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The presence of extra dimensions generically modify the spacetime geometry of a rotating black
hole, by adding an additional hair, besides the mass M and the angular momentum J, known
as the ‘tidal charge’ parameter, 8. In a braneworld scenario with one extra spatial dimension,
the extra dimension is expected to manifest itself through — (a) negative values of 8, and (b)
modified gravitational perturbations. This in turn would affect the quasi-normal modes of rotating
black holes. We numerically solve the perturbed gravitational field equations using the continued
fractions method and determine the quasi-normal mode spectra for the braneworld black hole. We
find that increasingly negative values of 3 correspond to a diminishing imaginary part of the quasi-
normal mode, or equivalently, an increasing damping time. Using the publicly available data of
the properties of the remnant black hole in the gravitational wave signal GW150914, we check for
consistency between the predicted values (for a given ) of the frequency and damping time of the
least-damped ¢ = 2, m = 2 quasi-normal mode and measurements of these quantities using other
independent techniques. We find that it is highly unlikely for the tidal charge, 8 < —0.05, providing
a conservative limit on the tidal charge parameter. Implications and future directions are discussed.

I. INTRODUCTION

Our present understanding of gravitational interaction is best described by Einstein’s theory of general relativity
(GR) [1-4]. The results derived from GR are in excellent agreement with observations across a large range of length
scales [5-8]; from weak field tests of gravity, like perihelion precession and lensing, to the strong field, such as
gravitational waves (GWs) from merging compact objects [9-11] or observations of black hole (BH) shadows [12].
However despite its success, GR faces severe theoretical challenges and there are reasons to believe that it should
(possibly) be modified in the very short and very long length scales. These challenges include the incompatibility
between GR and quantum theory [13], presence of spacetime singularities [14, 15], the violation of strong cosmic
censorship conjecture leading to a loss of determinism [16, 17] and, of course, the late time acceleration of the universe
and the cosmological constant problem [18-20], to name a few. Though it is expected that a fully consistent quantum
theory of gravity would ultimately overcome these problems, in the absence of such a theory, an effective approach
is to look for possible alternatives to GR, which may address some of the issues listed above. This has led to the
development of several classes of modified theories of gravity and exploring them in detail has been one of the central
themes of research in gravitational physics (for a small sample of works, see [21-24]).

In general, any correction term to GR, which is consistent with diffeomorphism symmetry, may contribute to
the classical gravitational action. As a result, there is no unique way to modify GR. However, if diffeomorphism
invariance is the only criteria to add new terms to the gravitational action, there would have been an infinite number
of such modified theories of gravity and hence the task of identifying the correct Lagrangian through a finite number
of observations would appear impossible. In this apparently grim situation, the Ostrogradsky instability helps to
eliminate all modified theories of gravity yielding higher order field equations [25], and restricts the form of the
correction terms one may add over and above the Einstein-Hilbert term in GR. Further constraints on these restricted
class of theories, with second order field equations, can be derived by checking their consistency with the observations
in the weak as well as in the strong field regime. In particular, since these corrections over GR are expected to be
dominant in the high energy/small length scale regime, it is necessary to compare various predictions of such modified
theories with some strong gravity observations, as and when they become available. The detections of GWs from
coalescences of compact binary sources like neutron stars and/or BHs [26, 27] by the LIGO-Virgo detectors [28, 29]
provide an excellent opportunity to test, at an unprecedented level, predictions of GR in the highly dynamical strong—
field regimes of gravity [9—11]. In particular, GWs from these merger events allow us to not only test GR in regimes of
extreme gravity, but also constrain parameters of alternative theories. These studies often lead to several interesting

bounds on the magnitudes of possible deviation from GR (for a small sample of references, see [30-36] and references

* akash.mishra@iitgn.ac.in

t abhirup.ghosh@aei.mpg.de
¥ sumantac.physics@gmail.com


mailto:akash.mishra@iitgn.ac.in
mailto:abhirup.ghosh@aei.mpg.de
mailto:sumantac.physics@gmail.com

therein). As an aside, note that, besides GWs, the recent observation involving BH shadow is also a strong field test
of gravitational interaction, which can also provide constraints on deviations from GR [37-39].

In this work, we concentrate on the modifications of GR due to the presence of an extra spatial dimension [40-43] and
try to constrain the same using GW observations. Inclusion of an extra spatial dimension in our usual four dimensional
spacetime has a long history, starting from the attempt of Kaluza and Klein to unify gravity and electromagnetism
(for a review, see [44]). Extra dimensional scenarios came to the limelight again when it was realized that these models
can address the long standing gauge hierarchy problem in high energy physics. The huge gap ~ O(10'7), between
the electroweak scale and the Planck scale — leading to extreme fine-tuning — is known as the gauge hierarchy
problem [45, 46]. This fine-tuning is essential in order to keep the mass of the Higg’s Boson in the electroweak scale
and achieving consistency with the LHC results [47, 48]. Presence of extra spatial dimensions, either through large
volume [45, 49] or through exponential warping [46, 50], can reduce the four dimensional Planck scale to electroweak
scale and hence the fine tuning/gauge hierarchy problem can be avoided. Latter studies have shown several other
contexts having interesting applications of the higher dimensional scenario, which includes — BHs [51-58], cosmology
[59, 60], GWs [17, 35, 61-68] among others. In most of these higher dimensional scenario, the effective gravitational
dynamics in four dimensions, which is a hypersurface in the full higher dimensional spacetime will be different from
that of Einstein gravity. The fact that we are actually living in a higher dimensional spacetime must appear somehow
in our effective four dimensional gravitational dynamics. It is worth mentioning that except gravity, other fields are
taken to be confined to the four dimensional spacetime, while gravity alone can probe the extra dimensions. For
our purpose it will suffice to consider a five dimensional spacetime with a single extra spatial dimension, referred
to as the bulk spacetime, while our four dimensional universe is known as the brane. It is important to emphasize
that the braneworld scenario considered here is general enough to encompass the situation in which the extra spatial
dimension need not be compact. For simplicity we assume Einstein gravity in the bulk spacetime, in which case the
gravitational dynamics on the brane is governed by an appropriate projection of the bulk Einstein’s equations on the
brane, which will have corrections over and above the Einstein term. These corrections are precisely what we wish to
explore. Interestingly, the effective gravitational field equations on the brane exhibits localized BH solutions, which
resemble the Reissner-Nordstrom and the Kerr-Newman solutions of GR, with the crucial difference being the charge
term (often referred to as tidal charge) taking negative values [52, 55, 69, 70]. Note that the tidal charge parameter
is sourced by the extra spatial dimension, such that in the GR limit it identically vanishes. Previous works have
also reported interesting constraints on the tidal charge parameter and consequently on the extra spatial dimension
[35, 39, 71-75]. However as we will see none of these constraints are as robust as we will derive in the present work.
In what follows, we will develop the formalism to constrain the tidal charge parameter of a rotating braneworld BH
using publicly available measurements of GW observations. In particular, by using the measurements of the remnant
properties and (complex) quasi-normal mode (QNM) frequencies of the ringdown signal in the first-ever gravitational
wave event GW150914 [76, 77], we obtain a novel upper bound on the magnitude of the tidal charge.

The rest of the article is arranged as follows: In Section II we briefly review the effective field equations on the brane
and the associated rotating BH solution. The computation of the QNMs associated with a rotating braneworld BH,
using the continued fractions method has been presented in Section III. Finally the comparison with the GW150914
event and the resulting constraint has been presented in Section IV. We conclude with a discussion on our results and
possible future directions.

Notations and Conventions: In this work we will follow the mostly positive signature convention, i.e., the flat
spacetime Minkowski metric in four dimensions takes the form, diag(—1, 1,1, 1). Indices referring to higher dimensional
spacetime are denoted by uppercase Roman letters and the indices for the four dimensional spacetime are represented
by Greek letters. We also set the fundamental constants to unity, i.e., c=1=G.

II. BRIEF REVIEW OF ROTATING BRANEWORLD BLACK HOLE

In this section we will briefly review the effective gravitational field equations on the four dimensional brane and
the geometry of rotating BH solutions arising from the field equations. As emphasized earlier, we consider the
gravitational interaction in the five dimensional bulk spacetime to be described by Einstein gravity. However, the
effective four dimensional description of the gravitational interaction will not be governed by Einstein’s equations,
rather there will be corrections over and above the same. These corrections arise as we project the five dimensional
Einstein’s equations on the four dimensional brane hypersurface using an appropriate projector ha = (5§ — ning,
where ny4 is the unit normal to the brane hypersurface, satisfying nan“ = 1. The projection of the five dimensional
Einstein tensor G4p on the four dimensional brane uses the Gauss-Codazzi and the Mainardi relations, connecting
geometrical quantities in the full spacetime to geometrical quantities in a lower dimensional hypersurface. This results



into the following effective gravitational field equations on the brane [69],

WG, + E,, =81GT,, +11,, . (1)

Here, E,, = WABCDnAefnce,? is the electric part of the bulk Weyl tensor Wagcp, with T}, being the matter
energy-momentum tensor on the brane. Additionally, the tensor II,, appearing in the effective gravitational field
equations presented above, is a quadratic combination of 7}, e.g., it involves terms like, T, T, TT},, etc. Since we
will be interested in vacuum four dimensional spacetime, the matter energy-momentum tensor on the brane would
vanish identically and hence the II,, term will not contribute in the present context. Thus for vacuum brane, the

gravitational dynamics is governed by the following effective equations,
WG+ B =0. (2)

Thus for our purpose the bulk Weyl tensor plays the most important role and is the factor responsible for modifications
to the Einstein’s equations. Note that due to symmetry properties of the Weyl tensor, E,,, is traceless and due to
Bianchi identity it is also divergence free. Both of these properties hold true for electromagnetic stress-tensor as well
and hence the BH solutions arising out of the above effective gravitational field equations very much resemble the
Kerr-Newman family of BHs. With one crucial sign difference — the electromagnetic stress-energy tensor appears on
the right hand side of the field equations — while here E,,,, appears on the left hand side, as evident from Eq. (2). In
particular, the rotating BH solution arising out of the effective field equations on the brane takes the following form
[52, 55, 70],

2 2
ds® = _%(dt —asin?0d¢)® + [dg + d92] + sz O ladt — (2 + a?)dg]® (3)

where, a and M are the spin and mass of the BH respectively, and A = 72 + a? — 2Mr 4+ ¢ and ¥ = 2 4 a2 cos? 6.
Note that, for the case of Kerr-Newman BH, the parameter g can be identified with the square of the BH charge,
i.e., glxkn = Q2. However, in the braneworld scenario, ¢ represents the tidal charge parameter and hence it can take
negative values as well. This is the key feature for the braneworld BHs, which we wish to explore in detail in this
work from the perspective of QNMs.

In addition, we briefly discuss about some other interesting properties of this solution. Since the horizons of the
above solution are located at, r4 = M 4 +/M? — a2 — q, in the non-rotating case with g < 0, there is only one horizon,
in sharp contrast with the case of Reissner-Nordstrom BH. Similarly, in the rotating case, for the existence of horizons,
the rotation parameter must be bounded by (a/M)? < 1— (q/M?), which can be larger than unity for negative values
of ¢. This is again in striking contrast to the case of a Kerr-Newman BH, for which the value of the dimensionless
rotation parameter (a/M) is strictly less than unity. Furthermore, negative value of the tidal charge has implications
in various other astrophysical scenarios, e.g., — (a) the tidal love number of a braneworld BH is non-zero [64], (b)
braneworld BHs cast a bigger shadow and is consistent with the shadow measurement of the supermassive BH M87*
[39], (¢) continuum spectrum as well as quasi-periodic oscillations from accretion disks favours the presence of extra
dimensions [73, 78]. Motivated by these results, we concentrate, in this work, on the implications of a negative tidal
charge parameter on the QNMs. We present the computation of the QNMs for rotating braneworld BH in the next
section.

III. QUASI-NORMAL MODES OF A ROTATING BRANEWORLD BLACK HOLE

The spacetime metric of a rotating BH on the vacuum brane embedded in a higher dimensional spacetime, along
with its physical characteristics have been elaborated in the previous section. In this section, we will outline the
method for the determination of the BH QNMs. Unlike the previous section, here we will assume 2M = 1 for
simplicity of the analysis, however all the factors involving the mass of the BH will be restored, while comparing with
the GW observations in the next section.

We focus on the case of a linear gravitational perturbation of a rotating braneworld BH which, unlike the case of a
Kerr BH, is generically non-separable in the background rotating braneworld spacetime under consideration [79]. We
assume that the gravitational perturbations keep the contribution from the bulk geometry, i.e., E,, unchanged, but
modifies the brane configuration. Under this assumption, for reasonable values of the tidal charge parameter ¢, the
radial and the angular part of the gravitational perturbation also separates, identical to the Kerr-Newman spacetime
[79], which allows us to determine the QNMs of the background BH spacetime. It is worth mentioning that this also
ensures the separability of generic spin ‘s’ perturbation.
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Given the separability of a generic spin ‘s’ perturbation W(t,r, 6, @), it follows that the perturbation can be
decomposed into temporal, radial, angular and azimuthal part as,

(7,0, 0) = Ze W Ry (1) S (0) 7™ (4)

where, ¢ is the angular momentum and m is its z-component, such that m € (—=¢,—¢+1,--- £ — 1,¢), and w is the
QNM frequency. Substituting the above spin ‘s’ perturbation into the linearized gravitational field equations, the
separated radial perturbation Ry, (r) and the angular perturbation Sp,(6) satisfies the following equations on the
braneworld BH spacetime,

d dSem

2
du {(1 —u?) du } + {(awu)Q — 2awsu + 5 4+ Apy — (m + su)*

1 —wu?

:|Sém207 (5)

A (dszﬁm) F(s+1)(2r — 1)(d§fam> + [_ {a® +q+(r = 1)1} {Am +w (a’w — 2am — dirs) }

—i(2r—1)s{w(a®+1?) am}+{amw(a2+r2)}2]]ﬂm—0. (6)

Here the spin parameter s takes values (0, —1, —2) for scalar, electromagnetic and gravitational perturbations respec-
tively and uw = cosf. The separation constant Ay, appearing in both the radial and angular equation reduces to
(£ 4+ 1) — s(s + 1) in the limit of vanishing rotation parameter a. The above pair of differential equations can be
solved to obtain (w, Agy,) by setting appropriate regularity and boundary conditions.

The relevant boundary condition for the angular equation is the finite behaviour of Sy, at the regular singular
points of the angular equation presented in Eq. (5), which are located at (u = 1,—1). Therefore we will employ the
Leaver’s method for solving these differential equations, which effectively is equivalent to finding a series solution to
the angular differential equation, given by Eq. (5). Given the regular singular points, the series solution to the angular
equation can be expressed as,

Sem(u) = e™™(1 +u)k* (1 — k2Zc (I+uw)"™, (7)

where, k| = %|m — s| and ko = %|m + s|. The expansion coefficients ¢,,, appearing in the above series solution, are
related to each other by a three term recurrence relation, which takes the following form,

a1 +7 D¢, +060c, 1 =0, (n=1,2,3,...). (8)

The coefficients agf)7 77(;9) and (5&0 ), appearing in the above recurrence relation for the angular equation are of the

following form,

ol = —2(n+1)(2k; +n+1), (9)
Y = — [a®w? + (s + 1) s+ Agm) + 20 (—2aw + k1 + ko + 1)

—2aw (2k1+s+1)— (ki + k) (ki + ki + D]+ (n—1)n, (10)
09 = 2aw (k) + ko +n+s) . (11)

Alike the series solution to the angular equation, one can obtain a series solution to the radial equation by setting
similar boundary conditions — (a) perturbations are purely ingoing at the BH horizon and (b) perturbations are
purely outgoing at infinity. Thus the series solution, with regular singular points at r = r4, takes the following form,

rT—Tr—

Rin (1) = €7 (7 = 1) ™77 (g1 S0, (D200 (12)
n=0

where, r+ = (1/2)(1 £ b) are the horizon locations. Here, b = /1 —4(a? + ¢) and o1 = (1/b)[w(ry — q¢) — am]. The
coefficients d,, also satisfies a three term recurrence relation, which can be obtained by substituting the above series
solution for the radial perturbation Ry, (r) in the radial perturbation equation, given by Eq. (6), which yields,

oMy +70dy +6Mdy_1 =0,  (n=1,2,3,...). (13)
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Figure 1. In this figure we have plotted the real and imaginary parts of the QNM frequency wpe,, for different choices of the
tidal charge 8. The circled points are for the fundamental £ = 2 = m mode, while the triangle-like points are for the excited
¢ = 3 = m mode. For each value of 3, the points refer to the spin parameter having values, x = 0.1,0.2,0.3,---0.9 (left to
right). As evident, with the increase of |3|, the decrease in (Re wnem) is smaller than the decrease in (Im wpem). See text for
more discussions.

with the coefficients o', v\ and 6\ are given by,

") = (n+1) [ — 2iqwy/—4a? — 4q + 1 + iw+/—4a? —4qg + 1 — 2iam~/—4a? — 4q + 1

+(n+1) (4a2+4q—1)} —(n+1)(4a* +4¢— 1) (s +iw) , (14)
A" = —4atw? — 8aPmw — 4w?\/—4a? — 4q + 1 4 12qw*\/—4a® — 4q + 1

— 2iwy/ —4a? — 4q + 1 + 6iqw+/—4a? — 4q + 1 — dinw+/—4a? —4q + 1

+ 2am [i\/—4a2 “Ag+ 1+ 2v/—4a2 — g+ 1 (w +in) — dqw + w}

+ 12ignwy/—4a? —4q+ 1+ (1 — 4q) [Aem +2n (n + 1) + s + 1]
—4(4¢° — 5¢+ 1) w® +2i(4g — 1)(2n + 1)w

+a? [w {w (8\/—40,2 g +1—20q+ 17) + 4 (\/—4a2 g+ 1+ 2)}
+ 8in {w (\/74a2 g1+ 2) + z}] — (4A g + 80 + 45 + 4) a2 , (15)
60 = (n — 2iw) [— 2iqwy/ —4a? — 4q + 1 + iw/ —4a? — 4q¢ + 1 — 2iam+/ —4a® —4q + 1

+4a2(n+s—iw)]+(n—2iw)(4q—l)(n+s—iw). (16)

Having derived the recurrence relations for the angular and the radial perturbation equations, let us now proceed
to (numerically) solve simultaneously these three-term recurrence relations using the continued fraction method, and
obtain the (complex) QNM frequencies, wyem = 27 frem — iT;g}n, where (fyem, Tnem) represent the frequency and
damping time of the ném-th QNM respectively. Note that each QNM frequency is characterized by the overtone
number n, the angular momentum ¢ and its z-component m. It is worth mentioning that the n in the QNM frequency
refers to the QNM overtone; not to be confused with the dummy variable used in the series expansions of the
perturbations, appearing previously in this section.

The recurrence relations for the angular and radial perturbation, depends on the mass M, the spin a and the tidal
charge parameter q. Hence the QNM frequencies also depend on these hairs. However it is convenient to introduce
the dimensionless parameters Y = (a/M) and B8 = (q/4M?) and hence the real and imaginary parts of the QNM



l,m -8 Wr -Wi Damping  Frequency
time (ms) (Hz)
0 1.039711 0.163690 4.069 248.395
0.05 0.963809 0.163932 4.063 230.261
0.1 0.905704 0.162635 4.096 216.380
0.15 0.858954 0.160679 4.146 205.211
0.2 0.820065 0.158443 4.204 195.920
0.25 0.786925 0.156107 4.267 188.002
0.3 0.758165 0.153765 4.332 181.131
(=9 m =2 0.35 0.732845 0.151463 4.398 175.082
’ 0.4 0.710292 0.149226 4.464 169.694
0.45 0.690011 0.147066 4.529 164.849
0.5 0.671623 0.144988 4.594 160.456
0.55 0.654837 0.142992 4.658 156.446
0.6 0.639422 0.141076 4.722 152.763
0.65 0.625192 0.139238 4.784 149.363
0.7 0.611995 0.137475 4.845 146.210
0.75 0.599706 0.135782 4.906 143.274
0.8 0.58822 0.134157 4.965 140.530
0 1.64959 0.168181 3.92107 394.109
0.05 1.54121 0.16998 3.91915 348.185
0.1 1.45737 0.169987 3.91899 348.185
0.15 1.38932 0.169127 3.93892 331.927
0.2 1.33226 0.167821 3.96959 318.295
0.25 1.283312 0.166279 4.00638 306.003
0.3 1.240552 0.164621 4.04673 296.384
{=3m=3 0.35 1.20269 0.162912 4.08919 287.339
’ 0.4 1.168812 0.161192 4.13282 279.244
0.45 1.138176 0.159484 4.17708 271.924
0.5 1.11029 0.157804 4.22155 265.263
0.55 1.08473 0.156166 4.26599 259.071
0.6 1.061172 0.154556 4.31027 253.528
0.65 1.035172 0.152688 4.36321 247.316
0.7 1.01904 0.151478 4.39785 243.462
0.75 1.000172 0.150121 4.43941 238.930
0.8 0.982296 0.148577 4.48372 234.684

Table I. Numerical values of the real and imaginary parts of the excited QNM (n = 0, = 3 = m) frequencies, along with
the oscillation frequency and damping time, corresponding to the gravitational perturbation (s = —2), for various values
of tidal charge parameter S have been presented. The real and imaginary parts of the QNM frequencies in natural units
have been converted to oscillation frequency in Hz and damping time in ms through the following relations: fnem (Hz) =
(1/27)(c*/2GM)(1 + 2) " (Re wnem) and Tyem (ms) = 10°(2GM/c®)(1 + 2)(Tm wpem) ™

frequencies can be expressed as,

fném = fn[m(MaX76) ) (17)
Tntm = Tnﬁm(MaXaB> . (18)

Therefore, given the mass M and spin y of BH, perhaps the remnant from the merger of two BHs, one can predict the
oscillation frequency and damping time for different values of the tidal charge 8. We calculate the predictions of the
frequencies and damping times for the least-damped (n =0) £ = 2,m = 2 and £ = 3,m = 3 QNMs of a BH of mass
M = 62M and spin x = 0.67 in Table I. These values for the mass and spin are chosen to be close to the median
values of these quantities for the remnant BH of GW150914 [76], the first GW signal observed from the merger of two
(non-spinning) BHs of ~ 30M¢, each. We perform a more detailed consistency check between the QNM predictions
and their observed estimates for GW150914 in the next section.

We also plot the real and imaginary parts of the QNM frequencies for different values of the tidal charge § and
spin x for the fundamental ¢ = 2 = m case and the excited £ = 3 = m case in Fig. 1. As evident, for a given
with an increase of the spin y, the imaginary part of the QNM frequency decreases much slowly compared to the
real part. On the other hand, for a fixed x, with an increase in the tidal charge |8, both the imaginary and the
real part decreases, but the decrease in the real part is smaller compared to the decrease in the imaginary part. As
a consequence the change in the damping time 7,4, is much smaller than in the oscillation frequency fn¢mn. This



behaviour of the oscillation frequency and damping time will be the key to constrain the tidal charge parameter 3,
as we will see in the next section. It is also interesting to note that in the presence of extra dimensions the imaginary
part decreases and hence the perturbations of braneworld BHs are longer lived compared to their four dimensional
counterpart. This is consistent with earlier findings, see e.g. [63, 80, 81].

IV. BOUND ON THE TIDAL CHARGE FROM GW150914

In the previous section, we (numerically) solved the perturbed gravitational field equations using the continued
fraction method and determined the QNM frequencies for a fixed value of the mass and spin of a rotating braneworld
BH. LIGO-Virgo GW parameter inference, on the other hand, is usually performed within a Bayesian framework.
Hence, we end up with a posterior probability distribution on the mass and spin of the remnant BH. In this section,
we use these publicly available LVK measurements of the mass and spin of the remnant object of GW150914 [82] to
provide a preliminary bound on the tidal charge parameter, 3.

The LIGO-Virgo collaborations outlined two complementary Bayesian techniques to measure the remnant BH
properties in [10]. The first approach, called PyRing (see [83, 84] and Section VII A.1 in [10]) infers the remnant
properties by fitting a numerical relativity (NR)-inspired or a theory-agnostic damped-sinusoid ringdown template to
just the post-merger signal. The outcome is a measurement of final mass and spin (or the the complex frequencies)
along with additional phenomenological degrees of freedom to capture deviations from GR predictions. The final mass
and spin measurements are then converted to the QNM frequencies using appropriate fitting formalae [85, 86]. The
second approach, called the pSEOBNRv4HM analysis (see [87] and Section VII A.2 in [10]) attempts to make full use of
the GW modelling by simultaneously measuring the inspiral and ringdown properties. Instead of using NR-inspired
fitting formulae to predict the ringdown frequencies, the method leaves them as free parameters in the model and
estimates them directly from the data. Both these methods are null tests of GR looking for an inconsistency with
the predictions of the theory, and between them, have reported the tightest constraints on the remnant properties
to date [10, 83, 87, 88]. There is also a third reported measurement of the final mass and spin which indeed uses
NR-inspired fitting formulae to predict the final mass and spin, starting from the masses and spins of the initial binary.
These ‘IMR’ estimates use the power in the entire signal without additional free parameters built into the model, and
thus yield the tightest constraints on the measurement of {My.a;}. In this paper, we treat these three methods as
three independent measurements of the remnant BH properties, and check for consistency between them to obtain a
preliminary bound on possible values of § for the gravitational wave signal GW150914. We also restrict ourselves to
just the least damped ¢ = 2 = m mode.

Give a value for (8, one can use the measured distributions of final mass and spin from the PyRing analysis to
predict a distribution on the frequency and damping time, (fa20, 7220) (using Eq. (17) and Eq. (18)), and then check
for their consistency with the pSEOBNRv4HM and IMR measurements of (faa0,7220) as was reported in [87] and [10]
respectively. For the case of § = 0, one gets back the predictions of GR and the three distributions are consistent with
each other, as shown in Fig. 2 and as indeed reported in previous publications [10, 87]. However, for non-zero values
of B one begins to find inconsistencies between the predicted and observed posteriors (Fig. 2). The inconsistencies
increase as we increase the magnitude of 5. For 8 = —0.01 and 8 = —0.025, we find that the predictions of the QNM
frequencies are still consistent, at the 90% credible interval with both the pSEOBNRv4HM and IMR measurements. But
already for 8 = —0.05, we start seeing disagreement with the pSEOBNRv4HM and IMR measurements. Hence, at current
measurement uncertainties, values of the tidal parameter 8 < —0.05 appear to be unlikely.

A major caveat in the above analysis is the use of mass and spin measurements that were made assuming GR as the
null hypothesis. The appropriate implementation would have been to build a complete inspiral-merger-ringdown model
of GWs in the braneworld scenario, including the parameter 8, and use this model to infer (M, x, ) simultaneously
within a Bayesian framework. Unfortunately, such a model is still some way into the future and hence, we restrict
ourselves to measurements assuming GR. The uncertainties in the measurement of ( fa29, T220) in [10, 83, 87] seem to
also suggest that even if the GR predictions are not correct, the actual values might only vary perturbatively from
them. Hence, using the GR measurements as a starting point for our analysis may be considered a safe assumption for
the order-of-magnitude bounds we report on 8. This also allows us to assume that g is not correlated with the (M, x)
measurements, and hence for a given value of 38, we can use the PyRing samples of (M, x) to predict an (f220, T220)
distribution. A more comprehensive study of the correlations between (M, x, 3) is left for future work.

V. DISCUSSION AND CONCLUDING REMARKS

The presence of an extra spatial dimension has distinctive signatures on the four dimensional brane, which manifest
themselves in various regimes, starting from BHs to cosmology. This is because the effective gravitational field
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Figure 2. 90% credible levels of the 2D posterior probability distributions, and the marginalised 1D posterior probability
distributions (with the 90% credible intervals) of the frequency fnem and damping time T,¢m of the £ = 2 = m mode. The
PpSEOBNRv4HM posterior probability distribution is from [87] while the IMR posterior is from [10]. From the above posteriors,
values of 3 S —0.05 seem to be inconsistent with the pSEOBNRv4HM and IMR measurements.

equations on the four dimensional brane gets modified by terms inherited from the higher dimensional spacetime. As a
consequence, the solutions of the effective gravitational field equations on the brane differs from their GR counterparts.
In the present context, for vacuum four dimensional brane spacetime, the gravitational field equations differ from the
Einstein equations by an appropriate projection of the higher dimensional Weyl tensor. As a consequence, it turns
out that the effective gravitational field equations resemble the Einstein-Maxwell system, with an overall negative
sign for the electromagnetic stress tensor. The axisymmetric solution, arising out of this field equations looks like the
Kerr-Newman spacetime, with a negative contribution from the charge term. This drastically changes the spacetime
structure, e.g., one can have the spin of such a rotating braneworld BH to be larger than unity, in striking contrast
to GR.

In this work, we have explored the implications of this charge term on the spacetime geometry through its effect
on the QNM spectra of BHs. We wrote down the differential equations satisfied by the radial and angular parts of a
generic spin ‘s’ perturbation around a background rotating braneworld BH spacetime; and subsequently (numerically)
solved them using the continued fraction method to obtain the (complex) QNM frequencies. These frequencies depend
on the mass M, the dimensionless spin y and the dimensionless tidal charge parameter §, which is negative for the
braneworld scenario (while 8 = Q?/4M?, for the Kerr-Newman spacetime). The remnant object produced in the
merger of two BHs is expected to ring down into a stable final state through the emission of GWs in the form of a
QNM spectra. If an extra spatial dimension is indeed present, the QNM frequencies, (fyem, Tnem ), would be expected
to depend on the tidal charge 8. Hence, we try to provide a preliminary bound on possible values of 5 by checking
for consistency between predictions of ( fpem, Tnem) in the braneworld scenario and publicly available measurements of
the same from the LIGO-Virgo observations, for the first gravitational wave event GW150914. We find that it would
be highly unlikely to have values of 5 < —0.05.

The work in this paper has several possible future directions. Firstly, the constraint on the tidal charge must
translate appropriately to the length of the extra dimension. This requires extending the brane solution to the bulk
spacetime, which we hope to address in future work. Moreover, in this work we have used a single GW observation,
namely GW150914 to impose the constraint on 3, which can presumably be improved if we can combine information
from multiple binary BH GW observations. Besides, modelling both the inspiral and ringdown part within the
braneworld scenario would enable us to perform a full Bayesian analysis on the mass, spin and tidal charge parameter,
without input from GR. We hope to address some of these questions in future work.
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