics, analysis, the theory of differential equations, probability the-
ory, and more recently, dynamical systems and chaos have allowed a deeper and
better understanding of the phenomena encountered in fluid dynamics.
Despite the progress obtained, there are still many unanswered questions and open
problems in this area of research. One aspect of fluid dynamics is its chaotic nature,
which we call turbulence. From the fluid theoretical point of view turbulence is
characterized by enhanced mixing and strong velocity fluctuations. These extreme
events are several orders of magnitude more probable than for a random Gaussian
field, and they distinguish turbulence from diffusion. Additionally, a wide range of
scales are coupled yielding a complex problem of energy transfer, stability, and pre-
dictability of the given flow. Therefore the physics at a certain length scale depends
not only on what happens on the same length scale, but also on larger and smaller
ones.
In turbulent flows, near-Gaussian statistics are observed at large scales. The small
scales, on the other hand, show heavy tails with respect to a Gaussian distribu-
tion. The statistics of the field are hence scale dependent [48]. This is known in
turbulence under the term of intermittency. The mechanisms for the appearance of
intermittency and its properties contain key information on the subtle underlying
physics at work in turbulence, and the interaction between different length scales.
A great deal of work has been done in the context of homogeneous isotropic turbu-
lence [21]. This is the study of turbulent fluids whose statistics are invariant under
space translations and rotations. The basic equations of a fluid are called the Navier-
Stokes equations. The complexity of these equations makes it challenging to prove
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1. Introduction

or derive results. Additionally, the numerical integration of the Navier-Stokes equa-
tions to reproduce highly turbulent velocity fields to high enough resolution presents
technical challenges [54]. For this reason, not all questions can be answered by direct
numerical simulations, and direct analytic approaches have a restricted applicabil-
ity. Many aspects of turbulence have also been modeled through simple dynamical
models [4, 10, 39], yielding simplified tractable systems where certain aspects or
properties of turbulence are reproduced and can be more easily understood. A full
understanding of intermittency and the mechanism generating non-Gaussianity in
turbulence remains unresolved. The latter strategy will be followed here, whereby
a simplified model for intermittency and its relation to Fourier phase statistics will
be studied.

1.1. Intermittency and Fourier phases

Real-space quadratic non-linearities take in spectral space the form of three Fourier
mode interaction. Three modes interacting in such a way are called triads. As
we will see, on account of the quadratic non-linearity present in the Navier-Stokes
equations, the Fourier phases are coupled in triads [16]. Gaussian fields may also
be represented in spectral space. All the Fourier phases of a Gaussian field are sta-
tistically independent. The strategy for obtaining the real-space statistics from the
spectral space statistics relies on the central limit theorem [29]. Nevertheless, this
argument need not apply if the spectrum is too steep. In turbulent fields governed by
the Navier-Stokes equations, every phase is statistically uniformly distributed and
every pair of Fourier phases are uncorrelated. Turbulent fields shown steep enough
spectra, so that the central limit theorem argument no longer applies. Hence, al-
though pairs of phases are uncorrelated, turbulent fields have non-trivial real-space
statistics. Additionally, the triad coupling produces more complicated higher-order
Fourier phase statistics. Therefore, departure from Gaussianity of turbulent fields
can be studied in spectral space.
In a recent direct numerical simulation study [58], the emergence of non-Gaussianity
from Gaussian initial conditions was revisited. The authors analyzed the single-
point statistics for the velocity field and its vorticity field. A rapid development of
non-Gaussianity at small-scale statistics was observed, while the velocity statistics
themselves remained close to Gaussian. The authors complemented this observation
of the real-space statistics with snapshots of phases of the velocity field’s Fourier
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coefficients. It was observed that Fourier phases in the high wave-number regime
present certain coherent events.
Similar coherence events have been observed in two-dimensional turbulent simula-
tions [49] and numerical studies have been done on the triads’ role in forced three-
dimensional turbulence [20, 40, 55]. Additionally, analytic reformulations of Navier-
Stokes equations in spectral space have been recently proposed [16]. These aim at
simplifying the study of triad interactions in turbulent fields, easing the derivation
of exact results, and deepening the understanding of the role triads play in the dy-
namics of turbulent fields. Nevertheless, the question of Fourier phases’ statistics
exact influence in real-space statistics is a still rather unexplored research question.
The rapid transition to non-Gaussianity at the small scales and the coherent events
of the high wave-number Fourier phases raise the question of which dynamical effect
these phases and their statistics have in the generation of non-Gaussianity. This
motivates the study of intermittency as a scale-dependent phase correlation phe-
nomenon.
The authors in [58] propose a phase model inspired by the structure of the Navier-
Stokes spectral formulation. This model leaves the amplitudes of the Fourier modes
constant and concentrates on the phase dynamics. Simplifying from the consider-
ably more complex Navier-Stokes dynamics, this toy model aims to reproduce the
dynamical phenomena of the Fourier phases whilst yielding an at least partially
tractable model. Interpreting the Fourier phases as a system of coupled oscillators
opens the door for ideas and methods already developed in this area. Studying this
phase toy model is the goal of the current thesis.

1.2. Coupled oscillators and synchronization

Oscillators have been used extensively in physics as a first step in understanding
physical phenomena. From clocks to atoms, many systems are idealized or ab-
stracted to simple oscillators which, retain the relevant physical behavior whilst
yielding a much simpler formulation of the original problem. The basic oscillator
studied in physics is the harmonic oscillator. It follows the equation of motion

d2x(t)
dt2 = −ω2x(t). (1.1)
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1. Introduction

A system subject to this equation oscillates with frequency ω in time. Once the ba-
sic problems have been understood, more complex systems and phenomena can be
tackled by generalizing this oscillator. The next step is introduce a viscous term of
the form ∝ dx(t)/dt, which dissipates energy. More and more complex phenomena
can be described by subsequent generalizations of the harmonic oscillator. Conse-
quently, these become more difficult to solve and understand.
There are, however, other ways to describe complex phenomena without indefinitely
complicating the oscillator’s equations of motion. A way to do this is to study an
ensemble of coupled oscillators. One behavior which can be studied in such systems
is synchronization.
Many simple constituents put together may show non-trivial phenomena when cou-
pled to one another, by changing the system size or when some of the system’s
parameter changes. These systems are sometimes composed of rather simple in-
dividual elements with simple defining and evolution equations. Synchronization
therefore appears as a property of the system. It is an ubiquitous phenomenon in
physics [47], whereby whole systems or parts of systems dynamically evolve into
coherent states.
Given the complexity of most physical systems, it is necessary to find simplified
models which, however, reproduce the characteristics of the more complex system.
This is where coupled oscillators come into play; without indefinitely complicating
the equations of motions of oscillators, but rather coupling many of them together,
complex phenomena may be studied. A major advance in this direction is due to
Kuramoto, who proposed a model, which later took his name [31]. This model con-
sists of a set of N globally coupled oscillators ϕk(t). These oscillators follow the
equations of motion

dϕk(t)
dt = ωk + K

N

N∑
p=1

sin(ϕk(t)− ϕp(t)) , k = 1, ..., N. (1.2)

The ωk are the natural frequencies of the oscillators, and K is a coupling constant.
In this context, the idea of a mean field was introduced to better understand the
dynamics of the system as a whole. Let the mean field R ∈ C be defined as

R(t) = R(t) exp[iΦ(t)] := 1
N

N∑
p=1

exp[iϕp(t)], R,Φ ∈ R. (1.3)
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1.2. Coupled oscillators and synchronization

With this mean field, the dynamics of the system can be rewritten as

dϕk(t)
dt = ωk +K R(t) sin(ϕk(t)− Φ(t)) k = 1, ..., N. (1.4)

This model has been intensely studied and among the most notable results is the ex-
istence of a phase transitions [7]. That is, there is a critical value KC of the coupling,
such that for K > KC the system synchronizes after time evolution R → 1−. For
values lower than the critical value the system remains uniformly distributed R ∼ 0.
After this model was understood well enough, several variations have appeared [52].
These aim at deepening the understanding of coupled oscillator systems in general
and broadening the scope of physical phenomena which can be modeled by them.
For the case of ensembles of identical and usually globally coupled oscillators many
interesting phenomena have been explored. For example, the appearance and tran-
sition to synchronization [56] or quasi-periodic phenomena [50].

One major advance in the study of coupled oscillators was achieved with the Ott &
Antonsen ansatz [42]. This ansatz was proposed for the Kuramoto model in the ther-
modynamic limit N →∞. In this limit the distribution of oscillators is described by
a probability density function (PDF). The authors then propose a parametrization
for the system’s PDF. This parametrization is equivalent to the so-called Wrapped
Cauchy (WC) distribution. With this ansatz, the PDF is parametrized through one
complex variable. This parameter is the equivalent of the finite-N order parameter,
and is hence also denoted R. The authors find that the dynamics of the N → ∞
Kuramoto model is contained in a two-dimensional manifold parametrized by this
complex variable. The time evolution of the system’s PDF can be reduced to the
dynamics of the parameter R. By studying this parameter they recover the exis-
tence of a phase transition.
This method of analyzing the thermodynamic limit and parametrizing the PDF as
a WC distribution is referred to as the Ott & Antonsen ansatz. It has proved to be
an useful tool in investigating systems of coupled oscillators. This ansatz has found
its place as a standard tool in this research area. Many different results have been
derived using this method. For example, results regarding the underlying mathe-
matical properties [17, 28, 36], the study of heterogeneous oscillator systems [1, 32],
and turbulent like behavior [59] have been some of the areas where this ansatz has
been used.
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1. Introduction

The main reason this ansatz works, is that it correctly parametrizes the low-di-
mensional behavior of many coupled oscillator systems. This low-dimensionality is
related to the appearance of synchronization phenomena [45]. Additionally, one of
their major achievements is that this ansatz is applicable to systems of non-identical
oscillators.
To our knowledge, the Ott & Antonsen ansatz brought the WC distribution into the
context of oscillators and synchronization. Although some of the assumptions used
in the Ott & Antonsen ansatz will not apply to the oscillator system we study here1,
the introduction of the WC distribution leads to the topics of circular statistics and
circular distributions. This is the correct concept for studying cyclic variables, of
which complex Fourier phases, our oscillators, are a part of.
The complexity of the systems where these methods have been applied has iter-
atively increased [46]. Nevertheless, this complexity has not yet reached the one
encountered in the model to be studied here. For example, to our knowledge, a
Kuramoto-like system with triad interaction has never before been studied. In this
work a novel type of systems of coupled oscillators is presented. They are of rele-
vance for dynamics stemming from any quadratic non-linearity. This addition should
further enrich the reciprocal transfer of ideas and methods from the fields of coupled
oscillator systems and turbulence research.

1.3. Thesis outline

Here we will derive and study the coupled oscillator model proposed in [58]. For
this, basic ideas and tools of statistics and turbulence will be developed in chapters
2 and 3. Afterwards the derivation of the model itself and its properties will be
presented in chapter 4. Subsequently in chapter 5, the phase dynamics and their
statistics will be numerically explored. With knowledge of the oscillator statistics,
real-space statistics will be discussed in chapter 6. Finally, summary, conclusions,
and outlook will be presented in section 7.
The first appendix A presents relevant details of the numerical implementation.
In appendices B and C two oscillator systems will be presented. Firstly a simple
cosine model, and secondly an ensemble of Josephson junctions. Probability density
functions can be derived for these systems. Their similarity to our coupled oscillator

1For example, oscillator statistical independence can be explicitly proven in the Kuramoto model
[2].
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model will be useful when motivating a starting point for a theory of the three-
oscillator statistics. The necessary derivations and exposition do not adequately
pass in the main text, and are hence presented in these small appendices.
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2. Statistical tools

The dynamics of a turbulent velocity field are chaotic in nature, i.e. they show
sensitive dependence on initial conditions [34]. As a consequence, the state of the
system cannot be precisely predicted after time evolution. One can only speak of
probabilities of the events. It is therefore convenient to regard the velocity field
v(t,x) of a turbulent fluid as a random variable [21].
This statistical approach to turbulence requires developing some basic tools, which
we will do in section 2.1 for random variables taking values in R, i.e. linear random
variables. More concretely, these will allow for a quantitative description of inter-
mittency in turbulence. This will be carried out in the next chapter.
In the present work we will also treat variables which are cyclic in nature and evolve
in chaotic dynamics, i.e. the coupled oscillator model. One therefore also treats these
oscillators as random variables. Specific tools will be presented for these circular
random variables in sections 2.2 and 2.3.

2.1. Linear statistics

Let X be a real random variable and x ∈ R belong to its sample space. X could be,
for example, a component or the magnitude of a turbulent velocity field v(t,x). The
random variable X is fully characterized by a probability density function (PDF)
f(x). Two random variables with the same PDF are therefore said to be statistically
identical. Axiomatically, a PDF is derived from the cumulative distribution function
F (x) of a given random variable [48] and it has the following defining properties

• f(x) := dF (x)
dx ;

• f(x) ≥ 0 ∀x ∈ R;

•
∫

R
dx f(x) = 1.

9



2. Statistical tools

The expectation value of a random variable can be calculated from its PDF as

〈X〉 =
∫
R

dx f(x) x. (2.1)

This is a weighted average over all possible values of X. Similarly the expectation
value of a function of the random variable H(X) can be obtained as

〈H(X)〉 =
∫
R

dx f(x)H(x). (2.2)

The expectation value is said to exist only if these integrals absolutely converge.
The expectation value of a complex exponential is of great interest. It can be cast
into the form of a Fourier transform of the PDF

f̂(k) :=
∫
R

dx f(x) exp[ikx] ≡ 〈exp[ikX]〉. (2.3)

This function f̂ is called the "characteristic function of f". It can be used to simplify
derivations and proofs. Additionally, expectation values can be recast as derivatives
on f̂ ; the statistical information contained in f is also contained in f̂ .
The expectation value of Xn is called the nth moment of X. It can be obtained
from the PDF itself as a weighted average or from its characteristic function as a
derivative

dnf̂(k)
d(ik)n

∣∣∣∣∣∣
k=0

=
∫
R

dx f(x) xn ≡ 〈Xn〉. (2.4)

The mean 〈X〉 ofX is the first moment. Through a redefinition, the random variable
can be made to have first moment equal to zero

X → X̃ = X − 〈X〉. (2.5)

X̃ is known as a centered random variable. X̃ is useful for looking into the fluctua-
tions of X around its mean. The second moment of X̃ is known as the variance

σ2
X = 〈X̃2〉 =

∫
R

dx f(x) (x− 〈X〉)2. (2.6)

σX is known as the standard deviation of X and measures dispersion around the
mean. With the standard deviation a standardized centered variable X̂ can be
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2.1. Linear statistics

defined as
X̂ := X̃

σX
= X − 〈X〉

σX
. (2.7)

This standardized variable has first moment zero and second moment one. We will
denote the moments of X̂ as

Kn(X) := 〈X̂n〉 = 〈(X − 〈X〉)n〉
〈(X − 〈X〉)2〉n/2

. (2.8)

This process of centering and standardizing a random variable yields the correct
context for comparing different statistical processes. All standardized and centered
random variables have per definition the same first two moments. Deviations in
higher moments therefore serve to differentiate between types of random variables.
The third moment of X̂ is known as the skewness of X

K3(X) = 〈X̂3〉 = 〈(X − 〈X〉)3〉
〈(X − 〈X〉)2〉3/2

. (2.9)

The fourth moment of X̂ has the name flatness. It is given by

K4(X) = 〈X̂4〉 = 〈(X − 〈X〉)4〉
〈(X − 〈X〉)2〉2

. (2.10)

We will shortly introduce the Gaussian or normal distribution. This distribution is
extensively used in statistics. The skewness and flatness receive special attention,
because they are frequently used to measure departure of a distribution from Gaus-
sianity. Higher-order moments can also be used, but obtaining accurate high-order
statistics is experimentally difficulty. The higher the statistics one is interested in,
the bigger the sample size must be. That is, very large samples obtained under
similar conditions are necessary to ensure convergence to the expected value. This
means that the theory tries to work with the lower-order moments as extensively as
possible.

2.1.1. Gaussian distribution

In probability theory, the Gaussian or normal distribution occupies a central role.
On the one hand, its importance stems from the central limit theorem. This theorem
states that, under certain conditions, averages of observations of random variables
taken from different independent processes will converge to a Gaussian distribution
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2. Statistical tools

[48].
In physics one encounters this situation often. For example, molecular uncertainty
or the error addition in an experiment follow a normal distribution. In the context
of fluid dynamics the statistics of a velocity field can be analyzed in a similar way.
If it is driven by independently occurring events, i.e. a spatially and temporally
uncorrelated field, its statistics are normally distributed.
A random variable X is said to be normal or Gaussian if its PDF has the form [3]

f(x) = 1
(2πσ2)1/2 exp

[
−(x− µ)2

2σ2

]
. (2.11)

This distribution has mean 〈X〉 = µ and standard deviation σX = σ. Its character-
istic function (2.3) can be explicitly calculated and takes the form

f̂(k) = exp
[
iµk − (σk)2

2

]
. (2.12)

All moments of a Gaussian distribution exist. They are fixed by the mean and
variance, and are given by (2.4). Most notably, a Gaussian distribution has zero
skewness and a flatness equals to three.

2.2. Circular statistics

In the previous section we introduced basic tools and notions in the context of
statistics of linear random variables. We will now do the same for circular random
variables. These circular random variables are statistical processes, which are pe-
riodic in nature. They may then be rescaled, so that the probability is completely
contained in the circumference of a unit circle S1. The cyclic nature of these random
variables requires special treatment, as will be shown in the following example.
Applications where cyclic variables appear are, e.g., statistics of directions, angles,
and events happening at different times of the day. The time of the day 23:45 is just
as far away from midnight 00:00 as the time 00:15. One would, therefore, intuitively
expect their mean to be midnight. A quick calculation yields, however, the time
12:00 as their mean. On the other hand, the mean would give the correct result if
our sample were the times 11:45 and 12:15. Correspondingly, where we place the
zero (midnight) has an effect on the statistics. This is only an issue because of the
cyclic nature of the hours of the day. With larger more irregularly distributed data
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2.2. Circular statistics

sets choosing the zero will be an issue, as well as unequivocally defining their mean
and higher moments.
Specific tools need to be set in place to handle these cyclic variables so that, for
example, the means and other moments be the same if we take values over [0, 2π) or
over [−π, π). This will be done in the next section. Other aspects present in linear
statistics will also be derived for these circular statistics, such as characterizing a
random variable by its PDF or its characteristic function. Finally, the subsequent
section will introduce two concrete circular distributions useful for the current work.
We will follow the nomenclature and ideas as they are presented in [27].

2.2.1. Cyclic variables

Let ϕ be a random variable yielding values in S1. Let us take a set of measure-
ments {ϕi} of the random variable. The first quantity of interest is the mean or
preferred direction of the random variable ϕ. As mentioned in the previous section
the cyclic nature of ϕ renders the arithmetic mean inadequate. With the application
of oscillators in mind, let us instead define a mean field R ∈ C as

R = R exp[iΦ] :=
∑
i

exp[iφi]. (2.13)

The circular mean direction ϕ is then the angle argument of R

ϕ = arg [R] = Φ. (2.14)

Consider additionally, that the same set of measurements is taken on two different
conventions for the position of the zero. These two conventions are rotated by δ

with respect to one another. The two means R and R′ are then also related by a
rotation by δ

R′ =
∑
i

exp[i(φi + δ)] = exp[iδ]R. (2.15)

With this definition for the mean, the cyclic nature of ϕ is explicitly implemented.
The mean R is known as the first trigonometric moment. It plays a fundamental
role in circular statistics. In physics similar definitions have been used in the study
of synchronization of oscillators, most notably in the Kuramoto model [31].
We will now introduce the concept of PDF for circular random variables. Just as
for linear random variables, a circular random variable is fully characterized by its
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2. Statistical tools

circular PDF.

2.2.2. Circular PDF

Consider a circular random variable with a corresponding PDF. We will focus on
continuous random variables and circular distributions. These are continuous func-
tions f(φ) in S1 and have the following properties

• f(φ) ≥ 0;

•
∫
S1

dφ f(φ) = 1;

• f(φ) = f(φ+ 2πn), ∀ n ∈ Z.

For linear real random variables the PDF can be obtained from a characteristic
function, i.e. its Fourier transform. For a cyclic variable ϕ, however, the situation
is different. Following the definition used for a linear variable (2.3), the circular
characteristic function f̂(k) is given by

f̂(k) = 1
2π

∫
S1

dφ f(φ) exp[ikφ] ≡ 1
2π 〈exp[ikφ]〉. (2.16)

Moreover, as a consequence of the periodicity of f

f̂(k) != exp[2πik] f̂(k)⇒ k ∈ Z. (2.17)

That is, the characteristic function is only non-zero at integer values for k. That is,
on account of the periodicity of f , its Fourier transformation is its Fourier series.
We will denote the Fourier coefficients f̂n using the characteristic function as f̂n :=
2πf(n) ∀n ∈ Z. The normalization of f(φ) implies that

f̂(0) = 1
2π ⇒ f̂0 = 1. (2.18)

The reality of f(φ) implies that the characteristic function is invariant under complex
conjugation and inversion k → −k, i.e.

f̂(k) = f̂(−k). (2.19)
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2.3. Circular distributions

This leads us to the most general form of a circular PDF in terms of its Fourier
series given by

f(φ) = 1
2π

1 +
∑
n∈N

f̂n exp[−iφn] + c.c.
 . (2.20)

Recall that the Fourier coefficients are the values of the characteristic function (2.16)
at k ∈ Z. These values play a special role in the theory, and are called the trigono-
metric moments of f(φ). For example, the mean of a circular random variable as a
continuous version of equation (2.13) is its first trigonometric moment, i.e.

R = 〈exp[iϕ]〉 = f̂1. (2.21)

By virtue of de Moivre’s formula all powers of trigonometric moments can be rewrit-
ten in terms the trigonometric moments. The characteristic function, i.e. the Fourier
coefficients, of a circular PDF therefore contains all the statistical information of a
cyclic random variable. This establishes the similarity between linear and circular
PDFs and their corresponding characteristic functions.

2.3. Circular distributions

In the previous sections we introduced tools for working with circular statistical
processes. Here we will present circular distributions useful in the present work and
discuss some of their properties. We still follow [27].

2.3.1. Uniform distribution

A distribution which has no preferred direction is called an uniform distribution and
it is given by

f(φ) = 1
2π φ ∈ [0, 2π). (2.22)

The preferred direction of a circular statistical process is usually given by its first
trigonometric moment, i.e. its mean. If the first moment is zero, one then usually
looks at the next highest non-vanishing moment. Because the argument of the
number zero arg(0 = z ∈ C) is not defined and all trigonometric moments of this
distribution are zero, it follows that the distribution has no preferred direction.
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2.3.2. Wrapped distributions

One method for generating circular distributions is known as wrapping. A circular
random variable ϕ may be obtained from a linear random variable X by taking
the linear variable modulo 2π. This is equivalent to wrapping the real line around
the unit circle. Let g be a linear PDF. Then a circular PDF f is obtained from g

through
f(φ) =

∑
n∈Z

g(φ+ 2πn) φ ∈ [0, 2π). (2.23)

The Fourier coefficients of the circular PDF f are related to the characteristic func-
tion of the linear PDF. Let ĝ be the characteristic function of g given by

ĝ(k) =
∫
R

dx exp[ikx]g(x). (2.24)

The relation between the characteristic function and the trigonometric moments
may be derived as follows. Take the characteristic function of the circular PDF
(2.16) and use the definition of the linear characteristic function (2.24), then plug
this into the formula for the wrapping (2.23). This yields the following relation
between both characteristic functions

f̂k = 2πf̂(k) =
∫
S1

dφ f(φ) exp[ikφ]

=
∑
n∈Z

∫
S1

dφ g(φ+ 2πn) exp[ikφ]

=
∫

R
dφ g(φ) exp[ikφ].

(2.25)

In short
f̂k = 2πf̂(k) = ĝ(k). (2.26)

Wrapping therefore transfers some of the statistical properties of the linear random
variable to the circular one. Namely, the value of the linear characteristic function
ĝ(k) at integer k fixes the corresponding trigonometric moments f̂k of the wrapped
circular PDF.
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2.3. Circular distributions

2.3.3. Wrapped Cauchy (WC) distribution

On the real line x ∈ R the Cauchy distribution gR can be parametrized as

gR(x) = 1
π

− logR
(logR)2 + (x− Φ)2 , R = R exp[iΦ]. (2.27)

The Cauchy distribution has characteristic function ĝR given by

ĝR(k) = R|k| exp[iΦk]. (2.28)

This linear distribution can be wrapped to produce a circular one. Wrapping gR as
in (2.23) yields a circular PDF known as the Wrapped Cauchy (WC) distribution.
The WC distribution then takes the form

fR(φ) = 1
2π

1 +
∑
n∈N

Rn exp[−inφ] + c.c.
 . (2.29)

After wrapping gR, the first trigonometric moment of the resulting circular PDF
fR is R. To ensure convergence the condition R < 1 is necessary. The sum can be
carried out explicitly as a geometric series. The resulting form yields

fR(φ) = 1
2π

[
1 + R exp[−iφ]

1−R exp[−iφ] + c.c.
]
,

fR(φ) = 1
2π

1−R2

1 +R2 − 2R cos(Φ− φ) .

(2.30)

The WC distribution is symmetric with respect to Φ, i.e. fR(Φ+φ) = fR(Φ−φ)∀φ.
Using equation (2.30) we consider its at extrema

dfR(φ)
dφ

!= 0⇒ φ = Φ,Φ + π. (2.31)

The concavity at the extrema will define if they are a maximum or minimum

d2fR(φ)
dφ2

∣∣∣∣∣
φ=Φ

= −R
π (1−R)2 < 0, ∀R ∈ [0, 1),

d2fR(φ)
dφ2

∣∣∣∣∣
φ=Φ+π

= R

π

1−R
(1 +R)3 > 0, ∀R ∈ [0, 1).

(2.32)
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The distribution is therefore unimodal and it accumulates at φ = Φ. This means it
has only Φ as a preferred direction. The role of R is further understood by taking
the ratio of f at its maximum and minimum

fR(Φ)
fR(Φ + π) =

(1 +R

1−R

)2
. (2.33)

R = 0 corresponds to an uniform distribution, as can also be seen from (2.29). A
higher value of R means a more peaked PDF around Φ. As will be shortly seen, the
limit R→ 1− leads to a δ-distribution.
Note that the parameters Φ and R correspond to the angle argument and magnitude
of the first trigonometric moment R = f̂1. Additionally, all higher trigonometric
moments are given through this first moment by the relation f̂n = f̂n1 = Rn. As
expected for wrapped distributions (2.26), the trigonometric moments of the circular
variable correspond to the characteristic function of the linear variable (2.28) at
k ∈ Z.
Another remarkable property of the WC distribution is that it is α-stable, i.e. its
functional form is invariant under convolution with another WC distribution. Let
fRf

and hRh
be WC distributions with first moments Rf and Rh, respectively. Their

convolution can be computed using their series form (2.29). This yields

(fRf
∗ hRh

)(φ) =
∫
S1

dθ fRf
(θ) hRh

(φ− θ)

= 1
2π

1 +
∑
n∈N

∑
m∈N

Rn
fRm

h exp[−imφ]δm,n + c.c.


= 1
2π

1 +
∑
n∈N

(RfRh)n exp[−inφ] + c.c.
 .

(2.34)

Therefore, a convolution of two WC distributions yields another WC distribution.
The first moment of the resulting distribution Rf∗h is the product of the first mo-
ments of the original distributions, i.e. Rf∗h = RfRh. Finally, because convergence
of the original sums requires that Rf < 1 and Rh < 1, it follows that Rf∗h < 1. This
ensures convergence of the resulting sum to a WC distribution.
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2.3. Circular distributions

Poisson kernel

Consider the WC distribution given in the series form (2.29). In the limit R → 1−

this expression is known as the Poisson kernel, i.e., it is an integral kernel to solve the
two-dimensional Laplace equation with Dirichlet boundary conditions on the unit
disc D [5]. It is known1 that equation (2.29) being a sum of orthogonal functions
converges in the limit R→ 1− in the sense of distributions to a δ-distribution

lim
R→1−

fR(φ) = δ(φ− Φ). (2.35)

Let g be a Lebesgue integrable function on the boundary of the unit disc, g ∈ L1(∂D).
Let u be a function in the unit disc D given by

u(R) =
∫
∂D

dφfR(φ)g(exp[iφ]). (2.36)

Then u(R) is harmonic in D and given (2.35) it fulfills the boundary condition

lim
R→1−

u(R) = g(exp[iΦ]).

Recall circular PDFs can be used to compute ensemble averages of circular random
variables. For example, a function h of a circular random variable ϕ has the expected
value

v(R) :=
∫
S1

dφ fR(φ) h(φ) ≡ 〈h(ϕ)〉. (2.37)

By comparing this equation with equation (2.36) it is clear, that ensemble averages
of a function h over circular random variables distributed as a WC distribution are
analytic in R.

2.3.4. Wrapped Stable and Uniform Mixture (WSM)

The WC distribution is not the most general α-stable distribution. It nevertheless
provides a good starting point for modeling the functional form of circular PDFs.
More general functional forms of α-stable distributions become however too com-
plicated and intractable [27]. One therefore looks for simple generalizations of this
distribution. This may be easily done by combining the WC distribution, with
first moment r = r exp[iΦ] ∈ C, with the uniform distribution. This introduces
an additional parameter C ∈ R, which yields a more general distribution, which is

1See e.g. in [3] exercise 14.3.11.
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still α-stable, as will be shown below. This Wrapped Stable and Uniform Mixture
distribution (WSM) can be parametrized as

fC,r(φ) = 1
2π

1 + C
∑
n∈N

rn exp[−inφ] + c.c.
 . (2.38)

We will call C the mixture parameter. C controls the relative weight of the angular
part with respect to the uniform part. The sum can be carried out just like for the
WC distribution. This yields

fC,r(φ) = 1− C
2π + C

2π
1− r2

1 + r2 − 2r cos(Φ− φ) . (2.39)

Looking for extrema and studying their concavity follows like in the case of the WC
distribution. For C > 0, the result is the same. The WSM distribution is unimodal,
symmetric around Φ, with maximum at Φ and minimum at Φ + π. In the case of
C < 0 the maximum and minimum are swapped. To ensure that fC,r is a positive
function, the condition

r − 1
2r ≤ C ≤ r + 1

2r (2.40)

must be imposed. A modified version of the Poisson kernel result also applies here:
Expectation values are also analytic in r.
The α-stability of the WSM distribution is easily verifiable using (2.38). Let fCf ,rf

and hCf ,rh
be WSM distributions. Convolving them yields another WSM distribu-

tion, namely gCfCh,rf rh
= (fCf ,rf

∗ hCf ,rh
).

Further generality could be introduced by taking the case C ∈ C. Most notably this
would break the reflection symmetry around φ = Φ. In the present work, however,
C ∈ R provides the sufficient generalitz framework for modeling circular PDFs, and
we will therefore remain on the level of generality supplied by the WSM distribution.
For mathematical literature on statistics and fits using this distribution we refer the
reader to [44, 51].
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3. Basic notions of turbulence

In this section we will present basic notions of Navier-Stokes turbulence. General
properties and the phenomenon of intermittency will be presented. In depth treat-
ment and results can be found in the literature, such as in [21, 48]. Additionally,
the Burgers equation will be introduced. This equation served historically as a toy
model for turbulence and in the next chapter this will be our starting point for
deriving a coupled oscillator model for phase dynamics. As before, only a minimal
exposition is made, and we refer to the literature [9, 12] for further information.

3.1. Navier-Stokes turbulence

The basic equations of an incompressible fluid read [48]

∂tv + (v · ∇)v = −∇P
ρ

+ ν∇2v + f,

∇ · v = 0.
(3.1)

These are called the incompressible Navier-Stokes equations for a velocity field
v(t,x). Here ρ is the flow density, P (t,x) the pressure field, ν the viscous damping,
and f(t,x) are the external forces acting on the fluid.
In a (2π)3 periodic box we may write the velocity field as a Fourier series

v(t,x) =
∑

k∈Z3

v̂(t,k) exp[ix · k] =
∑

k∈Z3

∑
i=1,2,3

êi v̂i(t,k) exp[ix · k], (3.2)

where êi are the elements of an orthonormal vector basis. To avoid confusion with
indices, a comment is in order. Subindices indicate the vectorial component, whereas
the Fourier mode in question is denoted in the argument. The dynamics in spectral
space can then be formulated. In the case without external forces we may rewrite
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3. Basic notions of turbulence

the Navier-Stokes equations as [30]

(∂t + νk2)v̂i(t,k) =
∑
m,n

−i
2 Pimn(k)

∑
p+q=k

v̂m(t,p)v̂n(t,q). (3.3)

Note that the last sum on the right hand side is a convolution of the different Fourier
modes. The Pimn is a projector and is defined as

Pimn(k) := kmPin(k) + knPim(k) , with Pim(k) := δim −
kikm
k2 .

The incompressibility of the flow k · v̂(t,k) = 0 is already incorporated into equation
(3.3).
In both the real-space and the spectral space formulations, the complexity of these
equations may be observed. On the one hand, pressure makes the equations non-
local and leads to complicated projection operations in spectral space. On the other
hand, the quadratic non-linearity in real-space leads to convolutions in spectral
space. This has as consequence, that the Fourier modes couple three at a time.
This may be more clearly seen by considering the equations of motion for the phase
ϕi of the Fourier mode v̂i(t,k) = ai(t,k) exp[iϕi(t,k)]. Taking the imaginary part
of (3.3) we read

∂tϕi(t,k) =
∑
m,n

Pimn
∑

p+q=k

−am(t,p)an(t,q)
2 ai(t,k) cos[ϕm(t,p) +ϕn(t,q)−ϕi(t,k)]. (3.4)

Fourier modes satisfying the condition p + q = k are coupled to one another, and
this coupling involves their amplitudes and phases with a convolution sum. Fourier
modes coupled in this way are called triads. Additionally, the projector operator
makes the Fourier mode coupling more complicated by mixing different components
in a non-trivial manner. It is notable that the phase dynamics does not directly
depend on the viscosity ν. This dependence enters the phase dynamics indirectly
through the amplitudes ai(t,k).
Existence and uniqueness of particular forms of the solutions of equations (3.1) or
(3.3) are still open questions in mathematics [19, 33]. Although deterministic, these
equations show chaotic behavior [34]. That is, among others, extreme sensitivity
to initial conditions; infinitesimal perturbations in the initial conditions will grow
exponentially fast with time evolution. This, together with the innate complexity
of the Navier-Stokes equations, leads to the problem of looking for adequate tools
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3.1. Navier-Stokes turbulence

and well-defined objects of study for turbulent phenomena. Even though individual
realizations of a velocity field, satisfying the Navier-Stokes equations, might appear
different to one another, statistical objects are well defined within an ensemble of
realizations of solutions to these equations [26]. A statistical theory for turbulent
flows can be hence derived, whereby the velocity field v(t,x) is taken as a random
variable of time t and position x.
The study of the statistical properties of fully developed homogeneous isotropic
turbulence of incompressible fluids is an active field of research [41]. Much work
has been done from this statistical perspective in explaining scaling laws and the
energy transfer mechanisms at work in turbulence. One of the hallmarks of three-
dimensional homogeneous turbulent flows is the appearance of scale-dependent statis-
tics. Explaining the underlying mechanisms why small scales depart from Gaussian-
ity whereas large scales remain near normal has been an open research question for
some time [57]. This phenomenon of scale-dependent statistics is known in turbu-
lence research as intermittency.

3.1.1. Intermittency in turbulent flows

In a three-dimensional homogeneous turbulent field, the single-point statistics of
the velocity field are close to Gaussian [48]. On the other hand, by looking at
the velocity gradient and vorticity fields, one observes departure from Gaussianity
with super-Gaussian tails. These latter quantities are obtained from differential
operators on the velocity field; they probe smaller scales than the velocity field itself.
These observations point to the fact, that the statistics of a turbulent field are scale
dependent. Additionally, the single-point statistics are not enough to characterize
the system; we cannot distinguish between global Gaussian and locally uncorrelated
Gaussian velocity fields.
For a better understanding of the statistics of a turbulent flow, it is hence of interest
to study the many-point statistics. We look specifically into the two-point statistics.
These can be explored, for example, via the so-called velocity increments. These have
been studied not only because of experimental reasons, but also because they present
two-point statistics which interpolate between large and small scales. Additionally
they play an important role in the statistical theory of turbulence, as they appear
in the theory for the two-point velocity PDF. We refer to [21] for further details.
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Figure 3.1.: PDFs of the Eulerian transverse velocity increments (3.5) obtained from
the direct numerical simulations [18] of three-dimensional Navier-Stokes
turbulence, averaged over all directions. The small increments probe the
small-scale statistics of the field. These show super-Gaussian tails. As
the r increases the statistics become close to normal. L/η is the ratio
of the box edge to the Kolmogorov scale of the simulation and Rλ is the
Taylor-scale Reynolds number [48].24
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Velocity increments are defined as

δv(r) := v(t,x + r)− v(t,x). (3.5)

In an homogeneous turbulent field the velocity increment may be taken as a ran-
dom variable. In the case of isotropic turbulence the statistics of this variable are
parametrized by |r|. For |r| of the order of the system’s size the PDF of δv(r) is
almost Gaussian. In this case, δv(r) is a sum of the velocity field at points far away
from one another. These are highly uncorrelated. Therefore δv(r) is in this case
a sum of two Gaussian uncorrelated variables, and the PDF of δv(r) reflects the
large-scale near-Gaussianity of turbulent fields. Furthermore, in the limit r → 0
the centered standardized moments of δv(r) converge towards the corresponding
moments of the velocity gradient

lim
|r|→0

Kn(δv(r)) = Kn(∇v). (3.6)

By probing the small-scale velocity increments we are hence probing the small
scales through the gradient statistics. As |r| decreases velocity increment’s PDF be-
comes intermittent and skewed [21]; the third centered standardized moment (2.8)
K3(δv(r)) is slightly non-zero. Additionally flatness K4(δv(r)) increases. By study-
ing the |r| dependence of the moments of the velocity increment we can therefore
quantitatively measure the scale-dependence of the PDFs. Additionally, these sta-
tistical moments are related in the context of turbulence to certain phenomena.
Non-zero skewness of the velocity increments is related to vortex stretching and to
the non-linear energy transfer from large to small scales, i.e. the so-called energy
cascade [21]. Higher than Gaussian flatness, on the other hand, implies that large
deviation events are more probable than for a Gaussian distribution. This indicates
a departure from a Gaussian distribution in the small scales and the appearance
of extreme events. By varying |r| we therefore probe the different scales of the
turbulent flow and its corresponding PDFs. To illustrate these phenomenological
observations of turbulent flows we will present PDFs obtained from direct numerical
simulations.
By numerically integrating the three-dimensional Navier-Stokes equations the ve-
locity field’s statistics can be calculated. PDFs of the transverse component of the
velocity increments are shown in Figure 3.1. Here can be seen how the small-scale
PDFs show super-Gaussian tails. These foretell the presence of extreme events, and
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consequently departure from Gaussianity in these scales. As the increment becomes
larger, the tails are gradually regularized, and the statistics become normally dis-
tributed.
Finally, a quick note regarding length scales is in order. The typical picture of energy
transfer in turbulence is as follows. Energy is injected in the largest scales. It is then
transferred through several length scales, until it arrives at the small scales in the
flow. There it is dissipated as heat. This middle range in which energy is transferred
scale by scale is known as the inertial range. Much of the research of homogeneous
isotropic turbulence has dedicated itself to finding universal quantities in the inertial
range. This universality would be broken if the statistics were scale dependent. It
is hence necessary to note that the intermittent phenomena are observed below the
inertial range, wherefore self-similar statistics of the inertial range are still found [21].

The mathematical complexity of the Navier-Stokes equations means that exact
derivations are rare. A full understanding of all mechanisms present in turbulent
flows is far from being attained. On the other hand, numerical approaches also have
their limitations. The Navier-Stokes equations can be numerically integrated, but it
is technically challenging and increasingly difficult to obtain intense turbulent flows
to high enough resolution. Non-dimensionalizing the Navier-Stokes equations leads
to the definition of a control parameter known as the Reynolds number Re = vL/ν;
L and v are the length and velocity scales of the problem at hand. It measures the
ratio between the non-linear advection term and the viscous damping. This control
parameter regulates the transition of a flow’s behavior from laminar to turbulent,
whereas higher Reynolds numbers correspond to more turbulent fields [34]. Addi-
tionally, the number of degrees of freedom needed to take into account for a good
description of turbulent flows dramatically increases at high Reynolds numbers [10].
This means that it is computationally very expensive to integrate high resolution
and high Reynolds numbers flows. It is because of this reason that simplified models
have been proposed over the years. These present a simpler mathematical structure,
where results may be derived or at least better understood. One of these was the
Burgers equation.
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3.2. Burgers turbulence

The Burgers equation was introduced in the 1930’s as a one-dimensional simplified
toy model for Navier-Stokes turbulence. This equation reads [12]

∂tu(t, x) + 1
2∂xu(t, x)2 = ν∂2

xu(t, x). (3.7)

In one dimension, incompressibility is not imposed; it would imply a constant ve-
locity field. The pressure term is also absent from the Burgers equation, but apart
from this, it has all terms present in the Navier-Stokes equation; it has a quadratic
advective non-linearity compensated by diffusion. Additionally, this equation pos-
sesses some of the symmetries present in the Navier-Stokes equation. Namely it is
invariant under space and time translations, and it conserves energy and momentum
in the non-diffusive case ν = 0. Space translations

x→ x+ x0 (3.8)

will later play an important role in spectral space, where our coupled oscillator
model will be defined. Let us rewrite the Burgers equation in spectral space. For
this we take periodic boundary conditions u(t, x) = u(t, x+ 2π). Then the Burgers
velocity field can be expressed as a Fourier series

u(t, x) =
∑
k∈Z

ûk(t) exp[ikx]. (3.9)

Plugging this series representation into equation (3.7) leads to the dynamics of the
Fourier coefficients ûk(t), which read

dûk(t)
dt + ik

2
∑
p∈Z

ûp(t)ûk−p(t) = −νk2ûk(t). (3.10)

The translation symmetry in real-space (3.8) in spectral space becomes multiplica-
tion by a complex phase

ûk(t)→ ûk(t) exp[ikx0]. (3.11)

This symmetry has as consequence the existence of a conserved quantity. In the
present work we will use this system’s symmetry, but we will not need to explicitly
calculate its conserved quantity.
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The original motivation to study the Burgers equation was the assumption, that
its dynamics were reminiscent of the chaotic Navier-Stokes turbulence. This was,
however, proven to be false with the Cole-Hopf transformation [12]

u(t, x) = −2ν ∂x log τ(t, x). (3.12)

This transforms the Burgers equation into the heat equation ∂tτ = ν∂2
xτ . This is

equation is not chaotic. Sensitivity to initial conditions as in chaotic systems is
consequently not present in the Burgers equation. Therefore a typical characteristic
of turbulence, namely the introduction of randomness through chaotic dynamics, is
missing.
The Burgers equation is nevertheless still being studied, specially because of its
relevance in fields apart from fluid dynamics [9]. In the context of turbulence it
is still used as a simple toy model, usually under stochastic forcing [15, 37]. For
example, its properties in spectral space have been studied in order to shed light on
the full Navier-Stokes system [13, 14, 22]. Notably, there exist exact analytic results
for statistics and intermittency in Burgers systems [6, 8, 25]. Among the typical
observations of driven Burgers turbulence is its inertial range scaling E(k) ∝ k−2

[24]. Another example of a mechanism understood in Burgers turbulence is the
appearance of shocks in the inviscid limit. This has explicitly been proven for this
simpler model, but remains an open mathematical question for the Navier-Stokes
equations.

Directly studying aspects of fully-developed homogeneous isotropic Navier-Stokes
turbulence is experimentally, numerically, as well as theoretically difficult; therefore
having a simple model to test ideas and understand basic properties is helpful. In the
present thesis we will follow this strategy to study the influence of the Fourier phase
dynamics in real-space intermittency. By using the Burgers equation as a starting
point, a simplified coupled oscillator model will be derived. This model will have a
resemblance to the full Fourier phase equation (3.4). Nevertheless its mathematical
complexity is notably less. We may therefore use this simplified model to investigate
which effect phase space coherence events have in the real-space intermittency of a
turbulent field.
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4. Coupled oscillator model

We have until now presented tools describing the statistics of linear and circular
random variables. Additionally, basic notions of Navier-Stokes turbulence and in-
termittency were discussed. The Navier-Stokes system is not analytically tractable,
and the mechanism of generation of intermittency is an open question.
As we saw in the introductory chapter 1, there appears to be a relation between
phase coherence in spectral space and real-space intermittency. In essence, coherent
phase phenomena are observed on the same length scales where non-Gaussianity
originates. This raises the question of the role of phase coherence phenomena in the
statistics of real-space quantities. The Fourier phase equations (3.4) are convoluted,
and studying them directly is not feasible.
In this section we will derive from the Burgers equation a coupled oscillator model.
This model simplifies the Fourier phase dynamics and aims at easing the understand-
ing of the phases’ coherence phenomena and their effect on the real-space intermit-
tency. Although this is a simplified model and neglects much of the complexity
present in Navier-Stokes equations, it nevertheless retains the main phase-phase
coupling structure. The derivation will follow a previously proposed toy model [58].
In the following, general properties of the model will be presented, such as its cou-
pling through triad interaction and the construction of triad bases. Next, oscillator
PDFs will be defined. The one-oscillator PDFs will be shown to be uniform. Addi-
tionally, on account of a system’s symmetry it will be shown that the triad PDFs
have the same information as the three-oscillator PDFs, and vice versa. Finally, a
semi-analytic theory for the PDFs will give a starting point for studying the triad’s
statistical behavior.
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4. Coupled oscillator model

4.1. Derivation of the model

Consider the one-dimensional inviscid Burgers equation in a periodic one-dimensional
box of length 2π. Let us begin with the spectral formulation (3.10)

dûk(t)
dt + ik

2
∑
p∈Z

ûp(t) ûk−p(t) = 0 , k ∈ Z. (4.1)

This equation is a simpler, one-dimensional version of the equation for the Navier-
Stokes Fourier phases (3.4), but it retains certain similarities to it. Notably, the
dynamics of Navier-Stokes Fourier phases (3.4) are also independent of viscocity.
This motivates modeling the simplified phase dynamics starting from an inviscid
Burgers equation.
Equation (4.1) still describes the same dynamics as in the original inviscid Burgers
equation (3.7). Consider now the amplitude and phase of a Burgers Fourier mode as
ûk(t) = ak(t) exp[iϕk(t)]. We will derive a toy model to study the synchronization
of the phases ϕk(t) of the different modes. The dynamics of the amplitudes will be
neglected so as to concentrate on the dynamics of the phases. We then keep the
amplitudes of the Fourier modes fixed and allow only their phases to be dynamical
quantities, i.e. ûk(t) = ak exp[iϕk(t)]. The reality of the velocity field û(t, x) implies
for the Fourier amplitudes and phases the relations

ak = a−k and ϕk(t) = −ϕ−k(t). (4.2)

Applying this to equation (4.1) yields equations of motion for the phases

dϕk(t)
dt =

∑
p∈Z

−k ap ak−p
2 ak

exp [i(ϕp(t) + ϕk−p(t)− ϕk(t)] , for k ∈ Z/{0}. (4.3)

The k = 0 oscillator is zero because of the field is real. That is, ϕ0 = −ϕ0 ⇒ ϕ0 = 0.
Taking only the real part of the last equation establishes the similarity with the
equations of motion for the Navier-Stokes Fourier phases (3.4). The number of
modes will be truncated, so that we are left with N modes. We are hence left with
oscillators ϕk, where the index k takes values |k| ≤ N . We set oscillators outside
this range, that is |k| > N , to zero. Finally, we define coupling coefficients ωk,p as

ωk,p = −k ap ak,p
ak

. (4.4)
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4.1. Derivation of the model

The equations of motion of N coupled oscillators are then obtained from equation
(4.3)

dϕk(t)
dt =

N∑
p=−N

ωk,p cos(ϕp + ϕk−p − ϕk) , k = 1, ..., N. (4.5)

The 1/2 numerical factor from (4.3) has been absorbed in a time rescaling. The
elements in the sum for which p > N are ignored. It is this system of coupled
oscillators which we will study here. It constitutes a system of non-identical, globally
coupled oscillators with three-oscillator sinusoidal coupling.
This system of ordinary differential equations (4.5) inherits the Burgers equation
translation symmetry (3.11). It is hence invariant under the transformation

ϕk → ϕk + kx0 , x0 ∈ R. (4.6)

This symmetry has as consequence the existence of a conserved quantity. The system
(4.5) has therefore formally N − 1 degrees of freedom. Although we will use this
symmetry to derive statistical properties of the system, the conserved quantity itself
will not be used to reduce the dimension of the system.

4.1.1. Numerical implementation of the coupled oscillator
system

Equation (4.5) can be numerically implemented and time series integrated. Let
<(z) = x be the real part of z = x + iy ∈ C. The sum in equation (4.5) may then
be written as a convolution

dϕk
dt = <

−k exp(−iϕk)
ak

N∑
p=−N

(ap exp[iϕp]) (ak−p exp[iϕk−p])
 . (4.7)

For N -tuples the convolution is a computation which requires numerical operations
in the order of O(N2). On the other hand, convolutions can be easily implemented
using a fast Fourier fransform algorithm (FFT)1. With this algorithm, the convo-
lution can be reduced from an operation costing O(N2) numerical operations to
one costing O(N logN). Therefore, equation (4.5) was implemented using a FFT
algorithm. Further details and validation of this implementation will be presented
in appendix A.

1For general mathematical properties of the FFT as well as the discrete Fourier transform we
refer to [3] and in the context of turbulence and numerical simulations to [48].
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4. Coupled oscillator model

Additionally, an equivalent formulation of equation (4.7) will be derived. This new
formulation is useful, because the reality condition, i.e. ϕk = −ϕ−k, is explicitly
taken into account. This makes stability analysis and rewriting of the dynamical
equations in terms of triads much easier.
As we will see in section 5.1, to obtain non-trivial dynamics, systems with the first
k0 modes set to zero will be numerically integrated. With this in mind, we imple-
ment the reality condition of u(t, x) into equation (4.5). We then separate the sum
in positive and negative p, and leave only the terms for which the oscillators ϕk are
in the set k0 < |p| ≤ N . Finally, the summation indices are changed as shown

dϕk
dt =

N∑
p=−N

ωk,p cos(ϕp + ϕk+p − ϕk)

=
−1−k0∑
p=−N+k

ωk,p cos(ϕp + ϕk+p − ϕk)︸ ︷︷ ︸
p→−p

+
k−1−k0∑
p=1+k0

ωk,p cos(ϕp + ϕk+p − ϕk)

+
N∑

p=k+1+k0

ωk,p cos(ϕp + ϕk+p − ϕk)︸ ︷︷ ︸
p→p+k

.

(4.8)

Changing the indices allows to identify the first and last sums. A reformulation of
equation (4.5) is thus obtained

dϕk(t)
dt = 2

N−k∑
p=k0+1

ωk,k+p cos(ϕp+ϕk−ϕk+p)+
k−1−k0∑
p=k0+1

ωk,p cos(ϕp+ϕk−p−ϕk). (4.9)

The main advantage of this reformulation is that the oscillator index is nowhere neg-
ative. One needs therefore not worry about double counting because of oscillators
with negative index. The basic structure of equation (4.7) is sill found here, because
the sums can again be written as convolutions.
The dynamics of our model (4.5) is given in Fourier space. Recall that the oscilla-
tors are interpreted as Fourier phases of a Burgers field. To relate spectral space
coherence and intermitency we need then the real-space velocity field. A numerical
implementation uses a finite number of modes, so that the inverse transformation
of (3.9) becomes an inverse discrete Fourier transform. This discrete transform will
allow us to obtain the real-space velocity field. Given a system of oscillators {ϕk}
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4.2. Triad interaction in the oscillator model

the inverse discrete Fourier transform takes then the form

u(t, x) = 1
2N

N∑
k=−N

ak e
i(ϕk(t)+kx) = 1

N

N∑
k=k0+1

ak cos(ϕk(t) + kx). (4.10)

The 1
2N factor stems from the normalization of the discrete Fourier transform. The

second equality is obtained by use of the reality condition on the Fourier coefficients.
The velocity gradient statistics are also of interest, as they probe the small scales
of the velocity field. As is standard in spectral analysis, the gradient of the velocity
field is obtained by multiplication in spectral space. This yields a formula for the
velocity gradient. It reads

∂xu(t, x) = 1
2N

N∑
k=−N

ak ik ei(ϕk(t)+kx) = 1
N

N∑
k=k0+1

− ak k sin(ϕk(t) + kx). (4.11)

This finite element implementation fulfills a modified version of the Parseval identity
for Fourier series [3] given by

1
π

∫ 2π

0
[u(t, x)]2dx = 1

N2

N∑
k=k0+1

a2
k. (4.12)

With (4.7), (4.10) and (4.11) at hand we can numerically implement our system, and
study oscillator, velocity and velocity gradient statistics. Numerical results will be
explored later in the text. In the next chapter oscillator statistics will be discussed
and in the chapter thereafter real-space statistics.

4.2. Triad interaction in the oscillator model

Equations (4.5) or (4.9) constitute the whole dynamics of our model. Each oscil-
lator is coupled to all others. This coupling appears as cosine of combinations of
three oscillators. These combinations are of the form ϕp +ϕk−p−ϕk. We call linear
combinations of this form in general a triad. In this section we will try to shed some
light on our system by studying the structure and dynamics of this system in terms
of triads.
A convention must be met in order to categorize all triads without repetitions. We
call the linear combination ϕp +ϕk−p−ϕk the triad ϕk,p if k > p and k− p ≥ p. We
are thus naming each triad by identifying its oscillators with highest and lowest wave
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4. Coupled oscillator model

number, k and p respectively. This convention also allows a useful representation of
all triads, by displaying them in the region 0 < p < k/2, 0 < k < N . In this region
each and every triad is uniquely shown.
Numerically integrating the case where the first k0 oscillators are set to zero (see
section 5.1) produces non-trivial dynamics. For even N , the total number of tri-
ads without repetitions formed from oscillators {φk|k ∈ {k0, ..., N}} is given by
(N/2−k0)2. The whole dynamics (4.5) can be reformulated in terms of these triads.
Equation (4.5) then takes the form

dϕk
dt =

k∑
p=k0+1

2 ωk,k+p cos(ϕk+p,p) +
N∑

p=2k+1
2 ωk,p cos(ϕp,k)

+
bk/2c−1∑
p=k0+1

2 ωk,p cos(ϕk,p) + ωk,k/2 cos(ϕk,k/2).

(4.13)

The last term in this equation is taken into account only if k is an even number.
This formulation has the advantage that it describes coupling of oscillator to triads.
From equation (4.5) we know that each oscillator is coupled all others. On the
other hand, equation (4.13) shows that each oscillator is only coupled to a small
number of all possible triads. The triads on the right hand side of this equation are
highlighted in Figure 4.1 and each sum is identified with a different region in k − p
space. The first, second and third sums correspond to the red, blue, and green lines
in the figures, respectively.
Both the oscillator (4.5) and triad (4.13) formulations show that each oscillator and
triad couples to all oscillators. If we try to reformulate the system only in terms
of triads by taking linear combinations of the oscillators’ equations of motion, the
situation changes. Let the equation of motion of triad ϕk,p be given through (4.13)
as

dϕk,p
dt = dϕp

dt + dϕk−p
dt − dϕk

dt , k ∈ {2(k0 + 1), ..., N}, p ∈ {k0 + 1, bk/2c}. (4.14)

Writing the equations of motion in terms of triads yields a system which resembles
the equations found when studying arrays of coupled Josephson junctions [53], albeit
with non-identical oscillators. Explicitly, every triad has equations of motion of the
form

dϕk,p
dt = ω̃k,p cos(ϕk,p) +

∑
{k′,p′}

Ωk,p,k′,p′ cos(ϕk′,p′). (4.15)
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0 N/2 N
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⇔

0 N

k

0

N/2

p
Figure 4.1.: We present a visual representation of the elements of the sum from the

right hand side of equation (4.5) on the left. For a given k, the sum
on the right hand side goes from p = −N + k to p = N . On the
right are shown the same elements but sorted according to triads, as
in equation (4.13). For a given k, the oscillator ϕk is coupled to all
triads that contain that oscillator. The first, second and third sums
from equation (4.13) correspond in the figures to the red, blue, and
green lines, respectively.

The triad is coupled to itself with coupling coefficient ω̃k,p = 2(ωp,k+ωk−p,k−ωk,p).
The terms in the sum do not explicitly include the triad itself. The coupling coeffi-
cients Ωk,p,k′,p′ are in principle known, albeit complicated; they contain information
regarding which triad is coupled to which others.
This reformulation in terms of only triads seems to lead to a system with many more
degrees of freedom than the original system. For O(N) oscillators there are O(N2)
triads. Each oscillator is coupled to O(N) triads, as seen from the sum in equation
(4.13). Because the triad equations of motion are composed of linear combinations
of the equations of motion from three oscillators, each triad is coupled to O(N)
triads. Triads are therefore coupled through the dynamics (4.14) only to few other
triads. As an example take Figure 4.2. Here through (4.14) a generic triad will
only be coupled to the highlighted triads; this is only a minute fraction of the total
number of triads. In other words, the dynamics (4.14) alone has less structure than
the original system (4.5), if we do not know how the triads were constructed or how
they depended on one another. This information is contained in the structure given
by finding a basis of N − k0 triads and how to construct all other triads from them.
This means that writing the system in terms of triads will also yield N − k0 degrees
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0 N

k

0

N/2

p

Figure 4.2.: The triads each oscillator is coupled to can be visually presented, as was
shown in Figure 4.1. By taking linear combinations of three oscillators
and their equations of motion, a similar visualization can be obtained
for the triads themselves. the triads to wich a triad is coupled to may
also be visually presented in this manner. In color are shown the triads
which couple to the oscillators ϕp, ϕk−p, and ϕk. These oscillators form
the triad ϕk,p. Hence, this triad is coupled to all triads marked by the
colored lines. The triad itself is found at the crossing point of the three
colored lines.

of freedom, with all other triads being linear combinations of these base triads. In
the next section we will derive triad bases and explain how to write all other triads
in terms of them to support this claim.

4.2.1. Triad basis

In reformulating the dynamics from the oscillators (4.5) to triads (4.14) additional
information is necessary to ensure the same dynamics are being described. The
dependence of triads on one another through linear combinations must also be sup-
plied to avoid spurious degrees of freedom.
In general, systems which interact with a quadratic non-linearity are coupled via
triads in spectral space. In previous work triads and triad bases have been found
and studied in other systems, e.g. in [13], or similar to the one studied here, e.g. in
[38]. In this section triad bases will be constructed for the cases k0 = 0 and k0 = 4.
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4.2. Triad interaction in the oscillator model

Additionally, a formula for writing any triad in terms of the triad basis will be given.

Case k0 = 0:

In this case we consider a system with oscillators ϕ1, ..., ϕN as dynamical variables.
We define the triad basis {Ti} given by the first oscillator and the p = 1 triads.
That is

T1 := ϕ1, Ti := ϕi,1 for i ∈ {2, ..., N}.

We have thenN oscillators {ϕ1, ..., ϕN} andN elements in our triad basis {T1, ..., TN}.
A transformation matrix between these two sets is given by



T1

T2

T3

T4

T5

T6
...


=



1 0 0 0 0 0 · · ·
2 −1 0 0 0 0 · · ·
1 1 −1 0 0 0 · · ·
1 0 1 −1 0 0 · · ·
1 0 0 1 −1 0 · · ·
1 0 0 0 1 −1 · · ·
... ... ... ... ... ... . . .


·



ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6
...


.

The inverse transformation takes the form

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6
...


=



1 0 0 0 0 0 · · ·
2 −1 0 0 0 0 · · ·
3 −1 −1 0 0 0 · · ·
4 −1 −1 −1 0 0 · · ·
5 −1 −1 −1 −1 0 · · ·
6 −1 −1 −1 −1 −1 · · ·
... ... ... ... ... ... . . .


·



T1

T2

T3

T4

T5

T6
...


.

All other triads are obtained from linear combinations of these N basis triads. By
summing and subtracting rows from the inverse transformation matrix we obtain
the relation

ϕk,p = −T2 − · · · − Tp + Tk−p+1 + · · ·+ Tk , p 6= 1.

With this formula we can rewrite any triad in terms of the basis triads Note that
the case p = 1 is not treated, as these are per definition the base triads themselves.
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Case k0 = 4:

Let us now consider a system with N = 1024 and where the first k0 = 4 modes
are set to zero. This system is of interest because it is used for the numerical
implementation. For details and justification of this choice we refer to section 5.1.
For this system the situation is slightly more complicated than the previous case
k0 = 0.
The easiest way which we found to iteratively construct a basis relies in two indices,
i and j; our basis will be a set of the form {T ij}.
The first k0 + 1 non-zero oscillators themselves will be part of the base. We will call
them T i1, so that

T i1 := ϕi i ∈ {5, 6, 7, 8, 9}.

The rest of basistriads will be the p = 5 triads, such that

T ij := ϕ5 + ϕi+5 (j−2) − ϕi+5 (j−1) = ϕi+5 (j−1),5, i ∈ {5, 6, 7, 8, 9}, j ∈ {2, ..., 204}.

Note that we now have 1020 oscillators {ϕ5, ..., ϕ1024} and 1020 triad basiselements

{T ij} = {T 5
1 , T

6
1 , T

7
1 , T

8
1 , T

9
1 , ..., T

5
204, T

6
204, T

7
204, T

8
204, T

9
204}.

These bases have also transformation matrices. For i = 5 it reads

T 5
1

T 5
2

T 5
3

T 5
4

T 5
5

T 5
6
...


=



1 0 0 0 0 0 · · ·
2 −1 0 0 0 0 · · ·
1 1 −1 0 0 0 · · ·
1 0 1 −1 0 0 · · ·
1 0 0 1 −1 0 · · ·
1 0 0 0 1 −1 · · ·
... ... ... ... ... ... . . .


·



ϕ5

ϕ5+5

ϕ5+10

ϕ5+15

ϕ5+20

ϕ5+25
...


.
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4.2. Triad interaction in the oscillator model

For i ∈ {6, 7, 8, 9} the transformation matrix reads


T 5
1

T i1

T i2

T i3

T i4

T i5
...


=



1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
1 1 −1 0 0 0 · · ·
1 0 1 −1 0 0 · · ·
1 0 0 1 −1 0 · · ·
1 0 0 0 1 −1 · · ·
... ... ... ... ... ... . . .


·



ϕ5

ϕi

ϕi+5

ϕi+10

ϕi+15

ϕi+20
...


.

By recursively subtracting rows from these matrices from the bottom up, a relation
for the inverse is found. This relation reads

ϕi+5 (j−1) = −
j∑

n=2
T in + T i1 + (j − 1) T 5

1 j 6= 1. (4.16)

This relation also allows one to write the inverse transformation as matrices. For
i = 5 we have

ϕ5

ϕ5+5

ϕ5+10

ϕ5+15

ϕ5+20

ϕ5+25
...


=



1 0 0 0 0 0 · · ·
2 −1 0 0 0 0 · · ·
3 −1 −1 0 0 0 · · ·
4 −1 −1 −1 0 0 · · ·
5 −1 −1 −1 −1 0 · · ·
6 −1 −1 −1 −1 −1 · · ·
... ... ... ... ... ... . . .


·



T 5
1

T 5
2

T 5
3

T 5
4

T 5
5

T 5
6
...


.

For i ∈ {6, 7, 8, 9} we have similarly


ϕ5

ϕi

ϕi+5

ϕi+10

ϕi+15

ϕi+20
...


=



1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
1 1 −1 0 0 0 · · ·
2 1 −1 −1 0 0 · · ·
3 1 −1 −1 −1 0 · · ·
4 1 −1 −1 −1 −1 · · ·
... ... ... ... ... ... . . .


·



T 5
1

T i1

T i2

T i3

T i4

T i5
...


.
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Using (4.16) we can write any triad as a linear combination of the basis triads. This
justifies working either with oscillators or with triads without loss of generality or
generation of spurious degrees of freedom. All the matrices presented in this section
are triangular matrices, with diagonal elements ±1. Therefore they have det = ±1.
These transformations are hence phase-space volume preserving. This means that
when transforming PDFs defined in terms of triads to PDFs defined in terms of
oscillators the Jacobian of the transformation is unity.

4.3. Oscillator PDFs

By considering the oscillators as random variables we may study their statistical
properties with the tools presented in chapter 2. The oscillators are in this sense
cyclic random variables and their PDFs will hence be circular PDFs. In the next
section PDFs will be defined for the oscillator and triad statistics. Subsequently
the Fourier coefficients of the three-oscillator PDF will be shown to be the same
as the one-triad trigonometric moments. Afterwards the PDF equation will be
introduced and it will be shown that it does not produce any defining equations for
the triad PDFs. Finally, a semi-analytic theory for the triad PDF will be proposed
by comparing the triad equations of motion with much simpler systems for which
the PDFs are known.

4.3.1. Definition of the PDFs

Consider the oscillators ϕk(t) as circular random variables parametrized by time t.
Let then the fine-grained PDF f̂1 of this random variable be defined as

f̂1(φ; k) := δ(φ− ϕk(t)). (4.17)

Averaging over the fine-grained PDF yields the one-oscillator PDF f1

f1(φ; k) ≡ 〈f̂1(φ; k)〉. (4.18)
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4.3. Oscillator PDFs

All other higher-order oscillator PDFs can be obtained by use of the one-oscillator
fine-grained PDFs. Let the n-oscillator PDF be defined as

f1× ...× 1︸ ︷︷ ︸
n

(φ1, ..., φn; p1, ..., pn) :=
〈

n∏
i=1
f̂1(φi; pi)

〉
. (4.19)

The notation used implies that we explicitly indicate the order of the statistics
described by each PDF. So, for example, f1 is a one-oscillator PDF, f1×1 is a two-
oscillator PDF, f1×1×1 is a three-oscillator PDF, and so on. The oscillator PDFs
contain all the oscillator statistical information. This means that ensemble averages
can be rewritten as weighted averages with the PDFs. Let g(ϕp1 , ..., ϕpn) be a func-
tion of n of the oscillators. The n-order PDF may then be used to express ensemble
averages of g through a weighted average as

∫
S1
f1×...×1(φ1, ..., φn; p1, ..., pn) g(φ1, .., φn)dφ1...dφn ≡ 〈g(ϕp1 , ..., ϕpn)〉. (4.20)

These higher-order PDFs contain therefore the full statistical information of the n-
oscillator system. Describing the full statistics of a coupled oscillator system, like
the one we are studying, is a major task. We therefore concentrate on the low-order
statistics. The lowest-order statistics of interest are the three-oscillator statistics.
Because oscillators couple in triads we will also define PDFs for the triads.
Consider now one triad ϕk,p as a random variable. Conditioning three one-oscillator
fine-grained PDFs, a fine-grained triad PDF f̂3 can be defined as

f̂3(φ; k, p) =
∫
S1

dβ
∫
S1

dγ
∫
S1

dω f̂1(β; p) f̂1(γ; k − p) f̂1(ω; k) δ(β + γ − ω − φ)

= δ(ϕp + ϕk−p − ϕk − φ).
(4.21)

Let a triad’s PDF be denoted by f3. A relation between the triad PDF and the
three-oscillator PDF f1×1×1 is obtained by averaging the fine-grained triad PDF

f3(φ; k, p) =
∫
S1

dβ
∫
S1

dγ
∫
S1

dω f1×1×1(β, γ, ω; p, k − p, k) δ(β + γ − ω − φ)

= 〈δ(ϕp + ϕk−p − ϕk − φ)〉.
(4.22)
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By comparison with equation (4.20) we identify, that the triad PDF is the expec-
tation value of the three-oscillator function δ(ϕp + ϕk−p − ϕk − φ). Just as for the
oscillators, the triad’s PDF can be used to calculate ensemble averages.
Finally, we also look into the two-triad statistics. This should give some insight into
the triad-triad coupling, and how they dynamically influence one another. The PDF
for the two-triad joint statistics f3×3 is defined as

f3×3(φ, θ; k1, p1, k2, p2) = 〈δ(ϕp1 + ϕk1−p1 − ϕk1 − φ) δ(ϕp2 + ϕk2−p2 − ϕk2 − θ)〉

= 〈f̂3(φ; k1, p1) f̂3(θ; k2, p2)〉.
(4.23)

Additionally, let a correlation function C3×3 measure departure from statistical in-
dependence

f3×3(φ, θ; k1, p1, k2, p2) = f3(φ; k1, p1) f3(θ; k2, p2)

+C3×3(φ, θ; k1, p1, k2, p2).
(4.24)

Note that the one-triad PDFs can be recovered by integrating out one of the vari-
ables. That is ∫

S1
dθ f3×3(φ, θ; k1, p1, k2, p2) = f3(φ; k1, p1). (4.25)

This means that the correlation function is subject to the condition
∫
S1

dθ C3×3(φ, θ; k1, p1, k2, p2) = 0 =
∫
S1

dφ C3×3(φ, θ; k1, p1, k2, p2). (4.26)

4.3.2. Translation symmetry and oscillator statistics

As was previously shown, the coupled oscillator model is invariant under translations
(4.6). This has implications for the oscillator statistics. In terms of the n-oscillator
PDF, this symmetry is generated by the following vector field

n∑
i=1

pi ∂φi
f1×...×1(φ1, ..., φn; p1, ..., pn) = 0 (4.27)

We will solve this condition for the one- and three-oscillator cases. To solve this
vector field we use an exponential ansatz for the PDFs. As a consequence of this
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4.3. Oscillator PDFs

symmetry all one-oscillator PDFs f1 are uniform

k ∂φ f1(φ; k) = k im exp[imφ] != 0⇒ m = 0⇒ f1(φ; k) = 1
2π ∀ k. (4.28)

Now consider the three-oscillator PDFs f1×1×1 of three oscillators forming a triad.
These PDFs are subject to the symmetry generated by the vector field

p

k − p
k

 ·

∂β

∂γ

∂φ

 f1×1×1(β, γ, φ; p, k − p, k) = 0. (4.29)

To solve the vector field we will make the ansatz f1×1×1(β, γ, φ; p, k − p, k) =
exp[i(nββ + nγγ + nφφ)]. This ansatz leads to

pnβ + (k − p)nγ + knφ
!= 0 ⇒ n = nβ = nγ = −nφ , n ∈ Z. (4.30)

Periodicity of f1×1×1 requires n to be an integer number. The three-oscillator PDF
then takes the form of a Fourier series as

f1×1×1(β, γ, φ; p, k− p, k) = 1
(2π)3

1 +
∑
n∈N

f̂k,pn exp[−in(β + γ − φ)] + c.c.
 . (4.31)

Plugging equation this equation into the definition of the triad PDF (4.22) we obtain
the triad PDF as

f3(φ; k, p) = 1
2π

1 +
∑
n∈N

f̂k,pn exp[−inφ] + c.c.
 . (4.32)

We come, hence, to the conclusion that the triad Fourier coefficients are the same
as the three-oscillator Fourier coefficients. That is, speaking of three-oscillator joint
statistics is the same as of triad statistics. No additional information is contained in
the three-oscillator joint PDF which is not present in the triad PDF and vice versa.

4.3.3. PDF equation

PDFs fulfill a continuity equation for probability of the form [48]

∂tf(t, φ) + ∂φJ(t, φ) = 0, (4.33)
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4. Coupled oscillator model

where J is a probability density current. We seek a theory for the triad PDFs. This
should shed some light into the different synchronization properties of different tri-
ads. Equation (4.33) is the typical starting point for yielding defining equations for
the PDFs.
In this work we look into the statistically stationary case, and not the dynamical
evolution of the PDFs. In one dimension with stationary statistics ∂tf = 0, equation
(4.33) leads to a divergence-free (constant) probability density current J ; thus the
PDF equation usually yields no defining equations for the PDF. This may be true
because either J is constant, or because it involves higher-order PDFs. We will ex-
emplify this explicitly with the one-oscillator PDF equation. Take the fine-grained
one-oscillator PDF f̂1(φ; k). The fine-grained PDF depends on the specific realiza-
tion used, and is therefore differentiable in time. Differentiating in time and using
the sifting property2 of the δ-distribution one then obtains

∂tf̂1(φ; k) = −∂φf̂1(φ; k)ϕ̇k = −∂φf̂1(φ; k)
N∑

p=−N
ωk,p cos(ϕp + ϕk−p − φ). (4.34)

In order to obtain an equation only for PDFs, the ϕp and ϕk,p oscillators must be
rewritten in terms of their PDFs. For this we insert unity twice as

1 ≡
∫
S1

dβ f̂1(β; p) and 1 ≡
∫
S1

dγ f̂1(γ; k − p).

Subsequently, the the sifting property is used again. We then average and obtain
the probability conservation equation for f1(φ; k)

∂tf1(φ; k) = 0 = −∂φ
N∑

p=−N
ωk,p

∫
S1

dβ
∫
S1

dγ cos(β + γ − φ)f1×1×1(β, γ, φ; p, k − p, k).

(4.35)
We have, however, knowledge on the functional form of the three-oscillator PDF of
oscillators forming a triad. By plugging in equation (4.31) into the above equation
we obtain

0 = ∂φ
N∑

p=−N
ωk,p <(f̂k,p1 ), (4.36)

which is trivially fulfilled. As argued in section 4.3.2, f1 itself is trivial. That
equation (4.35) is therefore automatically fulfilled is not a surprise. We, however,

2For general properties of the δ-distribution we refer to [3] and in the context of turbulence
appendix C in [48].
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4.3. Oscillator PDFs

used the one-oscillator equation to highlight several points. On the one hand, as
already noted, one-dimensional statistically stationary PDF equations can lead to
trivial continuity equations. These don’t yield any defining equations for the PDFs.
On the other hand, even though PDF equations for higher-order statistics may be
non-trivial, it is considerably more difficult handling these higher dimensional cases.
Apart from the technical difficulty of solving a high dimensional partial differential
equation, PDF equations have in general the problem of closure. Note that the right
hand side of equation (4.35) involves a higher-order PDF than the one on the left
hand side. Equations such as (4.33) lead to a coupling between low- and high-order
statistics. This produces the known closure problem. That is, to solve for the one-
oscillator PDF we need the three-oscillator PDF, and to solve the three-oscillator
PDF we need the six-oscillator PDF, and so on.
Deriving an exact theory for the triad PDFs is a difficult endeavor, and although
we know the triad PDF equation will not be closed, treating it will elucidate which
level of complexity is to be explained by such a theory. In the following, we will
derive an exact relation between the two-triad correlation function and the triad
PDF. Consider the PDF equation of the fine-grained triad PDF. It is given by

∂tf̂3(φ; k, p) = −∂φ
[
f̂3(φ; k, p)ϕ̇k,p

]
, (4.37)

where we use the triad equations of motion as given in (4.15). We will now average
to obtain in the stationary case

0 = ∂φ

〈
f̂3(φ; k, p)

ω̃k,p cos(ϕk,p) +
∑
{k′,p′}

Ωk,p,k′,p′ cos(ϕk′,p′)
〉 . (4.38)

Subsequently, the sifting property of the δ-distribution is used and unity

1 ≡
∫
S1

dθ f̂3(θ; k′, p′)

will be inserted to obtain the two-triad PDF

0 = ∂φ

〈
f̂3(φ; k, p)

ω̃k,p cos(φ) +
∑
{k′,p′}

Ωk,p,k′,p′

∫
S1
dθ f̂3(θ; k′, p′) cos(θ)

〉 .
(4.39)
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4. Coupled oscillator model

Finally, using the two-triad PDF with the correlation function factorization (4.24)
we are led to the equation

0 = ∂φ [f3(φ; k, p)J(φ; k, p) + S(φ; k, p)] . (4.40)

J(φ; k, p) is defined as

J(φ; k, p) := ω̃k,p cosφ+
∑
{k′,p′}

Ωk,p,k′,p′ <(f̂k,p1 ), (4.41)

where we denote a triad’s k, p first trigonometric moment as f̂k,p1 . The S term con-
tains the non-closed part of the PDF equation as it involves higher-order statistics,
and it is given by

S(φ; k, p) :=
∑
{k′,p′}

Ωk,p,k′,p′

∫
S1

dθ cos θ C3×3(φ, θ; k, p, k′, p′). (4.42)

This derivation is exact and equation (4.40) yields a formula for f3

f3(φ; k, p) = K − S(φ; k, p)
J(φ; k, p) (4.43)

for a constant K. Recall that the equations of motion (4.5) and (4.15) are invariant
under spectrum and time rescaling t→ t/A

ak → ak A
∀A ∈ R/{0}. (4.44)

This leaves statistical objects such as PDFs and trigonometric moments invariant,
whilst it scales quantities such as ω̃k,p and Ωk,p,k′,p′ . S and J therefore scale with this
transformation. On the other hand, once K has been found for a choice of spectrum
it remains the same for all choices of spectra. With this in mind, we come to the
conclusion that for f3 to be invariant under this transformation it is necessary that
K = 0. We are hence left with the relation

f3(φ; k, p) = −S(φ; k, p)
J(φ; k, p) . (4.45)

This is an exact relation between the correlation function and the one-triad PDF.
Note that S sums over the correlation functions of all triads coupled to the triad k, p.
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This means that we must have information on the whole system to carry out the
sum. Additionally, this makes it explicit that the triad PDF involves the statistical
dependence between the different triads in a non-trivial manner.
The one-oscillator and triad PDF equations are the starting point to search for defin-
ing equations for the triad PDF. However, as we have seen, the PDF equations have
non-closed terms or they are trivially fulfilled on account of a system’s symmetry.
We hence look at further simplifications of the equations of motion (4.5) to look for
a starting point for a theory for the triad PDFs.

4.4. Semi-analytic theory for the triad PDFs
The unclosed terms in the PDF equation means it will not lead us to a defining
equation for f3. We will therefore take an alternative approach and compare the
oscillator system to simpler systems whose behavior is known, and in this way
motivate a theory for the triad PDFs, without deriving it from first principles.
Consider the triad equations of motion as given in (4.15). We may summarize the
terms which do not explicitly contain the triad itself as a function αk,p(t). Each
triad has, with this formulation, equations of motion of the form

dϕk,p
dt = ω̃k,p cos(ϕk,p) + αk,p(t). (4.46)

Let us consider αk,p as a stochastic forcing. This may be justified by arguing that
it contains a sum of many different triads summed in a non-trivial manner. This
combination of triads covers a wide range of time scales. When summed, these act
on the triad ϕk,p in a manner appearing stochastic. This leads us to consider the
triad equation of motion in an equivalent way as

dϕk,p
dt = 1 + γ cosϕk,p + α′k,p(t). (4.47)

This system has similarity with the simpler system

dϕ
dt = 1 + γ cosϕ (4.48)

which can be shown in to have a WC distributed PDF3. The forcing should therefore
homogenize the variable ϕ, driving it towards a more uniformly distributed PDF and

3See appendix B for details.
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possibly changing its preferred direction.
Consider additionally, that the triad equation of motion resembles that of an array
of Josephson junctions [53]. Because we know there is a triad basis and not all triads
are independent, the triad ϕk,p may appear implicitly in α(t), but always in linear
combinations with other triads. This means that the triad equations of motion have
much more structure than identical Josephson junction array systems. Neverthe-
less, comparison with the simpler system also sheds light on the possible form of the
triad PDFs. It has been shown that in the thermodynamic limit Josephson junc-
tions show low-dimensional behavior, synchronizing with a PDF parametrized by a
WC distribution4. Furthermore, the similarity between triad equations (4.15) and
Josephson array equations can be made clearer by setting a flat spectrum. That is,
for example, by setting ak = 1. This yields the possibility of continuously transform-
ing a Josephson system into our triad system, given we ignore the linear dependence
between triads.
These results together motivate starting the study of triad PDFs not in full gen-
erality, but in concrete with the special case of a WSM, which offers an interpola-
tion between a WC and a uniform distribution. Every triad PDF would then be
parametrizable as

f3(φ; k, p) = 1
2π

1 + Ck,p
∑
n∈N

rnk,p exp[−inφ] + c.c.
 . (4.49)

The triad equations of motion are coupled through the real-part of different triads’
first trigonometric moments. This is consistent with a theory for the PDFs where
these first moments play a determining role. Note that we have changed the notation
from (2.38). Since we assume that we can reduce every triad’s statistics to two pa-
rameters, we directly label the PDF by the triad’s k and p. Additionally, this ansatz
for the PDF can be corroborated directly by comparing the triads’ trigonometric
moments; these in turn are obtainable from integrated time series. It is hence not
necessary to implement fitting algorithms for the numerical PDFs.
In summary, comparing our system in broad terms with Josephson junctions and
a simple cosine model leads to a starting point for modeling the triad PDFs. On
the other hand we know that the triad system has much more structure than these
simple models, as exemplified by the dependence between the two-triad correlation
functions and the one-triad PDF. Nevertheless, a phenomenological theory for the

4See appendix C for details.
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triad PDFs is a good place to start investigating this system, relegating more com-
plex statistics for a future study. It serves therefore as a starting semi-analytic
theory to describe the triad statistics.
A numerical exploration of the triad statistics will be presented in next chapter,
along with general numerical observations from our model. A verification of our
proposal for the triad PDF will be numerically done and consequences thereof will
be explored.
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In the previous chapter we showed a couple of exact results; the one-oscillator PDFs
are uniform and the three-oscillator Fourier coefficients are the same as the triad
trigonometric moments. The non-closed triad PDF equation means that it does not
determine the triad PDFs. A semi-analytic theory was hence proposed. This gives
a starting point to model the PDF, but it does not fix any parameters.
This motivates the numerical study of model (4.5) and verification of the semi-
analytic theory from the empirical observations thereof.
Here we comment on results obtained by numerically integrating equation (4.5)
through a direct implementation of equation (4.7). We use overall N = 1024 as the
maximum oscillator index. The choice of spectrum, the existence of a fixed point
and stability analysis are shown in the next section. Subsequently numerical PDFs
will be presented. Finally we will verify the accuracy of the semi-analytic approach
and its consequences. Real-space numerics and statistics will be presented in detail
in the next chapter.

5.1. Spectrum and fixed point

Before starting numerical integration of equation (4.5) it is necessary to fix the
spectrum ak. The typical toy model for one-dimensional turbulence is the Burgers
equation, and it was also our starting point. We want to keep some of its known
phenomenology. We therefore implement the Ek ∝ a2

k ∝ k−2 inertial range spectrum
and a Gaussian cutoff to signify the dissipative length scale. The spectrum was
implemented as

ak = A |k|−α exp
−β (

k

N/2

)2
 , (5.1)

with β = 1 and α = 1. The amplitude A can be set with time rescaling. A log-log
plot of this spectrum is shown in Figure 5.1.
Integrating the model with all oscillators {ϕk} as dynamical variables we observe
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Figure 5.1.: Numerically implemented spectrum (5.1) with β = α = 1. The dashed
lines are at k = N/2 and indicate the Gaussian cutoff. The inertial
range has Burgers like ak ∼ k−1.

convergence to a fixed point. Figure 5.2 shows a snapshot of two different velocity
profiles. Both are obtained from our model (4.5) after the same number of integrated
time steps for the same spectrum, but with different number of oscillators. We
removed in one case the first k0 oscillators from the dynamics. In blue a system is
shown where all oscillators are dynamical variables. This system converges towards
a fixed point. In green is a system where the first k0 = 4 modes are set to zero.
Removing the first produces a velocity profile typical of the known Burgers one-
dimensional turbulence. If this really destabilizes the fixed point or only makes the
transient longer will be answered below.
Equations of the form (4.5) have fixed points for all configurations of the oscillators
{ϕk} which produce triads ϕk,p = ±π/2. Because of the symmetry under (4.6)
not all configurations which lie on a fixed point ϕk,p = ±π/2 are independent. We
observe numerically that the configurations which converge to this fixed point for
k0 = 0 are the ones equivalent to those in which every oscillator is at π/2.
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Figure 5.2.: The system (4.5) converges to a fixed point (blue). If the first modes
are set to zero (green) this fixed point is destabilized and the real-space
velocity profile look similar to typical Burgers velocity profile. For the
numerics we used N = 1024 and we set the first k0 = 4 modes to zero. A
linear stability analysis showed that k0 = 4 is not a long-lived transient
of the k0 = 0 fixed point.

The convergence to a saw tooth function in the fixed point is explainable. A generic
velocity field takes the form (4.10)

u(x) = 1
N

N∑
k=k0+1

ak cos(ϕk + kx+ kx0). (5.2)

We will now translate the system by ϕk → ϕk − kx0. This moves the shock to the
origin

u(x) = 1
N

N∑
k=k0+1

ak cos(ϕk + kx). (5.3)
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Figure 5.3.: Real part of the eigenvalues of the Jacobi matrix (5.8). The fixed point
is only stable for k0 = 0. The λk = 0 eigenvalue is always present as a
consequence of the conserved quantity.

In the fixed point ϕk → π
2

u(x) = − 1
N

N∑
k=k0+1

ak sin(kx). (5.4)

For k0 = 0 and in the limit N →∞ the asymptotic relation for the spectrum reads
ak ∼ k−1. We recall that the 1/N factor fulfills the role of normalization, so that
applying the transformation twice is equals to the identity transformation. With this
in mind, in the limit N → ∞ this prefactor can be reabsorbed into the coefficients
ak. With the above considerations we take the N →∞ limit, and we exchange the
discrete Fourier transform by a Fourier series. This yields

u(x) ∼ −
∑
k∈N

sin(kx)
k

, N →∞. (5.5)

This series can be summed using standard methods1. The resulting expression for
the velocity field reads

u(x) = x− π
2 , x ∈ [0, 2π). (5.6)

1See e.g. in [3] example 14.1.1 .
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The convergence to a saw tooth function in real-space is therefore consistent with
the fixed point in oscillator space.
The question remains, whether setting the first modes to zero destabilizes the fixed
point or if the system has a longer transient. To resolve this question we perform a
linear stability analysis of equation (4.5). As noted in section 4.1.1, equation (4.9)
is more adequate for deriving the Jacobi matrix. From this equation the system’s
Jacobi matrix Jk,q := ∂ϕ̇k/∂ϕq follows

Jk,q = δk,q
N∑

p=−N
ωk,p sin(ϕp + ϕk−p − ϕk)

−2 ωk,q sin(ϕq + ϕk−q − ϕk)− 2 ωk,k+q sin(ϕq + ϕk − ϕk+q).

(5.7)

We have assumed that terms that contain oscillators ϕk for |k| > N are not taken
into account in this expression. At the fixed point ϕk = π/2 the Jacobi matrix takes
the form

Jk,q = δk,q
N∑

p=−N
ωk,p sgn(p) sgn(k − p)

−2 ωk,q sgn(k − q)− 2 ωk,k+q.

(5.8)

We may now carry out a linear stability analysis2 around the fixed point for different
k0. This requires computing the eigenvalues λk of the Jacobi matrix (5.8). The
eigenvalue with the largest real part defines stability of the fixed point . If the real
part of this eigenvalue is larger than zero it is an unstable fixed point; infinitesimal
perturbations will grow exponentially fast. On the other hand, if all eigenvalues
have negative real part, the fixed point is stable. We calculated numerically the
eigenvalues of the Jacobi matrix. These are shown for different k0 in Figure 5.3.
As a consequence of the conserved quantity we always have a λk = 0. We verify
numerically that for N = 1024 and k0 = 0 the fixed point is stable, whereas for
k0 > 0 it is unstable. This explains why setting the first modes to zero produces
non-trivial dynamics, and, more importantly, shows that the dynamics for k0 ≥ 1
are not a long lived transient of this fixed point.
We can thus produce Burgers-like non-trivial dynamics with our model (4.5) by
removing the first k0 modes from the dynamics.

2Linear stability analysis is presented in the context of turbulence in [34].
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Figure 5.4.: Typical one-oscillator and triad PDFs from the numerics. The one-
oscillator PDFs are trivial, whereas the triad’s peaks around π/2. Shown
here is the triad ϕ500,100 for a time series ∼ 107 units of time long.

5.2. Numerical oscillator PDFs

We now have our model (4.5) for the dynamical quantities ϕk, k ∈ {k0, ..., N}, and
a convenient choice of spectrum. With this in place we may numerically integrate
it and observe non-trivial oscillator dynamics. We start our analysis by looking into
the oscillator PDFs.
We first consider the one-oscillator (4.18) and triad (4.22) PDFs . In Figure 5.4
we show the one-oscillator PDF f1 for three different oscillators and the triad PDF
f3 of the triad they form. As we observe, the one-oscillator PDFs are uniformly
distributed. This supports numerically the invariance of the system under (4.6).
The behavior shown in Figure 5.4 is the typical situation observed in all oscillators
and triads. Oscillator PDFs are uniformly distributed, whereas the triads peak
around π/2. Indeed a consequence of the triad labeling convention from section 4.2
is that triads peak around π/2 and have a minimum at 3π/2. The behavior and
form of the PDF is similar for all triads, but the height depends on the individual
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5. Numerics of the model

triad.
If we consider the full three-oscillator PDF f1×1×1 we observe the behavior shown
in Figure 5.5. Shown in this figure are slices at constant φk. As we observe, the
maximum is found along the φp + φk−p − φk = π/2 plane and the minimum along
the φp + φk−p − φk = 3π/2 plane. This observation can also be cast in the form of
an invariance of the three-oscillator PDF. This invariance takes the form

f1×1×1(β, γ, ω + δ; p, k − p, k) = f1×1×1(β, γ − δ, ω; p, k − p, k)

= f1×1×1(β − δ, γ, ω; p, k − p, k)
(5.9)

and is the numerical equivalent of the infinitesimal (4.29). Note additionally, that
the fact that the maximum and the minimum of the three-oscillator PDF are found
at the corresponding planes is a consequence of the correspondence between the
triad and the three-oscillator PDF.
These are numerical observations, which verify results obtained in the last chapter.
The fact that triads accumulate at π/2 is interpreted as the presence of coher-
ence phenomena, whereby a linear combination of random variables has non-trivial
statistics, while the individual oscillators are uniformly distributed. Let us now con-
centrate on the triad PDFs and how to describe their statistics. By comparing the
triad system with simpler systems, we proposed in the last chapter a parametriza-
tion for the PDF. We now proceed to numerically probe the trigonometric moments
in order to verify this assertion.

5.3. Oscillator statistics

From the numerical integration we obtained triad PDFs. Although we did not
develop a theory for obtaining the PDFs directly from the dynamics, studying the
numerical results allows us to verify the semi-analytic theory for the triad PDFs. In
this section we will look into the trigonometric moments of triads. This will allow us
to find relations between the different trigonometric moments and probe the validity
of the semi-analytic theory. A verification of this theory for the triad PDFs will be
done and its consequences presented.
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Figure 5.6.: Linear-log plot of the first ten Fourier coefficients of triad PDFs as in
(5.10). A linear behavior is observed, which reassures the approach of
modeling the triad PDFs as WSM distributions (5.13). Averaged over
sample size ∼ 1010. To resolve moments with numerical value below
|f̂k,pn | ∼ 104 longer time series are necessary.

5.3.1. Parametrization for the triad PDF

Let our starting point be the triad PDF f3 as defined in (4.22). As we saw in
section 2.2.2 a general Fourier series for a 2π-periodic real function f3 satisfying the
normalization

∫
S1 f3(φ) dφ = 1 may be written as

f3(φ; k, p) = 1
2π

1 +
∑
n∈N

f̂k,pn exp(−inφ) + c.c.

 . (5.10)

Given a triad ϕk,p we seek its trigonometric moments, i.e. the Fourier coefficients
f̂k,pn . These are parametrized by k and p; each triad has different trigonometric
moments and consequently different PDFs. Knowing all trigonometric moments
completely characterizes the circular PDF and hence the triad as a circular random
variable. In terms of circular statistics, we will calculate the trigonometric moments.
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5. Numerics of the model

These can be identified as equivalent to ensemble averages, and, in ergodic systems,
as time averages. We work under the conjecture that our system is ergodic. This
yields an empirical way of obtaining the coefficients f̂k,pn given by

f̂k,pn ≡ 〈exp [inϕk,p(t)]〉 = lim
N→∞

1
N

N∑
j=1

exp [inϕk,p(tj)] , n ∈ N. (5.11)

We can now empirically explore the behavior of the Fourier coefficients for the triads
by integrating a time series and taking expectation values (5.11). In Figure 5.6 the
magnitude of the first ten Fourier Coefficients for a sample of triads is shown. This
is a small subset of all triads, but shows the general behavior. Triads have Fourier
coefficients following a linear-log behavior

log |f̂k,pn | = α0 n+ α0, (5.12)

where α0 and α1 are constant coefficients. Numerical precision becomes an issue at
around |f̂k,pn | ∼ 10−4. Additionally, the high frequency of the higher moments on
the one side and triads with slow oscillators on the other require much larger sample
sizes for convergence. Nevertheless, a general linear behavior is observed at least at
the lowest modes.
Observing the behavior of the trigonometric moments and based on our starting
hypothesis (4.49) we propose coefficients of the form

f̂k,pn = Ck,p exp[inπ/2] rnk,p , n ∈ N , Ck,p ∈ R+ , |rk,p| < 1. (5.13)

The phase of f̂k,pn is set to capture the preferred direction of the triads around π/2
(see e.g. Figure 5.4). Parametrization (5.13) allows us then to rewrite the triad
PDF (5.10) as

f3(φ; k, p) = 1
2π

1 + Ck,p
∑
n∈N

rnk,p exp [in (π/2− φ)] + c.c.
 . (5.14)

This parametrization for the PDF is consistent with Figure 5.4 and represents a
WSM circular distribution. It is an unimodal circular PDF which accumulates at
π/2. Just as in equation (2.39) the sum in equation (5.14) can be explicitly carried
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5.3. Oscillator statistics

out using the geometric series

f(φ; k, p) = Ck,p
2π

[
1− r2

k,p

1 + r2
k,p − 2rk,p sinφ

]
+ 1− Ck,p

2π . (5.15)

Convergence is assured by the condition |rk,p| < 1. The parameters rk,p and Ck,p

themselves can be expressed through trigonometric moments by ensemble averages.
Using the first two moments and the relation between them we obtain from (5.11)
and (5.13)

Ck,p = (f̂k,p1 )2

f̂k,p2
= 〈exp [i ϕk,p(t)]〉2

〈exp [2i ϕk,p(t)]〉
,

rk,p = f̂k,p2

i f̂k,p1
= 〈exp [2i ϕk,p(t)]〉

i 〈exp [i ϕk,p(t)]〉
.

(5.16)

Furthermore, this functional form for the PDFs has as a consequence that we can
describe every triad PDF by only two parameters. This shall be explored in detail
in the next sections.

5.3.2. Triad parameters rk,p and Ck,p
Recall that in section 4.4 a comparison of the triad dynamics with a stochastically
forced simple model and a similarity to arrays of Josephson junctions led to the
proposition that the triad PDF could be described by a WSM distribution. This
was numerically verified by comparison of the different trigonometric moments. We
hence parametrized the triad PDF as a WSM distribution. This reduced the study
of triad PDFs to two parameters. Comparison of these parameters simplifies the
study of triad PDFs. Instead of having to compare numerical PDFs we only need
to look at these parameters to know the triads’ complete statistical information.
The value rk,p = 0 leads to an uniform distribution, i.e. f3(φ; k, p) = 1/2π. Larger
rk,p implies a higher peak at π/2. Ck,p is a mixture parameter, and modulates the
magnitude of the angular part of the distribution with respect to the uniform part.
As commented in section 4.2, we hold to a convention which avoids double counting
of triads. This leads to displaying triads in a two-dimensional plot, with axis k and
p, whereby the region defined by k − p ≥ p ∪ p ≥ 0 includes all possible triads
without repetitions. The magnitude of the triads’ first trigonometric moment is
shown in Figure 5.7. Using the second trigonometric moment and equation (5.16)
we obtain rk,p and Ck,p, which are shown in Figures 5.8 and 5.9, respectively. We
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5. Numerics of the model
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Figure 5.7.: The first trigonometric moment for all triads. The general observation
is that higher k leads to a larger first trigonometric moment.

verified that the condition for positive PDFs (2.40) was fulfilled for all triads.
The interpretation of these results is the following. The parameter rk,p tells us

how peaked the distribution is. The mixture parameter Ck,p also influences the
height of the PDF, but its main purpose is to parametrize departure from pure WC
distribution. In Figure 5.8 we observe a tendency of high k triads to peak higher
than ones with lower k; this is especially so for triads with both high k and p.
In Figure 5.9 we observe that high k triads with low p have a marked departure
from uniform distribution. Triads with both k and p low also show a high mixture
parameter, but their rk,p parameter is rather low. This indicates that although the
angular part of the distribution is higher than the uniform one, the angular part is
relatively small in comparison with other triads.
Identifying the triad PDFs as WSM distribution means that all one-triad statistical
information is contained in these plots.

5.3.3. Reduction to a WC distribution

As we see from Figure 5.9, the bulk of triads has mixture parameter Ck,p in the
range [1, 1.4]. This is also shown in the distribution of the values of the mixture
parameter Ck,p in Figure 5.10. Recall that a WSM distribution with C = 1 is a
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Figure 5.8.: The triad parameter rk,p for all triads. This parameter measures how
peaked the PDF is. Convergence of the sum requires that |rk,p| ≤ 1.
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Figure 5.9.: Using (5.16) we calculate the mixture parameter Ck,p for all triads. It
measures the relative weight of the angular part in the PDF (5.14) with
respect to the uniform part. The condition for positive PDFs (2.40) is
fulfilled.
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5. Numerics of the model
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Figure 5.10.: Distribution of the Ck,p parameter values for all triads. The bulk of
triads has Ck,p value around 1.1. This motivates modeling the triad
PDF with the simpler WC distribution. The angular part of the PDF
is mixed with parameter near one, whereby it is possible to reduce our
theory to a simpler one-parameter WC distribution.

WC distribution. The values for Ck,p accumulate around ∼ 1.1. This poses the
question of how well the simpler WC distribution describes the triad PDFs. This
would leave only one parameter for each triad PDF. A simpler ansatz than (5.13)
for the trigonometric moments reads

f̂k,pn = exp[inπ/2] Rn
k,p , n ∈ N , |Rk,p| < 1. (5.17)

This is equivalent to a WC distribution (2.29) with first trigonometric moment
R = Rk,p exp[iπ]. Following equations (2.29) and (2.30), in this simplified theory
the triad PDFs take the form

f3(φ; k, p) = 1
2π

1 +
∑
n∈N

Rn
k,p exp [in (π/2− φ)] + c.c



= 1
2π

1−R2
k,p

1 +R2
k,p − 2Rk,p sinφ.

(5.18)
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5.3. Oscillator statistics

As was previously the case (5.16), we now also have a relation between the first
moment Rk,p and ensemble averages given by

Rk,p = −i f̂k,p1 = −i 〈exp [i ϕk,p(t)]〉. (5.19)

Analytic property of the expected values

In section 2.3.3 we introduced the WC distribution and commented on some of its
properties. One of these is the identification of the WC distribution with the Poisson
kernel. As noted there, this property has the consequence that expectation values
of functions of triads are analytic in the complex variable R. This property yields a
considerable amount of structure to triad statistical quantities, and might provide
in the future provide means to justify existence of differential equations defining the
Rk,p.

5.3.4. Comparison of the WSM and WC distributions for the
triad PDF

We have motivated a WSM parametrization (5.14) for the PDF by comparing it to
a simpler system subject to stochastic driving. Numerical study of the behavior of
the first coefficients of the Fourier series confirmed this. The observation that the
bulk of triads has Ck,p near 1 then led to a simpler WC parametrization (5.18). Here
we will compare these two parametrization.
In Figure 5.11 we show triad PDFs obtained from integrated time series, as well as
the corresponding WSM (5.14) and WC (5.18) distributions for four different triads.
For the bulk of triads, the WC ansatz (5.18) yields results with up to 5% error, with
the advantage of reducing the whole description of the PDF to one parameter. Only
very few triads, usually the ones with high-k and low-p, show errors of more than 5%
when describing their PDF as a WC distribution. This motivates a general study
of the triads with this distribution, considering the high-k and low-p triads as a
minority of special cases.
A more global analysis is provided in Figure 5.12. Here the cumulative error was
calculated for all triads. Let fnum(φ; k, p) be the numerical PDF of the k, p triad.
We will then define the cumulative error in percentage as

Error(%) =
∫
S1

dφ
∣∣∣∣∣1− f3(φ; k, p)

fnum(φ; k, p)

∣∣∣∣∣× 100. (5.20)
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5.4. Kuramoto-like order parameter
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Figure 5.12.: Distribution of the cumulative error (5.20) for the WC and WSM
functional forms of the triad PDF. The WSM PDF has error with
mean 0.605% and variance 0.128%. The WC PDF has mean 2.40%
and variance 4.78%. By reducing the theory for the triad PDFs to
the simpler WC distribution we work with only one parameter, whilst
keeping error relatively low.

The error was calculated for all triads using both the WC and WSM distributions
for f3(φ; k, p). The resulting error distributions are shown in Figure 5.12. The
WSM distribution ansatz for f3 has lower error. This distribution has error with
mean 0.605% and variance 0.128%. The WC distribution ansatz on the other hand
has mean 2.40% and variance 4.78%. Although the WSM distribution is better at
describing the triad PDFs than the WC distribution, cumulative error (5.20) for the
WC distribution is typically under 5% with the advantage of reducing the study of
triad PDFs to a simpler one parameter distribution. We will therefore reduce our
theory for the triad PDFs to a simpler WC distribution, whereby for the bulk of
triads the first trigonometric moment completely determines all other trigonometric
moments.

5.4. Kuramoto-like order parameter

Previous considerations have given a fine-grained description of the system. A more
global analysis of the system leads to an order parameter in the mean field sense.
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5. Numerics of the model

Let the order parameter at time t be defined as a Kuramoto-like parameter

R(t) exp(iΦ(t)) := 〈exp(iϕk,p(t))〉k,p . (5.21)

This parameter contains general information on the synchronization state of triads.
Similar definitions have been used in the literature to study the time-depentent triad
synchronization in a similar system [38]. In terms of circular statistics, this order
parameter is the mean over all triads. This time dependent order parameter serves
to evaluate the triad synchronization in time. Averaging in time yields information
regarding the average triad behavior. This time average may then be expressed in
terms of the parameter Rk,p using (5.19). An averaged order parameter then takes
the form

R exp(iΦ) := 〈R(t) exp(iΦ(t))〉t =
〈
〈exp(iϕk,p(t))〉k,p

〉
t
. (5.22)

We identify these expectation values as the first trigonometric moments of the indi-
vidual triads, which can be rewritten in terms of the distribution parameters

R exp(iΦ) ≡ i 〈Rk,p〉k,p (5.23)

The numerics confirm the expectation that Φ = π/2. R is shown in Figure 5.13
for different spectra (5.1). This gives a means of analyzing the effect of the choice
of spectrum on the average synchronization properties of the triads. This mean
Kuramoto-like order parameter (5.23) gives a global overview of the system.
On the other hand, the triads’ first trigonometric moment contains finer information
regarding which parts of the system accumulate more or less sharply at π/2. The
triads’ first trigonometric moment is shown for several choices of spectra in Figure
5.14. As can be seen, a very quick overview of the system as a whole is easily
attainable. This might prove useful in future studies, while investigating the effect
of the choice of spectrum on the triad parameters Rk,p.
Averaging also allows one to establish a comparison point to divide triads into a slow
or fast category. In this context fast is meant in the sense that more coherent events
take place, and therefore the PDF is more peaked. In Figure 5.15 we show the Rk,p

value for all triads with the same value Rk,p = R marked in red. The transition
to fast triads happens in the range [N/2, 3N/4]. A similar comparison is shown in
Figure 5.16 for selected PDFs. Note that this approach also identifies the triads
with larger k as those which accumulate most around π/2; it is the fastest oscillator
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Figure 5.13.: Different spectra, and their averaged triad Kuramoto-like order pa-
rameter. This order parameter contains information of the average
synchronization state of the triad system. Recall from equation (5.1)
that α is the algebraic steepness of the spectrum, and β indicates the
Gaussian cutoff.

in a triad the one which determines if the triad is slow or fast.

5.5. Two-triad PDFs

In Figure 4.2 we saw that the triads are not coupled dynamically to all other triads.
Two triads are only coupled, if they share one or more oscillators in common. An
example of two-triad PDFs (4.23) is shown in Figure 5.17. On the left side is the joint
statistics f3×3 and on the right side is the direct product of one-triad statistics f3 f3.
Comparing the difference between the left and right sides of Figure 5.17 yields the
correlation function C3×3. This behavior is quite general; triads which share lowest
mode oscillator, i.e. same p, have a much more pronounced correlation than others
which share their k or k − p oscillator.
Recall that the triads are distributed as unimodal circular distributions with first
moment at π/2, i.e. f̂1 ∝ i for all triads. Hence we obtain from equation (4.45)

f3(φ; k, p) = −S(φ; k, p)
ω̃k,p cosφ . (5.24)
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at 1.
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5.5. Two-triad PDFs

As previously seen, the triad PDFs depend explicitly on the statistically dependent
part of the two-triad PDFs. This means that a full theory for the triad PDFs must
necessarily describe the two-triad PDFs in detail. A theory for these two-triad PDFs
is not presented here; nevertheless, this may be a good starting point for a theory
of the many-oscillator PDFs. For example, parametrizing the triad PDF as a WC
distribution means we obtain from equation (5.24)

S(φ; k, p) = cosφ ω̃k,p2π

1 +
∑
n∈N

Rn
k,p exp [in (π/2− φ)] + c.c

 . (5.25)

Recall that S is defined through the correlation function C3×3 as

S(φ; k, p) =
∑
{k′,p′}

Ωk,p,k′,p′

∫
S1

dθ cos θ C3×3(φ, θ; k, p, k′, p′). (5.26)

Comparing equations (5.25) and (5.26) yields conditions for the correlation func-
tion. This could be a starting point for a future theory for the many-oscillator PDF.
Additionally, these equations might be used to express two-triad expectation values
through the triad PDF and its moments. These ideas require however further de-
velopment, and we will not treat them here.

In this chapter we have obtained a theory for the triad PDFs, whereby all statis-
tical information of a triad is given through its first trigonometric moment. Three-
oscillator coherence effects are seen as peaking of triad PDFs at π/2, and this is
completely described by the triad’s first trigonometric moment. In the following
chapter the connection between this parameter and real-space statistics will be dis-
cussed.
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6. Real-space statistics

We have until now worked in the spectral space with the system of oscillators (4.5).
This model stems from the Fourier modes of a Burgers velocity field. By virtue of
the inverse discrete Fourier transform, the velocity field (4.10) and its gradient (4.11)
can be recovered from the oscillators. The effect of the dynamics of the oscillators
in real-space can then be investigated.
Studying the oscillator statistics, we reduced the study of triad PDFs to through
the WC distribution to one parameter Rk,p per triad. By virtue of the WC distri-
bution, all triads’ trigonometric moments and expectation values are known, if the
corresponding first moment is given. Triad accumulation at π/2 occurs because of
three-oscillator coherence events, and this is completely described by this one pa-
rameter.
In this chapter the relation between oscillator coherence and real-space intermit-
tency is discussed. First, general numerical phenomenology of integrated time series
in real-space is presented. Afterwards, we explain some of the observed phenomenol-
ogy with our knowledge of oscillator statistics. Finally, by looking at the velocity
increments, the direct influence of the oscillator coherence phenomena on the skew-
ness is derived. Each triad’s individual contribution to the skewness will be isolated.

6.1. Velocity and gradient PDFs

Velocity and gradient statistics are a central tool in turbulence; the single-point
velocity and gradient statistics provide information about the statistics of the large
and small scales, respectively. Our investigations into the oscillator model (4.5) ne-
glected the dynamics of the amplitudes. Nevertheles these influence the real-space
dynamics. It is known [29], that if the spectrum is shallow enough, the central
limit theorem can be applied when calculating the velocity field from its Fourier
modes. As a consequence, velocity fields with uncorrelated phases will show real-
space Gaussian statistics. The condition on the spectrum is that it is not steeper
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6.1. Velocity and gradient PDFs
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Figure 6.2.: Velocity field statistics for four different spectra. The spectra ak ∝ k0

and ak ∝ k−1/4 are flat enough to produce Gaussian statistics. The
symmetric maxima at the highest steepness indicate the dominating
contribution to the velocity field from its first modes (6.1). In general,
velocity statistics remain sub-Gaussian.

than ak ∝ k−1/2 ⇔ Ek ∝ k−1.
Because we know that the coupled oscillator model has trivial one-oscillator statis-
tics, a similar result must apply here, if non-trivial real-space statistics are to be
observed. We will test this by setting β = 0 and α = 0, 1/4, 1, 3/2 in the spectrum
(5.1). In Figure 6.1, the typical velocity profile for these spectra is shown. Flat
enough spectra produce Gaussian velocity fields. As the steepness increases the ve-
locity field looses randomness and non-trivial statistics are observed.
The real-space PDFs were numerically obtained to quantitatively asses the statistics
of these velocity fields. In Figure 6.2 we show the velocity PDFs for these spectra.
Both the ak ∝ k0 and ak ∝ k−1/4 spectra are shallow enough produce Gaussian
statistics. For steeper spectra the tails become sub-Gaussian. Additionally, if we
further increase the spectrum’s steepness, here by setting ak ∝ k−3/2, the PDF shows
two maxima symmetric with respect to zero. If the spectrum (5.1) is steep enough,
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Figure 6.3.: Velocity gradient statistics for four different spectra. Note that
ak ∝ k−1/4 departs from Gaussianity, but notably less than the steeper
spectra. The negative tails foretell the presence of negative shocks.
Negative shocks are hallmark of Burgers systems [11].

the real-space velocity field (4.10) is dominated by the first term

u(t, x) ∼ ak0+1 cos(ϕk0+1 + (k0 + 1) x) +O(ak0+2). (6.1)

As we visually confirm from Figure 6.1, steeper spectra lead to a dominant con-
tribution of the largest sinusoidal mode. This PDF with two symmetric maxima
is typical of sinusoidal signals. This explains the behavior of the velocity PDF in
Figure 6.2 for the steep spectrum.
Figure 6.3 shows the velocity gradient statistics for the same spectra. Increasing
the steepness of the spectrum produces super-Gaussian negative tails. These tails
signify the existence of negative shocks, just as in Burgers turbulence [9]. These
shocks are clearly visible in the real-space velocity profiles in Figure 6.1. Note that
the shocks are localized events, and they are hence not probed by the velocity statis-
tics.
These observations can be quantified by looking at the PDFs’ skewness and flatness.
Recall that a Gaussian random variable has skewness zero and flatness three. By
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Figure 6.4.: Skewness and flatness of the velocity field u(t, x) (4.10) for differ-
ent spectra (5.1). The skewness indicates the symmetry of the PDF,
whereas the flatness shows sub-Gaussian behavior.

comparing these values to the ones obtained from the velocity and gradient PDFs,
the departure from Gaussianity can be quantitatively measured. For different choices
of steepness, the velocity field’s statistics were obtained, and are shown in Figure
6.4. The skewness remains zero for all choices of spectrum we looked at. On the
other hand, by increasing the spectrum steepness the flatness decreases to around
∼ 1.6 and seems to saturate there. This is a consequence of the sub-Gaussian tails,
whereas zero-skewness indicates that the PDF is symmetric around the mean.
The velocity gradient was already shown to have PDFs with heavy negative tails.
Both its skewness and flatness are shown in Figure 6.5 for the same spectra as for the
velocity field. A more pronounced departure from Gaussianity is observed, which
foretells the presence of extreme events in the small scales. Skewness is non-zero and
remains negative. This indicates the prominence of the negative shocks. Skewness
remains in the order of O(−10), whereas the flatness grows considerably to order
of O(100). This is due to the fact that flatness is an even-order moment, so that
negative and positive contributions do not cancel out.
It is notable that at α ∼ 1.25 both the skewness and flatness begin to decrease.
This may be explained by considering that the dominating contribution to the real-
space velocity field is, in the steep spectrum limit, a sinusoidal signal, as we already
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Figure 6.5.: Skewness K3 and flatness K4 of the gradient of the velocity field
∂xu(t, x) (4.11) for different spectra (5.1). The Gaussian values of skew-
ness and flatness corresponding to zero and three are shown in dashed
lines. The small scales depart notably from Gaussianity.

encountered in (6.1). This asymptotic approach to a sinusoidal behavior slowly nor-
malizes flatness and skewness, as shocks become more gradual and symmetric.
An interesting observation from the velocity and gradient statistics is the following.
The spectrum steepness at which the statistics deviate from Gaussianity is around
α ∼ 1/2. This is clearly seen in the β = 0 case from Figures 6.4 and 6.5, where
the statistics noticeably depart Gaussianity after α ∼ 1/2. This is precisely the
expected result from the literature [29], and is very clearly exemplified here by the
skewness and flatness of the velocity field and its gradient.
Finally, the one dimensional version of the velocity increment (3.5) is defined as

δru := u(t, x+ r)− u(t, x). (6.2)

As we commented in section 3.1, the velocity increment interpolates between the
velocity and the gradient statistics, i.e. between large and small scales. We explore
it for our usual choice of spectrum α = β = 1. Both skewness and flatness of the
velocity increment are shown in Figure 6.6.
Flatness of the velocity increment is very large for small increments, but quickly

becomes sub-Gaussian with increasing the separation r. After r ∼ 0.211 the flatness
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Figure 6.6.: Skewness K3 and flatness K4 of the velocity increment δru as a function
of r. The spectrum of the numerical implementation α = β = 1 was
used. The alternating skewness indicates a change in the symmetry of
the PDF; this change is observed for the different separations r in Figure
6.7. Note that at r ∼ 3π/8 and r ∼ 3π/4 the velocity increments are
close to normally distributed.

remains sub-Gaussian. This indicates that the super-Gaussian tails are exclusively
found at the very small scales. At other scales sub-Gaussian tails are the norm.
The skewness is also minimal at the smallest scales, foretelling the presence of neg-
ative shocks. As the increment becomes bigger, the skewness returns to zero. As
r increases further, the skewness oscillates around zero. This indicates that the
PDF’s symmetry is scale dependent. To illustrate this, the PDFs of several selected
values of r are shown in Figure 6.6. Here we clearly observe the transition from
heavy negative tails in the small scales to sub-Gaussian behavior at the large scales.
Additionally, the dependence of the symmetry of the PDF on r is observable. As a
final remark, note that the velocity increment is almost Gaussian at r ∼ 3π/8 and
r ∼ 3π/4.
We have thus shown that a real-space velocity field obtained from the coupled os-
cillator model is intermittent. These results were obtained by directly integrating
the oscillator model (4.5) and then applying an inverse discrete Fourier transform
(4.10). In the last chapter we were able to reduce the study of triad statistics to
one parameter per triad. This parameter completely describes the three-oscillator
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increments reflect the sub-Gaussian tails of the velocity statistics.

coherence phenomena and each triad’s statistics to a good approximation for most
triads. This result in spectral space can be used to explain some of the real-space
statistics explored in this section, and will be the topic of the next section.

6.2. Triad synchronization and real-space statistics

6.2.1. Single-point statistics

Some of the numerical observations presented in the last section can be explained
with our knowledge of spectral space dynamics. We will denote averaged real-space
fields as 〈u〉. This is understood as a space and time average, where the space
average is taken first. Note, first of all, as a general result for fields of the form
(4.10) or (4.11), that their first moment vanishes

〈u(t, x)〉 = 0 and 〈∂xu(t, x)〉 = 0. (6.3)
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That is, as statistical variables u(t, x) and ∂xu(t, x) are centered random variables.
Furthermore, according to the Parseval identity (4.12) the second moment is fixed
by the spectrum

〈u(t, x)2〉 = 1
2N2

N∑
k=k0+1

a2
k , (6.4)

〈∂xu(t, x)2〉 = 1
2N2

N∑
k=k0+1

k2 a2
k . (6.5)

Calculating the first two moments in real-space requires no knowledge on the oscil-
lator statistics; the space average negates out all the time dependence. For the third
moment the oscillator statistics will be relevant.
We will exemplify the process of averaging with the third moment of the velocity
field. We start by writing the third power of the velocity field (4.10) as exponential
functions and identifying the terms which are equal

u(t, x)3 = 1
8N3

N∑
k1,k2,k3=k0+1

ak1 ak2 ak3

×
[

exp[ix(k1 + k2 + k3) + i(ϕk1(t) + ϕk2(t) + ϕk3(t))]

+3 exp[ix(k1 + k2 − k3) + i(ϕk1(t) + ϕk2(t)− ϕk3(t))]
]

+c.c.

(6.6)

Integrating over space leaves only the second exponential in the brackets

1
2π

∫
S1

dx u(t, x)3 = 3
8N3

N∑
k1,k2,k3=k0+1

ak1 ak2 ak3δk1+k2, k3

× exp[i(ϕk1(t) + ϕk2(t)− ϕk3(t))]

+c.c.

(6.7)

The sum may be carried out, and by taking a time average we obtain the time and
space averaged third-order moment of the velocity 〈u3〉. For clarity the time and
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space dependence will no longer be explicitly shown. We are thus led to

〈u3〉 = 3
8N3

N∑
k1,k2=k0+1

ak1+k2 ak1 ak2

×〈exp[i(ϕk1 + ϕk2 − ϕk1+k2)]〉

+c.c.

(6.8)

The average over the oscillators can be identified with the corresponding triad’s first
trigonometric moment

〈
exp[iϕk1+k2,min{k1,k2}]

〉
= iRk1+k2,min{k1,k2}. (6.9)

Recall, again, that all information contained in the triad PDF is also contained in the
three-oscillator PDF. Hence, this triad parameter Rk,p completely describes all three-
oscillator coherence phenomena. The third-order moment of the velocity involves
the three-oscillator statistics. Moreover, not all three-oscillator statistics, but only
those forming triads, are taken into account. It is here that we first encounter the
relationship between oscillator coherence and real-space statistics. Now, because
the triads peak at π/2 taking complex conjugate leads to a vanishing third-order
moment of the velocity field

〈u3〉 = 3
8N3

N∑
k1,k2=k0+1

ak1+k2 ak1 ak2 iRk1+k2,min{k1,k2} + c.c

= 0.

(6.10)
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The gradient, on the other hand, has a non-vanishing third moment. Following a
similar calculation as for the velocity field, we obtain

〈∂xu3〉 = −3
8iN3

N∑
k1,k2=k0+1

ak1+k2(k1 + k2) ak1k1 ak2k2

×〈exp[i(ϕk1 + ϕk2 − ϕk1+k2)]〉

+c.c.

= −3
4N3

N∑
k1,k2=k0+1

ak1+k2 (k1 + k2) ak1 k1 ak2 k2 Rk1+k2,min{k1,k2}.

(6.11)

Here the relation between triad synchronization and gradient skewness is evident.
We have reduced the study of triad synchronization to one parameter per triad Rk,p,
whereby higher values of this parameter imply further departure from uniformly
distributed, i.e. appearance of three-oscillator coherence events. This establishes
a relation between the small-scale departure from Gaussianity, through skewness,
and spectral space phase synchronization. That is, high Rk,p corresponds to more
common three-oscillator coherent events. At the same time, this parameter has a
direct effect on the velocity gradient’s skewness.
Note that we can explicitly write each triad’s contribution to the gradient’s skewness.
In terms of triads, equation (6.11) reads

〈∂xu3〉 = −3
2N3

N∑
k=2k0+2

bk/2c∑
p=k0+1

ak−p (k − p) ap p ak k Rk,p. (6.12)

This sums uniquely over all triads. Correspondingly, each triad’s contribution to
the gradient’s skewness can be isolated as

[K3(∂xu)]k,p := −3
√

2 ak−p (k − p) ap p ak k Rk,p(
N∑

q=k0+1
q2 a2

q

)3/2 . (6.13)

As we have previously seen, triads have a general dependence on the k index, i.e. their
fastest member oscillator. Triads with higher k tend to have higher Rk,p whereas
lower k usually means a more uniformly distributed triad PDF. With this in mind,
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we may sum the equation (6.13) scale by scale over the k index to obtain the total
contribution to skewness per scale. In other words, we will look into the relative
contribution

[K3(∂xu)]k := 1
K3(∂xu)

bk/2c∑
p=k0+1

[K3(∂xu)]k,p. (6.14)

This relative skewness density is shown in Figure 6.8. Also shown is each triads’
individual contribution (6.13) and the spectrum k ak. We have set the exponential
cutoff scale at N/2. Although the high k triads have higher Rk,p their contribution
is minimal because of the spectrum’s steepness. It is hence a notable result in
this system, that the major contribution to small-scale non-Gaussianity comes from
triads in the lower part of the ’inertial’ range, at N/4 < k < N/2.

6.2.2. Velocity increment statistics

The results presented in the last section can be extended to the velocity increment.
The velocity increment interpolates between large and small scales, and it will help us
further understand the effect of triad synchronization in real-space scale-dependent
statistics. It is remarkable that we can find an expression for the velocity increment
skewness and explicitly prove that it interpolates between velocity and gradient
statistics.
As with the velocity and the gradient, the velocity increment’s first moment vanishes.
Its second moment is given by the spectrum and does not depend on oscillator
statistics

〈δru2〉 = 1
N2

N∑
k=k0+1

a2
k (1− cos(kr)). (6.15)

The third moment follows in a similar way as for the velocity and its gradient. It
involves similarly the triad Rk,p

〈δru3〉 = 3
N3

N∑
k1,k2=k0+1

ak1 ak2 ak1+k2 Rk1+k2,min{k1,k2}

×
[1
2 sin(r(k1 + k2))− sin(k2r)

]
.

(6.16)
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This can also be rewritten in terms of individual triad contributions as

〈δru3〉 = 3
N3

N∑
k=2k0+2

bk/2c∑
p=k0+1

ak ap ak−p Rk,p

× [sin(rk)− sin(rp)− sin(r(k − p))] .

(6.17)

As was done for the single-point statistics, each triad’s contribution to the velocity
increment skewness can be worked out. This reads

[K3(δru)]k,p = 3 ak ap ak−p [sin(rk)− sin(rp)− sin(r(k − p))] N∑
q=k0+1

a2
k (1− cos(rq))

3/2 Rk,p . (6.18)

Consequently, the full skewness is obtained by summing over all triads

K3(δru) =
N∑

k=2k0+2

bk/2c∑
p=k0+1

[K3(δru)]k,p. (6.19)

In turbulence one usually does not have a closed form for the velocity increment.
Scaling laws may be valid in a certain range, but to have a system where functional
form of a moment of the velocity increment is fully known yields a nice possibility
of showing the continuous transition from gradient to velocity statistics. From the
second and third moments of the velocity increment, the convergence to velocity
statistics is rather straightforward

lim
r→π

K3(δru) = 0. (6.20)

The limit r → 0 will require some more work. In this limit the second moment of
the velocity increment has the behavior

〈δru2〉 ∼ r2〈∂xu2〉+O(r4) , r → 0. (6.21)

For the third moment consider first the asymptotic behavior of the r-dependent
sine functions. For small r they have the asymptotic form

sin(rk)− sin(rp)− sin(r(k − p)) ∼ −r3k p (k − p)
2 +O(r5) , r → 0. (6.22)
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Figure 6.9.: Comparison of the velocity increment’s skewness from numerical real-
space data and from oscillator statistics as in equation (6.18).

Plugging this result into equation (6.17) and comparing with (6.12) gives us the
asymptotic form

〈δru3〉 ∼ r3〈∂xu3〉+O(r5) , r → 0. (6.23)

Putting together equations (6.21) and (6.23) we obtain that the gradient and velocity
increment skewness are asymptotic in the small r limit

K3(δru) ∼ K3(∂xu) +O(r2) , r → 0. (6.24)

For completeness we will corroborate these real-space results by comparing equation
(6.18) with the real-space numerical results. Using these two methods we produced
Figure 6.9. Here the skewness obtained from equation (6.19) is compared with di-
rectly measured real-space skewness. As expected, the results are the same.
The relevance of these results is that by studying equation (6.18) each triad’s contri-
bution to the real-space skewness is isolated. That is, every possible three-oscillator
combination forming a triad contributes uniquely to the skewness. Therefore, three-
oscillator coherence events, parametrized by Rk,p, have a direct influence on the
real-space scale-dependent statistics. As we will shortly see, higher moments re-
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quire additional information on the many-oscillator statistics.

6.3. Higher-order moments

The next moment we can look at is the fourth moment. Proceeding in a similar
fashion as for the lower moments, we obtain

〈u(t, x)4〉 = 1
4N4

∑
k1,k2,k3

ak1ak2ak3

× [ak1+k2+k3 〈exp[i(ϕk1 + ϕk2 + ϕk3 − ϕk1+k2+k3)]〉

+3
4ak2+k3−k1 〈exp[i(ϕk2 + ϕk3 − ϕk1 − ϕk2+k3−k1)]〉

]

+c.c.

(6.25)

The expression for the gradient follows in a similar way. The caveat here is that
we have not yet developed a theory for the four-oscillator or higher-order statistics.
Notice that the four-oscillator expected value can be rewritten as an average over
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two triads

〈exp[i(ϕk1 + ϕk2 + ϕk3 − ϕk2+k3−k1)]〉 =

〈exp[i(ϕk1 + ϕk2 − ϕk1+k2)] exp[i(ϕk3 + ϕk1+k2 − ϕk1+k2+k3)]〉 .
(6.26)

A possible way out would be to use the joint statistics with the correlation function
factorization (4.24) and neglect the correlation function. However, in section 5.5 we
argued based on the numerical data (Figure 5.17) that the correlation function is
not unimportant. Moreover, it depends on which oscillator the two-triads have in
common. Working with the four-oscillator statistics would therefore require more
knowledge on the six-oscillator (two-triad) statistics. Consequently, with the infor-
mation and theory we have developed until now, the fourth-order statistics cannot
be tackled.
Nevertheless, a couple of numerical observations are worth mentioning. For a spe-
cific choice of four oscillators, the PDFs of such linear combinations are shown in
Figure 6.10.These are linear combinations of oscillators as they appear in equation
(6.25). The resulting PDFs peak either at π, or at 0. These PDFs are also very well
described by a WC ansatz. That is, the first trigonometric moment of these linear
combinations suffices to describe the PDF. This is an interesting numerical obser-
vation, as it reveals that the WC distribution also plays a role in the higher-order
oscillator statistics. In future studies this observation and the α-stability of the WC
distribution might play a role in deriving a theory for the higher-order statistics.
Finally, another strategy for describing the higher-order statistics could rely on the
relation between the triads and the correlation function. Comparing equations (5.25)
and (5.26) we are led to

f3(φ; k, p) =
−
∑
{k′,p′}

Ωk,p,k′,p′

∫
S1

dθ cos θ C3×3(φ, θ; k, p, k′, p′)

ω̃k,p cosφ . (6.27)

This is an exact relation between the correlation function and the triad PDF. If
equation (6.25) could be recast as a relation involving the correlation function, then
equation (6.27) might be used to describe these higher-order statistics in terms of
the triad parameters.

It remains nevertheless remarkable that using the information on the parametriza-
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6. Real-space statistics

tion of the triad PDFs results can be derived for the real-space statistics. Arguably
similar results can be achieved without stating a theory for the triad PDFs, one
needs only know the first trigonometric moment of the triads to obtain real-space
skewness relations. The main achievement here is that a triad’s first trigonometric
moment completely describes its PDF. Additionally, on account of the translation
symmetry we know that the three-oscillator and triad PDFs are equivalent. Hence
this one parameter completely describes three-oscillator coherence events. It has
both meanings of triad synchronization and real-space skewness to it. Recall that
in turbulent fields intermittency is scale dependence of the statistics. This estab-
lishes the connection between real-space intermittency and Fourier phase coherence
phenomena.
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7. Summary, conclusions, and
outlook

In this master’s thesis we have presented a one-dimensional coupled oscillator model,
which can be used to study Fourier phase dynamics in turbulent fluids. The model
was derived from an inviscid Burgers equation, and its equations of motion read

ϕ̇k =
N∑

p=−N
ωk,p cos(ϕp + ϕk−p − ϕk) , k = 1, ..., N. (4.5)

These equations retain the oscillator-oscillator coupling present in the spectral for-
mulation of the Navier-stokes equation (3.4). They are nevertheless much simpler,
and facilitate the study of oscillator coherent events. To better understand the re-
lation between these oscillator-coherence phenomena and real-space intermittency
was the main goal of this master’s thesis.
The properties of the coupled oscillator system were derived in chapter 4. We ex-
plained how to obtain real-space fields from the oscillator model using the discrete
Fourier transform and how to implement the equations of motion using the fast
Fourier transform. Oscillators are coupled to one another in groups of three, as in
the cosine in equation (4.5). Each triad has two indices, k and p, indicating the
highest and lowest oscillator in the triad, respectively. We call such a set of three
oscillators coupled in this way a triad ϕk,p. This leads to two dimensional repre-
sentations, in which every triad can be uniquely presented (see e.g. Figures 4.1 and
4.2).
Because there are many more triads than oscillators, a triad basis is necessary when
reformulating the dynamics in terms of triads. This avoids the introduction of spu-
rious degrees of freedom when reformulating the system. Triad bases were explicitly
derived for two different cases. The dynamics in terms of triads takes the form

ϕ̇k,p = ω̃k,p cos(ϕk,p) +
∑
{k′,p′}

Ωk,p,k′,p′ cos(ϕk′,p′). (4.15)
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7. Summary, conclusions, and outlook

Here ω̃k,p is the coupling of the triad to itself and Ωk,p,k′,p′ are the coupling coefficients
to all other triads. That is, they contain information regarding which triad is coupled
to which others, and the corresponding coupling constants.
Afterwards, definitions for the one-oscillator PDF f1, three-oscillator PDF f1×1×1,
and the triad PDF f3 were introduced. Using the invariance of the oscillator system
under the transformation

ϕk → ϕk + kx0 , ∀x0 ∈ R, (4.6)

several results were derived for these PDFs. The one-oscillator PDFs are all uniform
f1(φ; k) = 1/2π ∀k. Thre joint PDF of three oscillators forming a triad and the cor-
responding triad PDF have the same information. Hence, to speak of three-oscillator
coherence phenomena is the same as to speak of triad accumulation at π/2. This
identification allows us to work with triad PDFs, which are one-dimensional. In
contrast, the three-oscillator PDFs are three dimensional.
A theory for the triad PDFs would describe the three-oscillator coherence events. A
typical place to start is with the PDF equation. These are equations of conservation
of probability fulfilled by PDFs. However, the triad PDF has the closure problem; it
depends on the triad-triad statistics and is hence unclosed. We have thus no defining
equations for the triad PDF. This motivates an alternative way of postulating a the-
ory for the triad PDF. We proceeded by comparing the triad’s equations of motion
(4.15) to an array of Josephson junctions and a simpler cosine model resembling an
Adler equation. This comparison led to an ansatz for the triad PDF. This ansatz is
known as the Wrapped Stable and Uniform Mixture (WSM). This distribution was
introduced in section 2.3.4, and it was shown that it has three free fit parameters.
Each triad’s PDF can then be described by the parameters rk,p = rk,p exp[iΦk,p] ∈ C
and Ck,p ∈ R.
These parameters must be fixed by the numerics. With this objective, the oscillator
model was numerically integrated for N = 1024 oscillators, and in chapter 5 we pre-
sented numerical observations thereof. For the numerical integration the spectrum
was set to

ak = A |k|−α exp
−β (

k

N/2

)2
 , (5.1)

with α = β = 1. The amplitude A was set to one by time rescaling. First of
all, the existence of a fixed point was reported. The system of coupled oscillators
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(4.5) converges to the fixed point ϕk = π/2. This takes the form of a saw tooth
function in real-space. This fixed point may be destabilized by removing the first
k0 oscillators from the oscillator system. A linear stability analysis was carried out,
and we confirmed that setting the first k0 > 0 oscillators to zero destabilizes the
fixed point. With the spectrum fixed, and the first k0 oscillators set to zero, time
series were integrated. From these the different triad trigonometric moments were
calculated. These are shown in Figure 5.6. This observation leads to a theory for
the triad trigonometric moments

f̂k,pn = Ck,p in rnk,p , n ∈ N , Ck,p ∈ R+, |rk,p| < 1. (5.13)

This is equivalent to a WSM distribution for the triads. Knowing the two parame-
ters rk,p and Ck,p fully determines the triad’s PDF. Larger rk,p means a triad PDF
which peaks more strongly at π/2, whereas Ck,p reflects the ratio of the angular de-
pendence with respect to the uniform part of the distribution. Furthermore, these
two parameters can be simultaneously shown for all triads in two-dimensional plots.
Hence, the three-oscillator coherence phenomena can be read out of Figures 5.8 and
5.9.
Yet, a further simplification for the triad PDFs is possible. The simpler Wrapped
Cauchy (WC) distribution for the triad PDFs can be used, while keeping error in the
5% margin. This simpler parametrization was introduced in section 2.3.3 and re-
quires only one parameter per triad. A simplified theory for the triad trigonometric
moments was hence proposed as

f̂k,pn = in Rn
k,p , n ∈ N , |Rk,p| < 1. (5.17)

This parametrization works very well for the majority of triads.
Reducing the study of triad PDFs to one parameter further simplifies the study of
the system. For example, a Kuramoto-like order parameter may be defined. This
parameter reads

R exp(iΦ) ≡ i 〈Rk,p〉k,p . (5.23)

With this order parameter, triads may be divided into faster or slower, by com-
paring their Rk,p to the Kuramoto-like R. In this context faster is understood as
representing more coherence events. The transition from slow to fast happens more
or less at k = N/2. That is, the triad’s highest oscillator, denoted by k, determines
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7. Summary, conclusions, and outlook

if a triad is fast or slow. Additionally, fast triads are found after the Gaussian cutoff
k > N/2.
The relation between oscillator coherence and real-space statistics was explored in
chapter 6. The velocity increments were introduced in order to probe the scale-
dependent statistics. These are defined as

δru := u(t, x+ r)− u(t, x). (6.2)

The velocity increment probes the velocity field u(t, x) at different positions sep-
arated by r. The centered standardized moments of small increments converge
towards the gradient statistics, whereas large r probe the velocity field’s statistics.
The main result from this chapter is isolating each triad’s contribution to the third
moment of the centered standardized velocity increment, i.e. the skewness, as

[K3(δru)]k,p = 3 ak ap ak−p [sin(rk)− sin(rp)− sin(r(k − p))] N∑
k=k0+1

a2
k (1− cos(kr))

3/2 Rk,p . (6.18)

Summing over all triads, indexed by k and p, one obtains the full velocity incre-
ment skewness. Recall triad PDFs have the same information as three-oscillator
PDFs. This means that the Rk,p parameter completely describes the statistics of
the three-oscillator coherence phenomena. Furthermore, this parameter also enters
the real-space skewness (6.18). Hence the same parameter which completely de-
scribes the three-oscillator statistics also influences the velocity increment skewness.
This establishes the relation between oscillator coherence phenomena and intermit-
tency.

Future work may include developing a theory for the triad PDFs starting from
first principles. Being able to describe triad PDFs as WC distribution gives the
triad PDFs additional properties. They are invariant under convolutions with one
another, i.e. the WC distribution is α-stable, and expectation values are analytic in
the parameter Rk,p. Additionally, the triad bases might provide a way to reduce all
triad parameters to a minimal set, from which all others may be derived.
Moreover, an exact relation between the triad PDFs and the triad-triad correlation
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function was found from the triad PDF equation. This relation reads

f3(φ; k, p) =
−
∑
{k′,p′}

Ωk,p,k′,p′

∫
S1

dθ cos θ C3×3(φ, θ; k, p, k′, p′)

ω̃k,p cosφ . (6.27)

The function C3×3 is the triad-triad correlation function, and indicates the depar-
ture form statistical independence. This equation indicates that a first principles
theory necessarily involves the higher-order statistics. These are, however, other
alternatives to deriving a theory for the many-oscillator statistics. Consider the
triad PDFs f3 as described by either a WSM or a WC distribution. If higher-order
statistics, for example real-space flatness, can be brought into the form of integrals
over correlation functions as in (6.27), these may in turn be reformulated into triad
trigonometric moments. In other words, the exact relations between low-order and
high-order PDFs provided by the PDF equation may be used infer higher-order
statistics from to the known triad PDFs.

Finally, from the side of coupled oscillators, the appearance of the WC distribu-
tion for the triads indicates that a study of this system with the Ott & Antonsen
ansatz is in order. However, the fact that the oscillators are coupled in a very
convoluted way is certainly a challenge. A way to deal with oscillators in a wide
range of frequencies and non-trivially coupled to one another might lead to a further
development of this ansatz. Finally, we worked here with ensemble averaged triad
quantities, i.e. PDFs. Studying the time dynamics of the oscillators might lead to
phenomena such as chimeras [43]. These are phenomena which have been observed
in coupled oscillator models. They are characterized by dynamical phenomena in
which parts of the system are synchronized while others remain incoherent. The
tools and ideas developed here can simplify the study of temporal evolution of tri-
ads, and supply a starting point for further analysis in coupled oscillator systems
with triad sinusoidal coupling.
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A. First appendix

A.1. Numerical implementation
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Figure A.1.: The accumulated l1-error from the numerical FFT implementation is
distributed with variance σ = 1.69×10−24 and mean 3.87×10−11. The
error per oscillator is hence of the order O(10−14).

Recall the original equation of the oscillator model (4.5). Directly implementing
this sum we define a control implementation of this equation

ϕ̇control
k =

N∑
p=−N

−k ak−p ap
ak

cos(ϕp + ϕk−p − ϕk) , k = 1, ..., N. (A.1)

As was introduced in chapted 5 in equation (5.1) the spectrum is implemented as

ak = A |k|−α exp
−β (

k

N/2

)2
 . (A.2)
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A. First appendix

Calculating ϕ̇control
k for all k is an operation of the order O(N2). This can be opti-

mized by use of the FFT algorithm. Equation (A.1) can be recast to (4.7), which
explicitly shows the convolution

dϕk
dt = <

−k exp(−iϕk)
ak

N∑
p=−N

(ap exp[iϕp]) (ak−p exp[iϕk−p])
 . (A.3)

A convolution of two vectors a and b is defined as

(a ∗ b)k =
N∑

p=−N
ap bk−p. (A.4)

The vectors a and b are taken to have elements indexed by i ∈ {−N, ..., N}. Ele-
ments in the sum outside the defined index range |i| > N are taken to be zero. The
convolution itself (a ∗ b)k has its index in the range k ∈ {−N, ..., N}.
The FFT algorithm is of the order O(N logN). The reason why the FFT algorithm
reduces the cost of the convolution is that in real-space convolutions take the form
of multiplication. Hence a convolution can be done by transforming to real-space,
multiplying, and then taking the inverse transformation. This whole operation re-
mains of order O(N logN).

A.2. Numerical validation

To validate the numerical implementation (A.3) we set a flat spectrum. This weighs
all oscillators equally and will highlight any numerical discrepancies in the imple-
mentation itself. Subsequently, values are randomly produced for the oscillators,
and statistics we taken over the l1-norm of the error

Error =
N∑
k=1
|ϕcontrol
k − ϕFFTk |. (A.5)

For N = 1024, the accumulated l1-error is distributed with variance σ = 1.69×10−24

and mean 3.87 × 10−11. This means that the average error per oscillator is of the
order O(10−14), which is of the order of numerical accuracy for double precision
when exponential and trigonometric operations are involved.
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A.3. Python class implementation

For the time integration, a Runge-Kutta fourth-order scheme was implemented1.
The time step ∆t was chosen as to resolve the fastest time scales on the right hand
side of (A.1). This is identical with the maximum element of the Jacobi matrix for
all possible configurations of the oscillators. This is given by

∆t−1 = −
N−1−k0∑
p=k0+1

ωN,p . (A.6)

We used random initial conditions for the oscillators and 105 time steps were taken
as transient integration time.

A.3. Python class implementation
We now present a python class implementation of the oscillator model studied here.
This allows us easily initialize and integrate systems for different sizes N , spectral
parameters α, β, or the number of oscillators set to zero k0. Integration is carried
out with a Runge-Kutta fourth-order integration scheme. Both the control (A.1)
and FFT (A.3) implementation of the equations of motion are included. This allows
to confirm that the implementation is within numerical error. In this class are
implemented functions that return the oscillators, the real-space velocity and the
gradient. The eigenvalues of the Jacobi matrix at the current state can also be
called. With all this at hand, time series may be integrated, and the oscillator and
real-space statistics can be calculated.

1For basic numerical integration schemes in the context of turbulence we refer to appendix B in
[34].
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A.3. Python class implementation
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B.1. A simple cosine model

0 π/2 π 3π/2 2π

φ

0

1/2π
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1/2
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;γ
)

γ =0.0

γ =0.25

γ =0.5

γ =0.75

γ =0.995

Figure B.1.: Numerical PDFs for model (B.1) for different choices of γ. The numer-
ical PDFs perfectly reproduce the analytic result for the PDF..

In this appendix we will present a very simple ordinary differential equation for
a variable ϕ. This variable’s PDF will be derived as a function of the parameter γ.
This shall serve as a simple example of deducing a variable’s PDF from its dynamics.
Consider a simple dynamical system given by

ϕ̇ = 1 + γ cosϕ , γ ∈ [0, 1). (B.1)

This is a simpler version of the Adler equation [23]. In the case γ = 0 the system
has the solution ϕ(t) = ϕ(t0) + t − t0. In the range γ ∈ (0, 1) the variable ϕ has
linear growth with superimposed oscillations. Both these cases are described by an
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0 1/4 1/2 3/4 1

γ
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1/2
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)
Numerical R(γ)

Analytic R(γ)

Figure B.2.: Numerically calculated amplitudes of the first trigonometric moment
R(γ) are compared to the analytic result (B.9).

analytic solution. This solution is implicitly given by

t− t0 = 2√
1− γ4 arctan


√√√√1− γ2

1 + γ2 tan
(
ϕ(s)

2

)∣∣∣∣∣∣
s=t

s=t0

. (B.2)

On the other hand, if γ ≥ 1 the fixed point cosϕ = −1 can be reached from any
initial condition ϕ(t0) ∈ R. In this case therefore convergence to this fixed point is
assured.
As we see, the variable ϕ(t) is not chaotic. It possesses nevertheless a PDF f(φ; γ)
parametrized by γ. The cases γ = 0 and γ ≥ 1 are simple, as they have an uniformly
distributed and δ-distributed PDF, respectively. For the intermediate case we will
derive the form of the PDF.
Let the fine-grained PDF f̂ and the PDF f of ϕ be defined as

f̂(t, φ; γ) := δ(φ− ϕ(t)) and f(φ; γ) := 〈δ(φ− ϕ(t))〉. (B.3)

This PDF has a probability conservation equation. PDF equations can be derived
as follows. We start from the fine-grained PDF and take a time derivative. Next we
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use the sifting property of the δ-distribution to obtain

∂tf̂(t, φ; γ) = −∂φ[f̂(t, φ; γ)(1 + γ cosφ)]. (B.4)

Finally averaging yields the PDF equation

∂tf(φ; γ) = −∂φ [f(φ; γ)(1 + γ cosφ)] . (B.5)

Because f is stationary we have a PDF of the form

f(φ; γ) = K(γ)
1 + γ cosφ. (B.6)

In this case because no joint statistics are involved, the PDF equation yields a
condition for the PDF. The identity

1
1 + γ cosφ ≡

1−
√

1− γ2

γ2 + 1 +
√

1− γ2

×

1 +
∑
n∈N

[
1−
√

1− γ2

γ

]n
exp[in(π − φ)] + c.c.

 ,
(B.7)

is valid for −1 < γ < 1, and it can be verified by use of the geometric series.
The normalization of the PDF will fix K(γ). With this identity the normalization
condition on (B.6) clearly leads to

K(γ) = 1
2π

γ2 + 1 +
√

1− γ2

1−
√

1− γ2 . (B.8)

Additionally, with use of this identity we can identify the PDF of ϕ as a WC distri-
bution with first trigonometric moment

R(γ) = 1−
√

1− γ2

γ
exp[iπ]. (B.9)

The form of the PDF (B.6) with K(γ) as in (B.8) as well as its identification as
a WC distribution with first moment (B.9) are numerically verified in Figures B.1
and B.2. In the first figure numerical PDFs are compared with the analytic result,
and in the second figure the analytic formula for the first trigonometric moment is
compared with the numerically computed first moment.
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We have hence analytically shown and numerically verified that the process (B.1)
leads to a WC distributed PDF where the relation between the parameter γ and the
first trigonometric moment is exactly known.
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C. Third appendix

C.1. Ott & Antonsen reduction in an array of coupled
Josephson junctions

The time-independent behavior of an array of Josephson junctions can be reduced
to a system of coupled oscillators [53]

ϕ̇k(t) = Ω + a cosϕk(t) + 1
N

N∑
p=1

cosϕp(t) , k = 1, .., N , a,Ω ∈ R. (C.1)

Following [35], we take the thermodynamic limit N →∞. In this limit the system
is described by a circular PDF f(t, φ). The quantity f(t, φ)dφ tells us the amount
of oscillators in the range [φ, φ + dφ]. This PDF has a continuity equation of the
form

∂tf(t, φ) + ∂φ[f(t, φ)v(t, φ)] = 0, (C.2)

where v is a velocity field. It is a continuum version of the original oscillators’
equation (C.1) and has the form

v(t, φ) = Ω + a cosφ+ <(R). (C.3)

As is common in oscillator systems, R ∈ C is the first trigonometric moment of the
oscillator ensemble

R(t) = R(t) exp[iΦ(t)] =
∫
S1

dφ f(t, φ) exp[iφ]. (C.4)

Using a WC distribution ansatz for the PDF fixes all trigonometric moments through
the first one. The PDF takes the form

f(t, φ) = 1
2π

1 +
∑
n∈N

R(t)n exp[−inφ] + c.c.
 . (C.5)
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C. Third appendix

Plugging equations (C.5) and (C.3) into equation (C.2) yields then equations of
motion for the first trigonometric moment

dR(t)
dt = i

[
a

2(R(t)2 + 1) + R(t) [Ω + <(R(t))]
]
. (C.6)

In terms of R(t) and Φ(t), these equations of motion constitute a two-dimensional
closed system. This means that the low-dimensional synchronization behavior of
(C.2) is parametrized in the thermodynamic limit with a PDF given by a WC
distribution. Additionally, a consequence of the closure of these equatios is that if
the initial conditions for a system of oscillators is found in the manifold parametrized
by PDFs of this form, time evolution will not take the PDF out of this manifold.
For further analysis we refer to [35].
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In principio erat Verbum,
et Verbum erat apud Deum,
et Deus erat Verbum.
Hoc erat in principio apud Deum.
Omnia per ipsum facta sunt,
et sine ipso factum est nihil,
quod factum est;
in ipso vita erat,
et vita erat lux hominum,
et lux in tenebris lucet,
et tenebrae eam non comprehenderunt.

Et Verbum caro factum est
et habitavit in nobis;
et vidimus gloriam eius,
gloriam quasi Unigeniti a Patre,
plenum gratiae et veritatis.
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