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Abstract: We study bundle gerbes on manifolds M that carry an action of a connected
Lie group G. We show that these data give rise to a smooth 2-group extension of G by
the smooth 2-group of hermitean line bundles on M . This 2-group extension classifies
equivariant structures on the bundle gerbe, and its non-triviality poses an obstruction to
the existence of equivariant structures. We present a new global approach to the parallel
transport of a bundle gerbe with connection, and use it to give an alternative construction
of this smooth 2-group extension in terms of a homotopy-coherent version of the associ-
ated bundle construction.We apply our results to give new descriptions of nonassociative
magnetic translations in quantum mechanics and the Faddeev–Mickelsson–Shatashvili
anomaly in quantum field theory. We also propose a definition of smooth string 2-group
models within our geometric framework. Starting from a basic gerbe on a compact
simply-connected Lie group G, we prove that the smooth 2-group extensions of G aris-
ing from our construction provide new models for the string group of G.
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1. Introduction

This paper is motivated by the following problem from physics: In [BMS19] we showed
how a bundle gerbe with connection on R

d gives rise to a 3-cocycle on the translation
group R

d
t of R

d . Even though this 3-cocycle is trivial in group cohomology, it is very in-
teresting from a physical as well as from amathematical perspective: it gives a geometric
explanation to the presence of nonassociativity in quantum mechanics with magnetic
monopole backgrounds, and it implements the action of the parallel transport of a bundle
gerbe on its 2-Hilbert space of sections. This appearence of nonassociativity in quantum
mechanics goes back to [Jac85,GZ86], but as of yet the more natural extension to realis-
tic scenarios involving periodically confined motion on configuration spaces such as tori
T
d has not been worked out. The discussion of [Jac85] was a response to the observed

violation of the Jacobi identity for the algebra of field operators in quantum gauge theo-
ries with chiral fermions [Jo85], which is a manifestation of the chiral anomaly. Interest
in these models has been recently revived through their conjectural relevance to non-
geometric flux compactifications of string theory, which is based on backgrounds that
are tori or more generally torus bundles [Lüs10,MSS12,BL14,MSS14]. However, the
original finding [BP11] of nonassociativity in Wess–Zumino–Witten models based on
other compact Lie groups has so far received considerably less attention, and in particular
has not been understood from a geometric perspective.

In the present paper we work out the geometric framework and origin behind these
results in complete generality. Subsequently, we present several applications of our
results in both physics and mathematics, along the lines discussed above. We consider
an action Φ : G × M −→ M of a connected Lie group G on a manifold M , where M
is endowed with a bundle gerbe G. One can now ask whether G admits a G-equivariant
structure. At the very least, such a structure should consist of a choice of 1-isomorphism
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G −→ Φ∗
gG for every g ∈ G. Instead of considering possible choices for such 1-

isomorphisms individually, we assign to g the groupoid of all such 1-isomorphisms. This
yields an object which can be understood as a bundle SymG(G) −→ G of groupoids
over G. Considering g = e, the identity element of G, we see that its typical fibre is the
groupoid HLBdl(M) of hermitean line bundles on M .

The definition of SymG(G) so far does not capture the smooth structure of the gerbe
G. We thus enhance the construction to take into account smooth families of elements
of G. Then one can make sense of SymG(G) as a category fibred in groupoids over a
base category Cart that encodes smooth families of geometric objects. Categories fibred
in groupoids over Cart assemble into a 2-category H, and there exists a fully faithful
inclusion of the category of smooth manifolds into H. Motivated by [SP11] we define
a smooth 2-group to be a group object in H. One of the central examples for us is the
smooth 2-group HLBdlM of hermitean line bundles on M . We introduce a notion of
smooth principal 2-bundle in H that lies between the definitions of higher principal
bundles used in [SP11] and [NSS15] (see in particular Appendix A.2). We show that our
principal 2-bundles are well behaved from a homotopical as well as from a geometric
point of view (more precisely, they form effective epimorphisms while also admitting
local sections). With the notion of smooth 2-group and principal 2-bundles, we can
make precise what it means to be a (central) extension of smooth 2-groups in analogy
to extensions of Lie groups. Then, our first main results can be summarised as

Theorem 1.1. Let G be a connected Lie group acting on a manifold M, and let G be a
bundle gerbe on M. Then:

(1) There is a (non-central) extension of smooth 2-groups

1 HLBdlM SymG(G) G 1 , (1.2)

where G ∈ H denotes the category fibred in groupoids associated to G.
(2) The smooth 2-group SymG(G) acts on G, and the action covers that of G on M.
(3) The gerbe G admits a G-equivariant structure if and only if there exists a morphism

G −→ SymG(G) of smooth 2-groups which splits the extension (1.2).

Anextension similar to (1.2)was considered in [FRS16],where symmetries of a gerbe
with connection were investigated in relation with higher geometric prequantisation.
Infinitesimal versions of the extension (1.2) were considered in [Col11,FRS16], where
it was shown that these give rise to the standard H -twisted Courant algebroid on M ,
where H is the 3-form curvature of the connection on G. These considerations have been
expanded on and applied to higher versions of Kaluza-Klein reductions of string theory
in [Alf20].

Our point here is that in many applications, such as nonassociativity in quantum
mechanics and string theory, anomalies in quantum field theory, as well as interesting
topological constructions, connections on G only play a secondary role: in this context,
they can be seen as a tool to compute the extensions (1.2) and their associated cocycles.
The key to this computability is an alternative presentation of SymG(G) in terms of a
categorified descent construction.

In order to work out this construction, we introduce a novel global approach to the
parallel transport of a bundle gerbe. Parallel transport for gerbes has been constructed
in [SW11,SW09,SW17], but for our purposes a global, rather than local, treatment is nec-
essary. Our construction relies heavily on the transgression-regression machine for bun-
dle gerbes [Wal16] together with the properties of the fusion product and the connection
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on the transgression line bundle that were studied in [Wal16,BW18]. Given a connection
on G, we construct its parallel transport as a quadruple ptG = (ptG1 ,pt

G
2 ,pt

G
� , ε

G),
consisting of the following data: first, there is a 1-isomorphism ptG1 : ev∗

0G −→ ev∗
1G

over the path space PM of M , where evt : PM −→ M is the evaluation of a path at
t ∈ [0, 1]. Second, there is a 2-isomorphism ptG2 : ptG1|γ0 −→ ptG1|γ1 for every smooth
homotopywith fixed endpoints between paths γ0 and γ1, which depends smoothly on the
paths and the homotopy. The 2-isomorphisms ptG� and εG implement the compatibility
of the parallel transport with concatenation of paths and with constant paths, respec-
tively. Furthermore, the collection ptG is required to be invariant under thin homotopies
in a precise way. We show

Theorem 1.3. Every bundle gerbe with connection has a canonical parallel transport.

Using the parallel transport, we are able to write down a HLBdlM -valued Čech 1-
cocycle on the covering of G by its space of based paths. These data are equivalently
transition functions for an HLBdlM -principal 2-bundle DesL −→ G . We construct
DesL explicitly by a homotopy-coherent version of the associated bundle construction.
Then we prove

Theorem 1.4. The principal 2-bundleDesL −→ G is a smooth 2-group extension of G
by HLBdlM. There is a weakly commutative diagram of smooth 2-groups

1 HLBdlM SymG(G) G 1

1 HLBdlM DesL G 1

Ψ

The morphism Ψ is an equivalence.

In the caseM = R
d , whereG = R

d
t is the translation group ofR

d , andwhereG = IB

is a trivial gerbe on R
d with a connection B ∈ �2(Rd) corresponding to a magnetic

field, we show that the extension Sym
R
d
t
(I) −→ R

d
t reproduces the 3-cocycles we

obtained in [BMS19]. We achieve this by choosing a certain global section of the path
fibration of R

d
t and implicitly pass through DesL in the computation. We show that the

parallel transport we defined implements nonassociative magnetic translations on the
sections of the gerbe, whereas the 2-group extension Sym

R
d
t
(I) −→ R

d
t allows us to

understand the algebraic structure of nonassociative magnetic translations even without
making any reference to sections. The latter is particularly useful in cases where there is
no good notion of sections, such as when the Dixmier–Douady class of G is non-torsion.
In particular, we study in detail the action of nonassociative magnetic translations on
tori T

d and give an explicit description of Sym
R
d
t
(G) for general choice of a gerbe G on

T
d .
As a further application, we show that if Γ is a group of gauge transformations,

the smooth 2-group extensions SymΓ (G) −→ Γ control the Faddeev–Mickelsson–
Shatashvili anomalies in quantum field theory [Fad84,FS85,Mic85]. The relation be-
tween gerbes and these anomalies has been investigated in [CM95,CM96], but only as
algebraic objects, disregarding the smooth structures. The relevant bundle gerbe G lives
on the spaceA of gauge fields and describes the obstruction to a Fock bundle descending
to the orbit space A/Γ . Here the extension SymΓ (G) −→ Γ is split, so that G admits
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an equivariant structure. At the same time G is trivialisable as a bundle gerbe, but the
anomaly is precisely the obstruction to choosing a Γ -equivariant trivialisation. This al-
lows us to understand the anomaly in a conceptual way as a higher smooth 1-cocycle on
Γ .

Finally, we consider the situation where M = G is a compact simply-connected
Lie group, acting on itself by left multiplication, and where G is a bundle gerbe on G
whose Dixmier–Douady class generates H3(G; Z) ∼= Z. We motivate and propose a
new smooth string 2-group model for the string group of G. For this, we first show that
with our definition of principal 2-bundle, principal A-bundles on a manifold give rise to
A-valued Čech 1-cocycles, for any smooth 2-group A. Then we call a smooth 2-group
extension A −→ P −→ G a smooth 2-group model for the string group of G if A is
equivalent to an Eilenberg-MacLane space K (Z; 2) in a certain sense and the class in
Ȟ1(G;BU(1)) ∼= H3(G; Z) extracted from the 2-bundle P −→ G is a generator. Using
this definition of smooth string 2-group models, we show

Theorem 1.5. LetSymG(G)andDesL be the smooth2-groupextensions ofG byHLBdlG

constructed from G with respect to the left action of G on itself via left multiplication.
Then both SymG(G) and DesL are smooth 2-group models for the string group of G.

The remainder of this paper is organised as follows. In Sect. 2 we briefly recall some
backgroundmaterial on diffeological spaces, bundle gerbes, and transgression. Section 3
provides a motivation of the later constructions on the level of principal bundles; many
concepts become clear already at this level. In Sect. 4 we provide our definition and
construction of the parallel transport associated to a bundle gerbe with connection. The
construction of SymG(G) and DesL takes place in Sect. 5. Here we first motivate and
then introduce the necessary language of Grothendieck fibrations, smooth 2-groups,
and principal 2-bundles, before defining and studying the extensions SymG(G) and
DesL. We conclude this section by relating these extensions to equivariant structures
on G. In the remaining three sections we apply our general results: in Sect. 6 we study
nonassociative magnetic translations using our parallel transport, Sect. 7 contains the
discussion of chiral anomalies and the Faddeev–Mickelsson–Shatashvili anomaly, and
in Sect. 8 we show that SymG(G) andDesL provide newmodels for the string group.We
defer some technical results on categories fibred in groupoids and on principal 2-bundles
to Appendix A.

2. Preliminaries on Diffeological Spaces and Gerbes

In this sectionwe reviewsomeof the relevant backgroundmaterial related to diffeological
spaces and bundle gerbes that will be used throughout this paper.

2.1. Diffeological spaces. Throughout this paper we will use diffeological spaces
(see [IZ13] for an extensive introduction) to describe the smooth structure on infinite-
dimensional spaces such as path and mapping spaces. The idea behind diffeological
spaces is to describe the smooth structure on a space X by specifying the set of smooth
maps from Cartesian spaces to X . A Cartesian space c is a smooth manifold diffeomor-
phic to R

n for some n ∈ N0. We denote by Cart the category with Cartesian spaces as
objects and smooth maps as morphisms.

Definition 2.1. A diffeological space is a set X together with a collection of maps c −→
X from Cartesian spaces into X , called plots, such that
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(1) the composition of a plot with a smooth map between Cartesian spaces is again a
plot,

(2) every map R
0 −→ X is a plot, and

(3) if f : c −→ X is a map such that there exists an open cover {ci }i∈I of c by Cartesian
spaces and f|ci is a plot for all i ∈ I , then f is a plot.

A map f : X −→ Y between diffeological spaces is smooth if it maps plots of X to
plots of Y . We denote by Dfg the category of diffeological spaces and smooth maps.
Isomorphisms in Dfg are diffeomorphisms.

Remark 2.2. Usually plots are defined to be maps from open subsets U of Cartesian
spaces to X . Since every open subset U of a Cartesian space can be covered by Carte-
sian spaces, both definitions are equivalent. Diffeological spaces are exactly the concrete
sheaves on the site of Cartesian spaces [BH11]. This implies that the category of dif-
feological spaces Dfg admits all limits and colimits, and is Cartesian closed. For more
background on this perspective on diffeological spaces, see also [Bun20a]. ��

Important examples of diffeological spaces include the following.

Example 2.3. Every manifold M (possibly with boundaries or corners) defines a diffe-
ological space by declaring a map f : c −→ M to be a plot if and only if f is a smooth
map of differentiable manifolds. This defines a fully faithful embedding of the category
of smooth manifolds Mfd into the category of diffeological spaces Dfg. ��
Example 2.4. Let X be a diffeological space and Y ⊂ X a subset. We can equip Y with
a diffeology by declaring a map c −→ Y to be a plot if and only if the composition with
the embedding Y −→ X is a plot. This is called the subspace diffeology on Y . ��
Example 2.5. Let X and Y be diffeological spaces. The Cartesian product X × Y is a
diffeological space by declaring a map f : c −→ X×Y to be a plot if and only if prX ◦ f
and prY ◦ f are plots, where prX and prY are the respective projections of X × Y onto
X and Y . This is called the product diffeology on X × Y . ��
Example 2.6. Let X and Y be diffeological spaces. The set of smooth maps Y X from X
to Y becomes a diffeological space by declaring a map f : c −→ Y X to be a plot if and
only if the map

f � : c × X −→ Y

(u, x) �−→ f (u)(x)

is smooth. This is called the mapping space diffeology on Y X . ��
A smooth map f : M −→ M ′ between smooth manifolds is a surjective submer-

sion if and only if it admits local sections through every point in M , i.e. for every
point y ∈ M there exists an open neighbourhood U of f (y) in M ′ and a smooth map
ŝ : U −→ M such that f ◦ ŝ = 1U is the identity map of U . Surjective submersions
define a Grothendieck topology on the category of manifolds, and many (higher) ge-
ometric objects on manifolds can be constructed via sheafification with respect to this
topology (see, for instance, [NS11]). On the category of diffeological spaces, a useful
Grothendieck topology is induced by the subductions:

Definition 2.7. A smooth map f : X −→ Y of diffeological spaces is a subduction if
for all plots ϕ : c −→ Y and x ∈ c there exists an open neighbourhoodUx ⊂ c of x and
a plot ϕ̂x : Ux −→ X such that ϕ|Ux = f ◦ ϕ̂x .
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Example 2.8. Let M be a connected manifold. The space of paths in M with sitting in-
stants PM is the subspaceofM [0,1] ofmapswhich are constant in anopenneighbourhood
of 0 and1, equippedwith the subspacediffeology.The evaluationmaps ev0 : PM −→ M
and ev1 : PM −→ M at 0 and 1, respectively, are subductions. ��

Another source for subductions are quotient maps. Let X be a diffeological space and
∼ an equivalence relation on X . Then the space X/∼ becomes a diffeological space in a
canonical waymaking themapπ : X −→ X/∼ into a subduction: amap ϕ : c −→ X/∼
is a plot if and only if for all x ∈ c there exists an open neighbourhood Ux ⊂ c of x
and a plot ϕ̂x : Ux −→ X such that ϕ|Ux = π ◦ ϕ̂x . Clearly all subductions are of this
type for appropriate equivalence relations. Diffeological quotients behave nicely with
respect to quotients of manifolds when they exist.

Proposition 2.9. Let M be a manifold with a free and proper action of a Lie group G.
Define an equivalence relation ∼G on M by m1 ∼G m2 if and only if there exists g ∈ G
such that g · m1 = m2. Then the manifold M/G and the diffeological space M/∼G
agree.

Proof. From [Lee13, Theorem 21.10] it follows that π : M −→ M/G is a surjective
submersion. Since every surjective submersion is a subduction, the statement follows. ��
Definition 2.10. Let X be a diffeological space and k ≥ 0. A k-form ω on X consists of
a family of differential forms ωϕ ∈ �k(c) indexed by the plots ϕ : c −→ X of X such
that ωϕ1 = f ∗ωϕ2 for all commuting triangles

c1 c2

X

f

ϕ1 ϕ2

Definition 2.11 ([Wal12b, Section 3]). Let G be a Lie group and X a diffeological
space. A principal G-bundle on X consists of a subduction π : P −→ X together with
a fibre-preserving right action P × G −→ P such that the map

P × G −→ P ×X P

(p, g) �−→ (p, p · g) (2.12)

is a diffeomorphism. A connection on a principal G-bundle P is a 1-form A ∈ �1(P; g)
satisfying

ρ∗A = Ad−1
prG

(pr∗P A) + pr∗G θ

on P ×G, where ρ : P ×G −→ P is the right G-action, θ is the left-invariant Maurer-
Cartan 1-form onG, and prP : P×G −→ P and prG : P×G −→ G are the projections
onto P and G, respectively.

2.2. Bundle gerbes and transgression. Bundle gerbes are higher categorical analogues
of line bundles. They provide a geometric realisation for the third cohomology group
with integer coefficients. Similarly to line bundles, bundle gerbes can be equipped with
connections. We briefly recall the definition of the 2-groupoid of bundle gerbes and their
transgression to loop space. For details we refer to [Wal07b,Wal16,Bun17,Mur96].
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Let X be a diffeological space. We denote by HLBdl(X) (resp. HLBdl∇(X)) the
category of hermitean line bundles (resp. with connection) on X . Before defining bundle
gerbesweneed to introduce somenotation: for a subductionπ : Y −→ X of diffeological
spaces we denote by

Y [n] = {

(y0, y1, . . . , yn−1) ∈ Y×n
∣

∣ π(y0) = π(y1) = · · · = π(yn−1)
} ⊂ Y×n

the n-fold iterated fibre product Y [n] = Y ×X · · · ×X Y over X equipped with the
subspace diffeology. Then Y [•] is a simplicial diffeological space corresponding to the
subduction groupoid Y ×X Y ⇒ Y , and for k < n and 0 ≤ i1 < · · · < ik < n we define
the smooth face maps

πi1,...,ik : Y [n] −→ Y [k]

(y0, y1, . . . , yn−1) �−→ (yi1 , . . . , yik ) .

Definition 2.13 ([Wal16]). Let X be a diffeological space. A hermitean bundle gerbe on
X consists of a subduction π : Y −→ X , a hermitean line bundle L −→ Y [2], and a
unitary isomorphism μ : π∗

1,2L ⊗ π∗
0,1L −→ π∗

0,2L of line bundles over Y [3], called the
bundle gerbe multiplication, which is associative over Y [4], i.e. π∗

0,2,3μ◦(π∗
0,1,2μ⊗1) =

π∗
0,1,3μ ◦ (1 ⊗ π∗

1,2,3μ).
A connection on a hermitean bundle gerbe G = (π : Y −→ X, L , μ) consists of a

hermitean connection ∇L on L and a 2-form B ∈ �2(Y ) such that

(1) the isomorphism μ : π∗
1,2L ⊗ π∗

0,1L −→ π∗
0,2L is parallel with respect to ∇L , and

(2) the curvature of ∇L is equal to i (π∗
1 B − π∗

0 B).

The 2-form B is called a curving. The second condition implies that the closed 3-form
dB = π∗H descends to a unique closed 3-form H on X with integer periods, which is
called the curvature of the bundle gerbe connection (∇L , B) .

Schematically, the data corresponding to a bundle gerbe can be visualised by the
diagram

π∗
1,2L ⊗ π∗

0,1L π∗
0,2L L

Y [3] Y [2] Y

X

μ

π1

π0

π

illustrating that hermitean bundle gerbes are equivalent to U(1)-central extensions of
subduction groupoids.

Example 2.14. Let X be a diffeological space. The trivial hermitean bundle gerbe I on
X consists of the identity subduction 1X : X −→ X together with the trivial hermitean
line bundle I := X × C over X [2] = X and bundle gerbe multiplication

X × (C ⊗ C) −→ X × C
(

x, (z1 ⊗ z2)
) �−→ (x, z1 z2) .
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For every 2-form B ∈ �2(X) we can define a connection on I by setting ∇ I = d and
taking B as the curving.We denote the resulting hermitean bundle gerbe with connection
by IB . The curvature of IB is given by H = dB. ��

Hermitean bundle gerbes (resp. with connection) on a diffeological space X are the ob-
jects of a symmetric monoidal bicategory which we denote by BGrb(X)
(resp. BGrb∇(X)) [Wal07b].

Definition 2.15. LetG = (π : Y −→ X, L , μ,∇L , B) andG′ = (π ′ : Y ′ −→ X, L ′, μ′,
∇L ′

, B ′) be hermitean bundle gerbes with connection on a diffeological space X . A 1-
isomorphism G −→ G′ of hermitean bundle gerbes (with connection) consists of a
subduction ξ : Z −→ Y ×X Y ′, a hermitean line bundle E (with hermitean connection
∇E ) on Z and (parallel) unitary isomorphisms

α : (

(prY ◦ ξ)[2])∗
L ⊗ ξ∗

1 E −→ ξ∗
0 E ⊗ (

(prY ′ ◦ ξ)[2])∗
L ′

over Z [2] satisfying a natural set of compatibility conditions, see [Wal16] for details. We
will denote such a 1-isomorphism by (E, ξ) (resp. (E, ξ,∇E )), or sometimes simply by
E .

Remark 2.16. One can also define non-invertible 1-morphisms of bundle gerbes by using
higher rank hermitean vector bundles E in Definition 2.15 [Wal07b]. In that case, a 1-
morphism is weakly invertible if and only if the underlying hermitean vector bundle E
is of rank 1 [Wal07a, Proposition 2.3.4]. However, with the exception of Sect. 6, we will
only consider invertible 1-morphisms of bundle gerbes in the present paper. ��

Definition 2.17. Let (ξa : Za −→ Y ×X Y ′, Ea,∇Ea , αa) and (ξb : Zb −→ Y ×X
Y ′, Eb,∇Eb , αb) be 1-isomorphisms G −→ G′ of hermitean bundle gerbes with con-
nection. A 2-isomorphism of bundle gerbes is an equivalence class of a subduction
ω : W −→ Za ×Y×XY ′ Zb and a parallel unitary isomorphism (prZa ◦ω)∗Ea −→
(prZb

◦ω)∗Eb satisfying a natural compatibility condition, see e.g. [Wal07b] for details
and the equivalence relation.

Bundle gerbes on a diffeological space X are classified by their Dixmier–Douady
class in H3(X; Z), analogously to the Chern-Weil classification of line bundles by their
Chern class in H2(X; Z). For a bundle gerbe with connection, the Dixmier–Douady
class maps to the de Rham cohomology class of the curvature under the homomorphism
H3(X; Z) −→ H3(X; R) induced by the inclusion of coefficient groups Z ↪→ R.

Let G be a hermitean bundle gerbe defined over a subduction π : Y −→ X , with
underlying hermitean line bundle L −→ Y [2]. Let A : G −→ G be an endomorphism
of G, with underlying hermitean vector bundle A over some subduction ξ : Z −→
Y [2]. Consider the hermitean vector bundle L∨ ⊗ A on Z , where we denote the dual
line bundle by L∨. This comes with a canonical descent isomorphism defined by the
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diagram [Wal07b,Bun17]

ξ∗
1 (L

∨ ⊗ A) π∗
2,3L

∨ ⊗ ξ∗
1 A

π∗
0,2L ⊗ π∗

0,3L
∨ ⊗ ξ∗

1 A

ξ∗
0 (A ⊗ L∨) π∗

0,3L
∨ ⊗ ξ∗

0 A ⊗ π∗
1,3L

π∗
0,2,3μ

−1

π∗
0,1,3μ

(2.18)

In fact, this construction establishes an equivalenceof categoriesR : BGrb(X)(G,G) −→
HLBdl(X).

From a hermitean bundle gerbe with connection G on a diffeological space X we
can construct the transgression line bundle T G over the loop space LX of X . The
fibre T Gγ over a loop γ : S

1 −→ X consists of equivalence classes [[S], z] of a 2-
isomorphism class of a trivialisation S : γ ∗G −→ I0 in BGrb∇(S1) over the unit circle
S
1 and an element z ∈ C. Two pairs ([S], z) and ([S ′], z′) are equivalent if and only

if z′ = hol(S1,R(S ′ ◦ S−1)) z. For the construction of a diffeological structure on
T G := ∐

γ∈LX T Gγ we refer to [Wal16]. A connection on a line bundle over the

loop space LX is superficial if the holonomy around every thin loop1 is equal to 1 and
thin homotopic loops2 have the same holonomy. In the situation where X = M is a
manifold, a superficial connection on T G has been constructed from the connection on
G in [Wal16, Prop. 3.3.1]; note that in our later constructions, we will always work with
bundle gerbes over manifolds. The bundle gerbe multiplication induces, for all triples of
paths (γ1, γ2, γ3)with sitting instants and the same start and end points, a fusion product

λ : T Gγ2�γ1 ⊗ T Gγ3�γ2 −→ T Gγ3�γ1 ,
where � denotes the concatenation of paths and γ is the path t �−→ γ (1 − t). The
fusion product depends smoothly on the paths, is parallel with respect to the superficial
connection, and is associative. The connection and fusion product satisfy one further
compatibility condition, related to the rotation of all loops involved by 180◦ (see [Wal16,
Definition 2.1.5]). A line bundle over LX admitting all the structures discussed above
is a fusion line bundle with superficial connection.

For X = M a manifold, transgression extends to a functor T from hBGrb∇(M), the
1-category obtained from BGrb∇(M) by identifying isomorphic 1-morphisms, to the
category of fusion line bundles with superficial connection over LM . The central result
of [Wal16] is that T defines an equivalence of categories. An explicit inverse functorR
is constructed in [Wal16] and is called regression.

3. Group Extensions from Principal Bundles

In this section we construct group extensions from group actions on manifolds with
principal bundles.We generalise this extension to higher geometry in Sect. 5.We present

1 A loop � ∈ LLX is thin if the adjoint map �� : S
1 × S

1 −→ X has at most rank 1.
2 Two loops �,�′ ∈ LLX are thin homotopic if there exists a homotopy h ∈ PLLX such that the adjoint

map h� : [0, 1] × S
1 × S

1 −→ X has at most rank 2.
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two perspectives on this group extension. The first one is global. The second one is local
and can be formulated in terms of the parallel transport of an auxiliary connection on a
principal bundle.

3.1. Global description. Let H be a Lie group and P −→ M a principal H -bundle on
a manifold M ; principal H -bundles on M and isomorphisms form a groupoid which we
denote by BunH (M). We consider a Lie group action

Φ : G × M −→ M

(g, x) �−→ Φg(x) = Φ(g, x)

on the base manifold M , and ask whether and how this action lifts to P . An action of a
Lie group G on M can equivalently be written as a smooth homomorphism of groups
Φ : G −→ Diff(M), where Diff(M) is the diffeological group of diffeomorphisms
M −→ M . In general, the action of G does not lift to P . Instead, we will construct a
group extension

1 −→ Gau(P) −→ SymG(P) −→ G −→ 1

of G by the gauge group Gau(P) of P . The group SymG(P) acts on the total space P in
a way compatible with the action of G on M . We show that it is the universal extension
of G having this property.

Remark 3.1. The extension can be constructed as the pullback of the short exact sequence

1 −→ Gau(P) −→ AutG(P) −→ Diff P (M) −→ 1

of diffeological groups along Φ, where AutG(P) is the group of G-equivariant dif-
feomorphisms of P and Diff P (M) is the subgroup of diffeomorphisms of M which
admit an equivariant lift to P . In the following we present a different construction which
generalises directly to bundle gerbes.

Wecanpull back the bundle P along the source and targetmaps of the action groupoid

G × M M .
Φ

prM

We define a bundle

SymG(P)
π−→ G with SymG(P)|g := BunH (M)(P, Φ∗

g P) (3.2)

for all g ∈ G, where BunH (M)(P, Φ∗
g P) is the collection of gauge transformations

from P to Φ∗
g P . In order for SymG(P) to be a bundle over G, we must ensure that the

fibres of SymG(P) are actually pairwise diffeomorphic. It might happen that a pullback
bundle Φ∗

g P is no longer isomorphic to P and hence the fibre over g is empty. As an
example, consider the action of the groupG = Z on the 2-torusM = T

2 generated by an
orientation-reversing diffeomorphism f , and let P −→ T

2 be a U(1)-bundle with non-
trivial Chern class. Then [ f ∗P] = −[P], and thus SymZ(P)|1 = BunU(1)(P, f ∗P) =
∅. Hence in (3.2) we have to ensure that the fibres of SymG(P) are actually all non-
trivial.

We restrict our attention to connected Lie groupsG; otherwise, ifG is not connected,
we consider only the connected component of the identity e ∈ G. We show that in this
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case the fibres are always non-trivial: we need to show that for any g ∈ G the fibre of
SymG(P) −→ G over g is non-empty. That is, we need to show that there exists an
isomorphism P −→ Φ∗

g P of H -bundles over M . Let fP : M −→ BH be a map that
classifies the bundle P −→ M . ThenΦ∗

g P is classified by themap fP◦Φg : M −→ BH .
Since G is connected, we can find a smooth path γ : [0, 1] −→ G with γ (0) = e and
γ (1) = g. Consider the smooth map

Φγ : [0, 1] × M −→ M

(t, x) �−→ Φγ(t)(x) .

We can postcompose this map by fP to obtain a homotopy

fP ◦ Φγ : [0, 1] × M −→ BH

from fP to fP ◦ Φg . This shows that there exists a bundle isomorphism P −→ Φ∗
g P .

We note for later use that this argument generalises to n-gerbes G, as these are classified
by maps fG : M −→ Bn+1U(1).

In order to equip the set SymG(P) with a diffeology, we note that SymG(P) can
be identified with the subspace of the Cartesian product of the space of H -equivariant
diffeomorphisms P −→ P which cover the action of an arbitrary element g ∈ G on
M with G, and equip SymG(P) with the subspace diffeology. Concretely, for c ∈ Cart,
a map f : c −→ SymG(P) is a plot if and only if the composition π ◦ f : c −→ G is
smooth and the induced map pr∗M P −→ Φ∗

f P is an isomorphism in BunH (c × M),
where prM : c × M −→ M is the projection onto M and Φ f = Φ ◦ ( f × 1M ). The
automorphism group or group of gauge transformations

Gau(P) := BunH (M)(P, P)

acts simply and transitively on each fibre SymG(P)|g from the right via precomposi-
tion. The set Gau(P) forms a diffeological group with respect to the composition of
automorphisms and the smooth structure induced from the mapping space diffeology on
PP .

Proposition 3.3. π : SymG(P) −→ G is a principal Gau(P)-bundle on G.

Proof. We verify that the map π : SymG(P) −→ G is a subduction. Let f : c −→ G
be a plot. We can pick an isomorphism ϕ f : pr∗M P −→ Φ∗

f P (since c is contractible)
and define the map

̂f : c −→ SymG(P)

x �−→ ϕ f |{x}×M .

The map ̂f is a smooth lift of the plot f , showing that SymG(P) −→ G is a subduction.
The map

SymG(P) ×G SymG(P) −→ SymG(P) × Gau(P)

(ϕ : P −→ Φ∗
g P, ϕ

′ : P −→ Φ∗
g P) �−→ (ϕ, ϕ−1 ◦ ϕ′)

provides a smooth inverse to themap SymG(P)×Gau(P) −→ SymG(P)×GSymG(P)
from (2.12), and the result follows. ��
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Proposition 3.4. SymG(P) is a diffeological group. Theprincipal bundleSymG(P) −→
G is part of an extension of diffeological groups

1 −→ Gau(P) −→ SymG(P) −→ G −→ 1 .

Proof. To complete the proof we need to equip SymG(P) with a diffeological group
structure such that the map SymG(P) −→ G becomes a morphism of diffeological
groups. Consider isomorphisms ψ : P −→ Φ∗

g P and φ : P −→ Φ∗
g′ P for g, g′ ∈ G.

We set

μ(ψ, φ) := Φ∗
g′ψ ◦ φ : P −→ Φ∗

g′ P −→ Φ∗
g′Φ∗

g P = Φ∗
g g′ P .

This is associative by the associativity of pullbacks, the multiplication in G, and com-
position of morphisms. The inverse of an element ψ : P −→ Φ∗

g P with respect to μ is
the isomorphism

P = Φ∗
g−1Φ

∗
g P

Φ∗
g−1ψ

−1

−−−−−→ Φ∗
g−1 P ,

and the result follows from the observation that these maps are smooth. ��
Proposition 3.5. The group SymG(P) acts smoothly on P, lifting the action of G on M.
It is universal in the following sense: let ̂G be a Lie group, ϕ : ̂G −→ G a Lie group
homomorphism and ̂ψ : ̂G × P −→ P an action of ̂G on P making the diagram

̂G × P P

G × M M

̂ψ

ϕ×� �

Φ

commute, where � : P −→ M is the bundle projection. Then there exists a unique
smooth group homomorphism ̂G −→ SymG(P) such that the diagram

̂G × P

SymG(P) × P P

G × M M

commutes.

Proof. The action is via the evaluation

̂Φ : SymG(P) × P −→ P

(φ, p) �−→ φ(p) = φ|�(p)(p) .
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The unique smooth group homomorphism in the universality statement is

̂G −→ SymG(P)

ĝ �−→ (

̂ψĝ : P −→ Φ∗
ϕ(ĝ)P

)

,

and the result follows. ��
The construction of the group SymG(P) is functorial in P , i.e. an isomorphism of

bundles ψ : P −→ P ′ induces an isomorphism of group extensions

̂ψ : SymG(P) −→ SymG(P
′)

( f : P −→ g∗P) �−→
(

P ′ ψ−1

−−→ P
f−→ g∗P g∗ψ−−→ g∗P ′) . (3.6)

3.2. Equivariant bundles. LetG be a connected Lie group, M a manifold withG-action
Φ : G × M −→ M , and P a principal H -bundle over M . A G-equivariant structure on
P consists of an isomorphism χ : pr∗M P −→ Φ∗P of principal bundles over G × M
such that the diagram

Px PΦg g′ (x)

PΦg(x)

χ(g g′,x)

χ(g,x) Φ∗
gχ(g′,x)

commutes for all g, g′ ∈ G and x ∈ M . We denote by E(P) the set of equivariant
structures on P . A splitting s of π : SymG(P) −→ G is a smooth group homomor-
phism s : G −→ SymG(P) such that π ◦ s = 1G . We denote the set of splittings of
π : SymG(P) −→ G by S(G;SymG(P)).

Proposition 3.7. There is a natural bijection of sets� : E(P) −→ S(G;SymG(P)). In
particular, the bundle P admits an equivariant structure if and only if the extension

1 −→ Gau(P) −→ SymG(P) −→ G −→ 1

is trivial as an extension of diffeological groups.

Proof. Let (P, χ) be an equivariant bundle. We define �(P, χ)(g) : P −→ Φ∗
g P to be

χ|{g}×M . The inverse �−1 : S(G;SymG(P)) −→ E(P) can be constructed by sending
a splitting s : G −→ SymG(P) to the isomorphism �−1(s) : pr∗M P −→ Φ∗P which
is given by s(g)(x) : Px −→ PΦg(x) at (g, x) ∈ G × M . ��

Let (P, χ) and (P ′, χ ′)beG-equivariantH -bundles onM .An isomorphismψ : P −→
P ′ is equivariant if the diagram

P P ′

Φ∗
g P Φ∗

g P
′

ψ

χg χ ′
g

Φ∗
gψ
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commutes for all g ∈ G. The equivariant structures on P and P ′ can be described by
smooth group homomorphisms sP : G −→ SymG(P) and sP ′ : G −→ SymG(P

′).
Since the isomorphism ̂ψ defined in (3.6) intertwines the action of SymG(P) and
SymG(P

′) on P and P ′, respectively, it follows that ψ is equivariant if and only if
sP ′ = ̂ψ ◦ sP . Hence the smooth group extension SymG contains all information on
equivariance.

3.3. Description via parallel transport. The extension SymG(P) can be describedmore
explicitly using the parallel transport of a connection on P , as we will now explain. In
Sect. 6 we apply this to the description of magnetic translations in quantum mechanics.
We consider a principal H -bundle P −→ M . Let P0G denote the diffeological space of
smooth paths in G with sitting instants based at e ∈ G, ev1 : P0G −→ G the evaluation
at the end point, (P0G)[2] the fibre product P0G ×G P0G with respect to ev1, and LM
the space of smooth loops in M . We denote by � the concatenation of paths. For a path
γ : [0, 1] −→ G we denote by γ the precomposition of γ with

[0, 1] −→ [0, 1]
t �−→ 1 − t .

For a path γ ∈ P0G and a point x ∈ M , set

γx : [0, 1] −→ M

t �−→ Φγ(t)(x) .

Endow P with an arbitrary connection A. The H -bundle P with connection then
induces a principal Gau(P)-bundle on G as follows: we set

LG := (

P0G × Gau(P)
)/∼ ,

where we define the equivalence relation

(γ, φ) ∼ (

α, hol(P, α, γ ) ◦ φ)

with hol(P, α, γ )(x) := hol
(

P, (α � γ )x
) ∈ End(Px )

for all (γ, α) ∈ (P0G)[2] and x ∈ M , and we interpret the holonomy of P along a
loop starting and ending at x as an endomorphism of the fibre Px . Note that, with this
notation, we have defined a smooth map hol(P,−) : (P0G)[2] −→ Gau(P). We endow
LG with the quotient diffeology.

Then the Gau(P)-bundle LG −→ G can be defined in terms of descent data as
follows: the action Φ of G on M induces a smooth map

LΦ : (P0G)[2] × M −→ LM

(γ, α, x) �−→ (α � γ )x . (3.8)

Explicitly,

(α � γ )x (t) = Φ(α�γ )(t)(x) ∈ M

for all t ∈ [0, 1] and x ∈ M . The descent data for the bundle LG consists of the
subduction P0G −→ G, the trivial bundle P0G × Gau(P) −→ P0G, and the smooth
map

g : (P0G)[2] −→ Gau(P)

(γ, α) �−→ g(γ, α) = hol(P, α � γ ) .
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Proposition 3.9. The total space LG is a smooth group extension

1 Gau(P) LG G 1 .

Proof. Let γ and γ ′ be two paths in G. The evaluation ev1 : P0G −→ G is a group
homomorphism with respect to the pointwise product of paths.

Let x ∈ M be an arbitrary point. To any triple (x, γ, γ ′), we can associate a map

�2(x, γ, γ ′) : |�2| −→ M

(t1, t2) �−→ Φγ(t1)
(

γ ′
x (t2)

)

,

where |�2| is the standard topological 2-simplex with |�2| ∼= {(t1, t2) ∈ R
2 | 0 ≤ t2 ≤

t1 ≤ 1}. Diagrammatically, this is a homotopy

γ (1) · γ ′(1) · x

x γ ′(1) · x
γ ′(t)·x

γ ′(t)·γ (t)·x
γ (t)·γ ′(1)·x

between the product path γ γ ′ ∈ P0G and the concatenated path (γ γ ′(1)) � γ ′ ∈ P0G.
For γ, γ ′ ∈ P0G and φ, φ′ ∈ Gau(P), we define

μ
(

(γ, φ), (γ ′, φ′)
) := (

γ γ ′, pt−1
γ γ ′ ◦ ptγ (γ ′(1)) ◦ (Φ∗

γ ′(1)φ) ◦ ptγ ′ ◦ φ′), (3.10)

where we denote by ptγ the isomorphism P −→ Φ∗
γ (1)P defined at a point x ∈ M

by the parallel transport along the path γx . This is well-defined: let α, α′ ∈ P0G with
γ (1) = α(1) and γ ′(1) = α′(1). Then

μ
(

(α, hol(P, α, γ ) ◦ φ), (α′, hol(P, α′, γ ′) ◦ φ′)
)

= (

α α′, pt−1
α α′ ◦ Φ∗

α′(1)(ptα ◦ hol(P, α, γ ) ◦ φ′) ◦ ptα′ ◦ hol(P, α′, γ ′) ◦ φ′)

= (

α α′, hol(P, α α′, γ γ ′) ◦ pt−1
γ γ ′ ◦ Φ∗

γ ′(1)(ptγ ◦ φ′) ◦ ptγ ′ ◦ φ′)

= (

γ γ ′, pt−1
γ γ ′ ◦ Φ∗

γ ′(1)(ptγ ◦ φ′) ◦ ptγ ′ ◦ φ′)

= μ
(

(γ, φ), (γ ′, φ′)
)

,

where we used Φ∗
γ ′(1)ptγ = ptγ (γ ′(1)). Associativity then follows immediately from

the associativity of the products in P0G and Gau(P), together with associativity of
taking pullbacks. Smoothness follows from the definition of the quotient diffeology and
the smooth dependence of parallel transport on the path. ��
Remark 3.11. For abelian structure group H , we can use the fact that parallel transport
commutes with gauge transformations to get the simplified expression

μ
(

(γ, φ), (γ ′, φ′)
) = (

γ γ ′, hol(P, ∂|�2|) (Φ∗
γ ′(1)φ) ◦ φ′)

for the multiplication (3.10). ��
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Remark 3.12. If G is abelian, then the multiplicative structure yields isomorphisms

LG|g × LG|g′ −→ LG|g g′ = LG|g′ g −→ LG|g′ × LG|g

for all g, g′ ∈ G. That is, the group extension LG spoils the commutativity of G, since
its fibres multiply commutatively only up to coherent isomorphism. ��

We summarise the connection to the construction from Sect. 3.1 in

Proposition 3.13. Let G be a connected Lie group, and let P −→ M be a principal
H-bundle on a manifold M with smooth G-action. The map

� : LG −→ SymG(P)
[

(γ, φ)
] �−→ (

ptγ ◦ φ : P −→ Φ∗
γ (1)P

)

is an isomorphism of diffeological group extensions of G.

Proof. Themap iswell-defined: consider two representatives (γ, φ) and (α, hol(P, α, γ )◦
φ) of the same equivalence class in LG , and calculate

ptα ◦ hol(P, α, γ ) ◦ φ = ptα ◦ ptα ◦ ptγ ◦ φ = ptγ ◦ φ .

The map is bijective, because two gauge transformations P −→ Φ∗
g P differ by exactly

one gauge transformation of P . It also follows directly from the definition that� is amor-
phismof extensions.Wecheck that� is a grouphomomorphism: for [(γ, φ)], [(γ ′, φ′)] ∈
LG we compute

μ
(

�(γ, φ), �(γ ′, φ′)
) = μ(ptγ ◦ φ, ptγ ′ ◦ φ′)

= Φ∗
γ ′(1)(ptγ ◦ φ) ◦ ptγ ′ ◦ φ′

= �
(

γ γ ′, pt−1
γ γ ′ ◦ ptγ (γ ′(1)) ◦ (Φ∗

γ ′(1)φ) ◦ ptγ ′ ◦ φ′)

= �
(

μ
(

(γ, φ), (γ ′, φ)
)

)

.

Finally, we verify that � is smooth. Let f : c −→ LG be a plot admitting a lift
̂f : c −→ P0G × Gau(P). We denote the components of ̂f by ̂fγ and ̂fGau(P). It is
enough to show that

M∗P −→ Φ ∗̂
fγ
P

Px � p �−→ pt
̂fγ (u)

(

̂fGau(P)(u)(p)
) ∈ PΦ

̂fγ (u)(1)(x)

is a gauge transformation. This follows from the smoothness of parallel transport (re-
called in Sect. 4.1 below). ��
Corollary 3.14. The action Φ : G × M −→ M lifts to an action

̂Φ : LG × P −→ P

which covers the action of G on M.
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4. A Global Approach to Parallel Transport for Bundle Gerbes

In Sect. 3we have constructed two diffeological groups, SymG(P) andLG , which extend
G and control the existence of G-equivariant structures on a principal bundle P over M .
The key to constructing LG , as well as to comparing the groups SymG(P) and LG (see
Sect. 3.3), was the parallel transport on the principal bundle P .

If one replaces the principal bundle P by a bundle gerbe G on M , there exist cate-
gorified versions of both these constructions which will be given in Sect. 5. However,
in order to write down the categorification of LG we need a notion of parallel transport
for G. In this section we give a definition of parallel transport for G suited for our pur-
poses and explicitly construct such a parallel transport from any connection on G. Our
construction relies heavily on Waldorf’s transgression-regression machine [Wal16].

There is a different approach to the parallel transport on a bundle gerbe developed by
Schreiber and Waldorf [SW09,SW11,SW17]. It relies on their technology of transport
functors and is based on local constructions, which are then glued to global objects.
In [Wal18], this has been extended to a canonical assignment of a parallel transport (in
terms of a transport 2-functor) to any principal 2-bundle with connectionwhose structure
group is a Lie 2-group.

Here, in contrast, we directly define and construct a global version of parallel transport
suitable for our purposes.As ourmain goal in this paper is the construction of categorified
smooth group extensions, we leave it for future work to prove in detail that our notion
of parallel transport for G agrees with that of Schreiber and Waldorf, and instead focus
on building the necessary input for the constructions in Sect. 5.

4.1. A path space approach to parallel transport on line bundles. Before we give our
definition and construction of the parallel transport for bundle gerbes, we recast the par-
allel transport on line bundles from a global perspective. Our notion of parallel transport
for bundle gerbes will then be a categorification of this picture. Let M be a connected
smooth manifold, and fix a base point x ∈ M ; if M is not connected, we restrict to
its connected components individually. We denote by PM the diffeological space of
smooth paths with sitting instants in M and by P0M the subspace of paths starting at x .
Let L be a line bundle on M with connection. The smoothness of the parallel transport
on L can be encoded as follows: for t ∈ [0, 1], denote by evt : PM −→ M , γ �−→ γ (t),
the evaluation at t . Parallel transport on L is in particular an isomorphism

ptL : ev∗
0L −→ ev∗

1L

Lγ (0) = ev∗
0Lγ � � �−→ ptL

γ (�) ∈ Lγ (1) = ev∗
1Lγ

of line bundles over PM .

There is a differentway to construct this isomorphismusingdescent.Via transgression
and regression [Wal12b] we can construct a bundle RT (L), which is isomorphic to L ,
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from the descent data

U(1)

(P0M)[2] P0M

M

f

ev1

with respect to the path fibration. Here f is constructed as in Sect. 3.3 from the holonomy
of L . The total space of the line bundle RT (L) consists of equivalence classes of pairs
(γ, ζ ) ∈ P0M × C, where the equivalence relation reads as (γ1, ζ ) ∼ (γ2, f (γ1, γ2) ζ )
for (γ1, γ2) ∈ (P0M)[2] and ζ ∈ C. An isomorphism gχ : RT (L) −→ L can be
constructed by picking a trivialisation χ : C −→ Lx of the fibre of L over the base point
x ∈ M and defining

gχ
([γ, ζ ]) := ptL

γ

(

χ(ζ )
)

.

The pullbacks ev∗
0RT (L) and ev∗

1RT (L) are thus described in terms of descent
data with respect to the covers ev∗

0P0M
∼= P0M ×M PM −→ M and ev∗

1P0M
∼=

PM ×M P0M −→ M , respectively. In order to construct the isomorphism ptRT (L)

explicitly we use the space (see Fig. 1)

P∂�2M := ev∗
0P0M ×PM ev∗

1P0M ∼= P0M ×M PM ×M P0M ,

which fits into the diagram

P∂�2M

ev∗
0P0M ev∗

1P0M

PM

An isomorphism from ev∗
0RT (L) to ev∗

1RT (L) can be described by a function
P∂�2M −→ U(1) which is compatible with the descent data. There is a canonical
choice for such a function given by

P∂�2M −→ LM
hol−−→ U(1) .

Concretely, the induced map is

ptRT (L) : ev∗
0RT (L) −→ ev∗

1RT (L)

[γxy, ζ ] �−→ ptRT (L)
(γxy ,γyz ,γxz)

[γxy, ζ ] = [

γxz, hol
(

L , γxz � (γyz � γxy)
)

ζ
]

,

where x is the fixed base point of M while y, z ∈ M are arbitrary points, and γab
denotes a path from a to b for a, b ∈ {x, y, z}. The holonomy appearing here agrees
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Fig. 1. Elements in the spaces P∂�2M , ev∗
0P0M and ev∗

1P0M

with hol(L , (γxz � γyz) � γxy). The construction is independent of all choices involved.
Now a straightforward computation shows that the diagram

ev∗
0L ev∗

1L

ev∗
0RT (L) ev∗

1RT (L)

ptL

ev∗
0gχ ev∗

1gχ

ptRT (L)

commutes. This shows that we can construct the parallel transport on L completely
in terms of the descent data with respect to the path fibration. For bundle gerbes, the
analogue of ptL is difficult to define directly, but an analogous approach via descent
data on P0M allows us to solve this problem.
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4.2. Global definition of parallel transport on bundle gerbes. As before, let M be a
manifold, and let G ∈ BGrb(M) be a bundle gerbe on M . A parallel transport on G
should in particular be a 1-isomorphism

ptG1 : ev∗
0G −→ ev∗

1G

in BGrb(PM) with a 2-isomorphism

c∗ptG1 ∼= 1G ,

where c : M −→ PM is the embedding of M into PM as constant paths. Note that the
parallel transport is, in general, an isomorphismof gerbeswithout connections. The same
is true for bundles: the parallel transport on a vector bundle with connection respects the
connection if and only if the connection is flat.

To proceed further, we need some definitions. Let i, n ∈ N with 1 ≤ i ≤ n. For each
s = (s1, . . . , sn−1) ∈ [0, 1]n−1, define a smooth map

ιni;s : [0, 1] −→ [0, 1]n
t �−→ (s1, . . . , si−1, t, si , . . . , sn−1) .

Consider the diffeological spaces PnM which are defined by the sets of all maps

Σ : [0, 1]n −→ M

satisfying the following property: for all i = 1, . . . , n, there exists εi > 0 such the map
Σ ◦ ιni;s : [0, 1] −→ M is locally constant on [0, εi ) � (1 − εi , 1]. Note that in a plot
of PnM , the εi do not have to be constant over the domain of the plot. The space PnM
describes n-cubes in M with sitting instants in all directions perpendicular to the faces of
[0, 1]n ; that is, PnM describes iterated smooth homotopies of paths with sitting instants
in M .

We also consider the subspaces Pn∗ M of the diffeological spaces PnM consisting of
maps Σ ∈ PnM satisfying the following property: for all s ∈ [0, 1]n−1, and for each
j = 1, . . . , n − 1 such that s j ∈ {0, 1}, the map Σ ◦ ιni;s is constant for all i > j .
The space Pn∗ M describes iterated smooth homotopies with fixed endpoints in M . For
example, P∗M = PM is the space of paths with sitting instants, P2∗ M consists of maps
Σ ∈ P2M such that

Σ(0, t) = Σ(0, 0) and Σ(1, t) = Σ(1, 0)

for all t ∈ [0, 1] and so is the space of homotopies of paths with fixed endpoints in M ,
and an element in P3∗ M is a family of fixed-ends homotopies between two fixed paths
in M . We say that an element Σ in Pn∗ M or in PnM is thin if its differential Σ∗ has
non-maximal ranks rk(Σ∗|s) < n for all s ∈ [0, 1]n .

Let s = (s1, . . . , sk) ∈ [0, 1]k and n = k + l. For 0 ≤ i1 < · · · < il ≤ n, we define a
map

ιni1,...,il ;s : [0, 1]l −→ [0, 1]n

which inserts the coordinates of t = (t1, . . . , tl) ∈ [0, 1]l into the k-tuple s such that
(

ιni1,...,il ;s(t)
)

j = t j
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for every j ∈ {i1, . . . , il}. The maps ιni1,...,il ;s : [0, 1]l −→ [0, 1]n induce maps

ιn∗
i1,...,il ;s : PnM −→ PlM

which map Pn∗ M to Pl∗M .
For the parallel transport of a bundle gerbe, there should also be a 2-isomorphism

ptG2 : (ι2∗1;0)∗ptG1 −→ (ι2∗1;1)
∗ptG1

in BGrb(P2∗ M). In other words, any map Σ ∈ P2∗ M is in particular a smooth map
[0, 1]2 −→ M from the square to M . This map is constant on the vertical edges of the
square. Pulling back the isomorphism ptG1 to the horizontal edges of the square gives

two 1-morphisms GΣ(0,0) −→ GΣ(1,0), and the 2-morphism ptG2 relates these. The data

(ptG1 ,pt
G
2 ) are required to satisfy the following two properties, which are motivated

by [BW19,BW18,Wal16]:

(1) For any two thin mapsΣ,Σ ′ ∈ P2∗ M withΣ ◦ ι21;s = Σ ′ ◦ ι21;s for s = 0, 1, there is
an equality

ptG2|Σ = ptG2|Σ ′ . (4.1)

That is, the 2-morphism ptG2 evaluated on any pair of fixed-ends thin homotopies
between any two given paths in M gives the same result.

(2) We further demand that for any thin map h ∈ P3∗ M , there is an equality

(ι3∗1,2;0)
∗ptG2 |h = (ι3∗1,2;1)

∗ptG2 |h . (4.2)

As we will be using Pn∗ M mostly for n = 0, 1, 2, we adopt the convention to write
γ2 �γ1 for the concatenation of smooth paths in M , and ifΣ,Σ ′ ∈ P2∗ M are homotopies
Σ : γ −→ γ ′ and Σ ′ : γ ′ −→ γ ′′, we write Σ ′ �2 Σ : γ −→ γ ′′ for their vertical
concatenation. If� : α −→ α′ is a further homotopy in P2∗ M such that the starting point
of α is the endpoint of γ , then we write � � Σ : α � γ −→ α′ � γ ′ for the horizontal
concatenation of the homotopies. We will also often use the term ‘composition’ instead
of ‘concatenation’.

Definition 4.3. Let M be a smooth manifold. A parallel transport on a bundle gerbe
G ∈ BGrb(M) is a quadruple ptG = (ptG1 ,pt

G
2 ,pt

G
� , ε

G) of

(1) a 1-isomorphism

ptG1 : ev∗
0G −→ ev∗

1G

of bundle gerbes over PM ,
(2) a 2-isomorphism

ptG2 : (ι2∗1;0)∗ptG1 −→ (ι2∗1;1)
∗ptG1

in BGrb(P2∗ M),



Smooth 2-Group Extensions and Symmetries of Bundle Gerbes 1851

(3) a 2-isomorphism

ptG� : pr∗1 pt
G
1 ◦ pr∗2 pt

G
1 −→ ( · � · )∗ptG1

over PM ×M PM , where pr1 and pr2 are the respective projections of PM ×M PM
to the first and second factors, and

(4) a 2-isomorphism

εG : c∗ptG1 −→ 1G

over M , where c : M −→ PM is the inclusion of M as the space of constant paths.

These data are required to satisfy properties (4.1) and (4.2). Due to property (4.1),
there is a canonical 2-isomorphism

ptG1|(γ3�γ2)�γ1
∼= ptG1|γ3�(γ2�γ1)

for every (γ1, γ2, γ3) ∈ PM ×M PM ×M PM , and we demand that ptG� is coher-
ently associative with respect to this isomorphism. The morphism ptG� also needs to be
compatible with the unitors in BGrb(PM) and sit in a commutative diagram

ptG1|γ2 ◦ ptG1|γ1 ptG1|γ2�γ1

ptG1|α2 ◦ ptG1|α1 ptG1|α2�α1

ptG�|γ2,γ1

ptG2|Σ2
◦ptG2|Σ1

ptG2|Σ2�Σ1

ptG�|α2,α1

(4.4)

for all x, y, z ∈ M , all paths γ1, α1 from x to y, all paths γ2, α2 from y to z in M , and
for all fixed-ends homotopies Σi : γi −→ αi . Furthermore, ptG2 has to respect vertical
composition and satisfy the interchange law

ptG2|Σ ′
1�Σ

′
0
◦ ptG2|Σ ′

1�Σ
′
0

= ptG2|Σ ′
1�2Σ1

◦2 ptG2|Σ ′
0�2Σ0

(4.5)

for all points x0, x1, x2 ∈ M , all paths αi , βi , γi from xi to xi+1, and for all fixed-ends
homotopies Σi : αi −→ βi and Σ ′

i : βi −→ γi with i = 0, 1.

Remark 4.6. The associativity condition in detail reads as follows: for every concatenable
triple (γ1, γ2, γ3) of paths in M there is a commutative diagram

ptG1|γ3 ◦ ptG1|γ2�γ1 ptG1|γ3 ◦ ptG1|γ2 ◦ ptG1|γ1 ptG1|γ3�γ2 ◦ ptG1|γ1

ptG1|γ3�(γ2�γ1) ptG1|(γ3�γ2)�γ1

ptG
�|γ3,γ2�γ1

ptG
�|γ3,γ2 ◦11◦ptG

�|γ2 ,γ1

ptG
�|γ3�γ2 ,γ1

inBGrb(PM×M PM),where the bottomarrow is the canonical 2-isomorphismobtained
via (4.1) from any reparameterisation of [0, 1] that yields a homotopy γ3 � (γ2 � γ1) ∼
(γ3 � γ2) � γ1. ��
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Remark 4.7. By property (4.2), our definition factors through the path 2-groupoid of M
as defined by Schreiber andWaldorf [SW11,SW17]. Given amanifoldM , they construct
a 2-groupoid internal to diffeological spaces, whose level sets are essentially M , PM
and the quotient P2∗ M/∼ of P2∗ M by thin homotopies. Note that in this quotient they
also implement condition (4.1). ��

In contrast to the case of parallel transport on vector bundles,we candefinemorphisms
between parallel transports on a given bundle gerbe.

Definition 4.8. LetG ∈ BGrb(M)be abundle gerbeonM . LetptG = (ptG1 ,pt
G
2 ,pt

G
� ,

εG) and pt′G = (pt′
1
G,pt′

2
G,pt′

�
G, ε′G) be two choices of parallel transport on G.

AmorphismptG −→ pt′G of parallel transports onG is a 2-isomorphismψ : ptG1 −→
pt′

1
G in BGrb(PM) that intertwines the 2-isomorphism ptG2 with pt′

2
G , the

2-isomorphism ptG� with pt′
�
G , and the 2-isomorphism εG with ε′G . This defines a

groupoid PT(G) of parallel transports on G.
This notion of morphism of parallel transports is not an analogue of a gauge transfor-

mation, since it does not necessarily come from an automorphism of the bundle gerbe
G.

4.3. Construction of the parallel transport. We now proceed to show that every bundle
gerbe with connection on a manifold M has a canonical parallel transport. Let M be a
connected manifold, and fix a base point x ∈ M ; otherwise, if M is not connected, we
treat the connected components of M separately. By results of Waldorf [Wal16], any
bundle gerbe G ∈ BGrb∇(M) is isomorphic to a bundle gerbe G′ ∈ BGrb∇(M) that
is defined over the diffeological path fibration P0M −→ M . Given a choice of base
point x ∈ M , Waldorf constructs a bundle gerbe G′ = RT (G) as the regression of
the transgression line bundle of G, together with a natural 1-isomorphism AG : G −→
G′ in the homotopy category of BGrb∇(M); that is, AG is determined only up to 2-
isomorphism. (We remark, however, that the natural 1-isomorphism AG from [Wal16]
is determined canonically once we fix a preimage of the base point x ∈ M under the
surjective submersion π : Y −→ M underlying the bundle gerbe G.)

Consider the bundle gerbe G′ = RT (G) ∈ BGrb∇(M) with connection on M ,
defined with respect to the path fibration π : P0M −→ M . Its line bundle L is the
pullback of the transgression line bundle T G −→ LM along the map

(P0M)[2] −→ LM

(α, α′) �−→ α′ � α .

By a slight abuse of notation, we also denote this pullback by T G −→ (P0M)[2].

Construction of ptG
′

1 We would like to construct a 1-isomorphism

ptG
′

1 : ev∗
0G′ −→ ev∗

1G′ (4.9)

in BGrb(PM). For t = 0, 1, the bundle gerbe ev∗
t G′ is defined over the subduction

ev∗
t P0M −→ PM . There are canonical isomorphisms of diffeological spaces

ev∗
0P0M ∼= P0M ×M PM and ev∗

1P0M ∼= PM ×M P0M .
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Recall from Sect. 4.1 the space

P∂�2M := ev∗
0P0M ×PM ev∗

1P0M ∼= P0M ×M PM ×M P0M .

A point in the total space P∂�2M is a triple (α0, γ, α1) of a path γ ∈ PM and based
paths αt ∈ P0M such that γ (t) = αt (1) for t = 0, 1. Any 1-morphism ev∗

0G′ −→ ev∗
1G′

is defined over (possibly a refinement of) the subduction ξ : P∂�2M −→ PM .
There is a smooth map, i.e. a morphism of diffeological spaces

s : P∂�2M −→ LM

(α0, γ, α1) �−→ α1 � (γ � α0) . (4.10)

There is also the smooth map

s̃ : P∂�2M −→ LM

(α0, γ, α1) �−→ (α1 � γ ) � α0 .

The maps s and s̃ are smoothly homotopic via precomposition by a homotopy h of
piecewise smooth homeomorphisms [0, 1] −→ [0, 1]; these fail to be smooth exactly
at those points of the interval where the concatenations happen, but at these points all
three paths have sitting instants, so that at each time the homotopy maps to LM , as
desired. For each triple of paths (α0, γ, α1), this results in a thin homotopy in LM from
α1 � (γ � α0) to (α1 � γ ) � α0. By the superficiality of the parallel transport ptT G on
the transgression line bundle [Wal16, Definition 2.2.1] (see also the end of Sect. 2.2),
we thus obtain a canonical isomorphism

r : s∗T G −→ s̃∗T G

in HLBdl∇(P∂�2M). The fact that this isomorphism preserves connections is a direct
consequence of [Wal16, Lemma 2.3.3]. Since ptT G is thin-invariant, it follows that the
morphism r is defined independently of the choice of homotopy h.

We define a morphism ptG
′

1 : ev∗
0G′ −→ ev∗

1G′ as follows: its underlying line bundle
is the line bundle s∗T G −→ P∂�2M . To turn this into a morphism of bundle gerbes,
we need to provide an isomorphism of line bundles

β : pr∗0 T G ⊗ ξ∗
1 s

∗T G −→ ξ∗
0 s

∗T G ⊗ pr∗1 T G

over (P∂�2M)[2]. Let us unravel this: the fibre product (P∂�2M)[2] = P∂�2M ×PM
P∂�2M consists of pairs ((α0, γ, α1), (α′

0, γ, α
′
1))where (α0, γ, α1) and (α

′
0, γ, α

′
1) are

elements of P∂�2M . For t = 0, 1, there are the projection maps

prt : (P∂�2M)[2] −→ (P0M)[2]
(

(α0, γ, α1), (α
′
0, γ, α

′
1)

) �−→ (αt , α
′
t ) .

Thus

(pr∗0 T G ⊗ ξ∗
1 s

∗T G)((α0,γ,α1),(α′
0,γ,α

′
1))

= T G
α′
0�α0

⊗ T G
α′
1�(γ �α

′
0)
,

(ξ∗
0 s

∗T G ⊗ pr∗1 T G)((α0,γ,α1),(α′
0,γ,α

′
1))

= T Gα1�(γ �α0) ⊗ T G
α′
1�α1

.

Letλ : π∗
0,1T G⊗π∗

1,2T G −→ π∗
0,2T G denote the fusion product of the transgression line

bundle T G over (P0M)[3] (see [Wal16, Section 4.2]), which provides the bundle gerbe
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multiplication on G′. At a point (α0, α1, α2) ∈ (P0M)[3] the fusion product consists of
unitary isomorphisms

λα0,α1,α2 : T Gα1�α0 ⊗ T Gα2�α1 −→ T Gα2�α0 .
The diffeological space (P∂�2M)[2] comes with smooth maps

p0 : (P∂�2M)[2] −→ (P0M)[3]
(

(α0, γ, α1), (α
′
0, γ, α

′
1)

) �−→ (α0, α
′
0, γ � α′

1)

and

p1 : (P∂�2M)[2] −→ (P0M)[3]
(

(α0, γ, α1), (α
′
0, γ, α

′
1)

) �−→ (γ � α0, α
′
1, α1) .

We set

β := p∗
1λ

−1 ◦ r−1 ◦ p∗
0λ ◦ (1 ⊗ r) .

Explicitly, at a point ((α0, γ, α1), (α′
0, γ, α

′
1)) ∈ (P∂�2M)[2], this is the isomorphism

defined by the diagram

T G
α′
0�α0

⊗ T G
α′
1�(γ �α

′
0)

T G
α′
0�α0

⊗ T G
(α′

1�γ )�α
′
0

T G
(α′

1�γ )�α0

T Gα1�(γ �α0) ⊗ T G
α′
1�α1

T G
α′
1�(γ �α0)

1⊗r

β

λ

r−1

λ−1

(4.11)

This morphism is compatible with the bundle gerbe multiplication on G′: consider an
arbitrary point

(

(α0, γ, α1), (α
′
0, γ, α

′
1), (α

′′
0 , γ, α

′′
1 )

) ∈ (P∂�2M)[3] .
Then there is a commutative diagram

T G
α′
0�α0

⊗ T G
α′′
0�α

′
0
⊗ T G

α′′
1�(γ �α

′′
0 )

T G
α′′
0�α0

⊗ T G
α′′
1�(γ �α

′′
0 )

T G
α′
0�α0

⊗ T G
α′
1�(γ �α

′
0)

⊗ T G
α′′
1�α

′
1

T Gα1�(γ �α0) ⊗ T G
α′
1�α1

⊗ T G
α′′
1�α

′
1

T Gα1�(γ �α0) ⊗ T G
α′′
1�α1

λ(α0,α
′
0,α

′′
0 )

⊗1

1⊗β

β

β⊗1

1⊗λ(α1,α
′
1,α

′′
1 )

The commutativity follows from the associativity of the fusion product λ and the fact
that it respects the connection on T G [Wal16] so that, in particular, λ is compatible with
the morphism r .
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Construction of ptG
′

2 Next we construct the 2-isomorphism

ptG
′

2 : (ι2∗1;0)∗ptG
′

1 −→ (ι2∗1,1)∗pt
G′
1

in BGrb(P2∗ M) that is part of the parallel transport data for G′. For this, we recall that
the fibre of the hermitean line bundle T G at a loop γ is constructed from pairs ([S], z)
of a 2-isomorphism class [S] of trivialisations S : γ ∗G −→ I0 in BGrb∇(S1) and a
complex number z ∈ C. The complex line T Gγ is the set of equivalence classes of such
pairs under the equivalence relation

([S], z) ∼ ([S ′], hol(S1,R(S ′ ◦ S−1)) z
)

,

where for a manifold M , the functor R : BGrb∇(M)(IB, IB′) −→ HLBdl∇(M) for
B, B ′ ∈ �2(M) is essentially descent for line bundles; for details, see [Bun17,BSS18,
Wal07b] (see also Sect. 2.2).

Let MD
2
be the diffeological space of smooth maps from the unit disk D

2 to M . Let

∂ : MD
2 −→ LM

f �−→ f|S1

denote the smooth map induced by restriction to the boundary of the unit disk. The
hermitean line bundle ∂∗T G on MD

2
has a canonical trivialisation which is defined as

follows: for a smooth map f : D
2 −→ M , choose a trivialisation S : f ∗G −→ IB for

some B ∈ �2(D2). Define a unitary isomorphism of hermitean complex lines

σ f : C −→ (∂∗T G) f

z �−→ σ f (z) :=
[

[S|S1 ], exp
(

− i
∫

D2
B

)

z
]

. (4.12)

This isomorphism is defined independently of the choice of S: let S ′ : f ∗G −→ IB′ be
another trivialisation. Then the line bundle R(S ′ ◦ S−1) has curvature B ′ − B, which
implies that

σ f (z) :=
[

[S|S1], exp
(

− i
∫

D2
B

)

z
]

=
[

[S|S1 ], exp
(

− i
∫

D2
B ′) hol

(

S
1,R(S ′ ◦ S−1)

)

z
]

=
[

[S ′
|S1 ], exp

(

− i
∫

D2
B ′) z

]

.

This construction works equally well if we replace the ‘round’ unit disk D
2 by the unit

square [0, 1]2, as long as we consider maps f : [0, 1]2 −→ M whose restrictions to
∂[0, 1]2 have sitting instants at the corners. By the construction of the fusion product λ
on T G, the section σ is compatible with fusion,

σ f ′�2 f = λ(σ f ′ , σ f )

for all disks f, f ′ : [0, 1]2 −→ M that can be concatenated vertically. (This is merely
the statement that the integral over [0, 1]2 decomposes as the sum

∫

[0,1]2 = ∫

[0,1]×[0, 12 ]
+

∫

[0,1]×[ 12 ,1].)
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Fig. 2. An element of the space ̂Y

Now consider the following setup: let Σ : [0, 1]2 −→ M be an element in P2∗ M ,
presenting a fixed-end homotopy from a path γ to a path γ ′ in M . We want to compare
the 1-isomorphisms (ι2∗1;0)

∗ptG
′

1 and (ι2∗1;1)
∗ptG

′
1 of bundle gerbes over P2∗ M . The source

bundle gerbes of both these morphisms have subductions

Y0 := (ι2∗1;0)
∗ev∗

0P0M = ev∗
(0,0)P0M = ev∗

(1,0)P0M −→ P2∗ M ,

while the target bundle gerbes live over

Y1 := (ι2∗1;0)
∗ev∗

1P0M = ev∗
(0,1)P0M = ev∗

(1,1)P0M −→ P2∗ M .

The fibre product ̂Y := Y0 ×P2∗ M Y1 is the space of triples (α0,Σ, α1) of based paths

α0, α1 ∈ P0M and fixed-ends homotopiesΣ ∈ P2∗ M between arbitrary paths in M such
that αt (1) = Σ(0, t) for t = 0, 1 (see Fig. 2).

The 1-isomorphism (ι2∗1;i )
∗ptG

′
1 , for i = 0, 1, is defined over the subduction

Zi := (ι2∗1;i )
∗P∂�2M −→ ̂Y ,

which is actually an isomorphism. Consequently, the 2-isomorphism ptG
′

2 should be
defined with respect to the subduction

̂Z := Z0 ×
̂Y Z1 −→ ̂Y ,

which again is an isomorphism. Its elements are triples (α0,Σ, α1) as above. Set γt :=
Σ ◦ ι21;t for t = 0, 1, and let x = γt (0) and y = γs(1) for t, s = 0, 1.

At a point (α0,Σ, α1), the morphism of hermitean line bundles over ̂Z that defines
ptG

′
2 is given by the morphism

ptG
′

2|(α0,Σ,α1)
: T Gα1�(γ0�α0) −→ T Gα1�(γ1�α0)

of complex lines obtained as follows:

(1) Using a smooth family of rotations of S
1, apply parallel transport on T G to obtain

an isomorphism

ψ1 : T Gα1�(γ0�α0) −→ T G(γ0�α0)�α1 −→ T Gγ0�(α0�α1) .

This is achieved by parallel transport along a thin path in LM . Hence, since the
parallel transport on T G is superficial, this isomorphism is independent of the choice
of a smooth family of rotations.
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(2) Use the canonical section σΣ(1) ∈ T G∂Σ from (4.12) to obtain an isomorphism

ψ2 : T Gγ0�(α0�α1) −→ T Gγ0�(α0�α1) ⊗ T G∂Σ .

(3) The boundary loop ∂Σ is smoothly and thinly homotopic (via reparameterisations)
to ((idy � γ1) � idx ) � γ0, where idx is the constant path at the point x ∈ M . This loop
is, in turn, thinly homotopic to γ1 � γ0. We thus obtain a canonical isomorphism

ψ3 : T Gγ0�(α0�α1) ⊗ T G∂Σ −→ T Gγ0�(α0�α1) ⊗ T Gγ1�γ0 .

(4) The fusion product on T G yields an isomorphism

ψ4 : T Gγ0�(α0�α1) ⊗ T Gγ1�γ0 −→ T Gγ1�(α0�α1) .

(5) Finally, we again use parallel transport along a path in LM that arises from a smooth
family of rotations to obtain a canonical isomorphism

ψ5 : T Gγ1�(α0�α1) −→ T Gα1�(γ1�α0) .

We then define

ptG
′

2|(α0,Σ,α1)
:= ψ5 ◦ ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1 .

This is compatible with vertical composition in P2∗ M : let Σ,Σ ′ ∈ P2∗ M be two
maps [0, 1]2 −→ M that can be concatenated vertically. Since the connection on T G is
superficial and compatible with the fusion product, we can replace the morphismψ1 by

ψ̃1 : T Gα1�(ι2∗1;0Σ�α0)
−→ T Gι2∗1;0Σ�(α0�α1)

.

Applying the fusion product with ∂(Σ ′ �2 Σ) yields an isomorphism

ϕ : T Gι2∗1;0Σ�(α0�α1)
−→ T Gι2∗1;1Σ ′�(α0�α1) .

Combining the fact that the fusion product λ is associative and compatible with the
parallel transport on T G, that the parallel transport on T G is superficial (in particular,
parallel transport along thin paths is independent of the choice of thin path), and that
the section σ from (4.12) is compatible with λ, it follows that ptG

′
2 respects vertical

concatenation.
Since all morphisms involved in the construction of ptG

′
2 are smooth, it follows that

ptG
′

2 is in fact a smooth morphism of bundle gerbes as desired.

Construction of ptG
′

� The 2-isomorphism

ptG
′

� : pr∗1 pt
G′
1 ◦ pr∗2 pt

G′
1 −→ ( · � · )∗ptG′

1

is directly constructed from the fusion product λ on the transgression line bundle T G.
Define q : PM ×M PM −→ M by (γ, γ ′) �−→ γ (0) = γ ′(1). The morphism ptG

′
� is

defined over the subduction

Q1 := pr∗1 P∂�2M ×q∗P0M pr∗2 P∂�2M −→ PM ×M PM .
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Given a point
(

(α0, γ, α1), (α1, γ
′, α2)

) ∈ Q1, the morphism ptG
′

� is given by the
diagram

T Gα1�(γ �α0) ⊗ T Gα2�(γ ′�α1) T Gα1�(γ �α0) ⊗ T G(α2�γ ′)�α1

T Gα2�(γ ′�γ )�α0 T G(α2�γ ′)�(γ �α0)

ptG
′

� λ

where the horizontal morphisms are induced by smooth families of reparameterisations.
The compatibility of this morphismwith themorphism β from (4.11) follows again from
the superficiality of the connection on T G and the associativity of the fusion product λ.

The compatibility ofptG
′

� withptG
′

2 as in (4.4) is seen analogously to howwe proved

the compatibility of ptG
′

2 with vertical concatenation of homotopies. The interchange
law (4.5) is satisfied by the associativity of λ, its compatibility with the parallel transport
on T G and with the section σ from (4.12), as well as the superficiality of the connection
on T G.

Construction of εG
′
Finally, the 2-isomorphism

εG
′ : c∗ptG

′
1 −→ 1G′

is obtained directly from the superficial connection on T G: it is defined over the space of
triples (α, idx , α) ∈ P∂�2M , and all paths of the form α �α are canonically contractible
by thin homotopies.

All necessary coherences in Definition 4.3 then follow from the superficiality of the
parallel transport on T G, the associativity of the fusion product λ and its compatibility
with the section σ , and the fact that the parallel transport on T G is compatible with the
fusion product. Thus we have

Theorem 4.13. Let G ∈ BGrb∇(M) be a bundle gerbe with connection on M, and let
G′ := RT (G) ∈ BGrb∇(M) be the regression of the transgression of G. Then the
quadruple ptG

′ = (ptG
′

1 ,ptG
′

2 ,ptG
′

� , εG
′
) defines a parallel transport on the bundle

gerbe G′.

Transfer to arbitrary bundle gerbes In [Wal16], Waldorf shows that the functors T and
R come with a canonical natural isomorphism

A : 1 −→ R ◦ T

as endofunctors of the homotopy 1-category hBGrb∇(M). Given a bundle gerbe G ∈
BGrb∇(M), we thus get a 2-isomorphism class of 1-isomorphisms G −→ G′ = RT (G).
Let AG : G −→ G′ be a representative for this class.

Let B : G −→ G′ be a 1-isomorphism with adjoint inverse B−1, i.e. a weak inverse
B−1 together with 2-isomorphisms εB : 1G −→ B−1 ◦ B and δB : B ◦ B−1 −→ 1G′
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that satisfy the triangle identities. We can use it to define a 1-isomorphism ptG,B1 as the
composition

ev∗
0G′ ev∗

1G′

ev∗
0G ev∗

1G

ptG
′

1

ev∗
1B−1ev∗

0B

ptG,B
1

We define 2-isomorphisms

ptG,B2 := 1B−1 ◦ ptG
′

2 ◦ 1B ,

ptG,B� := 1B−1 ◦ (

ptG
′

� ◦2 (1ptG′
1

◦ δB ◦ 1
ptG

′
1
)
) ◦ 1B ,

εG,B := εB ◦2 (1B−1 ◦ εG′ ◦ 1B) ,

where we have omitted pullbacks. From these definitions we readily see

Proposition 4.14. The quadruple ptG,B = (ptG,B1 ,ptG,B2 ,ptG,B� , εG,B) defines an
object in PT(G).

For ψ : B −→ B′ a 2-isomorphism of 1-isomorphisms B,B′ : G′ −→ G, we obtain
a 2-isomorphism

ψ(−1) ◦ 1
ptG

′
1

◦ ψ : ptG,B1 −→ ptG,B
′

1 . (4.15)

Here ψ(−1) denotes the 2-isomorphism obtained from ψ by taking the inverse with
respect to horizontal composition. Again it follows from the definitions that this defines
an isomorphism

̂ψ : ptG,B −→ ptG,B
′

in the category PT(G). If ψ ′ : B −→ B′ is another (parallel unitary) 2-isomorphism,
then ψ and ψ ′ differ by multiplication with a locally constant U(1)-valued function
fψ,ψ ′ on M . Since horizontal inverses of 2-isomorphisms have dual underlying line
bundles [Wal07b], the morphisms ψ(−1) and ψ ′(−1) differ by the locally constant U(1)-
valued function fψ(−1),ψ ′(−1) = ( fψ,ψ ′)−1. Consequently, we deduce from (4.15) that

̂ψ ′ = ̂ψ .

That is, for any pair of parallel unitary 1-isomorphisms B,B′ : G −→ G′ for which there
exists some parallel unitary 2-isomorphism B −→ B′, we obtain a unique isomorphism
ptG,B −→ ptG,B

′
.

Let [[AG]]denote the full subgroupoidofBGrb∇(M)(G,G′)on those1-isomorphisms
G −→ G′ that are isomorphic toWaldorf’s 1-isomorphismAG . Our constructions define
a functor

ptG,( · ) : [[AG]] −→ PT(G) .
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This functor factors through a groupoid [[AG]]∗ with the same objects as [[AG]] and a
unique isomorphism between any two objects. In particular, every object in [[AG]]∗ is
final and the canonical functor [[AG]] −→ [[AG]]∗ is a final functor. It follows that, for
any category C, any functorF : [[AG]] −→ C that factors through [[AG]]∗ has a colimit,
which is represented by F(B) for any object B ∈ [[AG]].
Definition 4.16. Let G ∈ BGrb∇(M) be a bundle gerbe with connection on M . The
parallel transport of G is

ptG := colim
(

ptG,( · ) : [[AG]] −→ PT(G)
)

.

4.4. The transgression line bundle as aholonomy. LetG ∈ BGrb∇(M)be abundle gerbe
with connection on M and write G′ = RT (G). We will now determine the holonomy of
the parallel transport on G′. For this, consider the diffeological space L∗M of smooth
maps S

1 −→ M that have a sitting instant at 1 ∈ S
1. In other words, L∗M is the

pullback

L∗M PM

M M × M

ι

ev1 ev0×ev1

Δ

in Dfg, where ι denotes the inclusion map and Δ is the diagonal embedding. The
pullback ι∗ptG

′
1 is an automorphism of ev∗

1G′, which we understand as the holonomy of
ptG

′
. It is defined over the subduction ι∗P∂�2M −→ L∗M . Recall from Sect. 2.2 that a

1-automorphism of a bundle gerbe defines a line bundle via descent. Thus the holonomy
ι∗ptG

′
1 gives rise to a descended line bundle hol(G) ∈ HLBdl(L∗M). Our goal is to

understand this descended line bundle more explicitly.
Let êv1 : ev∗

1P0M −→ P0M be the morphism induced by the pullback

ev∗
1P0M P0M

L∗M M

êv1

ev1

inDfg. The hermitean line bundle (with connection) underlying the bundle gerbe ev∗
1G′

is the pullback bundle

L := êv1
[2]∗T G −→ (ev∗

1P0M)[2] ∼= ι∗P∂�2M .

We now apply the construction from the diagram (2.18) that produces a line bundle
R(A) from an automorphismA of a bundle gerbe: the tensor product bundle L∨ ⊗ptG

′
1

on ι∗P∂�2M has fibres

(

L∨ ⊗ ptG
′

1

)

(α0,γ,α1)
= T G∨

α1�α0
⊗ T Gα1�(γ �α0) ∼= T Gα0�α1 ⊗ T Gα1�(γ �α0) .
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Now the thin-invariant parallel transport and the fusion product on T G yield an isomor-
phism

T Gα0�α1 ⊗ T Gα1�(γ �α0) T Gα1�α0 ⊗ T Gα0�(α1�γ )

T Gγ T Gα1�(α1�γ )

λ (4.17)

By the associativity of λ, this is an isomorphism of descent data for line bundles on
L∗M . This shows

Proposition 4.18. The morphism (4.17) yields an isomorphism of hermitean line bun-
dles

hol(G) := R
(

ι∗ptG
′

1

) ∼=−→ T G|L∗M

over L∗M.

Thus the parallel transport ptG
′
reproduces the transgression line bundle T G as its

holonomy.

Remark 4.19. For a generic bundle gerbe G with parallel transport ptG , the morphism
ptG2 induces a parallel transport on hol(G). It should be possible to construct from this a
fusion line bundle with connection on LM in the sense of [Wal16], which then regresses
to a bundle gerbe with connection on M . Its underlying bundle gerbe should be canoni-
cally isomorphic to G (up to 2-isomorphism), and that should allow the reconstruction
of the connection on G from its parallel transport in our sense. However, this would go
beyond the scope of this paper, and since for our applications in Sects. 5 and 6 having an
explicit construction forptG

′
is sufficient, we leave this reconstruction of the connection

on G for future work. ��

5. 2-Group Extensions from Bundle Gerbes

LetG be a connectedLie groupwith a smooth group action on amanifoldM . In Sect. 3we
saw how a principal bundle P −→ M gives rise to a group extension SymG(P) −→ G
which encodes all information about equivariant structures on P . We were able to give
two equivalent constructions for SymG(P), one as a subgroup of Diff(P), and one as
descent data associated to the path fibration P0G −→ G and a parallel transport on P .

In this section we study the analogous situation for a bundle gerbe G ∈ BGrb(M)

instead of a principal bundle P ∈ BunH (M). There are two main differences to the
situation in Sect. 3: equivariant structures on G form a groupoid rather than a set, and
they do not assemble into a topological or smooth space. We thus cannot expect a
universal extension SymG(G) −→ G as diffeological groups. A good framework to
describe this extension is that of group objects in categories fibred in groupoids over
Cart, where the fibration encodes the smooth structure. After carefully setting up this
framework, we give two constructions of SymG(G), in analogy to the two constructions
of SymG(P) in Sect. 3. We conclude this section by showing that, again, the extension
SymG(G) −→ G encodes all information about equivariant structures on G.
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5.1. Smooth groupoids and symmetries of gerbes. Let G ∈ BGrb(M) be a bundle gerbe
on M . Let Φ : G × M −→ M be an action of a connected Lie (or diffeological) group
G on M . Let Cart denote the category of smooth manifolds that are diffeomorphic to R

n

for some n ∈ N0. The morphisms in Cart are the smooth maps between these manifolds.
We can view M and G as presheaves on Cart by setting

M(c) = C∞(c,M) and G(c) = C∞(c,G) .

Byadding identitymorphisms,we can canonically enhance the presheafG to a (pre)stack
on Cart, i.e. a (pre)sheaf of groupoids, which we still denote by G. Given a section
f ∈ G(c), i.e. a smooth map f : c −→ G, we can define a map

Φ f : c × M G × M M .
f×1M Φ

We can then assign to f the groupoid

SymPSh
G (G)( f ) := BGrb(c × M)(pr∗M G, Φ∗

f G) ,

where prM : c × M −→ M is the projection. The groupoid SymPSh
G (G)( f ) is non-

empty: since the map f : c −→ G is homotopic to the constant map at the identity in
G, it follows that pr∗M G and Φ∗

f G have the same Dixmier–Douady class as gerbes on
c × M , so that there exists an isomorphism pr∗M G −→ Φ∗

f G.
The assignment f �−→ SymPSh

G (G)( f ) is evidently not a presheaf of groupoids on
Cart since it depends not only on the object c, but also on a choice of a smooth map
f : c −→ G. We can reformulate this in the following way: let G denote the category
with objects the smooth maps f : c −→ G, where c ∈ Cart is any Cartesian space. The
morphisms

ϕ : ( f : c −→ G) −→ ( f ′ : c′ −→ G)

in G are commutative triangles of smooth maps

c c′

G

ϕ

f f ′

Then SymPSh
G (G) is a presheaf of groupoids on G : to an object f : c −→ G in G we

assign the groupoid SymPSh
G (G)( f ), while to a morphism ϕ : f −→ f ′ we assign the

pullback functor

SymPSh
G (G)(ϕ) := (ϕ × 1M )

∗ : SymPSh
G (G)( f ′) −→ SymPSh

G (G)( f ) .

By a slight abuse of notation, wewill denote the functor SymPSh
G (G)(ϕ) byϕ∗. Explicitly,

given a 1-isomorphism A : pr∗M G −→ Φ∗
f ′G over c′, it is defined by the commutative

diagram

pr∗M G Φ∗
f G

(ϕ × 1M )∗ pr′ ∗M G (ϕ × 1M )∗Φ∗
f ′G

(

Φ f ′ ◦ (ϕ × 1M )
)∗G

ϕ∗A

∼=

(ϕ×1M )∗A ∼=

∼=
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By construction of the 2-category of bundle gerbes, this defines a pseudofunctor

SymPSh
G (G) : Gop −→ Grpd ,

where Grpd is the 2-category of groupoids, functors, and natural transformations.

Remark 5.1. The assignment f �−→ SymPSh
G (G)( f ) is not a strict presheaf of groupoids

on G , as it is only pseudofunctorial [Moe02]. There are several ways to technically treat
such pseudo-presheaves of groupoids:

(1) Encode the coherence morphisms by viewing pseudo-presheaves of groupoids as
coherent simplicial presheaves, i.e. as simplicial functors C ◦N�(G)op −→ Set� in
the notation of [Lur09].

(2) Use a strictification procedure to translate pseudo-presheaves of groupoids into
presheaves of groupoids [Hol08].

(3) Use the Grothendieck construction, or straightening, to translate pseudo-presheaves
of groupoids into categories fibred in groupoids over G [Vis05,Lur09].

Wewill follow the third approach here because the transition between the parameterising
categories G and Cart becomes particularly easy in that framework. ��

We will frequently make use of the Grothendieck construction to pass from Grpd-
valued pseudo-functors to categories fibred in groupoids; for background
on the Grothendieck construction and fibred categories we refer to [Vis05,Lur09]. We
will, however, describe the resulting fibred categories explicitly. For example, the canon-
ical projection functor pr : G −→ Cart is the category fibred in groupoids obtained by
applying the Grothendieck construction to the (pseudo)functor c �−→ G(c), whereG(c)
is regarded as a groupoid with only identity arrows.

Definition 5.2. A functor π : D −→ C between categories is a Grothendieck fibration
in groupoids, or makes D into a category fibred in groupoids over C, if it satisfies the
properties:

(1) For every object d ∈ D and for every morphism f : c −→ π(d) in C, there exists a
morphism ̂f : ĉ −→ d in D with π(̂f ) = f .

(2) For every pair of diagrams

d0

d1 d2

π(d0)

π(d1) π(d2)

̂f01 ζ02

ζ12

f01 π(ζ02)

π(ζ12)

(5.3)

in D and C, respectively, there exists a unique lift ̂f01 of f01 that makes the upper
triangle commute.

The first requirement resembles a path-lifting condition. The second requirement can
be viewed as a relative horn-filling property: given any #2

2-horn σ in D and a filling
of π(σ) in C to a 2-simplex, there exists a unique filling of σ to a 2-simplex in D
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that lifts the 2-simplex in C. Alternatively, consider an arbitrary functor π : D −→ C
between categories and a morphism ζ12 : d1 −→ d2 inD. If for every pair of solid arrow
diagrams as in (5.3) the dashed arrow exists such that the upper triangle commutes
and such that π(̂f01) = f01, one says that ζ12 is π -Cartesian. In particular, if π is a
Grothendieck fibration in groupoids, then property (2) of Definition 5.2 is equivalent
to saying that every morphism in D is π -Cartesian. If π : D −→ C is a Grothendieck
fibration in groupoids and c ∈ C, we denote byD|c = π−1(c) the fibre over c, which is
the groupoid with objects d ∈ D such that π(d) = c and morphisms ̂f : d −→ d ′ such
that π(̂f ) = 1c.

Definition 5.4. A category fibred in groupoids over Cart is a smooth groupoid. Let H
denote the strict 2-category of smooth groupoids. Its objects are smooth groupoids, its
morphisms are (strictly) commutative diagrams of functors

X0 X1

Cart

and its 2-morphisms are natural transformations that project to the identity. We denote
byH(X,Z) the groupoid of functors X −→ Z that project to the identity on Cart.

Example 5.5. Let M be a smooth manifold. An important example of a smooth groupoid
is given by the Grothendieck fibration HLBdlM −→ Cart, whose objects are pairs (c, L)
of a Cartesian space c ∈ Cart and a hermitean line bundle L −→ c × M , and whose
morphisms (c, L) −→ (c′, L ′) are pairs (ϕ, ψ) of a smooth map ϕ : c −→ c′ and an
isomorphism ψ : L −→ (ϕ × 1M )∗L ′ of hermitean line bundles on c × M . One can
interpret HLBdlM as describing smooth families of hermitean line bundles on M . For
M = ∗, we write HLBdl∗ =: HLBdl. ��
Definition 5.6. Let p : SymG(G) −→ G denote the category fibred in groupoids ob-
tained by applying the Grothendieck construction to the pseudofunctor
SymPSh

G (G) : Gop −→ Grpd. Explicitly, the category SymG(G) consists of:

• Objects :pairs ( f, A),where f ∈ G is a smoothmap f : c −→ G and A : pr∗M G −→
Φ∗

f G is a 1-isomorphism of bundle gerbes over c × M .
• Morphisms : a morphism ( f0, A0) −→ ( f1, A1) is a pair (ϕ, ψ) of a morphism
ϕ : f0 −→ f1 in G and a 2-isomorphism ψ : A0 −→ ϕ∗A1 in SymPSh

G (G)( f0).

The functor p : SymG(G) −→ G is automatically a fibration in groupoids, since
it arises as the Grothendieck construction of a pseudo-presheaf of groupoids. Since
Grothendieck fibrations are stable under composition [Vis05], the composite functor

SymG(G) G

Cart

p

π pr

makes SymG(G) into a smooth groupoid.
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5.2. Smooth 2-groups. Wewould now like to establish that SymG(G) is not just a smooth
groupoid, but can also be regarded as a higher group in some sense. That is, wewould like
to find on SymG(G) the same type of structure as we found on the bundle SymG(P) −→
G in Sect. 3.1. Here, however, we are working inside the ambient 2-categoryH, and so
wewill need tomake precisewhat wemean by a group inH. The notion of a group object
in a 2-category goes back to [BL04]. The following definitions are taken from [SP11]
which are strongly based on [BL04]. Let C be a 2-category with finite products; in
particular, it has a terminal object ∗. Examples are the 2-categories Grpd and H.

Definition 5.7. ([BL04]) A monoid object in C is a sextuple (H,u,⊗,a, l, r) of

• an object H ∈ C,
• 1-morphisms u : ∗ −→ H and ⊗: H × H −→ H, and
• 2-isomorphisms

a : ⊗ ◦ (⊗ × 1H) −→ ⊗ ◦ (1H × ⊗) ,

l : ⊗ ◦ (u × 1H) −→ 1H ,

r : ⊗ ◦ (1H × u) −→ 1H .

These data are required to satisfy a pentagon and a triangle identity; see [SP11, Defini-
tion 41].

An abelian monoid object comes with an additional 2-isomorphism β : ⊗◦ τ −→ ⊗
satisfying the coherence conditions in [SP11, Definition 47], where τ : H×H −→ H×H
is the interchange of factors.

Definition 5.8. A 1-morphism of monoid objects (H,u,⊗,a, l, r) −→ (H′,u′,⊗′,a′,
l′, r′) in C consists of a triple (F1, F⊗, Fu) of

• a 1-morphism F1 : H −→ H′ and
• 2-isomorphisms F⊗ : ⊗′ ◦ (F1 × F1) −→ F1 ◦ ⊗ and Fu : u′ −→ F1 ◦ u.

These are required to satisfy the coherence conditions in [SP11, Definition 42].
Morphisms of abelian monoid objects satisfy an additional compatibility condition

for the symmetries β and β ′, which can be found in [SP11, Definition 48].

Definition 5.9. ([SP11, Definition 43]) A 2-morphism (F1, F⊗, Fu) −→ (E1, E⊗, Eu)

of monoid objects in C is a 2-morphism θ : F1 −→ E1 such that the diagrams

⊗′ ◦ (F1 × F1) ⊗′ ◦ (E1 × E1)

F1 ◦ ⊗ E1 ◦ ⊗

⊗′◦(θ×θ)

F⊗ E⊗

θ◦⊗

u′

F1 ◦ u E1 ◦ u

Fu Eu

θ◦u
commute. 2-morphisms of abelian monoid objects are 2-morphisms of the underlying
monoid objects.
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Example 5.10. Amonoidobject in the2-categoryCat of categories is precisely amonoidal
category. Similarly, 1-morphisms and 2-morphisms between monoid objects in Cat are
precisely the monoidal functors and the monoidal natural transformations, respectively.
The abelian monoids in Cat are precisely the symmetric monoidal categories. ��
Definition 5.11 [[SP11,Definition 41]].Agroup object inC is amonoid object (H,u,⊗,

a, l, r) in C such that the 1-morphism

(⊗, pr1) : H × H −→ H × H

is (weakly) invertible. An abelian group object in C is an abelian monoid object whose
underlying monoid object is a group object.

For C a 2-category with finite products, we denote the 2-category of group objects in
C by 2Grp(C).

Definition 5.12. The 2-category of 2-groups is 2Grp(Grpd). The 2-category of smooth
2-groups is 2Grp(H).

Both these 2-categories are enriched in groupoids. Let us examine Definition 5.12 a
little more closely. Consider two objects πC : C −→ Cart and πD : D −→ Cart in H.
The product inH is given by the pullback in Cat:

(

C
πC−−→ Cart

) × (

D
πD−−→ Cart

) = (

C ×Cart D −→ Cart
)

.

Explicitly, the category C ×Cart D has

• Objects : pairs (c ∈ C, d ∈ D) such that πC(c) = πD(d).
• Morphisms : pairs (φ,ψ) of morphisms φ in C and ψ in D such that πC(φ) =
πD(ψ).

A monoid structure on C ∈ H thus allows us to multiply pairs of objects in the same
fibre and pairs of morphisms that lie over the same morphism in Cart.

Example 5.13. The tensor product of line bundles turns the presheaf of groupoids of
hermitean line bundles with connection HLBdl∇ −→ Cart into an abelian group object
in H. Similarly, for any manifold M it also turns the internal hom

(

HLBdl∇
)M into an

abelian group object inH. ��

5.3. Smooth principal 2-bundles. We shall now establish our precise notion of an ex-
tension of smooth 2-groups.

Definition 5.14. Let C be a 2-category with finite products, let (H,u,⊗H,a, l, r) be a
monoid object inC, and letC ∈ C. A right action ofH onC is amorphism⊗: C×H −→
C in C, together with 2-morphisms α and u in C that witness the commutativity of the
diagrams

C × H × H C × H

C × H C

1C×⊗H

⊗×1H ⊗

⊗

α
and

C C × H

C

1C×u

1C
⊗u

and that are coherent with respect to the 2-isomorphism a, l and r. Left actions are
defined analogously.
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Example 5.15. The standard example for an action of a monoid object is that of a module
category C over a monoidal category H in C = Cat. ��
Definition 5.16. Let C be a category. Suppose there are categories fibred in groupoids
πi : Di −→ C, for i = 0, 1, and πE : E −→ C over C, and suppose there is a diagram

E

D0 D1

F0 F1

of categories fibred in groupoids over C. The homotopy pullback D0 ×h
E D1 is the

category with

• Objects : triples (d0, η, d1), where di ∈ Di and η : F0(d0) −→ F1(d1) is an iso-
morphism in E that projects to the identity under πE.
• Morphisms : a morphism (d0, η, d1) −→ (d ′

0, η
′, d ′

1) is a pair (ψ0, ψ1) of mor-
phisms ψi : di −→ d ′

i such that the diagram

F0(d0) F1(d1)

F0(d ′
0) F1(d ′

1)

η

F0(ψ0) F1(ψ1)

η′

commutes in E.

This comes with a canonical functor

πh : D0 ×h
E D1 −→ C

(d0, η, d1) �−→ π0(d0) = π1(d1)

(ψ0, ψ1) �−→ π0(ψ0) = π1(ψ1) ,

which, as we show in Appendix A, is a Grothendieck fibration in groupoids.

Definition 5.17. Let H be a smooth 2-group, and let X ∈ H be any smooth groupoid.
AnH-principal 2-bundle on X is an object P ∈ H with a morphism π : P −→ X, a right
action (⊗, α) of H on P and a 2-isomorphism

P × H P

P X

⊗

pr π

π

η

such that

(1) the functor π : P −→ X is an essentially surjective Grothendieck fibration,
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(2) the action (⊗, α) ofH on P and the 2-isomorphism η are compatible in the sense that
the diagram

P× H P

P× H× H P× H

P X

P× H P

pr

⊗

π

1P×⊗H

⊗×1H

pr
pr

π
pr

⊗

π

⊗

is coherent, where the front face carries the 2-isomorphism α that is part of the action
of H on P, the back, right-hand, and bottom faces carry the 2-isomorphism η, and
the left-hand face commutes strictly,

(3) the composition P × H −→ P ×X P × H −→ P ×h
X P is an equivalence, where the

first functor is induced by the diagonal functor P −→ P ×X P.

The first condition can be understood as demanding that P −→ X has local sections
(see Lemma A.1 from Appendix A). The second condition implements the property that
theH-action preserves the projection to X up to coherent homotopy. The third condition
says that theH-action is principal. Note that upon choosing an inverse to the equivalence
P×XP ↪→ P×h

XP, one could equivalently formulate condition (3) using strict pullbacks
alone (again by Lemma A.1 from Appendix A).

In order to understand the notion of an extension of smooth 2-groups, we first need
to define the kernel of a morphism of smooth 2-groups. Naively, the kernel could easily
be defined as a fibre over u, but the resulting category will not generally be fibred in
groupoids over Cart. As it turns out, the homotopy pullback does satisfy this property.

Definition 5.18. Let p : H −→ G be a morphism of smooth 2-groups in H. Its kernel
kerh(p) is the homotopy pullback

kerh(p) H

Cart = ∗H G

κ p

uG

Explicitly, kerh(p) is given by

kerh(p) := ∗H ×h
G H .

Using Definition 5.16 we can equivalently describe it as the category with objects given
by pairs (h, η) of an object h ∈ H and an isomorphism η : p(h) −→ uG(πH(h)) in G.
Its morphisms (h0, η0) −→ (h1, η1) are given by morphisms ζ : h0 −→ h1 such that
η1 ◦ p(ζ ) = uG(πH(ζ )) ◦ η0. We readily observe that the restrictions of the structure
morphisms ⊗H, aH, lH and rH, together with the morphism uH, turn kerh(p) into a
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smooth 2-group. It should also be possible to turn the strict kernel ker(p) into a smooth
2-group in this case, using an inverse to the equivalence ker(p) ↪→ kerh(p) (compare
Lemma A.2 from Appendix A), but the homotopy-kernel kerh(p) carries a canonical
2-group structure, and using ker(p) instead of kerh(p) would make Construction 5.21
below rather cumbersome.

Lemma 5.19. In the setting of Definition 5.18, the functor κ is a Grothendieck fibration
in groupoids.

Proof. This follows directly by Lemma A.2 (1) from Appendix A. ��
Let ker(p) denote the strict pullback of the diagram Cart

uG−→ G
p←− H. Explic-

itly, it is the category with objects h ∈ H such that p(h) = uG(πH(h)) and mor-
phisms ζ : h0 −→ h1 such that p(ζ ) = uG(πH(ζ )). The functor ker(p) −→ Cart is
not a Grothendieck fibration in groupoids in general. However, if p : H −→ G is a
Grothendieck fibration in groupoids, then so are the functors kerh(p) −→ Cart and
ker(p) −→ Cart, and the canonical inclusion ker(p) ↪→ kerh(p) is an equivalence. The
next definition is loosely modelled on [SP11, Definition 75].

Definition 5.20. LetA andGbe smooth 2-groups.An extension ofGbyA is a pair (F, p)
of a morphism of smooth 2-groups p : H −→ G that turns H into a kerh(p)-principal
2-bundle over G, and an equivalence of smooth 2-groups F : A −→ kerh(p).

By Lemma A.2 from Appendix A, we could equivalently require p to turn H into
a ker(p)-principal 2-bundle, but then we would need to use the non-canonical 2-group
structure on ker(p). This essentially amounts to choosing an inverse for the equivalence
ker(p) ↪→ kerh(p).

Our goal now is to define when an extension of smooth 2-groups is central. Again, we
follow the ideas of [SP11], where the criterion for an extension of G by A to be central
is formulated using a functor G −→ Aut(A) from G into the automorphisms of A as a
2-group; the smooth structure does not matter here. In [SP11], this functor is obtained
from abstract arguments.

Construction 5.21. In our formalism, we can understand this construction as follows:
consider smooth 2-groups G and A, where A is abelian, and let (F, p) be a smooth 2-
group extension of G by A, with morphism p : H −→ G. Then A is abelian if and only
if kerh(p) is abelian, which is true if and only if ker(p) is abelian (since the 2-group
structure induces Picard groupoid structures on the fibres of these smooth 2-groups,
where F induces monoidal equivalences). Fix an arbitrary Cartesian space c ∈ Cart.
Let Aut(kerh(p)|c) denote the Picard groupoid of monoidal autoequivalences of the
fibre kerh(p)|c of kerh(p) over c. Note that we do not claim that the Picard groupoids
Aut(kerh(p)|c) assemble into a smooth 2-group (though it might be possible to achieve
this). We claim that there is a functor G|c −→ Aut(kerh(p)|c) which is canonical up to
unique natural isomorphism.

Let ( · )∨ : H|c −→ H|c denote a choice of functorial inverse inH|c. This can always be
enhanced to a functorial choice of adjoint inverse, i.e. a functor k �−→ (k∨, evk, coevk)
that maps k to a triple of a dual object k∨, and duality morphisms (which are iso-
morphisms in this case) evk : k ⊗H k∨ −→ uH(c) and coevk : uH(c) −→ k∨ ⊗H k
which satisfy the triangle identities. The functor ( · )∨ acts on morphisms ψ : k −→ k′
by taking the dual of ψ−1 with respect to the chosen duality data on k and k∨. This
enhancement can be achieved by choosing an adjoint inverse for the equivalence of
categories (⊗H, pr1)|c : H|c × H|c −→ H|c × H|c (which is always possible).
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To an object k ∈ H|c we associate the functor

Adk : kerh(p)|c −→ kerh(p)|c
(h, ϕ) �−→ (k ⊗H h ⊗H k∨, ϕk)

(

ζ : (h0, ϕ0) −→ (h1, ϕ1)
) �−→ 1k ⊗H ζ ⊗H 1k∨ ,

where the morphism ϕk is the composition

p(k ⊗H h ⊗H k∨) p(k) ⊗G p(h) ⊗G p(k∨)

uG(c) p(k ⊗H k∨) p(k) ⊗G p(k∨) p(k) ⊗G uG(c) ⊗G p(k∨)

ϕk 1p(k)⊗Gϕ⊗G1p(k∨)

Given another object k′ ∈ H|c such that p(k) = p(k′) in G, the principality condition
implies that there exists an object (b, β) ∈ kerh(p) and an isomorphism ψ : k′ −→
k ⊗H b. Since kerh(p) is abelian, this induces an isomorphism

αk,k′ : (1k × evb × 1k∨) ◦ (ψ × 1h × ψ∨) : Adk′(h) −→ Adk(h).

By the functoriality of ( · )∨, any other choice of (b, β) and ψ yields the same isomor-
phism Adk′(h) −→ Adk(h) in this way. Furthermore, this isomorphism is natural in k
and h by the functoriality of ⊗H and ( · )∨. That is, the pair (Ad, α) defines an object

(Ad, α)c ∈ holimGrpd 2Grp
(

H[•]
|c ,Aut(ker

h(p)|c)
)

,

where H[•]
|c −→ G|c denotes the Čech nerve of the functor p|c. As we show in the proof

of Proposition A.3 in Appendix A, any choice of preimages of the objects g ∈ G|c under
p|c now induces a functor G|c −→ Aut(kerh(p)|c) from these data. Moreover, any
other choice of such preimages will induce a canonical natural isomorphism of functors.
Hence we obtain a well-defined isomorphism class of functors, which we denote by

[Ad, α]c ∈ π0

(

2Grp
(

G|c,Aut(kerh(p)|c)
)

)

.

This class allows us to state when a smooth 2-group extension is central. ��
Definition 5.22. Let (F, p) be an extension of a smooth 2-groupG by a smooth 2-group
A. Then (F, p) is central if A is abelian, and for every c ∈ Cart the isomorphism class
[Ad, α]c agrees with the isomorphism class of the trivial 2-group morphism G|c −→
Aut(kerh(p)|c).

5.4. Global description of the 2-group extension. Weshall nowapply the general consid-
erations of Sects. 5.2 and 5.3 to the smooth groupoid SymG(G) constructed in Sect. 5.1.

Theorem 5.23. The functor π : SymG(G) −→ Cart is a smooth 2-group.
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Proof. First we show that SymG(G) carries the structure of a monoid object in H.
The terminal object ∗H ∈ H is the identity functor 1Cart : Cart −→ Cart. We start by
defining the 1-morphism u : ∗H −→ SymG(G); it is the functor that assigns to every
object c ∈ Cart the object (ec, pr∗M 1G) ∈ SymG(G), where ec : c −→ G is the constant
map at the identity object e ∈ G.

Next we define the 1-morphism

⊗: SymG(G) ×Cart SymG(G) −→ SymG(G)

in the following way: consider two arbitrary objects ( f0, A0), ( f1, A1) ∈ SymG(G) in
the same fibre of π : SymG(G) −→ Cart, i.e. f0, f1 are defined over the same object
c ∈ Cart. We define the map (1, Φ f0) as the composition

c × M c × c × M

c × M c × G × M

(1,Φ f0 )

Δ×1

1× f0×1

1×Φ

Observe that

prM ◦(1, Φ f0) = Φ f0 , Φ f1 ◦ (1, Φ f0) = Φ f1 f0

and (1, Φ f1) ◦ (1, Φ f0) = (1, Φ f1 f0) , (5.24)

where the second and third identities use the fact that Φ is a group action. Thus we can
form the 1-morphism

pr∗M G Φ∗
f0
G (1, Φ f0)

∗ pr∗M G

Φ∗
f1 f0

G (1, Φ f0)
∗Φ∗

f1
G

A0 ∼=

(1,Φ f0 )
∗A1

∼=

The solid unlabelled arrows are canonical isomorphisms that stem from the fact that
BGrb is a (pre)sheaf of 2-categories on the category of manifoldsMfd [Wal07b,NS11].
By a slight abuse of notation, we denote the composite morphism by (1, Φ f0)

∗A1 ◦ A0.
Then we set

( f1, A1) ⊗ ( f0, A0) := (

f1 f0, (1, Φ f0)
∗A1 ◦ A0

)

, (5.25)

and analogously on 2-isomorphisms. The associator and unitors are readily obtained
from those in the sheaf of 2-categories BGrb. The coherence conditions in BGrb imply
that SymG(G), endowed with the multiplication and coherence morphisms defined here,
is a monoid object inH.

Now we show that SymG(G) is in fact a group object inH. Set

( f, A)−1 := (

f −1, (1, Φ f −1)∗A−1) (5.26)

and analogously onmorphisms,where f −1 denotes the compositionof themap f : c −→
G with the inversion map in the group G. It follows from the properties (5.24) of Φ( · )
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that this provides a functorial (two-sided) inverse object with respect to the 1-morphism
⊗, and hence shows that the morphism

(⊗, pr1) : SymG(G) ×Cart SymG(G) −→ SymG(G) ×Cart SymG(G)

is an equivalence in H (where the product is taken in H). Thus SymG(G) −→ Cart is
indeed a group object inH. ��
Theorem 5.27. There is a smooth 2-group extension

1 HLBdlM SymG(G) G 1 ,ι p
(5.28)

where we abbreviate ∗H = Cart by 1.

Proof. The projection functor pr : G −→ Cart is a smooth 2-group via ⊗G : G ×Cart
G −→ G defined by

( f1 : c −→ G) ⊗G ( f0 : c −→ G) = ( f1 f0 : c −→ G) .

It is evident from (5.25) that p : SymG(G) −→ G is a morphism of smooth 2-groups. It
is a Grothendieck fibration in groupoids by construction, and it is surjective on objects
since G is connected (as we have argued at the beginning of this section).

Next we define the morphism ι : HLBdlM −→ SymG(G) in H. Over a Cartesian
space c ∈ Cart, it is simply the canonical inclusion

HLBdl(c × M) −→ BGrb(c × M)(pr∗M G, Φ∗
ecG) = BGrb(c × M)(pr∗M G, pr∗M G) .

Here ec : c −→ G is the constant map at the unit element of G. Since the inclusion of
line bundles into morphisms of bundle gerbes strictly maps the tensor product to the
composition [Wal07b,Bun17], we readily find that ι is a morphism of smooth 2-groups.

To see that (5.28) is an extension of smooth 2-groups, we first show that the inclusion
ι is an equivalence HLBdlM −→ kerh(p). By Lemma A.2 from Appendix A and the
fact that p : SymG(G) −→ G is a Grothendieck fibration in groupoids, it follows that
the canonical inclusion ker(p) ↪→ kerh(p) is an equivalence. Consequently, it suffices
to show that ι induces an equivalence HLBdlM −→ ker(p). Over an object c ∈ Cart,
the fibre of ker(p) consists of the automorphism groupoid of pr∗M G ∈ BGrb(c× M). It
is well-known [Wal07b] that the inclusion HLBdl(c × M) −→ BGrb(c × M) given by
L �−→ L ⊗ 1pr∗M G is an equivalence of groupoids.

To see that the functor p : SymG(G) −→ G is an HLBdlM -principal 2-bundle (see
Definition 5.17), it now suffices to show that the functor

(1, α) : SymG(G) ×Cart HLBdl
M −→ SymG(G) ×G SymG(G)

(

( f, A), L
) �−→ (

( f, A), ( f, A ⊗ L)
)

is an equivalence inH, where we have written out the product inH as the fibre product
over Cart. Observe that by the equivalence HLBdlM −→ kerh(p), it is enough to
consider the action of HLBdlM , and since G has discrete fibres, i.e. the fibres have no
non-identity morphisms, there is an identity SymG(G) ×h

G SymG(G) = SymG(G) ×G

SymG(G), and hence we can work with the strict pullback instead of the homotopy
pullback.
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Since both sides are fibred over Cart, it suffices to show that this functor is an equiv-
alence on all fibres [Vis05, Proposition 3.36]. Thus we fix an object c ∈ Cart. We need
to check that the functor

(1, α)|c : SymG(G)|c × HLBdl(c × M) −→ SymG(G)|c ×G |c SymG(G)|c
(

( f, A), L
) �−→ (

( f, A), ( f, A ⊗ L)
)

is an equivalence. By construction, both sides decompose into coproducts

SymG(G)|c × HLBdl(c × M)

=
∐

f : c−→G

BGrb(c × M)(pr∗M G, Φ∗
f G) × HLBdl(c × M)

and

SymG(G)|c ×G |c SymG(G)|c
=

∐

f : c−→G

BGrb(c × M)(pr∗M G, Φ∗
f G) × BGrb(c × M)(pr∗M G, Φ∗

f G) ,

so the functor (1, α)|c decomposes into functors

(1, α)| f : BGrb(c × M)(pr∗M G, Φ∗
f G) × HLBdl(c × M)

−→ BGrb(c × M)(pr∗M G, Φ∗
f G) × BGrb(c × M)(pr∗M G, Φ∗

f G) .
This functor acts as the identity on thefirst factor and as the standard action of line bundles
on isomorphisms of bundle gerbes in the second factor. Thus (1, α)| f is an equivalence
since on any manifold X , the category of 1-isomorphisms between any given bundle
gerbes is a torsor category over HLBdl(X) with respect to this action [Wal07b]. ��
Proposition 5.29. If G acts non-trivially on M, then the extension (5.28) is not central.

Proof. This follows readily from the explicit forms (5.25) and (5.26) of the product
and the inverse in SymG(G), together with the fact that composition of morphisms of
bundle gerbes is compatible with tensoring by line bundles. Explicitly, given ( f, A) ∈
SymG(G)|c and L ∈ HLBdl(c × M) we find

( f, A) ⊗ ι(L) ⊗ ( f, A)−1 ∼= (ec, Φ
∗
f L) = ι(Φ∗

f L) .

Hence (Ad, α)c( f )(L) ∼= Φ∗
f L . Observe that since G has discrete fibres, we have

kerh(p) = ker(p), and by the equivalence HLBdlM −→ ker(p) it is sufficient to con-
sider the adjoint action on the smooth 2-group HLBdlM here.

Let c = ∗, so that the data f corresponds to an element g ∈ G. Assume that the exten-
sion (5.28) is central. Then, by Construction 5.21 and Definition 5.22, there is an isomor-
phism ϕ : (Ad, α)∗ −→ 1HLBdl(M) of morphisms of 2-groups G −→ Aut(HLBdl(M)).
Let I ∈ HLBdl(M) denote the trivial line bundle, and let ψ : I −→ I be any auto-
morphism, i.e. any U(1)-valued function on M . The naturality of ϕ then implies, in
particular, that the diagram

g∗ I = I I = g∗ I

I I

g∗ψ

ϕI,g ϕI,g

ψ
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commutes. But this is equivalent to the identityψ = g∗ψ for any g ∈ G andψ : M −→
U(1), which is a contradiction if the G-action on M is non-trivial. ��

We now obtain an action of SymG(G) on G in the following sense: let ̂G ∈ H denote
the category fibred in groupoids over Cart which is defined as follows. Consider the
presheaf of groupoids on M that assigns to f : c −→ M the category BGrb(c)(I, f ∗G).
Then q : ̂G −→ M is obtained by applying the Grothendieck construction to this
presheaf. The action of SymG(G) onG is then themorphism of categories overG × M ∼=
G × M obtained through the diagram

SymG(G) × Φ∗
̂G pr∗M ̂G ̂G

G × M M

p×q

̂Φ

1×q
q

prM

Φ

where we suppress pullbacks and denote by prM , Φ : G × M −→ M the functors
induced from the smooth maps prM , Φ via postcomposition. The functor ̂Φ sends an
object (A,J ) ∈ SymG(G)|c × ̂G| f to the composition Δ∗(1c × f )∗(A,J ), where
Δ : c −→ c × c is the diagonal map.

The construction SymG is 2-functorial: let E : G −→ G′ be a 1-isomorphism of bun-
dle gerbes. Pick an adjoint inverse E∨. The 1-isomorphism E induces a 1-isomorphism
of smooth 2-groups

̂E : SymG(G) −→ SymG(G′)
(

f : c −→ G, A : pr∗M G −→ Φ∗
f G

) �−→
(

f, pr∗M G′ pr∗M E∨
−−−−→ pr∗M G A−→ Φ∗

f G
Φ∗

f E−−−→ Φ∗
f G

′) .

Let E, E ′ : G −→ G′ be 1-isomorphisms and η : E −→ E ′ a 2-isomorphism. We
construct a smooth 2-isomorphism η̂ : ̂E −→ ̂E ′ whose component at an object ( f, A)
of SymG(G) is given by

pr∗M G′ pr∗M G Φ∗
f G Φ∗

f G′

pr∗M E∨

pr∗M E ′∨

A

Φ∗
f E

Φ∗
f E

′

pr∗Mη∨ Φ∗
f η

5.5. Descent description of the 2-group extension. We can describe the smooth 2-group
SymG(G) in a way analogously to Sect. 3.3; that is, we can construct SymG(G) in
terms of descent data for the path fibration P0G −→ G and the parallel transport
on G introduced in Sect. 4. However, for a bundle gerbe G this construction is more
involved compared to the case of a principal bundle P . In particular, we need to replace
the associated bundle construction (P0G × Gau(P))/∼ of LG (cf. Section 3.3) by a
homotopy-coherent version. Once established, the descent presentation of SymG(G)
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allows us to study and compute this smooth 2-group very explicitly in certain situations,
as we demonstrate in Sect. 6.

Recalling the notation of Sect. 3.3, let G ∈ BGrb∇(M) be a bundle gerbe with
connection on M . Using the smooth map (3.8) we obtain a diffeological hermitean line
bundle

L� := (LΦ)∗(T G) −→ (P0G)
[2] × M . (5.30)

This object is completely analogous to (3.8) when one views the holonomy of a line
bundle L on M as the transgression of L to the loop space LM , and subsequently the
transgression line bundle T G as the holonomy of the bundle gerbe G on M (cf. Sec-
tion 4.4). In the adjoint picture, we can interpret L� as a smooth assignment of a line
bundle with connection L(γ,α) on M to each pair of based paths (γ, α) ∈ (P0G)[2].

Consider the simplicial diffeological space (P0G)[•] × M with face maps

di : (P0G)[n] × M −→ (P0G)
[n−1] × M

for 0 ≤ i ≤ n − 1 defined by deleting the i th entry of (P0G)[n]. The fusion product λ
on the transgression line bundle T G over the loop space LM induces an isomorphism

(LΦ)∗λ : d∗
0L

� ⊗ d∗
2L

� −→ d∗
1L

� (5.31)

of hermitean line bundles over (P0G)[3] × M , which is coherent over (P0G)[4] × M .

Remark 5.32. In an adjoint fashion, the hermitean line bundle L� on (P0G)[2] × M
from (5.30) can be seen as a morphism of smooth groupoids L : (P0G)[2] −→ HLBdlM

(under the equivalence of diffeological vector bundles and morphisms to HLBdl fol-
lowing from [Bun20a, Thm. 4.8]). In this picture, the coherent isomorphism (LΦ)∗λ
from (5.31) corresponds to a coherent isomorphism d∗

0L⊗ d∗
2L −→ d∗

1L of morphisms
(P0G)[3] −→ HLBdlM . In this sense, (L�, (LΦ)∗λ) represent a smooth HLBdlM -
valued Čech 1-cocycle on G with respect to the Čech nerve of the subduction P0G −→
G.Note that this nicelyfits the formalism for higher principal bundleswith not-necessarily
strict structure groups—such as HLBdlM—from [NSS15]. ��
Definition 5.33. Let c ∈ Cart be a Cartesian space and f : c −→ G a smooth map. We
define a category DesPShL ( f ) with

• Objects : pairs (J, j), where J ∈ HLBdl( f ∗P0G × M) and where j is an isomor-
phism of hermitean line bundles

j : d∗
1 J −→ (

̂f [2] × 1
)∗L� ⊗ d∗

0 J

over ( f ∗P0G)[2] × M , where ̂f [n] : ( f ∗P0G)[n] −→ P0G[n] is the canonical map
induced by the pullback of the subduction P0G −→ G along f . These data are
required to satisfy the compatibility condition that

d∗
2 d

∗
1 J d∗

2

(

(̂f [2] × 1)∗L� ⊗ d∗
0 J

)

d∗
2

(

̂f [2] × 1
)∗L� ⊗ d∗

0

(

̂f [2] × 1
)∗L� ⊗ d∗

1 d
∗
0 J

d∗
1

(

̂f [2] × 1
)∗L� ⊗ d∗

2 d
∗
0 J d∗

1

(

̂f [2] × 1
)∗L� ⊗ d∗

1 d
∗
0 J

d∗
2 j

d∗
1 j

1⊗d∗
0 j

̂f [3]∗λ⊗1

(5.34)
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is a commutative diagram in HLBdl(( f ∗P0G)[3] ×M), where we use the simplicial
relations.
• Morphisms : a morphism (J, j) −→ (J ′, j ′) is an isomorphism ψ : J −→ J ′ such
that

d∗
1 J

(

̂f [2] × 1
)∗L� ⊗ d∗

0 J

d∗
1 J

′ (

̂f [2] × 1
)∗L� ⊗ d∗

0 J
′

j

d∗
1ψ 1⊗d∗

0ψ

j ′

is a commutative diagram in HLBdl(( f ∗P0G)[2] × M).

Pullbacks of morphisms of bundle gerbes turns the assignment ( f : c −→ G) �−→
DesPShL ( f ) into a presheaf of groupoids onG . (This is actually even a sheaf of groupoids,
but we will not need this fact here.) Applying the Grothendieck construction, we obtain
a category fibred in groupoids over G , pL : DesL −→ G , and composing with the
canonical projection functor pr : G −→ Cart we obtain a category fibred in groupoids
over Cart

DesL G

Cart

pL

πL pr

which defines a smooth groupoid DesL.

Proposition 5.35. The functor πL : DesL −→ Cart is a smooth 2-group.

Proof. Let ( f0, J0, j0), ( f1, J1, j1) ∈ DesL be twoobjects,where (Ji , ji ) lies in thefibre
over a smooth map fi : c −→ G for i = 0, 1. The product ( f1, J1, j1) ⊗ ( f0, J0, j0) is
defined as follows. First, observe that it should lie in the fibre ofDesL over the pointwise
product map f1 f0 : c −→ G, u �−→ f1(u) f0(u). Consider the smooth map

F : m∗P0G ×G×G pr∗1 P0G ×G×G pr∗2 P0G −→ P∂�2G

(γ10, γ1, γ0) �−→ F(γ10, γ1, γ0) = (

γ10, γ1 γ0(1), γ0
)

,

where m : G × G −→ G is the multiplication of G, and pr1 and pr2 are the projections
to the first and second factors of G × G. Let us denote by Φev1 the composition P0G ×
M −→ G×M −→ M , where the first map evaluates a based path at its end point and the
secondmap is the actionΦ ofG onM . The pair ( f1, f0) defines amap c −→ G×G. Let
s : P∂�2G −→ LG be the map defined in (4.10), and let (by a slight abuse of notation)
LΦ : LG×M −→ LM denote themap (γ, x) �−→ γx , with γx (t) = Φγ(t)(x). Consider
the hermitean line bundle

K := F∗s∗LΦ∗T G ⊗ (1P0G × Φev1)
∗ J1 ⊗ J0

on the diffeological space

Y f1, f0 := (

( f1 f0)
∗P0G ×c f ∗

1 P0G ×c f ∗
0 P0G

) × M .



Smooth 2-Group Extensions and Symmetries of Bundle Gerbes 1877

Weclaim that the bundle K descends along theprojection p1 : Y f1, f0 −→ ( f1 f0)∗P0G×
M . Thedescendedbundle is the hermitean line bundle underlying theproduct ( f1, J1, j1)⊗
( f0, J0, j0).

We thus endow the bundle K with an isomorphism κ : (p1)∗0K −→ (p1)∗1K over

Y [2]
f1, f0

, which is required to satisfy a cocycle relation overY [3]
f1, f0

. An element ofY [2]
f1, f0

can

be identifiedwith a pair of triples ((γ10, γ1, γ0), (γ10, γ ′
1, γ

′
0)), where (γi , γ

′
i ) ∈ (P0G)[2]

for i = 0, 1. We define the isomorphism κ as the composition of the fusion product λ
on T G with (1 × Φev1)

∗j1 ⊗ j0. Then the cocycle condition simply follows from the
compatibility condition (5.34) and the associativity of the fusion product. (We also need
to use thin reparameterisations, but these are implemented in a completely coherent way
by the thin-homotopy invariant connection on T G.)

Thus we obtain a descended hermitean line bundleDes(K , κ) on ( f1 f0)∗P0G × M
(for descent properties of diffeological vector bundles, see [Bun20a]). Applying the
fusion product in the first tensor factor of K , we obtain an isomorphism which (by the
associativity of λ) descends to an isomorphism

jK : d∗
1Des(K , κ) −→ (

f̂1 f0
[2] × 1

)∗L� ⊗ d∗
0Des(K , κ)

over (( f1 f0)∗P0G)[2] × M . Again by the associativity of λ and thin-homotopy invari-
ance, the pair (Des(K , κ), jK ) satisfies the relation (5.34), and hence it makes sense to
set

( f1, J1, j1) ⊗ ( f0, J0, j0) := (

f1 f0,Des(K , κ), jK
)

.

The action of the product⊗ inDesL on morphisms simply sends (ψ1, ψ0) to the descent
along p1 of the isomorphism 1T G ⊗ (1 ×Φev1)

∗ψ1 ⊗ψ0. The unitors of ⊗ are readily
obtained from the construction, and the associator is defined from the fusion product;
its coherence is yet another application of the associativity of λ and the superficiality
of the parallel transport on T G. Inverses are constructed analogously to (5.26). Finally,
all constructions are compatible with pullbacks along maps ϕ : c′ −→ c of Cartesian
spaces, so that we obtain the structure of a smooth 2-group onDesL. ��
Theorem 5.36. There is a weakly commutative diagram of smooth 2-groups

1 HLBdlM SymG(G) G 1

1 HLBdlM DesL G 1

ι

1

p

Ψ 1

ιL pL

(5.37)

where the functor Ψ is an equivalence.

Proof. By the functoriality of G �−→ SymG(G) (see Sect. 5.4) we can assume that we
are in the case where G′ = RT (G) is the regression of a transgression, so that we have
direct access to our construction of a parallel transport on G′ from Sect. 4.4. We start by
constructing the functor Ψ . For this, we construct a diagram in the 2-categoryH of the
form

SymG(G′) Des
(

SymG(G′)
)

DesL
� ∗ Hom1(pt

G′
1 , · )

( · )⊗ptG
′

1

(5.38)



1878 S. Bunk, L. Müller and R. J. Szabo

and the functor Ψ is the composition from left to right. Each of the functors in (5.38) is
an equivalence of categories fibred in groupoids over Cart, and hence so is Ψ .

For a smooth map f : c −→ G, let � f : f ∗P0G × M −→ c × M denote the
canonical projection. First we define the categoryDes(SymG(G′)). It is obtained via the
Grothendieck construction applied to the presheafDesPSh(SymG(G′)) of groupoids on
G , which assigns to a smooth map f : c −→ G the groupoid DesPSh(SymG(G′))( f )
where

• objects are pairs (A, α) of a 1-isomorphism A : � ∗
f G′ −→ � ∗

fΦ
∗
f G′ over f ∗P0G×

M and a 2-isomorphism α : d∗
1 A −→ d∗

0 A over ( f ∗P0G)[2] × M , which is coherent
over ( f ∗P0G)[3] × M , and

• morphisms (A, α) −→ (A′, α′) are given by 2-isomorphisms ψ : A −→ A′ satis-
fying α′ ◦ d∗

1ψ = d∗
0ψ ◦ α.

The functor � ∗ simply pulls back 1-morphisms A : pr∗M G′ −→ Φ∗
f G′ along the sub-

ductions � f . This functor is an equivalence since morphisms of bundle gerbes satisfy
descent 3 [Bun17, Theorem A.19].

Next we introduce some notation: we define the map

P0Φ : P0G × M −→ PM

(γ, x) �−→ γx ,

where

γx (t) = Φγ(t)(x) =: P0Φ(γ, x)(t)

for all t ∈ [0, 1]. Observe that
ev0 ◦ P0Φ = prM and ev1 ◦ P0Φ = Φ ◦ (ev1 × 1M ) .

Thus the pullback of the parallel transport 1-isomorphism (4.9) by the map P0Φ is a
morphism

(P0Φ)∗ptG
′

1 : pr∗M G′ −→ (ev1 × 1M )
∗Φ∗G′

in BGrb(P0G × M). Given a smooth map f : c −→ G, we obtain a smooth map

P0Φ ◦ (

̂f × 1M
) : f ∗P0G × M −→ PM .

It satisfies

ev0 ◦ P0Φ ◦ (

̂f × 1M
) = prM and ev1 ◦ P0Φ ◦ (

̂f × 1M
) = Φ f ◦ � f ,

where � f : f ∗P0G × M −→ c × M is the projection. Hence we obtain a morphism

ptG
′

f := (

P0Φ ◦ (̂f × 1)
)∗
ptG

′
1 : � ∗

f pr
∗
M G′ −→ � ∗

fΦ
∗
f G′ ,

which is definedover f ∗P0G×M . ByProposition4.18 there is a canonical 2-isomorphism

(

d∗
0pt

G′
f

)−1 ◦ d∗
1pt

G′
f

∼=−−→ (

LΦ ◦ (τ × 1M ) ◦ (̂f [2] × 1M )
)∗T G ∼= (

̂f [2] × 1M )
∗L�∨

3 In [Bun17] the descent property was proven along surjective submersions of manifolds, but the proof
directly carries over to subductions of diffeological spaces.
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of 1-automorphisms of the pullback of pr∗M G′ to ( f ∗P0G)[2] × M , where τ(γ0, γ1) =
(γ1, γ0). Equivalently, this is a 2-isomorphism

β f : d∗
0pt

G′
f

∼=−−→ (

̂f [2] × 1M
)∗L� ⊗ d∗

1pt
G′
f (5.39)

of 1-isomorphisms � ∗
f pr

∗
M G′ −→ � ∗

fΦ
∗
f G′ over ( f ∗P0G)[2] × M .

Nowwe come to the definition of the functor ( · )⊗ptG
′

1 . Given an object ( f, J, j) ∈
DesL, define a morphism of bundle gerbes over f ∗P0G × M via

J ⊗ ptG
′

f : � ∗
f pr

∗
M G′ −→ � ∗

fΦ
∗
f G′ .

Using the 2-isomorphism (5.39), we obtain a 2-isomorphism

d∗
1 J ⊗ d∗

1pt
G′
f d∗

0 J ⊗ (

̂f [2] × 1M
)∗L� ⊗ d∗

1pt
G′
f

d∗
0 J ⊗ d∗

0pt
G′
f

j⊗1

ĵ
1⊗β−1

f

over ( f ∗P0G)[2]×M . By construction, the 2-isomorphism ĵ is coherent over ( f ∗P0G)[3]
×M , and thus the pair (J⊗ptG

′
f , ĵ ) defines a descent datum (with respect to the subduc-

tion f ∗P0G×M −→ c×M) for a 1-isomorphism of bundle gerbes pr∗M G′ −→ Φ∗
f G′.

Analogously, morphisms inDesL give rise to morphisms of descent data as constructed
above. This defines the functor

( · ) ⊗ ptG
′

1 : DesL −→ Des
(

SymG(G′)
)

.

This is a functor of categories fibred in groupoids over Cart by the compatibility of
pullbacks of bundles and their morphisms with the tensor product.

Finally, we introduce an inverse functor Hom1
(

ptG
′

1 , · ) for ( · ) ⊗ ptG
′

1 . An object
( f, A, α) ∈ Des(SymG(G′)) consists, in particular, of a 1-isomorphism
A : � ∗

f pr
∗
M G′ −→ � ∗

fΦ
∗
f G′ of bundle gerbes over f ∗P0G × M . Another such mor-

phism is given by ptG
′

f . We can hence use the internal hom-functor Hom1 in the 2-
category BGrb( f ∗P0G × M) (see [Bun17, Section 3.2] and also [BW18, Section 2.1])
to produce a hermitean line bundle

Hom1
(

ptG
′

f , A
) ∈ HLBdl( f ∗P0G × M) .

This comes with an isomorphism over ( f ∗P0G)[2] × M defined by the diagram

d∗
1Hom1

(

ptG′
f , A

)

Hom1
(

d∗
1pt

G′
f , d

∗
1 A

)

(

̂f [2] × 1M
)∗L� ⊗ d∗

0Hom1
(

ptG′
f , A

)

Hom1
(

(̂f [2] × 1M )∗L�∨ ⊗ d∗
0pt

G′
f , d

∗
0 A

)

Hom1(β
−1
f ,α)
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where the 2-isomorphism β f stems from (5.39) and where the lower horizontal iso-
morphism of line bundles stems from the (categorified) linearity ofHom1 [Bun17, The-
orem 3.63]. It follows from the properties of α and β f that Hom1

(

ptG
′

f , A
)

defines an

object in (DesL)| f . Bymapping amorphismψ inDes
(

SymG(G′)
)

| f toHom1
(

ptG
′

f , ψ
)

,
we obtain a functor

Hom1
(

ptG
′

1 , · ) : Des
(

SymG(G′)
) −→ DesL

of categories fibred in groupoids over Cart. Again by the linearity of Hom1, it follows
straightforwardly that ( · ) ⊗ ptG

′
1 and Hom1

(

ptG
′

1 , · ) are mutually inverse functors.
To conclude the proof, we need to check that Ψ is compatible with the monoid

structures on SymG(G′) and on DesL. For i = 0, 1, let fi : c −→ G be smooth maps
from c ∈ Cart to G, and consider objects Ai ∈ SymG(G′)| fi in the fibres over fi . By the
explicit construction of the 2-group structure on DesL in the proof of Proposition 5.35
it follows that the hermitean line bundle underlying the object Ψ ( f1, A1) ⊗ Ψ ( f0, A0)

of DesL is given as the descent of the bundle

L� ⊗ (1 × Φev1)
∗(Hom1(pt

G′
f1
,� ∗

f1 A1)
) ⊗ Hom1(pt

G′
f0
,� ∗

f0 A0)

∼= L� ⊗ Hom1
(

(1 × Φev1)
∗
̂f ∗
1 ptG

′
1 , (1 × Φev1)

∗� ∗
f1 A1

) ⊗ Hom1(̂f ∗
0 ptG

′
1 ,� ∗

f0 A0)

∼= L� ⊗ Hom1
(

(1 × Φev1)
∗
̂f ∗
1 ptG

′
1 ◦ ̂f ∗

0 ptG
′

1 , (1 × Φev1)
∗� ∗

f1 A1 ◦ � ∗
f0 A0

)

∼= Hom1
(

( f̂1 f0)
∗ptG

′
1 , � ∗

f1 f0(Φ
∗
f0 A1 ◦ A0)

)

. (5.40)

The first and second isomorphisms follow from the properties of the internal hom-functor
Hom1. The third isomorphism is a direct application of Proposition 4.18. The bundle
in the last line is the line bundle underlying the object Ψ

(

( f1, A1)⊗ ( f0, A0)
)

ofDesL
(see (5.25)). Hence the canonical isomorphism (5.40) establishes the compatibility ofΨ .
Its coherence again follows from the properties of the transgression line bundle T G. The
proofs that Ψ respects unitors as well as the weak commutativity of the diagram (5.37)
are straightforward. ��

5.6. Equivariant bundle gerbes. We shall now investigate the relation between sections
of the smooth 2-group extension SymG(G) −→ G and equivariant structures on G.
We first recall an explicit definition of an equivariant bundle gerbe from [GSW11] (see
also [M+17]), which can be understood very nicely from the perspective of the formalism
developed in [NS11].

LetG be a connected Lie group,M amanifold withG-actionΦ : G×M −→ M , and
G a hermitean bundle gerbe over M . Corresponding to the action groupoidG×M ⇒ M
there is a simplicial manifold

· · · G×2 × M G × M M ,

with face maps di : G×n × M −→ G×n−1 × M for 0 ≤ i ≤ n given by

di (g0, g1, . . . , gn−1, x) =

⎧

⎪

⎨

⎪

⎩

(

g0, g1, . . . , gn−2, Φgn−1(x)
)

for i = n
(g0, g1, . . . , gi−1 gi , . . . , gn−1, x) for 0 < i < n
(g1, . . . , gn−1, x) for i = 0

.
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On G × M , the face maps d0 = prM and d1 = Φ are the source and target maps of the
action groupoid.

Definition 5.41. Let G be a connected Lie group, M a manifold with G-actionΦ : G ×
M −→ M , and G a hermitean bundle gerbe over M . A G-equivariant structure on G
consists of a 1-isomorphism A : pr∗M G −→ Φ∗G over G × M and a 2-isomorphism
χ : d∗

2 A ◦ d∗
0 A −→ d∗

1 A over G×2 × M such that

d∗
2χ ◦ (

1(d3◦d2)∗A ◦ d∗
0χ

) = d∗
1χ ◦ (

1(d0◦d0)∗A ◦ d∗
3χ

)

over G×3 × M . A morphism (A, χ) −→ (A′, χ ′) between equivariant structures on G
consists of a 2-isomorphism ϑ : A −→ A′ such that the diagram

d∗
2 A ◦ d∗

0 A d∗
2 A

′ ◦ d∗
0 A

′

d∗
1 A d∗

1 A
′

d∗
2ϑ◦d∗

0ϑ

χ χ ′

d∗
1ϑ

commutes. We denote by E(G) the groupoid of equivariant structures on G.
A splitting of p : SymG(G) −→ G is a smooth 2-group homomorphism s : G −→

SymG(G) such that p ◦ s = 1G . We assume here for simplicity and without loss of
generality that unitors are strictly preserved.Wedenote byS(G ;SymG(G)) the groupoid
of splittings of p : SymG(G) −→ G . Concretely, a splitting consists of

• a 1-isomorphism s( f ) : pr∗M G −→ Φ∗
f G of bundle gerbes on c × M for every

Cartesian space c ∈ Cart and sections f ∈ G(c),
• a 2-isomorphism s(ϕ) : s( f ) −→ ϕ∗s( f ′) for every morphism ϕ : f −→ f ′ in G
, and

• a 2-isomorphism s( f ) ⊗ s( f ′) −→ s( f f ′) in SymG(G) for every f, f ′ ∈ G(c),

such that ϕ∗s(ϕ′) ◦ s(ϕ) = s(ϕ′ ◦ ϕ) and the diagram

s( f ) ⊗ s( f ′) ⊗ s( f ′′) s( f ) ⊗ s( f ′ f ′′)

s( f f ′) ⊗ s( f ′′) s( f f ′ f ′′)

commutes. A morphism ω : s −→ s′ of splittings consists of 2-isomorphisms ω( f ) :
s( f ) −→ s′( f ) in BGrb(c × M) for all f ∈ G(c) such that the diagrams

s( f ) s′( f )

ϕ∗s( f ′) ϕ∗s′( f ′)

s(ϕ)

ω( f )

s′(ϕ)

ϕ∗ω( f ′)

and

s( f ) ⊗ s( f ′) s′( f ) ⊗ s′( f ′)

s( f f ′) s′( f f ′)

ω( f )⊗ω( f ′)

ω( f f ′)

commute.
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In what follows we construct an equivalence

� : E(G) −→ S
(

G ;SymG(G)
)

of categories. Let (A, χ) be an equivariant structure on G and ( f : c −→ G) ∈ G(c).
Pulling back A along Φ f gives rise to a 1-isomorphism Φ∗

f A : pr∗M G −→ Φ∗
f G over

c × M . We can define the section �(A, χ) : G −→ SymG(G) by �(A, χ)( f ) =
Φ∗

f A : pr∗M G −→ Φ∗
f G. The 2-isomorphisms �(A, χ)(ϕ) are induced by general

properties of pullbacks and the 2-isomorphism χ induces the 2-isomorphism encod-
ing the compatibility with multiplication. The action of � on morphisms of equivariant
structures is again by pullback along Φ f .

Theorem 5.42. The functor � : E(G) −→ S(G ;SymG(G)) is an equivalence of cate-
gories.

Proof. We start by showing that � is essentially surjective. Let s : G −→ SymG(G) be
a splitting. We pick a good open cover {ci }i∈# of G. This induces good open covers of
G×2 and G×3 given by {ci × c j }i, j∈# and {ci × c j × ck}i, j,k∈#, respectively. Every ci
comes with an embedding fi : ci −→ G and hence can be regarded as an object of G .
Applying the section s : G −→ SymG(G) to all elements of the open cover provides a
collection of compatible 1-isomorphisms

s(ci ) := s( fi : ci −→ G) : pr∗M G −→ Φ∗
fiG .

On double intersections ci j := ci ∩ c j we get coherent 2-isomorphisms4

s(ci j ) : s(ci )|ci j −→ s( fi |ci j ) = s( f j |ci j ) −→ s(c j )|ci j ,

since SymG(G) −→ Cart is a Grothendieck fibration. Hence the 1-isomorphisms s(ci )
glue together to a 1-isomorphism As : pr∗M G −→ Φ∗G over G × M .

Let pr1, pr2 : G×2 −→ G be the projections to the first and second factors, and
m : G×2 −→ G the multiplication in G. From As we can construct three 1-morphisms
pr∗1 As , pr∗2 As , andm∗As overG×2×M . We would like to show that these 1-morphisms
are canonically isomorphic to the 1-morphisms constructed from the good open cover
{ci × c j }i, j∈# by applying s to the morphisms pr1|ci×c j , pr2|ci×c j , and m|ci×c j on
ci × c j −→ G, respectively. For this, consider the commutative diagram

ci × c j × M ci × M

G×2 × M G × Mpr1

which implies that

pr∗1|ci×c j As = pr∗1|ci×c j s(ci ↪→ G)
∼=−−→ s

(

ci × c j
pr1−→ ci ↪→ G

)

,

4 Here we interpret s as a map of stacks, i.e. a natural transformation of 2-functors Cart −→ Cat, via the
inverse Grothendieck construction.



Smooth 2-Group Extensions and Symmetries of Bundle Gerbes 1883

where the 2-isomorphism is part of the data of the section s. The same argument shows
the claim for pr2. To show the corresponding statement formweneed to pick a refinement
{̃ca}a∈˜# of the cover {ci × c j }i, j∈# such that the diagram

∐

a∈˜#

c̃a

∐

i, j∈#
ci × c j

∐

i∈#
ci

G×2 G

m

m

commutes. The cover {̃ca}a∈˜# can be constructed by choosing a common refinement of
the covers {ci × c j }i, j∈# and {m−1(ci )}i∈# of G×2.

The multiplication of ci × c j
pr1−→ G with ci × c j

pr2−→ G in G is ci × c j
m−−→ G. The

structure of a smooth2-grouphomomorphismon s nowprovides natural 2-isomorphisms

s
(

ci × c j
pr1−−→ G

) ⊗ s
(

ci × c j
pr2−−→ G

) −→ s
(

ci × c j
m−−→ G

)

(5.43)

which glue together to a 2-isomorphism χs : Φ∗(pr∗1 As) ◦ (pr∗2 As) −→ m∗As over
G×2×M because (5.43) is a 2-isomorphism of smooth 1-isomorphisms. The coherence
condition for χs over G×3 × M follows from the observation that the various pullbacks
to G×3 × M can be constructed by applying s to different functions from ci × c j × ck
to G and the coherence condition for s. This shows that � is essentially surjective.

We next show that the functor � is faithful: let ϑ, ϑ ′ : (A, χ) −→ (A′, χ ′) be iso-
morphisms of equivariant structures on G such that �(ϑ ′) = �(ϑ), and let g ∈ G.
We can take c = R

0 and f : c −→ G to be the constant map at g to conclude that
ϕ|{g}×M = �(A, χ)(ϕ)( f ) and ϕ|{g}×M = �(A′, χ ′)(ϕ)( f ) agree. Hence the two iso-
morphisms agree pointwise and the statement follows.

Finally, we show that the functor � is full: let (A, χ) and (A′, χ ′) be equivariant
structures on G and ω : �(A, χ) −→ �(A′, χ ′) a morphism of splittings. Evaluating
ω on the good open cover {ci }i∈# from above provides isomorphisms ω : A|ci×M −→
A′|ci×M . Since ω is a morphism of splittings, these morphisms glue together to a 2-
isomorphism ϑω : A −→ A′. That this is an isomorphism of equivariant structures
follows from the coherence conditions for ω and the observation that it suffices to check
the conditions locally. ��
Corollary 5.44. A bundle gerbe G on a manifold M admits an equivariant structure if
and only if the 2-group extension

1 −→ HLBdlM −→ SymG(G) −→ G −→ 1

admits a splitting.
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Definition 5.45. Let (G, A, χ) and (G′, A′, χ ′) be G-equivariant bundle gerbes on M .
An equivariant 1-isomorphism G −→ G′ consists of a 1-morphism of bundle gerbes
E : G −→ G′ together with a 2-morphism γ : Φ∗E −→ pr∗M E defined by the diagram

pr∗M G Φ∗G

pr∗M G′ Φ∗G′

pr∗M E

A

Φ∗Eγ

A′

in BGrb(G × M), such that for every g, g′ ∈ G there is an equality of diagrams

pr∗M G Φ∗
gG Φ∗

g′ gG

pr∗M G′ Φ∗
gG′ Φ∗

g′ gG
′

pr∗M E

A

Φ∗
g Eγ

Φ∗
g A

Φ∗
g′ g Eγ

A′

A′

χ ′

Φ∗
g A

′
=

Φ∗
gG

pr∗M G Φ∗
g′ gG

pr∗M G′ Φ∗
g′ gG

′

Φ∗
g A

χ

pr∗M E

A

A

Φ∗
g′ g Eγ

A′

Being an equivariant 1-isomorphism is a structure and not a property: given a 1-
morphism E : G −→ G′ of bundle gerbes there is a set E(E) of equivariant structures
on E . According to Theorem 5.42 we can describe the equivariant structures on G and
G′ by splittings s : G −→ SymG(G) and s′ : G −→ SymG(G′). We shall now give a
description of an equivariant structure on E using these homomorphisms of 2-groups.
For this, recall from the end of Sect. 5.4 that any 1-isomorphism E : G −→ G′ in
BGrb(M) gives rise to a morphism of smooth 2-groups ̂E : SymG(G) −→ SymG(G′):
choose an adjoint inverse E∨ for E and define ̂E via

( f, A) �−→ Φ∗
f E ◦ ( f, A) ◦ E∨ .

Proposition 5.46. There is a natural bijection �E between the set E(E) of equivariant
structures on E and the set of 2-isomorphisms γ̂ : ̂E ◦ s −→ s′ of smooth morphisms of
2-groups.

Proof. Let G and G′ be G-equivariant bundle gerbes on a manifold M with a smooth
G-action Φ : G × M −→ M , and let (E, γ ) : G −→ G′ be a 1-isomorphism of equiv-
ariant bundle gerbes. Fix an adjoint inverse E∨ to E . We construct the 2-isomorphism
�E (γ ) : ̂E ◦ s −→ s′ as follows: let f : c −→ G be an element of G . The natural trans-
formation�E (γ ) consists of a 2-isomorphism�E (γ ) f : ̂E ◦ s( f ) −→ s′( f ) which we
construct by the diagram

pr∗M G Φ∗
f G

pr∗M G′

pr∗M G′ Φ∗
f G′

pr∗M E

s( f )

Φ∗
f E

(1× f )∗γ

pr∗M E∨

1
s′( f )
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Using the same methods as in the proof of Theorem 5.42 one can show that �E is a
bijection. ��
Definition 5.47. An equivariant 2-isomorphism of G-equivariant bundle gerbes (E, γ )
−→ (E ′, γ ′) consists of a 2-morphism η : E −→ E ′ such that there is an equality of
diagrams

pr∗M G Φ∗G

pr∗M G′ Φ∗G′

pr∗M E ′ pr∗M E

A

Φ∗Eγ

A′

pr∗M η
=

pr∗M G Φ∗G

pr∗M G′ Φ∗G′

pr∗M E ′

A

Φ∗E ′
γ ′ Φ∗E

A′

Φ∗η

Being an equivariant 2-morphism is a property.
The 2-group extension SymG(G) −→ G can also be used to study the existence

of equivariant structures on 1-morphisms. A condition for 2-isomorphisms of bundle
gerbes to be equivariant is

Proposition 5.48. Let (E, γ ) and (E ′, γ ′) be equivariant 1-isomorphisms. A 2-
isomorphism η : E −→ E ′ is equivariant if and only if �E ′(γ ′) ◦ (̂η ◦ 1γ ) = �E (γ ).

Proof. This follows from Definition 5.47 using the fact that the inverses E∨ and E ′∨
are adjoints to E and E ′. ��

6. Application I: Nonassociative Magnetic Translations

Nonassociativity in quantum mechanics has a long history dating back to foundational
work on the theory in the 1930’s. Its interest was revived in the 1980’s with the realisation
that the magnetic translation operators on the states of a charged particle moving in a
magnetic monopole background generally form a nonassociative algebra [Jac85,GZ86];
see [Sza19a] for a mathematical introduction to the subject together with a survey and
comparison of the various approaches to the quantisation of the pertinent twisted Poisson
structures. The recent revived interest in these models has come about from their con-
jectural relevance to the low-energy dynamics of closed strings in non-geometric back-
grounds, which are based on arguments invoking T-duality applied to target spaces that
are tori or more generally total spaces of torus bundles [Lüs10,MSS12,BL14,MSS14],
and other compact Lie groups [BP11]. See e.g. [Sza19b] for a contemporary introduction
to the subject with further references.

As a first application of the general framework presented in this paper, we reformulate
the well-known theory of magnetic translations for source-free magnetic fields in the
language of Sect. 3.We then use the results of Sect. 5 to describe nonassociativemagnetic
translations, which were first studied from a geometric perspective in [BMS19] on R

d .
They were subsequently studied from a quantum field theory perspective in [Mic19],
where generalisations from R

d to connected Lie groups are also considered. Here we
will show that they are induced by a natural section of SymG(G) −→ G constructed
using the parallel transport of Sect. 4.
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6.1. Magnetic translations on T
d . Magnetic translations appear in the quantum me-

chanics of an electrically charged particle moving on a manifold M in the presence of a
magnetic field, which is given by a 2-form B ∈ �2(M). In the semi-classical Maxwell
theory of electromagnetism, the 2-form B is closed and has integer periods. The first
requirement H = dB = 0 is the statement that there are no magnetic monopoles. The
second requirement is the Dirac charge quantisation condition which states that B is
the curvature of a connection on a hermitean line bundle L over M . In Bloch theory
(see e.g. [Gru00]), the line bundle L is used in geometric quantisation of the shift of
the canonical symplectic structure on the cotangent bundle T ∗M by the 2-form B, so
that the quantum Hilbert space of wavefunctions for the particle is H = L2(M; L), the
space of square-integrable sections of L . The (global) symmetry group G of the parti-
cle acts on M , and one would like to promote the G-action to an action on the Hilbert
space by linear operators. In quantum mechanics, this action on H is only required to
define a projective representation of G. If G acts via translations the resulting opera-
tors are called magnetic translations. The construction in Sect. 3 provides a universal
mechanism to construct magnetic translations, which we will illustrate on the example
of a d-dimensional torus M = T

d . Magnetic translations on T
d have been studied in

e.g. [Fio13,DGTS20] (for constant magnetic fields B), but our treatment is more general
and also fits in with expectations from string theory.

Instead ofworking onT
d directly, wework equivariantly on the universal coverRd by

viewing T
d = R

d/Zd as the quotient of the natural free action τ on R
d of the discrete

subgroup Z
d ⊂ R

d by translations. The corresponding projection π : R
d −→ T

d is
a surjective submersion. To describe line bundles on T

d we consider the diagram of
manifolds

U(1)

R
d × Z

d ∼= R
d ×Td R

d
R
d

T
d

π1

π0

f

π

where we use the identification R
d × Z

d � (x, i) �−→ (x, x + i) ∈ R
d ×Td R

d ; under
this identification, π0 = prRd is the projection and π1 = τ is the Z

d -action on R
d .

Any line bundle on T
d can be described by a smooth function f : R

d × Z
d −→ U(1)

satisfying

f (x + i, j) f (x, i) = f (x, i + j)

for all x ∈ R
d and i, j ∈ Z

d . This means that f is a 1-cocycle on the group Z
d with

values in the Z
d -module C∞(Rd ;U(1)). We will use the notation fi ( · ) := f ( ·, i) ∈

C∞(Rd ;U(1)) for i ∈ Z
d . Concretely, the U(1)-bundle described by f is the quotient

Pf := (

R
d × U(1)

)/∼
by the equivalence relation

(x + i, 1) ∼ (

x, fi (x)
)
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for all x ∈ R
d and i ∈ Z

d . Sections of the associated line bundle L f −→ T
d are in

one-to-one correspondence with equivariant functions on the universal covering space,
which are functions ψ ∈ C∞(Rd ; C) satisfying quasi-periodic boundary conditions

ψ(x + i) = fi (x) ψ(x) .

The action of the translation group G = R
d
t on R

d , x �−→ x + v, induces an
action τ of R

d
t on T

d . For v ∈ R
d
t, the bundle τ ∗

v Pf is described by the functions
τ ∗
v fi = fi ( · − v).5 This allows us to give a concrete description for the fibres of the
principal bundle Sym

R
d
t
(Pf ) −→ R

d
t as

Sym
R
d
t
(Pf )|v = BunU(1)(M)(Pf , Pτ∗

v f )

= {

g ∈ C∞(Rd ,U(1))
∣

∣ g(x + i) = fi (x) fi (x − v)−1 g(x)
}

.

The group6 C∞(Td;U(1)) = C∞(Rd ;U(1))Zd
acts freely and transitively on Sym

R
d
t

(Pf )|v by pointwise multiplication. The multiplicative structure from Proposition 3.4
on Sym

R
d
t
(Pf ) takes the concrete form

μ
(

(g, v), (g′, v′)
) := (

(τ ∗
v′g) g′, v + v′) .

A smooth section of the short exact sequence

1 −→ C∞(Td ,U(1)) −→ Sym
R
d
t
(Pf ) −→ R

d
t −→ 1

induces a twisted action of R
d
t on the quantum Hilbert spaceH = L2(Td; L f ); here we

do not require this section to be a group homomorphism, and the 2-cocycle twisting this
action takes values in C∞(Td;U(1)). We can construct such a section from the choice
of a connection on Pf , which reproduces the usual expression for magnetic translations.
A connection on Pf can be described by a 1-form A ∈ �1(Rd) satisfying

−i d log f = π∗
0 A − π∗

1 A .

This condition implies that the closed 2-form dA = π∗B descends to a well-defined
magnetic field B on T

d . The section corresponding to A is given by parallel transport:

sA : R
d
t −→ Sym

R
d
t
(Pf )

v �−→ sA(v) = exp
(

− i
∫

�1( · ;v)
A
)

,

where

�1(x; v) = {x − v + t v ∈ R
d | 0 ≤ t ≤ 1} .

5 Note that the functions fi are not invariant under the subgroup Z
d
t ⊂ R

d
t, whereas the bundles Pf and

Pτ∗
v f are canonically isomorphic. This is nothing but a concrete implementation of the fact that pullbacks are

only well defined up to canonical isomorphism.
6 For an action of a group G on a set X , we denote by XG ⊆ X the subset of G-invariants.
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We check that this is indeed an element of Sym
R
d
t
(Pf )|v:

(

sA(v)
)

(x + i) = exp
(

− i
∫

�1(x+i;v)
A + i

∫

�1(x;v)
A
)

(

sA(v)
)

(x)

= exp
(

∫

�1(x;v)
d log fi

)

(

sA(v)
)

(x)

= fi (x) fi (x − v)−1 (

sA(v)
)

(x) .

The corresponding 2-cocycle describing the extension agrees with the 2-cocycle con-
structed in e.g. [Sol18,BMS19].

By Proposition 3.5 the extension Sym
R
d
t
(Pf ) acts on the total space of the line bundle

L f and hence on the quantum state spaceH. The section sA realises translations v ∈ R
d
t

as linear operators P(v) : H −→ H on this Hilbert space via

P(v)ψ = sA(v) τ
∗
v ψ .

One easily checks thatP(v)ψ ∈ H forψ ∈ H, i.e.
(

P(v)ψ
)

(x+i) = fi (x)
(

P(v)ψ
)

(x).
However, they only provide a projective representation of the translation group R

d
t since

sA is not a group homomorphism. Explicitly, using Stokes’ Theorem we find that the
magnetic translations satisfy the relations of the twisted group algebra

P(v)P(v′) = exp
(

− i
∫

�2( · ;v′,v)
π∗B

)

P(v + v′) ,

where

�2(x; v′, v) = {x − v − v′ + t1 v
′ + t2 v ∈ R

d | 0 ≤ t2 ≤ t1 ≤ 1} ,
and we used the relation

∂�2(x; v′, v) = �1(x; v) − �1(x; v + v′) +�1(x + v; x + v + v′)

in the simplicial complex in R
d .

Remark 6.1. By dropping the (quasi-)periodicity conditions everywhere one gets back
the description of magnetic translations corresponding to (necessarily trivialisable) line
bundles over R

d (cf. [BMS19]). ��

6.2. Nonassociative magnetic translations from parallel transport. Dirac’s extension of
the classicalMaxwell theory assumes a singularmagnetic field Bwhose3-formcurvature
H = dB is distributional, with zero-dimensional support consisting of the locations
of magnetic monopoles on the configuration manifold M . However, in applications to
string theory the closed 3-form H corresponds to anNS–NS flux and is typically smooth,
as we now assume. The framework described in Sect. 6.1 is not capable of encoding
magnetic fields with non-vanishing magnetic charge H = dB, since in this case B
can never be realised as the curvature of a line bundle. The quantisation problem now
concerns an H -twisted Poisson structure on the cotangent bundle T ∗M [Sza19a], with
twisting of the canonical Poisson structure which spoils the Jacobi identity for functions
in C∞(T ∗M; C) that vary along the vertical directions. The corresponding quantum
operators do not associate; it is not possible to realise a nonassociative algebra by linear
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operators acting on aHilbert space.Different approaches to describing the nonassociative
quantum mechanics of charged particles moving in the background of a magnetic field
with smooth monopole sources are described in [MSS14,BBBS15,KS18].

Fluxes in string theory obey a generalised version of Dirac charge quantisation (see
e.g. [Sza13]); in particular, the closed 3-form H has integer periods and hence is the
curvature of a connection on a hermitean bundle gerbe overM . Based on this observation,
in [BMS19] we suggested the following approach: geometrically the magnetic field B
can be interpreted as the curving on a trivial gerbe IB with curvature H . We proposed
to use the 2-Hilbert space of sections of IB as a replacement for the usual Hilbert space
of quantum mechanics. The category of sections of a gerbe G on a manifold M is the
morphism category�(M;G) := BGrb(I,G); for details on the 2-Hilbert space structure
on this category we refer to [BSS18,BS17,Bun17]. As evidence for our approach we
constructed a projective action of nonassociativemagnetic translation operators on this 2-
Hilbert space, which naturally encodes the relations of the H -twisted Poisson algebra on
T ∗M . However, the drawback of this approach is that it does not work for topologically
non-trivial fluxes H , or equivalently for gerbes G with non-torsion Dixmier–Douady
class. Extending our geometric approach to nonassociative quantum mechanics along
these lines was in fact one of our original motivations behind the present paper.

Let us first explain how the action of nonassociative magnetic translations for mag-
netic fields with sources on M = R

d , which was described in [BMS19], can be con-
structed via the 2-group extensions from Sect. 5. Every gerbe on R

d is isomorphic to a
trivial gerbe IB represented by the diagram

R
d × C

R
d

R
d

R
d

pr

1

with trivial connection A = 0 and curving B ∈ �2(Rd). The connection on IB induces
a section7

sB : R
d
t −→ Sym

R
d
t
(I)

via parallel transport:

sB(v) := (

ptIB
1

)

|�1( · ;v) : IB −→ τ ∗
v IB .

Combining sB with the action of Sym
R
d
t
(I) on I induces a higher projective action of

R
d
t on �(Rd ; I). We refer to [BMS19, Section 4] for precise definitions.
Since all line bundles over R

d are isomorphic to a trivial line bundle, the category
Sym

R
d
t
(I)|v at v ∈ R

d
t is equivalent to the category with one object and morphisms

7 To simplify the presentation, in the following we disregard smooth structures and work in the 2-category
of 2-groups 2Grp(Grpd). The extensions to categories fibred in groupoids over Cart is straightfoward.
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described by smooth functions R
d −→ U(1). Thus

Sym
R
d
t
(I) ∼= ( ∗ //

C∞(Rd ;U(1))) � R
d
t .

The 2-group structure on Sym
R
d
t
(I) is given by

v ⊗ v′ := v + v′ ,
(h, v) ⊗ (h′, v′) := (

(τ ∗
v′h) h′, v + v′) .

However, under this equivalence the action of themagnetic translation operators becomes
elusive. In [BMS19] we equipped the 1-morphisms with a connection to circumvent this
problem. We did not require the 2-morphisms to preserve these connections leading to
equivalent categories. The parallel transport 1-morphisms ptIB

1 can be equipped with
such a connection in a canonical way. This reproduces the constructions from [BMS19].

For this, let IB be a trivial bundle gerbe on a smooth manifold M with curving
B ∈ �2(M) and curvature H = dB. We fix a base point x ∈ M . Via transgression
and regression we get a bundle gerbe RT (IB) defined over the diffeological path fi-
bration P0M −→ M . The corresponding line bundle over (P0M)[2] admits a canonical
trivialisation. It comes equipped with a connection 1-form given as the pullback of the
transgression of B to the loop space LM along the embedding l : (P0M)[2] −→ LM . To
describe the curving ofRT (IB) we note that a tangent vector to a based path γ ∈ P0M
is a smooth section V ∈ �([0, 1]; γ ∗T M) which is zero in a neighbourhood of 0 and
constant in a neighbourhood of 1. The 2-form RT (B) ∈ �2(P0M) is defined by the
transgression formula

RT (B)(V,V ′) =
∫

γ

ıV ′ ıVH ,

where ı denotes the interiormultiplication between a vector and a form. There is a natural
1-isomorphism [Wal16, Section 6.1] W : RT (IB) −→ IB with underlying diagram

P0M

(P0M)[2] P0M M M

M

of diffeological spaces. The line bundle which is part of this 1-morphism has a canonical
trivialisation for trivial bundle gerbesIB and has the connection 1-form AW ∈ �1(P0M)

defined by the transgression formula

AW (V) =
∫

γ

ıV B .

In order to describe the parallel transport, we pull everything back to the path space
PM along the two evaluationmaps ev0, ev1 : PM −→ M . The parallel transport defined
in Sect. 4 is a 1-morphism

ptRT (IB )
1 : ev∗

0RT (IB) −→ ev∗
1RT (IB)
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given by a line bundle with connection over the space P∂�2M . An element of P∂�2M is
a triple of paths (γxy, γyz, γxz), where γxy is a path from the base point x to some other
point y ∈ M , γyz is a path from y to a third point z ∈ M , and γxz is a path from x to
z. Again, the line bundle for the parallel transport is trivial since we work with a trivial
bundle gerbe. Its connection is given by

∫

γxz�γyz�γxy

ı•B ,

where the notation means that the evaluation on a tangent vector V is given by
∫

γxz�γyz�γxy

ıV B .

We obtain a 1-morphism

ptIB
1 : ev∗

0IB
ev∗

0W
−1

−−−−→ ev∗
0RT (IB)

pt
RT (IB )
1−−−−−−→ ev∗

1RT (IB)
ev∗

1W−−−→ ev∗
1IB ,

representing the colimit from Definition 4.16. Concretely, this is a trivial line bundle
over PM with connection

∫

γyz

ı•B .

This is exactly the formula used for the magnetic translations in [BMS19] in the case
M = R

d , hence it provides a conceptual underpinning of the constructions in [BMS19],
and moreover generalises them to trivial bundle gerbes on arbitrary manifolds M .

6.3. Nonassociative magnetic translations on T
d . Now we generalise the description

of nonassociative magnetic translations to the d-dimensional torus T
d , see also [Mic19]

for a discussion from a quantum field theory point of view. A problem in this context
is that for topologically non-trivial gerbes on T

d , there are no non-trivial sections. This
makes the 2-Hilbert space of sections an uninteresting object to study.8 However, our 2-
group extension still exists and should encode the geometry of nonassociative magnetic
translations in this context, regardless of whether or not sections exist. Non-trivial gerbes
overTd are similarly treated as coming fromZ

d -equivariant (topologically trivial) gerbes
over R

d , as in e.g. [MW16, Section 7.1].
Bundle gerbes onT

d can be described using the surjective submersionπ : R
d −→ T

d

and the corresponding diagram

π∗
0,1L ⊗ π∗

1,2L π∗
0,2L L

R
d × Z

d × Z
d

R
d × Z

d
R
d

T
d

f

π1

π0

π

8 We expect that there exists a better definition of sections circumventing this problem.
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Hereweused the identification (x, i, j) ∈ R
d×Z

d×Z
d �−→ (x, x+i, x+i+ j) ∈ (Rd)[3].

Concretely, a bundle gerbe consists of a line bundle L overRd×Z
d , whichwe can assume

to be trivial without loss of generality, and an isomorphism f : π∗
0,1L⊗π∗

1,2L −→ π∗
0,2L

of line bundles over R
d × Z

d × Z
d satisfying a coherence condition over R

d × (Zd)×3.
We can describe this isomorphism by a collection of smooth maps fi, j : R

d −→ U(1)
for all i, j ∈ Z

d , and the coherence condition translates to

fi, j (x) fi+ j,k(x) = fi, j+k(x) f j,k(x + i)

for all x ∈ R
d and i, j, k ∈ Z

d , which is the 2-cocycle condition for

f ·, · ∈ C2(
Z
d;C∞(Rd;U(1))) .

We denote the gerbe described by f as G f .
For v ∈ R

d
t, the pullback of G f along the translation τv can be described by the

2-cocycle τ ∗
v fi, j = fi, j ( · − v). Using [Bun17, Proposition A.31] we can describe the

category Sym
R
d
t
(G f )|v at v ∈ R

d
t up to equivalence in the following way: its objects are

functions g : R
d × Z

d −→ U(1) satisfying

fi, j (x − v) gi (x) g j (x + i) = gi+ j (x) fi, j (x) ,

for all x ∈ R
d and i, j ∈ Z

d . It is straightforward to deduce themorphisms inSym
R
d
t
(G f )

from [Bun17, Proposition A.31]; we find that a morphism from g to g′ is described by
a function h : R

d −→ U(1) satisfying

h(x) gi (x) = g′
i (x) h(x + i)

for all x ∈ R
d and i ∈ Z

d . Note that for the trivial 2-cocycle fi, j = 1 this describes the
category of line bundles over T

d with arbitrary gauge transformations as morphisms.
The 2-group structure on

Sym
R
d
t
(G f ) =

∐

v∈Rd
t

Sym
R
d
t
(G f )|v

from Theorem 5.23 takes the form

(gi , v) ⊗ (g′
i , v

′) := (

(τ ∗
v′gi ) g

′
i , v + v

′) ,
(h, v) ⊗ (h′, v′) := (

(τ ∗
v′h) h′, v + v′) ,

fitting into the 2-group extension from Theorem 5.27:

1 −→ HLBdl(Td) −→ Sym
R
d
t
(G f ) −→ R

d
t −→ 1 . (6.2)

As in the case of line bundles from Sect. 6.1, a connection (A, B) on G f induces a
section of the extension (6.2). A connection on G f is described by a 2-form B ∈ �2(Rd)

and a 1-form A ∈ �1(Rd × Z
d) satisfying

−i d log fi, j (x) = Ai+ j (x) − Ai (x) − A j (x + i) ,

dA = π∗
1 B − π∗

0 B ,
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for all x ∈ R
d and i, j ∈ Z

d . The second condition implies that the closed 3-form
dB = π∗H descends to a well-defined flux H on T

d . Using the connection we can
construct a section

sA,B : R
d
t −→ Sym

R
d
t
(G f )

by

sA,B(v) := (gi , v) with gi = exp
(

i
∫

�1( · ;v)
Ai

)

.

We check that this is indeed an element of Sym
R
d
t
(G f )|v:

gi (x) g j (x + i) gi+ j (x)
−1 = exp

(

i
∫

�1(x;v)
Ai + i

∫

�1(x+i;v)
A j − i

∫

�1(x;v)
Ai+ j

)

= exp
(

−
∫

�1(x;v)
d log fi, j

)

= fi, j (x − v)−1 fi, j (x) .

For the multiplication we find

sA,B(v) ⊗ sA,B(v
′) =

(

exp
(

i
∫

�1( ·−v′;v)
Ai + i

∫

�1( · ;v′)
Ai

)

, v + v′
)

=
(

exp
(

i
∫

�1( · ;v+v′)
Ai − i

∫

�2( · ;v′,v)

(

B − τ ∗
i B

)

)

, v + v′
)

= sA,B(v + v
′) ⊗

(

exp
(

− i
∫

�2( · ;v′,v)

(

B − τ ∗
i B

)

)

, 0

)

.

This particular product is associative on the nose. However, the line bundle on T
d

described by the transition functions exp
( − i

∫

�2( · ;v′,v) (B − τ ∗
i B)

)

is non-trivial. We
can use the decomposition

∫

�2( · ;v′,v)
dı•B = £•

∫

�2( · ;v′,v)
B −

∫

�2( · ;v′,v)
ı•π∗H ,

where £ is the Lie derivative, to construct a 2-isomorphism

Πv,v′ := exp
(

− i
∫

�2( · ;v′,v)
B

)

: sA,B(v) ⊗ sA,B(v
′) −→ sA,B(v + v

′) ,

which has the advantage that the line bundle on the right-hand side is trivial.

Remark 6.3. In this last representation the nonassociativity of the higher magnetic trans-
lations is realised by the composition property

Πu,v+w ◦ τ ∗−uΠv,w = ωu,v,w Πu+v,w ◦ Πu,v ,

where

ωu,v,w = exp
(

i
∫

�3( · ;w,v,u)
π∗H

)
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and

�3(x;w, v, u) = {x − u − v − w + t1w + t2 v + t3 u ∈ R
d | 0 ≤ t3 ≤ t2 ≤ t1 ≤ 1} .

Concretely this means that there are two different ways to go from the triple product
sA,B(u) ⊗ sA,B(v) ⊗ sA,B(w) to sA,B(u + v + w). Their difference is controlled by the
3-cocycle ω ·, ·, · on the translation group R

d
t with values in C∞(Td;U(1)), as depicted

in the commutative diagram

sA,B(u) ⊗ sA,B(v + w)

sA,B(u) ⊗ (

sA,B(v) ⊗ sA,B(w)
)

sA,B(u + v + w)

(

sA,B(u) ⊗ sA,B(v)
) ⊗ sA,B(w) sA,B(u + v + w)

sA,B(u + v) ⊗ sA,B(w)

Πu,v+w

1

1⊗Πv,w

ω−1
u,v,w

Πu,v⊗1 Πu+v,w

This is the implementation of nonassociativity in the higher categorical framework. ��

7. Application II: Anomalies in Quantum Field Theory

In this section we begin by using the group extensions SymG(P) from Sect. 3 to study
the existence of equivariant trivialisations of line bundles. This has direct applications
to the path integral description of the chiral anomaly in quantum field theory on even-
dimensional spacetime manifolds. Then using the 2-group extension SymG(G) from
Sect. 5, we study the analogous questions for gerbes and apply our findings to the
Hamiltonian description of the chiral anomaly on odd-dimensional time-slices.

7.1. Even dimensions: chiral anomalies. LetG be a connected Lie group, M a manifold
with smooth G-action Φ : G × M −→ M , and (P, χ) a G-equivariant U(1)-bundle on
M . The equivariant structure on P can be described by a splitting sP : G −→ SymG(P).
Assume furthermore that P is trivial as a line bundle, i.e. there exists a 1-isomorphism
ψ : I −→ P . The trivial bundle carries a canonical equivariant structure with corre-
sponding splitting sI : G −→ SymG(I ).

Rewriting the result of Sect. 3.2 slightly, we see that ψ is equivariant if and only if
the smooth 1-cocycle

G −→ C∞(M;U(1))
g �−→ sP (g) ̂ψ

(

sI (g)
)−1

is trivial. Every other isomorphism I −→ P differs from ψ by a uniquely determined
element of C∞(M;U(1)). Their corresponding 1-cocycles differ by the coboundary
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defined by this element. Hence the obstruction for an equivariant bundle which is trivial
as a line bundle to be also trivial as an equivariant bundle is an element of the degree
one group cohomology H1

(

G;C∞(M;U(1))). This has also been observed in [CM95]
from a different perspective.

The question of whether a bundle is equivariantly trivial is important in the path
integral perspective on chiral anomalies in quantum field theory. Let M be a based even-
dimensional compact Riemannian spin manifold,G a Lie group, Q a principalG-bundle
on M , and ρ : G −→ End(V ) a unitary representation of G on a finite-dimensional
vector space V which encodes the matter content of the field theory. Denote by S+ and
S− the positive and negative chirality spinor bundles on M , respectively, by Γ the group
of based gauge transformations of Q and byA the affine space of connections on Q. The
field content of the theory are chiral spinors, which are smooth sections of the vector
bundle S+ ⊗ V , where here V is the hermitean vector bundle associated to Q via the
representation ρ. There is a family of (twisted) Dirac operators

D/A : �(M; S+ ⊗ V ) −→ �(M; S− ⊗ V )

parameterised by gauge fields A ∈ A, which are first order elliptic differential operators
acting on chiral spinors. These data together define the content of a chiral gauge theory.

The formal path integral over the chiral spinor fields is the determinant det(D/A) of
the Dirac operator D/A. However, the determinant of D/A is in general not a number but
an element of a complex line, and it can be defined only after suitable regularisation as
an element of the fibre of the determinant line bundle det −→ A [AS84]. This defines
the (exponentiated) effective action functional which is a section

Z = exp(−S) : A −→ det ,

with S(A) = − log det(D/A). The action of Γ on A via gauge transformations can be
lifted to the determinant line bundle, which hence descends to a line bundle over the
moduli space of gauge connections A/Γ .

Being an affine space, A is contractible, so over A we can trivialise the determinant
line bundle and hence identify the effective action functional Z with a complex func-
tion. However, this might not be possible over the orbit space A/Γ : if the descended
line bundle is non-trivial then we cannot identify the effective action functional with a
complex function in a gauge-invariant way, i.e. the gauge symmetry is anomalous. The
line bundle overA/Γ is trivial if and only if we can choose aΓ -equivariant trivialisation
of the line Z(A) = det(D/A). By our general discussion above, the obstruction to this is
an element of H1

(

Γ ;U(1)A)

, where U(1)A is the diffeological space of maps from A
to U(1). An explicit formula for this smooth 1-cocycle is obtained in [CM95].

7.2. Odd dimensions: the Faddeev–Mickelsson–Shatashvili anomaly. We shall now
generalise the construction from the Sect. 7.1 to bundle gerbes. For this, we need to in-
troduce a categorification of the first group cohomology which takes values in a smooth
abelian 2-group. We use a definition along the lines of [BMS19], adjusted to the smooth
setting.

Definition 7.1. Let G be a Lie group and A a smooth abelian 2-group equipped with a
left action ρ of G . A smooth higher 1-cocycle on G with values in A consists of

• a morphism λ : G −→ A, g �−→ λg , inH, and
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• a smooth natural isomorphism χg,g′ : λg ⊗ ρg(λg′) −→ λg g′ of smooth functors
G ×Cart G −→ A,

such that for every c ∈ Cart:

• λec = Ic where Ic is the monoidal identity object of the fibre A|c of A over c ∈ Cart,
and where ec : c −→ G is the constant map at the identity element of G,
• χec, · and χ ·,ec agree with the left and right unitor morphisms in A|c, and
• the diagram

λg ⊗ ρg
(

λg′ ⊗ ρg′(λg′′)
)

λg ⊗ ρg(λg′ g′′) λg g′ g′′

λg ⊗ ρg(λg′) ⊗ ρg g′(λg′′) λg g′ ⊗ ρg g′(λg′′)

1⊗ρg(χg,g′ ) χg,g′ g′′

χg,g′⊗1

χg g′,g′′

commutes for all g, g′, g′′ ∈ G(c).

We will also need the concept of a higher coboundary.

Definition 7.2. Let (λ, χ) and (λ′, χ ′) be higher 1-cocycles on a Lie group G valued in
a smooth abelian 2-group A. A higher coboundary between (λ, χ) and (λ′, χ ′) consists
of

• a morphism θ : ∗ −→ A, and
• smooth isomorphisms ωg : λg ⊗ ρg(θ) −→ θ ⊗ λ′

g for every g ∈ G ,

such that ωec agrees with the symmetry isomorphism βA, and the diagram

λg ⊗ ρg
(

λg′ ⊗ ρg′(θ)
)

λg ⊗ ρg(θ) ⊗ ρg(λ
′
g′) θ ⊗ λ′

g ⊗ ρg(λ
′
g′)

λg ⊗ ρg(λg′) ⊗ ρg g′(θ) λg g′ ⊗ ρg g′(θ) θ ⊗ λ′
g g′

ωg⊗1

1⊗χ ′
g,g′

χg,g′⊗1 ωg g′

commutes for all c ∈ Cart and g, g′, g′′ ∈ G(c).

Remark 7.3. There is a natural definition of morphisms between higher coboundaries,
but these are not relevant for our purposes. ��

LetG be a connected Lie group,M amanifold with smoothG-actionΦ : G×M −→
M , and (G, A, χ) a G-equivariant bundle gerbe on M . The equivariant structure on
G can be described by a splitting sG : G −→ SymG(G), as explained in Sect. 5.6.
Assume furthermore that G is trivial as bundle gerbe, i.e. there exists a 1-isomorphism
E : I −→ G. From the results in Sect. 5.6 we can deduce that the obstruction to the
existence of an equivariant structure on E is the higher 1-cocycle

( f : c −→ G) �−→ sG( f )−1 ◦ ̂E
(

sI( f )
) ∈ BGrb(c × M)(pr∗M G, pr∗M G) ∼= HLBdl(c × M) .

This 1-cocycle is trivial precisely if there exists a natural isomorphism to the constant
1-cocycle at the trivial line bundle I . The choice of such an isomorphism corresponds
to the equivariant structure on E . The isomorphisms χ in Definition 7.1 use the smooth
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2-group structure on HLBdlM , and the isomorphisms which are part of the splittings
sG and sI , and ̂E . Generally, two 1-isomorphisms G −→ G′ of bundle gerbes differ
by the action of a 1-automorphism of G′. Hence the obstruction to the existence of an
equivariant isomorphism is an element of the first higher group cohomology of G with
coefficients in the smooth abelian 2-group HLBdlM .

Let us now explain the relation to the Hamiltonian description of chiral anomalies
in terms of bundle gerbes, which was worked out in [Mic85,CM95,CM96,CMM97,
CMM00]. Let M be a based odd-dimensional compact Riemannian spin manifold,9 P a
principal G-bundle on M , and ρ : G −→ End(V ) a representation of G describing the
matter content of the gauge theory. Again we denote byA the affine space of connections
on P and by Γ the pointed group of gauge transformations. For every A ∈ A we can
construct a massless Dirac operator

D/A : �(M; S ⊗ V ) −→ �(M; S ⊗ V ) ,

where S −→ M is the spinor bundle. The Dirac operator is a first order self-adjoint
elliptic differential operator, which serves as the first quantised Hamiltonian acting on
the one-particle Hilbert space H = �(M; S ⊗ V ).

To define the fermionic Fock spaceFA(H) of the quantumfield theory in the presence
of a gauge field A ∈ A, one has to pick a polarisationH = H+(A)⊕H−(A). In general
there are gauge fields A ∈ A for which the Dirac operator D/A has zero modes; for these
fields there is no universal and natural way of choosing such a polarisation. Denote by
A0 ⊂ A × R the subset of pairs (A, r) such that the real number r is not contained in
the spectrum of D/A. To equip this space with a diffeology we use the discrete diffeology
on R. For every point (A, r) ∈ A0 we get a decomposition of the one-particle Hilbert
space

H = H+(A, r) ⊕ H−(A, r)

into the positive and negative eigenstates of the operator D/A − r 1H. The corresponding
Fock bundle F(H) −→ A0 has fibres

F(H)|(A,r) = ∧H+(A, r) ⊗ ∧H−(A, r)∨ .

It is shown in [CM96] that the corresponding projective Hilbert bundle descends
to a bundle over A, and hence it induces a bundle gerbe G on A. The bundle gerbe
can be explicitly described in terms of determinant lines associated to families of Dirac
operators, see [CM96, Section 5] for details. SinceA is contractible, overA the projective
Hilbert bundle is trivial and hence is associated to a bundle of Hilbert spaces. Again the
actionofΓ onA lifts to an equivariant structure onG. ThereforeG aswell as the projective
Hilbert bundle descends to the orbit space A/Γ . The Faddeev–Mickelsson–Shatashvili
anomaly is the obstruction to the existence of a well-defined bundle of Hilbert spaces
over A/Γ , i.e. to the existence of a trivialisation of the descended projective Hilbert
bundle. Equivalently, the anomaly vanishes if and only if G descends to a trivial bundle
gerbe onA/Γ . This in turn is the case if and only if G is trivial as a Γ -equivariant bundle
gerbe on A.

9 The type of Hamiltonian anomaly discussed here can only occur on odd-dimensional manifolds, since
otherwise the chirality operator could be used to define consistent polarisations.
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From the general discussion above it follows that the obstruction to the equivariant
triviality of G is a smooth higher 1-cocycle on Γ with values in HLBdlA. Because A is
contractible, there is an equivalence

HLBdlA ∼= ∗//

U(1)A

with the smooth category with one object and the diffeological mapping space U(1)A

as morphisms. Since this is a smooth 2-group with one object, Definition 7.1 in this
instance is equivalent to the definition of an ordinary group 2-cocycle on Γ with values
in U(1)A. That the obstruction to the vanishing of the anomaly is a 2-cocycle of this
form is well-known, see e.g. [CM96]; this cocycle reproduces the usual Schwinger
terms in the commutator anomaly for the gauge group action. What is new here is
the construction of a smooth higher 1-cocycle, which only reduces to an ordinary 2-
cocycle because the space A is contractible, as well as a rigorous incorporation of the
smooth structures. Computing this cocycle explicitly and comparing it to the Faddeev–
Mickelsson–Shatashvili cocycle is beyond the scope of this paper. We expect this to be
possible using index theory following [CMM97].

8. Application III: The String Group

Any compact simple Lie group G has homotopy groups π3(G) ∼= H3(G; Z) ∼= Z and
πi (G) ∼= Hi (G; Z) ∼= 0 for i = 0, 1, 2; that is, G is 2-connected. It is of interest in
topology and geometry (see e.g. [DHH11,Sto96,ST04]), as well as in string theory (see
e.g. [SS20]), to study 3-connected approximations to G that arise as group extensions
of G. We denote such approximating objects by String(G) and call them models for the
string group of G. There is a variety of interpretations of what this means, based on
different choices of ambient higher categories in which one considers G to be a group
object. The general theme, however, is that one needs a way to realise a generator of
π3(G) ∼= Z geometrically in the chosen framework, and a string group model for G will
generally be a choice of such a generator.

In this final section we recall the definition and construction of a topological string
group model, and show that our extensions SymG(P) from Sect. 3 provide a smooth
enhancement thereof. We then propose the smooth 2-groups SymG(G) and DesL from
Sect. 5 as new string groupmodels, for the specific choices ofM = G and of a gerbeG on
G whoseDixmier–Douady class generatesH3(G; Z) ∼= Z. Amodel for String(G)which
is very similar in spirit to our model SymG(G) was found in [FRS16]. However, that
construction relies on the choice of connection onG and considers connection-preserving
symmetries of G. Here, in contrast, we exhibit a construction of string group models for
G from symmetries of gerbes on G without connections, and thus from representatives
of the third integer cohomology of G rather than its differential cohomology. We defer
further details and comments to Sect. 8.2.

8.1. A smooth string group model. The simplest and original framework for considering
string group models is that of topological spaces.

Definition 8.1. Let G be a compact simple simply-connected Lie group. A topological
model for the string group String(G) ofG is a topological 3-connected group Stringt(G)
along with a fibration Stringt(G) −→ G whose typical fibre is an Eilenberg-MacLane
space K (Z; 2).
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Using homotopy and cohomology groups one shows that Stringt(G) cannot be a
finite-dimen-sional Lie group [NSW13]. If a topological string group model can be
enhanced to consist of smooth spaces (such as Fréchetmanifolds or diffeological spaces),
we denote it by String(G) and refer to it as a smooth model for the string group of G.

We recall Stolz’ model as a topological group [Sto96]: let PU denote the projective
unitary group of an infinite-dimensional separable Hilbert space. As a consequence of
Kuiper’s Theorem, PU has homotopy type K (Z; 2). Hence the classifying space BPU
has homotopy type K (Z; 3), while at the same time it classifies topological principal
PU-bundles. In particular, isomorphism classes of PU-bundles on a space X are in
one-to-one correspondence with elements of the set H3(X; Z).

Let P −→ G be a principal PU-bundle on G such that P corresponds to a generator
of H3(G; Z) ∼= Z; such PU-bundles on G are called basic. Let ̂G denote the group of
PU-equivariant homeomorphisms of P to itself which act on G as left multiplication
by some element of G. We can topologise ̂G as a subgroup of the topological group
of homeomorphisms P −→ P . Thus ̂G comes with a continuous surjective group
homomorphism ̂G −→ G. The gauge group Gau(P) is the subgroup of ̂G of those
elements whose projection to G is the identity element e ∈ G.

Theorem 8.2 [[Sto96, Section 5] and [NSW13]]. The extension of topological groups

1 Gau(P) ̂G G 1

exhibits ̂G as a topological model for String(G).

The crux of the proof of this theorem is showing that Gau(P) is homotopy equivalent
toPU, i.e. that it is an Eilenberg-MacLane space K (Z; 2). Part of the content in [NSW13]
is to enhance this topological string group model to a smooth model in the sense that
the groups appearing are Fréchet Lie groups.

The group extension ̂G −→ G agrees with the extension SymG(P) −→ G con-
structed in Sect. 3 when we set M = G and H = PU, and let G act on itself by left
multiplication. Thus we immediately obtain

Corollary 8.3. Let P −→ G be a basic PU-bundle. The extension of diffeological
groups

1 Gau(P) SymG(P) G 1

exhibits SymG(P) as a smooth model for String(G).

8.2. Smooth string 2-group models. Let G be a compact simply-connected Lie group,
and let G be a bundle gerbe on G whose Dixmier–Douady class generates H3(G; Z);
such a bundle gerbe is said to be basic. Let Φ : G × G −→ G denote the left action
of G on itself by left multiplication. In the spirit of Sect. 5, it is reasonable to expect
that we should also be able to interpret the smooth 2-groups SymG(G) and DesL as
models for String(G). The idea of constructing String(G) as a smooth 2-group has also
been considered in e.g. [BCSS07,SP11,Wal12a,NSW13,FRS16]. In the remainder of
this section we will describe how SymG(G) can be seen as a string 2-group model. By
Theorem 5.36 it then follows that DesL is also a model for String(G).

Smooth string 2-group models usually consist of extensions of G by the smooth
2-group BU(1), the delooping of the smooth abelian group U(1). However, recall that
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in Theorem 5.27 we established SymG(G) as an extension of G by the smooth abelian
2-group HLBdlG . Our point here is that what matters for string group models is only the
homotopy type of the fibre and the total space of the map String(G) −→ G, so that there
is a lot of flexibility in choosing the smooth 2-group A that extends G. Observe that this
ambiguity is inherent already in Definition 8.1. This forces us to state which smooth 2-
groups A are admissible in order to obtain smooth 2-group extensions of G that deserve
to be called string group models. Our proposed definition for smooth string 2-group
models emphasises the structure of A as a smooth analogue of an Eilenberg-MacLane
space K (Z; 2). Note that for every smooth abelian 2-group A and any manifold M , we
can define Čech cohomology of M with coefficients in A by evaluating (a delooping of
A) on the Čech nerve of good open coverings of M .

The definition of a smooth string 2-group model is thus a two-step process: we first
fix the homotopy type of the extending 2-group A in a geometric way, and then we have
to make precise when an A-extension of G has the correct homotopy type.

Definition 8.4. Let H be a diffeological group. The delooping BH ∈ H is the category
fibred in groupoids over Cart whose objects are the Cartesian spaces c ∈ Cart, and
whose morphisms c0 −→ c1 are pairs ( f01, h01) of smooth maps f01 : c0 −→ c1
and h01 : c0 −→ H . Composition of morphisms is given by ( f12, h12) ◦ ( f01, h01) =
(

f12 ◦ f01, h01 (h12 ◦ f01)
)

.

If H is abelian, then BH naturally becomes a smooth abelian 2-group.

Definition 8.5. A smooth 2-group A is string-admissible if it is abelian and equivalent
(as a smooth 2-group) to the delooping BH of a diffeological abelian group H whose
underlying topological space is an Eilenberg-MacLane space K (Z; 2).

From the equivalence A � BH it follows that Čech cohomology with coefficients
in A is equivalent to Čech cohomology with coefficients in H , shifted by one degree.
Then since H has homotopy type K (Z; 2), it follows that there are isomorphisms

Ȟk(M;A) ∼= Ȟk(M;BH) ∼= [

M,Bk+1H
] ∼= [

M, K (Z; k + 2)
] ∼= Hk+2(M; Z)

for all k ∈ N. (For the notion of Čech cohomology with coefficients in higher smooth
groups, we refer the reader to [Sch13,NSS15].)

From any smooth principal 2-bundle P −→ M over a manifold M with structure
2-group A, we can distil a Čech cohomology class as follows: let U = {Ui }i∈I be a good
open covering of M . Denote intersections by Ui1···in := Ui1 ∩ · · · ∩ Uin . Viewing the
(intersections of) open patchesUi1···in ↪→ M as objects in M , we denote by P|Ui1···in the
fibres of P over these objects. By Definition 5.17, we can choose an object ψi ∈ P|Ui

for every i ∈ I . We can further choose an object ai j ∈ A|Ui j for every i, j ∈ I and an
isomorphism gi j : ψi |Ui j ⊗ ai j −→ ψ j |Ui j in P|Ui j (where we have chosen pullbacks of
ψi and ψ j to P|Ui j ). Over the triple overlaps Ui jk we obtain isomorphisms

βi jk : ψi |Ui jk ⊗ ai j |Ui jk ⊗ a jk|Ui jk −→ ψi |Ui jk ⊗ aik|Ui jk ,

which are uniquely determined by the properties of theGrothendieck fibrationP −→ M
(as previously, since M has discrete fibres, it follows that P ×h

M P = P ×M P). Since
the morphisms (1ψi |Ui jk , βi jk) lie in the image of the action functor P×A −→ P×M P,
there are unique isomorphisms

αi jk : ai j |Ui jk ⊗A a jk|Ui jk −→ aik|Ui jk
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in A|Ui jk , which satisfy the required coherence condition over quadruple overlaps by
the fact that they are constructed as Cartesian lifts of identity morphisms. Hence these
data assemble into an A-valued Čech 1-cocycle on M with respect to the open covering
U . One can check that other choices of coverings and sections lead to 1-cocycles that
become equivalent to (ai j , αi jk) when passing to a common refinement of good open
coverings.

Definition 8.6. Let G be a compact simply-connected Lie group, and let A be a string-
admissible smooth 2-group. A smooth 2-group model for String(G) is a smooth 2-group
extension

1 A String(G) G 1

such that the principal 2-bundle String(G) −→ G represents a generator of H3(G; Z) ∼=
Z under the isomorphism Ȟ1(G;A) ∼= H3(G; Z).

With these definitions we have

Theorem 8.7. For any 2-connected manifold M, the smooth 2-groupHLBdlM is string-
admissible.

Theorem 8.8. Let G be a compact simply-connected Lie group, and let G ∈ BGrb(G)
be a basic bundle gerbe. Let SymG(G) and DesL be the smooth 2-group extensions of
G by HLBdlG constructed from G with respect to the left action of G on itself by left
multiplication. Then both SymG(G) andDesL are smooth 2-group models for String(G)
in the sense of Definition 8.6.

Remark 8.9. Note that there is a model for String(G) based on regression and trans-
gression of the basic gerbe on G [Wal12a]. Similarly, our model for String(G) which
we obtain from DesL also heavily relies on the transgression-regression formalism.
However, the resulting models are very different: Waldorf’s model in [Wal12a] is the
regression of the transgression of the basic gerbe. Waldorf observes that this gerbe picks
up a multiplicative structure upon application of R ◦ T . Since any gerbe on a mani-
fold can be seen as an extension of M by BU(1) as Lie groupoids, the resulting gerbe
provides a string group model in the sense of [SP11]. Our construction differs from
this significantly not only in the fact that we work with smooth 2-groups instead of Lie
2-groups; most notably, we obtain an extension of G by the much larger smooth 2-group
B(U(1)H ), which is not equivalent to BU(1) as a smooth 2-group, but only on the level
of their underlying homotopy types (see Theorem 8.7 as well as [Bun20b]). ��

The rest of this section is devoted to the proofs of Theorems 8.7 and 8.8. We begin
with a few results that will combine to prove that HLBdlM is string-admissible. Then
we will prove Theorem 8.8 by observing that the HLBdlG-valued Čech 1-cocycles we
obtain from the 2-bundle SymG(G) agree with those obtained from local trivialisations
of the bundle gerbe G.

Lemma 8.10. Let M be a simply-connectedmanifold and x ∈ M afixed base point. Then
the evaluation map evx : U(1)M −→ U(1), g �−→ g(x) and the inclusion c : U(1) −→
U(1)M as constant maps form a homotopy equivalence of diffeological spaces.10

10 See Example 2.6 for the definition of the diffeological mapping space.
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Proof. Since evx ◦ c = 1U(1), it is enough to construct a smooth homotopy c ◦ evx ∼=
1U(1)M . Let π : R −→ U(1), r �−→ exp(2π i r) be the universal cover of U(1). The
assumption that M is simply-connected implies (see e.g. [Bre93, Theorem 4.1]) that the
diagram

R

M U(1)

π

f

admits a unique continuous lift ̂f : M −→ R for arbitrary f ∈ U(1)M after fixing the
lift at one point. We verify that the map ̂f is smooth. Fix a point y ∈ M and a sufficiently
small open neighbourhoodUy of y which we identify with an open subset of R

d , where
d = dim(M). The restriction of f to Uy is a plot of U(1). Hence by Proposition 2.9
it admits a smooth lift ̂fy : Uy −→ R for sufficiently small Uy . From the uniqueness
statement for lifts we obtain ̂f|Uy = ̂fy + ry for a fixed integer ry ∈ Z. This implies that
̂f is smooth and hence shows that the map πM : R

M −→ U(1)M is surjective.
Consider the commutative diagram

R R
M

U(1) U(1)M

ĉ

π

êvx

πM

c

evx

where ĉ (r)(y) = r for all y ∈ M , and where êvx (g′) = g′(x) for all g′ ∈ R
M . We

define a homotopŷh : 1RM −→ ĉ ◦ êvx by settinĝht (g′)(y) = g′(y) (1 − t) + g′(x) t .
This homotopy descends to the desired homotopy h : 1U(1)M −→ c ◦ evx .

Weverify that the homotopy h is smooth: letn be a natural number, c ∼= R
n aCartesian

space and f : c −→ U(1)M ×[0, 1] a plot; that is, the maps pr[0,1] ◦ f : c −→ [0, 1] and
(prU(1)M ◦ f )� : c×M −→ U(1) are smooth.We have to show that h◦ f : c −→ U(1)M

is a plot. By the arguments abovewe can lift (prU(1)M ◦ f )� to a smoothmap c×M −→ R

because c × M is simply-connected. This implies that we can lift f to a smooth map
̂f : c −→ R

M × [0, 1] making the diagram

R
M × [0, 1] R

M

c U(1)M × [0, 1] U(1)M

̂h

πM×1 πM̂f

f h

commute. The result now follows sincêh and the projection πM : R
M −→ U(1)M are

smooth. ��
Lemma 8.11. There is an inclusion B(U(1)M ) ↪→ HLBdlM of smooth 2-groups which

is given by sending c ∈ B(U(1)M ) (cf. Definition 8.4) to the trivial line bundle on c×M.
If H2(M; Z) = 0, then this inclusion is an equivalence.
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Proof. We readily see that the inclusion respects the group structures, and that it is fully
faithful. If H2(M; Z) = 0, then HLBdlM |c ∼= HLBdl(c × M) is connected, so that in
this case the inclusion is also fully faithful on all fibres. Thus it is an equivalence on
every fibre and hence an equivalence in the 2-categoryH by [Vis05, Proposition 3.36].

��
Combining Lemmas 8.10 and 8.11, we conclude that HLBdlM is string-admissible

for any 2-connected manifold M ; that is, we have proven Theorem 8.7.
For the diffeological group H = U(1)M and a 2-connected manifold M , there is an

explicit isomorphism Ȟk(X;U(1)M ) ∼= Ȟk(X;U(1)) for k > 0, for any manifold X ,
given by

Proposition 8.12. Let M be a 2-connected manifold with a fixed base point x ∈ M.
For any manifold X, evaluation at x ∈ M induces an isomorphism Ȟk(X;U(1)M ) ∼=
Ȟk(X;U(1)) for k > 0 of Čech cohomology groups with coefficients in the sheaves of
smooth U(1)M-valued and U(1)-valued functions, respectively.

Proof. Consider the sequence of diffeological groups

1 −→ Z −→ R
M −→ U(1)M −→ 1 ,

which is exact by the argument from the proof of Lemma 8.10. The sheaf R
M admits

a partition of unity by picking a partition of unity for the sheaf of smooth R-valued
functions and a constant extension to R

M -valued functions; hence Ȟk(X; R
M ) = 0 for

any manifold X and for any k ≥ 1. Now the statement follows from applying the five
lemma to the diagram

Ȟk+1(X; R
M ) Ȟk+1(X; Z) Ȟk(X;U(1)M ) Ȟk(X; R

M ) Ȟk(X; Z)

Ȟk+1(X; R) Ȟk+1(X; Z) Ȟk(X;U(1)) Ȟk(X; R) Ȟk(X; Z)

induced by the long exact sequence in sheaf cohomology and the evaluation at x ∈ M .
��

It remains to determine the Čech cohomologyclass in Ȟ1(G;HLBdlG) ∼= H3(G; Z) ∼=
Z determined by the extension SymG(G) −→ G . The isomorphisms from Lemma 8.11
and Proposition 8.12 are useful in achieving this. From the smooth 2-group extension
SymG(G) −→ G we can extract a Čech 2-cocycle on G with values in the sheaf of
smooth U(1)G -valued functions. To construct it, we first follow the procedure of the
paragraph preceding Definition 8.6 to extract HLBdlG -valued cocycle data and then
choose local trivialisations of the line bundles which comprise it (which amounts to
choosing an inverse for the equivalence from Lemma 8.11).

Let U = {Ui }i∈I be a good open cover of G, let πi : Ui × G −→ G denote the
projection onto the second factor, and let mi : Ui ×G −→ G be the multiplication map
restricted toUi ×G. We choose and fix 1-isomorphisms ψi : m∗

i G −→ π∗
i G along with

adjoint inverses ψ−1
i , which induce equivalences SymG(G)|Ui

∼= HLBdl(Ui × G) of
groupoids.

On double intersectionsUi j we can form the automorphismψi j := ψ−1
j |Ui j

◦ ψi |Ui j of
m∗

i jG. The isomorphism ψi j can be identified with a line bundle Li j on Ui j × G. Since
H2(G; Z) = 0, we can choose and fix a trivialisation of Li j for each i, j ∈ I .
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On triple intersections Ui jk we get a 2-isomorphism ψi jk : ψ jk|Ui jk ◦ ψi j |Ui jk −→
ψik|Ui jk inducing an isomorphism L jk ⊗ Li j −→ Lik of line bundles over Ui jk × G.
(In contrast to the construction in the paragraph above Definition 8.6, here the isomor-
phisms ψi jk can be obtained directly from the choice of ψi j .) Using the trivialisations
of these line bundles we obtain a smooth map Ui jk × G −→ U(1) or equivalently
a map ci jk : Ui jk −→ U(1)G . The collection ci jk form a smooth U(1)G -valued Čech
2-cocycle.

The corresponding cohomology class is independent of all choices involved: let
ψ ′
i : m∗

i G −→ π∗
i G be a different set of 1-isomorphisms. The automorphism ψ−1

i ◦ ψ ′
i

ofm∗
i G can be identified with a line bundleΛi overUi ×G. The definition of Li j implies

Li j ⊗Λi ∼= Λ j ⊗L ′
i j . We can pick once and for all trivialisations of all bundles involved

to identify this morphism with a function Ai j : Ui j × G −→ U(1). The diagram

Li j ⊗ Λi ⊗ L jk ⊗ Λ j Λ j ⊗ Lik ⊗ Λi

Λ j ⊗ Λk ⊗ L ′
i j ⊗ L ′

jk Λ j ⊗ Λk ⊗ L ′
ik

commutes over Ui jk , which follows from the fact that all inverses were chosen to be
adjoint so that the corresponding diagram involving ψi and ψ ′

i commutes. Applying the
trivialisations we get

ci jk Aik = c′
i jk Ai j A jk .

This argument also shows that the cocycles define the same cohomology class ifψ ′
i = ψi

and only the trivialisations of Li j differ.
The image of ci jk in Ȟ2(G;U(1)G) under the isomorphism Ȟ2(G;U(1)G) ∼= Ȟ2

(G;U(1)) of Proposition 8.12 can be computed by restricting each ψi to Ui × {e} ⊂
Ui ×G; the restriction ψ|Ui×{e} is a 1-isomorphism G|Ui −→ G|e. After fixing once and
for all a trivialisation of G|e, this is just a trivialisation of G|Ui . This shows that the image
of ci jk in Ȟ2(G;U(1)) ∼= H3(G; Z) agrees with the cocycle cG classifying the bundle
gerbe G, which proves Theorem 8.8.

Remark 8.13. The arguments involving cocycles can be adjusted to the simpler case
of principal bundles over the Lie group G. In that case, starting from a principal
U(1)-bundle P on G we get a principal U(1)G -bundle SymG(P) on G which is ho-
motopy equivalent to P . The homotopy equivalence is induced by the maps evx and
c from Lemma 8.10. We can iterate the procedure to get larger and larger groups
SymG(· · · SymG(SymG(P)) · · · ). However, these groups are all topologically equiv-
alent, so that iterating the procedure does not produce anything that is topologically
novel. ��
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A. Properties of Smooth Principal 2-Bundles

A.1. Surjectivity on objects and homotopy pullbacks. Here we provide some technical
background on smooth groupoids, as introduced in Definition 5.4.

Lemma A.1. Let π : X −→ Cart and π ′ : P −→ Cart be objects in H.

(1) Either X = ∅ or π is surjective on objects.
(2) Let p : P −→ X be a morphism in H whose underlying functor is an essentially

surjective Grothendieck fibration. Then p is surjective on objects.

Proof. To see (1), observe that Cart has a terminal object ∗ ∈ Cart. Thus since π is a
Grothendieck fibration, if X|∗ = π−1(∗) is non-empty then so is X|c for any c ∈ Cart.
For any c ∈ Cart there exists a morphism x : ∗ −→ c in Cart given by choosing any
point x ∈ c. It follows that as soon as X �= ∅, it has only non-empty fibres over Cart.

Claim (2) follows from the general observation that a Grothendieck fibration is es-
sentially surjective if and only if it is surjective on objects. ��

We now consider the setup of Definition 5.16.

Lemma A.2. Let C be a category, let πi : Di −→ C, for i = 0, 1, and πE : E −→ C be
Grothendieck fibrations in groupoids, and let Fi : Di −→ E, for i = 0, 1, be morphisms
of categories fibred in groupoids over C.

(1) (D0 ×h
E D1, πh) ∈ H, i.e. πh is a Grothendieck fibration in groupoids.

(2) Any morphism G = (G0,GE,G1) of diagrams

E

D0 D1

D′
0 D′

1

E′

GE

F0

G0

F1

G1

F ′
0 F ′

1

inH, where all vertical morphisms are equivalences, induces an equivalenceD0 ×h
E

D1 −→ D′
0 ×h

E′ D′
1.

http://creativecommons.org/licenses/by/4.0/
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(3) If F1 (resp. F0) is a Grothendieck fibration in groupoids, then the inclusion D0 ×E
D1 ↪→ D0 ×h

E D1 is an equivalence, and the projections prh0 : D0 ×h
E D1 −→ D0 and

pr0 : D0 ×E D1 −→ D0 (resp. the projections prh1 and pr1 to D1) are Grothendieck
fibrations in groupoids.

Proof. Toprove (1),wefirst show that everymorphism inD0×h
ED1 isπh-Cartesian.Con-

sider morphisms (ψ0, ψ1) : (d ′
0, η

′, d ′
1) −→ (d ′′

0 , η
′′, d ′′

1 ) and (ϕ0, ϕ1) : (d0, η, d1) −→
(d ′′

0 , η
′′, d ′′

1 ) in D0 ×h
E D1. By assumption π0(d0) = π1(d1) in C (and analogously for

d ′
i , d

′′
i ), and π0(ψ0) = π1(ψ1) (and analogously for ϕi ). Let χ : π0(d0) −→ π0(d ′

0) be
a morphism in C such that π0(ψ0) ◦ χ = π0(ϕ0). Since πE is a Grothendieck fibration
in groupoids, there exists a unique lift χE,i : Fi (di ) −→ Fi (d ′

i ) induced by each of the
pairs (Fi (ψi ), Fi (ϕi )) of morphisms in E. Similarly, the pairs (ψi , ϕi ) induce unique
lifts χi : di −→ d ′

i of χ to Di along πi . The uniqueness of lifts (along πE) implies
that Fi (χi ) = χE,i for i = 0, 1. It remains to show that (χ0, χ1) defines a morphism
(d0, η, d1) −→ (d ′

0, η
′, d ′

1). That is, we need to prove that F1(χ1) ◦ η = η′ ◦ F0(χ0) in
E. So far we have a diagram

F0(d0)

F0(d ′
0) F0(d ′′

0 )

F1(d1)

F1(d ′
1) F1(d ′′

1 )

F0(χ0) F0(ϕ0)
η

η′

F0(ψ0)

η′′
F1(χ1) F1(ϕ1)

F1(ψ1)

in E, where each face of this diagram commutes, apart from the back left square.
The commutativity of that square is what we need to prove. For this, observe that both
η′ ◦ F0(χ0) and η ◦ F1(χ1) provide lifts of χ to E with respect to the morphisms
η′′ ◦F0(ϕ0) : F0(d0) −→ F1(d ′′

1 ) and F1(ψ1) : F1(d ′
1) −→ F1(d ′′

1 ). The desired identity
now follows from the uniqueness of such lifts along the functor πE.

Next we need to show that for any morphism f : c −→ c′ in C and any object
(d ′

0, η
′, d ′

1) in D0 ×h
E D1 over c′, there exists a lift ̂f = ( f0, f1) of f to D0 ×h

E D1 with
codomain (d ′

0, η
′, d ′

1). Such a lift is obtained by lifting f to morphisms fi : di −→ d ′
i

in Di using the fact that πi is a Grothendieck fibration in groupoids, for i = 0, 1. An
isomorphism η : F0(d0) −→ F1(d1) compatible with f0, f1 is obtained by filling the
horn given by the morphisms η′ ◦ F0( f0) and F1( f1) over the identity morphism 1c in
C. The filler is an isomorphism since the fibre E|c is a groupoid.

To prove (2), we note that by [Vis05, Proposition 3.36] the inducedmorphismG0×h
GE

G1 is an equivalence inH if and only if it restricts to an equivalence of groupoids between
all fibres of πh and π ′

h. A direct inspection on any c ∈ C reveals that

π−1
h (c) = π−1

0 (c) ×h
π−1
E (c)

π−1
1 (c)

as groupoids, and it is well-known that equivalences of spans of groupoids induce equiv-
alences on homotopy pullbacks of groupoids.
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To prove (3), we first show that prh0 is a Grothendieck fibration in groupoids. Consider
a span

(d ′′
0 , η

′′, d ′′
1 )

(d ′
0, η

′, d ′
1) (d0, η, d1)

(ψ0,ψ1) (ϕ0,ϕ1)

in D0 ×h
E D1, and a morphism χ0 : d0 −→ d ′

0 in D0 such that ψ0 ◦ χ0 = ϕ0. We
obtain a commutative triangle in E formed by the morphisms F1(ψ1), F1(ϕ1), and
η′ ◦ F0(χ0) ◦ η−1. Since F1 is a Grothendieck fibration in groupoids, this gives rise
to a unique lift χ1 : d1 −→ d ′

1 of the latter morphism to D1. The pair (χ0, χ1) is
automatically a morphism in D0 ×h

E D1 which projects to χ0. If (χ ′
0, χ

′
1) were any other

such filling over χ0 of the horn given by (ψ0, ψ1) and (ϕ0, ϕ1), it would immediately
follow that χ ′

0 = χ0, and the uniqueness of fillings of ψ1, ϕ1 over η′ ◦ F0(χ0) ◦ η−1

would imply that χ ′
1 = χ1.

Let ϕ0 : d0 −→ d ′
0 be a morphism inD0, and let (d ′

0, η
′, d ′

1) be an object inD0×h
ED1

which projects to d ′
0. Let ϕ1 be a lift along π1 of f := π0(ϕ0)with codomain d ′

1. The pair
of morphisms (η′ ◦ F0(ψ0), F1(ψ1)) then gives rise to a cospan in E. Both morphisms
project to f in C and hence, since πE is a Grothendieck fibration in groupoids, there
exists a unique isomorphism η : F0(d0) −→ F1(d1) such that (d0, η, d1) ∈ D0 ×h

E D1

and such that (ψ0, ψ1) is a lift of ψ0 to D0 ×h
E D1 with codomain (d ′

0, η
′, d ′

1). The claim
for pr0 is proven in an entirely analogous way by restricting η, η′ and η′′ to be identity
morphisms.

Finally, consider the inclusion functor D0 ×E D1 ↪→ D0 ×h
E D1. Since prh0 is a

Grothendieck fibration in groupoids, so is its restriction to each fibre over C. It is well-
known that the inclusion of a pullback of groupoids into the homotopy pullback is an
equivalence in case one of the functors in the diagram is a Grothendieck fibration. Thus
our inclusion functor is an equivalence on each fibre over C, whence the result follows
by [Vis05, Proposition 3.36]. ��

A.2. Relation to principal ∞-bundles. Our notion of smooth principal 2-bundle does
not have any notion of ‘local triviality’ built into it. This differs from the version of a
principal 2-bundle defined in [SP11], but is very much in the spirit of the definition of
a principal ∞-bundle from [NSS15]. The fact that we require essential surjectivity is
our version of saying that the (homotopy) fibres of the bundle should be non-empty. In
contrast to [NSS15]wehave to require fibration properties becausewedonotwork purely
in an ∞-categorical framework. We shall now show that an H-principal 2-bundle in H
in the sense of Definition 5.17 gives rise to a principal 2-bundle in the sense of [NSS15,
Definition 3.4], adapted from a general ∞-topos (described e.g. by presheaves of ∞-
groupoids) to our situation involving presheaves of groupoids. Let p : P −→ X be a
morphism inH, and let P[•] be the Čech nerve of p. We write hocolimC (resp. holimC)
for a homotopy colimit (resp. limit) taken in a simplicial model category C.

Proposition A.3. Every morphism p : P −→ X in H whose underlying functor is an
essentially surjective Grothendieck fibration in groupoids gives rise to an effective epi-
morphism: the morphism

hocolim
�op

H P[•] −→ X



1908 S. Bunk, L. Müller and R. J. Szabo

from its Čech nerve to X is an equivalence.

Because of Lemma A.2 and the assumption that p is a Grothendieck fibration in
groupoids, it does not matter here if one uses the coherent Čech nerve, formed using
P ×h

X · · · ×h
X P, or the strict Čech nerve, formed using P ×X · · · ×X P.

Proof. We work with Hollander’s model structure on H [Hol08]. In this picture, H
is a model category enriched, tensored and cotensored in the model category Grpd
(seen as a strict category). In both H and Grpd all objects are fibrant, and the functor
H : Hop × H −→ Grpd is homotopical by [Vis05, Proposition 3.35], i.e. it preserves
weak equivalences in each argument. The enrichment of H in Grpd even enhances to
an enrichment over Set�, the category of simplicial sets with the Kan-Quillen model
structure. Thus homotopy (co)limits in H can be computed using (co)bar construc-
tions [Rie14]. Let Q denote a cofibrant replacement functor in H, and let Z ∈ H be an
arbitrary object. Then

H
(

hocolim
�op

H P[•], Z
) ∼= holim

�

Grpd H
(

Q(P[•]), Z
) ∼= holim

�

Grpd H
(

P[•], Z
)

,

where the first equivalence stems from the fact that Z is fibrant andH is a Grpd-enriched
model category, and the second equivalence stems from the fact thatH is homotopical.
It thus suffices to prove that the functor

p∗ : H(X,Z) −→ holim
�

Grpd H
(

P[•], Z
) =: Desp(Z)

is an equivalence of groupoids.
An object inDesp(Z) is a pair (G, η) of a functorG : P −→ Z of categories fibred in

groupoids over Cart, together with a natural isomorphism η|(p0,p1) : G(p0) −→ G(p1)
from d∗

1G to d∗
0G of functors over Cart, where di are the face maps in the simplicial

object P[•]. This natural isomorphism is subject to the conditions d∗
2η ◦ d∗

0η = d∗
1η over

P[3] and Δ∗η = 1G over P, where Δ : P −→ P[2] is the diagonal map. A morphism
(G, η) −→ (G ′, η′) in Desp(Z) is a natural isomorphism γ : G −→ G ′ in H such that
η′ ◦ d∗

1γ = d∗
0γ ◦ η.

We first show that p∗ is essentially surjective: let (G, η) ∈ Desp(Z) be any object.We
define a functor F : X −→ Z as follows: first, recalling that p is surjective on objects by
Lemma A.1, we choose a section s : ob(X) −→ ob(P) of the map of objects defined by
p. Then we set F(x) := G(s(x)) ∈ Z for x ∈ X. Now consider a morphismψ : x −→ y
inX. Since p is a Grothendieck fibration,ψ has a lift ̂ψ : x̂ −→ s(y) to a morphism inP
with codomain s(y), where p(̂x) = x . Define F(ψ) : F(x) −→ F(y) via the diagram

F(x) = G
(

s(x)
)

G
(

s(y)
) = F(y)

G (̂x)

η|(s(x),̂x) ∼=

F(ψ)

G(̂ψ )

The naturality of η, together with the two conditions it satisfies and the fact that p is a
Grothendieck fibration in groupoids, imply that F is awell-defined functor. Furthermore,
η establishes an isomorphism p∗F = (F, 1F ) −→ (G, η) in Desp(Z). Thus p∗ is
essentially surjective.

That p∗ is fully faithful follows from its explicit construction and the fact that p is
essentially surjective. ��
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