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Extreme mass-ratio inspirals (EMRIs) detectable by the Laser Interferometer Space Antenna (LISA) are
unique probes of the nature of supermassive compact objects. We compute the gravitational-wave signal emitted
by a stellar-mass compact object in a circular equatorial orbit around a Kerr-like horizonless supermassive object
defined by an effective radius and a reflectivity coefficient. The Teukolsky equations are solved consistently with
suitable (frequency-dependent) boundary conditions, and the modified energy and angular-momentum fluxes are
used to evolve the orbital parameters adiabatically. The gravitational fluxes have resonances corresponding to the
low-frequency quasinormal modes of the central object, which can contribute significantly to the gravitational-
wave phase. Overall, the absence of a classical event horizon in the central object can affect the gravitational-
wave signal dramatically, with deviations even larger than those previously estimated by a model-independent
analysis of the tidal heating. We estimate that EMRIs could potentially place the most stringent constraint
on the reflectivity of supermassive compact objects at the remarkable level of O(10−6)% and would allow to
constrain various models which are not ruled out by the ergoregion instability. In particular, an EMRI detection
could allow to rule out (or provide evidence for) signatures of quantum black-hole horizons with Boltzmann
reflectivity. Our results motivate performing rigorous parameter estimations to assess the detectability of these
effects.

I. INTRODUCTION

The defining feature of a classical black hole (BH) is being
a perfect absorber, since its event horizon is a one-way, null
hypersurface. Thus, any evidence of some partial reflectivity
near a dark compact object would indicate a departure from
the classical BH picture, while an upper bound on the reflec-
tivity could help quantify the “BH-ness” of a dark compact
source [1].

Gravitational-wave (GW) astronomy naturally provides the
ideal setting to constrain the reflectivity of compact sources.
In fact, one might argue that imperfect GW absorption should
be the rule rather than the exception, since event horizons
are very special and all known forms of matter interacts very
weakly with GWs, even in extreme conditions [2–4]. On
the contrary, owing to their horizon, BHs are dissipative sys-
tems which behave like a Newtonian viscous fluid [5–8]. A
spinning Kerr BH absorbs radiation of frequency ω > mΩH
(where m is the azimuthal number of the wave and ΩH is the
BH angular velocity) but amplifies radiation of smaller fre-
quency, due to superradiance (see [9] for a review).

In the last few years several studies explored the possi-
bility to constrain the reflectivity of compact GW sources
(see Refs. [1, 10] for some reviews), mostly modelling
the post-merger “echo” signal from exotic compact ob-
jects (ECOs) [11–21] or deriving projected bounds on the
so-called “tidal heating”, namely the backreaction on the or-
bital motion from the tides raised during the coalescence [22–
24]. In a comparable-mass binary, tidal heating enters the
GW phase at high post-Newtonian order [25], and is there-
fore hard to measure [26]. On the other hand, tidal heating in
extreme mass-ratio inspirals (EMRIs) can produce thousands
of radians of accumulated orbital phase [27–31] while in the
sensitivity band of the future space-based Laser Interferome-
ter Space Antenna (LISA) [32]. Recently, this effect was stud-
ied to develop a test that can place very stringent and model-
independent constraints on the reflectivity of supermassive ob-

jects [31, 33], which adds to other unparalleled EMRI-based
tests of fundamental physics, such as no-hair theorem tests
based on measurements of the multipolar structure of the cen-
tral object [31, 34–38], constraints on extra degrees of free-
dom arising in modified gravity [39–43], and null-hypothesis
tests based on the absence of tidal Love numbers [44]. Alto-
gether, these tests suggest that EMRIs will be unique probes
of the nature of supermassive objects (for recent reviews on
these and other tests, see Refs. [1, 45–47]).

The phenomenological approach of Ref. [31] was to study
a standard BH EMRI dynamics and to parametrize a cer-
tain amount of reflectivity at the object surface in terms of a
constant reflectivity coefficient |R|2, assuming that a fraction
(1− |R|2) of the radiation is absorbed. Clearly, the BH limit
is recovered as R → 0, whereas |R|2 = 1 corresponds to a
perfectly-reflective object. According to the analysis in [31],
EMRIs could provide an unparalleled constraint at the level
of |R|2 . 10−4, much more stringent than current and future
echo searches [1, 18–20].

The main goal of our paper is to improve the analysis of
Ref. [31] by studying a consistent model of compact horizon-
less object, defined by a certain compactness and (possibly
frequency-dependent) reflectivity coefficient, which in turn
modify the boundary conditions for radiation at the surface.
In our model, tidal heating and partial reflection are not im-
posed by hand, but rather arise automatically from the bound-
ary conditions. The latter also generically affect the dynamics
as well as the quasinormal modes (QNMs) of the central ob-
ject [3, 4, 21, 48]. The QNM spectrum typically contains low-
frequency modes arising from long-lived, quasibound states,
which might be resonantly excited during the inspiral [49–
52]. The role of these resonances in the EMRI dynamics was
studied in Ref. [51] for a perfectly-reflecting, nonspinning,
quasi-Schwarzschild horizonless object, for which an analyt-
ical treatment of the problem is possible (see also Ref. [52]
for a more recent study). Our framework allows to extend
the analysis of Ref. [51] to the case of generic (and possi-
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bly frequency-dependent) reflectivity coefficient and generic
spin. As we shall show, at variance with the case studied
in Ref. [51], in more generic situations the presence of reso-
nances can provide an important contribution to the EMRI dy-
namics. We shall also show that, by taking a consistent model
into account, the already very stringent potential bounds de-
rived by Ref. [31] can be further improved by some orders of
magnitude. Finally, we show that EMRI detections have the
potential to rule out (or provide observational hints of) mod-
els of quantum-gravity BH horizons featuring a (frequency-
dependent) Boltzmann reflectivity [53].

The rest of this paper is organized as follows. In Sec. II
we present our analytical and numerical framework, which
relies on solving the EMRI dynamics around an ECO to lead-
ing order in an adiabatic expansion. We present our results in
Sec. III and finally conclude in Sec. IV. Through this work,
we use G = c = 1 units.

II. SETUP

A. A model for a Kerr-like horizonless object

We analyze a spinning compact horizonless object whose
exterior spacetime is described by the Kerr metric [3, 13, 54].
The vacuum region outside a spinning object is not necessar-
ily described by a Kerr geometry due to the absence of the
Birkhoff’s theorem beyond spherical symmetry. However, in
the BH limit any deviation from the multipolar structure of
a Kerr BH dies off sufficiently fast within General Relativity
or if modified-gravity1 effects are confined near the compact
object [55]. Explicit examples of this “hair-conditioner the-
orem” are given in Refs. [56–61]. In this case, a spinning
horizonless object with a compactness close to the BH one
can be described by the Kerr metric in the exterior spacetime
and the properties of the interior can be modelled in terms of
a reflectivity coefficient.

In Boyer-Lindquist coordinates, the line element outside
the compact object reads

ds2 = −
(

1− 2Mr

Σ

)
dt2 +

Σ

∆
dr2 − 4Mr

Σ
a sin2 θdφdt

+ Σdθ2 +

[
(r2 + a2) sin2 θ +

2Mr

Σ
a2 sin4 θ

]
dφ2 , (1)

where Σ = r2 + a2 cos2 θ and ∆ = r2 + a2 − 2Mr, with
M and J ≡ aM the total mass and spin of the object, respec-
tively. We shall consider a horizonless compact object whose
radius is located at

r0 = r+(1 + ε) , (2)

where r+ = M +
√
M2 − a2 is the location of the would-be

horizon. Let us notice that the parameter ε is related to the

1 Furthermore, in gravity theories with higher curvature corrections to Gen-
eral Relativity, the metric of a supermassive object is generically expected
to be Kerr [43].

compactness of the object, namely M/r0 ≈ M/r+(1 − ε)
when ε � 1. Motivated by models of microscopic correc-
tions at the horizon scale, we shall mostly focus on the case
in which ε � 1. For example, if r0 ∼ r+ + lP (where lP
is the Planck length, as suggested by some quantum-gravity
inspired models [62]), then ε ∼ 10−44 for a compact object
with M ∼ 106M� and spin a/M = 0.9.

The properties of the interior are parametrized in terms of a
complex and frequency-dependent reflectivity coefficient R.
The R = 0 case describes a totally absorbing compact object
(which reduces to the standard BH case when ε→ 0), whereas
the |R|2 = 1 case describes a perfectly reflecting compact
object. Intermediate values of R describe partially absorbing
compact objects due to viscosity or dissipation within the ob-
ject [3, 4, 14, 19, 21, 53].

B. Linear perturbations from a point particle

Let us consider the case of a point-like source orbiting
around a central object (either a Kerr BH or a Kerr-like ECO)
in a circular equatorial orbit. In line with the previous dis-
cussion, we assume that in the exterior of the object General
Relativity is valid, at least approximately (this does not pre-
vent beyond-General-Relativity corrections in the object inte-
rior and at the horizon scale, which can be parametrized by the
reflectivity coefficient). Therefore, gravitational perturbations
in the exterior can be described as in the Kerr BH case. We
analyze the gravitational perturbation in the Newman-Penrose
formalism.2 The Weyl scalar Ψ4 can be expanded as

Ψ4 = ρ̂4
∑
`,m

∫ ∞
−∞

dωR`mω(r)−2S`mω(θ)ei(mφ−ωt) , (3)

where ρ̂ = (r − ia cos θ)−1 and the sum runs over ` ≥ 2
and −` ≤ m ≤ `. The radial wavefunction R`mω(r) and the
spin-weighted spheroidal harmonics −2S`mω(θ)eimφ obey to
the Teukolsky’s master equations [65–67]

∆2 d

dr

(
1

∆

dR`mω
dr

)
− V (r)R`mω = T`mω , (4)[

1

sin θ

d

dθ

(
sin θ

d

dθ

)
+ a2ω2 cos2 θ −

(
m− 2 cos θ

sin θ

)2

+ 4aω cos θ − 4 + −2A`mω

]
−2S`mω = 0 , (5)

where the effective potential reads

V (r) = −K
2 + 4i(r −M)K

∆
+ 8iωr + λ , (6)

with K = (r2 + a2)ω − am, and the separation constants λ
and −2A`mω are related by λ ≡ −2A`m− 2amω+ a2ω2− 2.

2 Very recently, using the Sasaki-Nakamura perturbations, a similar formal-
ism was used to study a point particle plunging onto a spinning com-
pact horizonless object in the context of developing accurate echo wave-
forms [63] (see also Ref. [64]).
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The polar part of the spin-weighted spheroidal harmonics is
normalized such that∫ 1

−1

|−2S`mω(cos θ)|2 d cos θ = 1 . (7)

The source term T`mω is constructed by projecting the stress-
energy tensor Tαβ of a point-like source with respect to the
Newman-Penrose tetrad, where [68]

Tαβ = µ
uαuβ

Σ sin θut
δ (r − r(t)) δ (θ − θ(t)) δ (φ− φ(t)) ,

(8)
with µ being the mass of the small orbiting body, uα =
dzα/dτ , zα = (t, r(t), θ(t), φ(t)) is the geodesic trajectory,
and τ is the particle proper time. We define the mass ratio of
the system as q = µ/M . In the case of circular equatorial or-
bits, θ(t) = π/2 and, for co-rotating orbits, the orbital radius
is related to the orbital angular frequency by

Ω =
√
M/(a

√
M + r3/2) . (9)

Equation (4) can be solved through the standard Green’s
function method using the solutions of the homogeneous
Teukolsky’s equation.

1. BH case

Let us first review the standard BH case. Owing to the pres-
ence of a horizon, the two independent homogeneous solu-
tions have the following asymptotic behavior

Rin
`mω ∼

{
Btrans
`mω ∆2e−ikr∗ as r∗ → −∞

r3Bref
`mωe

iωr∗ + r−1Binc
`mωe

−iωr∗ as r∗ → +∞
,

(10)

Rup
`mω ∼

{
Cup
`mωe

ikr∗ + ∆2Cref
`mωe

−ikr∗ as r∗ → −∞
r3Ctrans

`mω e
iωr∗ as r∗ → +∞

,

(11)
where k = ω−mΩH , ΩH = a/(2Mr+) is the angular veloc-
ity at the horizon of the Kerr BH, and the tortoise coordinate
is defined such that dr∗/dr = (r2 + a2)/∆. The inhomoge-
neous solution of the Teukolsky’s equation (4) is constructed
as [68]

R`mω =
1

W`mω

{
Rup
`mω(r)

∫ r

r+

dr′
T`mω(r′)Rin

`mω(r′)

∆2(r′)

+ Rin
`mω(r)

∫ ∞
r

dr′
T`mω(r′)Rup

`mω(r′)

∆2(r′)

}
, (12)

where W`mω is the Wronskian given by

W`mω = ∆−1

(
Rin
`mω

dRup
`mω

dr
−Rup

`mω

dRin
`mω

dr

)
= 2iωCtrans

`mω B
inc
`mω . (13)

The inhomogeneous solution in Eq. (12) has the following
asymptotic behavior

R`mω ∼

{
ZH`mω∆2e−ikr∗ as r∗ → −∞
Z∞`mωr

3eiωr∗ as r∗ → +∞
, (14)

where

ZH`mω = CH`mω

∫ ∞
r+

dr′
T`mω(r′)Rup

`mω(r′)

∆2(r′)
, (15)

Z∞`mω = C∞`mω

∫ ∞
r+

dr′
T`mω(r′)Rin

`mω(r′)

∆2(r′)
, (16)

and

CH`mω =
Btrans
`mω

2iωCtrans
`mω B

inc
`mω

, C∞`mω =
1

2iωBinc
`mω

. (17)

The amplitudesZH`mω andZ∞`mω determine the gravitational
energy fluxes emitted at infinity and through the horizon [67,
69]:

Ė∞ =
∑
lm

|Z∞`mω|2

4π(mΩ)2
, (18)

ĖH =
∑
lm

α`m|ZH`mω|2

4π(mΩ)2
, (19)

where

α`m =
256(2Mr+)5k(k2 + 4$2)(k2 + 16$2)(mΩ)3

|c`m|2
,

(20)
with $ =

√
M2 − a2/(4Mr+) and

|c`m|2 = [(λ+ 2)2 + 4ma(mΩ)− 4a2(mΩ)2]

× [λ2 + 36ma(mΩ)− 36a2(mΩ)2]

+ (2λ+ 3)[96a2(mΩ)2 − 48ma(mΩ)]

+ 144(mΩ)2(M2 − a2) . (21)

For circular equatorial orbits, the angular momentum fluxes
are related to the energy fluxes at infinity and at the horizon
by J̇∞,H = Ė∞,H/Ω.

In the BH case, the total energy flux emitted by a point
particle in a circular equatorial orbit with orbital angular fre-
quency Ω is

Ė(Ω) = Ė∞(Ω) + ĖH(Ω) , (22)

where Ė∞(Ω) and ĖH(Ω) are defined in Eqs. (18) and (19),
respectively.

2. Horizonless case

As discussed above, we assume that, at least in the exterior
of the central object, General Relativity is a valid approxima-
tion. Therefore for r > r0 the perturbations equations are the
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same as in the Kerr BH case, and possible corrections can be
incorporated in the boundary conditions for the gravitational
radiation at the effective radius.

The physical interpretation of the inner boundary condition
is more evident by adopting the Detweiler’s function [70]

X`mω =

(
r2 + a2

)1/2
∆

[
α(r) R`mω + β(r)∆−1 dR`mω

dr

]
,

(23)
where α(r), β(r) are certain radial functions [4, 70]. Indeed,
since any signal is totally absorbed, in the BH case the physi-
cal solution is a purely ingoing wave near the horizon,

X`mω ∼ e−ikr∗ as r∗ → −∞ , (24)

In the case of an ECO, the solution near the surface (r ∼
r0) is more involved and depends also on the value of ε [21].
Assuming ε � 1, the effective potential in the Teukolsky’s
equation is constant near the surface, V ≈ −k2, so that the
perturbation is a superposition of ingoing and outgoing waves
at the ECO radius

X`mω ∼ Aine
−ikr∗ +Aoute

ikr∗ as r∗ → r0
∗ , (25)

where r0
∗ ≡ r∗(r0). One can therefore define the surface re-

flectivity of the ECO as [4]

R(ω) =
Aout

Ain
e2ikr0∗ . (26)

Perfectly reflecting objects have |R(ω)|2 = 1, i.e., R(ω) =
eiψ(ω) for an arbitrary (real) frequency-dependent phase ψ.
Two notable examples of perfectly-reflecting boundary condi-
tions are{

X`mω(r0) = 0 Dirichlet, R = −1
dX`mω(r0)/dr∗ = 0 Neumann, R = 1

, (27)

corresponding to ψ = π and ψ = 0, respectively. In general,
a partially absorbing compact object is described by

dX`mω/dr∗
X`mω

∣∣∣∣
r0

= −ik 1−R(ω)

1 +R(ω)
, (28)

which reduces to the BH boundary condition whenR = 0.
In the ECO case, the solutions of the homogeneous Teukol-

sky’s equation are such that the ‘up’ modes have the same
asymptotics as in Eq. (11), whereas the ‘in’ modes have the
following asymptotics

Rin
`mω ∼

{
B′trans
`mω ∆2e−ikr∗ + C ′up

`mωe
ikr∗ as r∗ → r0

∗
r3B′ref

`mωe
iωr∗ + r−1B′inc

`mωe
−iωr∗ as r∗ → +∞

,

(29)
where

B′trans
`mω = Btrans

`mω + c1C
ref
`mω , (30)

C ′up
`mω = c1C

up
`mω , (31)

B′ref
`mω = Bref

`mω + c1C
trans
`mω , (32)

B′inc
`mω = Binc

`mω , (33)

and the coefficient c1 is determined by imposing the boundary
condition in Eq. (28) with

R`mω = Rin
`mω + c1R

up
`mω . (34)

The inhomogeneous solution of the Teukolsky’s function is
derived as in Eq. (12), with Rin

`mω as in Eq. (29) and Rup
`mω as

in Eq. (11), and has the following asymptotic behavior

R`mω ∼

{
ZH`mω∆2e−ikr∗ + Zout

`mωe
ikr∗ as r∗ → r0

∗
Z∞`mωr

3eiωr∗ as r∗ → +∞
,

(35)
where

Zout
`mω =

B′ref
`mω

B′trans
`mω

ZH`mω , (36)

and the energy flux emitted outside the ECO radius is [67]

Ėout =
∑
lm

ω

4πk(2r+/M)3(k2 + 4$2)
|Zout
`mω|2 , (37)

In the ECO case, the energy flux emitted at infinity is defined
in Eq. (18), whereas the energy flux emitted at the ECO radius
is defined as

Ėradius = ĖH − Ėout , (38)

which reduces to Ėradius = ĖH in the case of R = 0. When
|R(ω)|2 = 1, the outgoing flux is equal to the ingoing flux
at the ECO radius and Ėradius = 0, as expected from fully
reflecting boundary conditions.

In the ECO case, the total energy flux emitted by a point
particle in a circular equatorial orbit is

Ė(Ω) = Ė∞(Ω) + Ėradius(Ω) , (39)

where Ė∞(Ω) and Ėradius(Ω) are defined in Eqs. (18)
and (38), respectively.

C. Adiabatic evolution and waveform

In an EMRI the radiation-reaction time scale is much longer
than the orbital period so – at the first order in the mass ra-
tio – the orbital parameters can be evolved using an adiabatic
expansion [71]. For a particle in a circular equatorial and co-
rotating orbit, the evolution of the orbital angular frequency Ω
and the orbital phase φ are governed by

Ω̇ = −
(
dEb
dΩ

)−1

Ė(Ω) , (40)

φ̇ = Ω , (41)

where Eb is the binding energy of the system

Eb = µ
1− 2v2 + χv3√
1− 3v2 + 2χv3

, (42)
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with χ = a/M , v ≡
√
M/r, r is the orbital radius which is

related to the orbital angular frequency via Eq. (9), and Ė(Ω)
is the total energy flux defined in Eqs. (22) and (39) in the BH
and in the ECO case, respectively.

Equations (40), (41) can be solved with some initial con-
ditions Ω(t = 0) = Ω0 and (without loss of generality)
φ(t = 0) = 0. The GW phase of the dominant mode is related
to the orbital phase by φGW = 2φ. The GW dephasing accu-
mulated up to a certain time between the BH case and ECO
case is computed as [31]

∆φ(t) = φBH
GW(t)− φECO

GW (t) . (43)

The emitted waveform is computed from the Weyl scalar at
infinity and reads [27, 72]

h+ − ih× =− 2√
2π

µ

D

∑
`,m

Z∞`mω(t)

[mΩ(t)]
2 e
im(Ω(t)rD∗ −φ(t))

× −2S`mω(ϑ, t)eimϕ , (44)

where D is the source luminosity distance from the detector,
rD∗ ≡ r∗(D), and (ϑ, ϕ) identify the direction, in Boyer-
Lindquist coordinates, of the detector in a reference frame
centered at the source. Since the initial phase is degener-
ate with the azimuthal direction, we simply rescale the initial
phase as ϕ ≡ φ(t = 0).

Note that, regardless of its reflectivity, an ultracompact ob-
ject can efficiently trap radiation within its photon sphere [11,
12, 73]. If radiation is trapped for enough time, it can con-
tribute to the energy balance used to evolve the orbit adiabat-
ically, thus mimicking the effect of a horizon even in the ab-
sence of dissipation within the object. However, this energy
trapping at the photon sphere is not effective for a particle in
circular orbit if [26, 31]

ε� exp

− 5
√

1− χ2

64q
(

1 +
√

1− χ2
)
 . (45)

Owing to the mass-ratio dependence, this condition is always
satisfied in the EMRI limit (q . 10−5) for any realistic value
of ε and χ. Therefore for an EMRI the only way to absorb
radiation near the central ECO is by dissipating in its interior,
i.e. when |R|2 < 1.

Spinning horizonless Kerr-like objects are affected by the
so-called ergoregion instability [74, 75] when spinning suf-
ficiently fast [3, 4, 76–78]. In this case the central object
would spin down reaching a stable configuration. The in-
stability time scale can be shorter than the orbital period and
would affect the dynamics of the point particle. Since unsta-
ble solutions should not form in the first place or anyway do
not live enough to form an EMRI, we shall focus our anal-
ysis on stable Kerr-like horizonless objects only. Stability
is reached by assuming partially absorbing compact objects
(R < 1) [4] or specific models for the frequency-dependent
reflectivity R(ω) [53], so that the net absorption of the rele-
vant frequencies is higher than the superradiant amplification
that leads to the ergoregion instability [3, 4].

Finally, note that horizonless compact objects contain low-
frequency modes in their spectrum, which are associated with
long-lived quasibound states efficiently confined within the
object photon sphere [3, 4, 21, 73]. At variance with the BH
case, these low-frequency modes can be excited during a qua-
sicircular inspiral when the orbital frequency equals the QNM
frequency, leading to resonances in the fluxes [49–52]. As
discussed in Sec. III, these resonances can be very narrow and
require very high resolution in order to resolve them.

D. Overlap

Although the dephasing ∆φ between two different wave-
forms (h1(t) and h2(t)) is a useful and quick measure to esti-
mate the impact of different effects, a somewhat more reliable
and robust measure to assess the measurability of any devia-
tion from a standard reference signal is given by the overlap:

O(h1|h2) =
〈h1|h2〉√

〈h1|h1〉 〈h2|h2〉
, (46)

where the inner product 〈h1|h2〉 is defined by

〈h1|h2〉 = 4<
∫ ∞

0

h̃1h̃
∗
2

Sn(f)
df , (47)

and Sn(f) is the GW detector noise power spectral density,
and the tilded quantities and the star stand for the Fourier
transform and complex conjugation, respectively. For the
power spectral density we adopted the LISA curve of Ref. [79]
adding the contribution of the confusion noise from the unre-
solved Galactic binaries for a one year mission lifetime. Since
the waveforms are defined up to an arbitrary time and phase
shift, it is also necessary to maximize the overlap in Eq. (46)
over these quantities. In practice this can be done by comput-
ing [80]

O(h1|h2) =
4√

〈h1|h1〉 〈h2|h2〉
max
t0

∣∣∣∣∣F−1

[
h̃1h̃

∗
2

Sn(f)

]
(t0)

∣∣∣∣∣ ,
(48)

where F−1[g(f)](t) =
∫ +∞
−∞ g(f)e−2πiftdf is the inverse

Fourier transform. The overlap is defined such that O = 1
indicates a perfect agreement between two waveforms. It is
also customary to define the mismatchM≡ 1−O.

E. Numerical procedure

We have studied the dynamics of a point particle in a cir-
cular equatorial orbit around a Kerr-like ECO by adapting
the frequency-domain Teukolsky code originally developed
in Refs. [81–84]. In particular, the solutions to the homoge-
neous Teukolsky’s equation are calculated via the numerical
Mano-Suzuki-Takasugi method [68, 85–87]. The use of this
method gives full analytical control over the boundary condi-
tions, making it perfectly suited for our purpose. We have
modified the (frequency-dependent) boundary conditions at
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r = r0 in terms of R and ε as discussed in Sec. II B, com-
puted the energy and angular-momentum fluxes at infinity and
through the object’s surface, and finally evolved the quasi-
circular orbit adiabatically by integrating Eqs. (40) and (41).

Our algorithm is the following:

1. Choose the intrinsic parameters of the binary, namely
the central mass M , the mass ratio q � 1, the primary
spin χ, the reflectivityR(ω) and the compactness of the
central object and the initial orbital radius.

2. For a given ` = m mode, produce the data for a bound
orbit with orbital radius r and compute the energy fluxes
in the cases of a central BH and a central ECO, respec-
tively.

3. Loop on the orbital radii with an equally spaced (radial)
grid starting from the ISCO radius to r = 10M .

4. Find the local maxima and minima in the energy fluxes
at infinity for a central ECO. If present, these extrema
bracket resonances in the flux, which should be resolved
by increasing the grid resolution. Note that the initial
equally-spaced grid in the orbital radii needs to be dense
enough to find local maxima and minima. For this rea-
son, we set the initial discretization in the orbital radii
to be 0.003M .

5. Refine the grid on the orbital radii around local maxima
and minima through bisection until a target accuracy is
reached. The refinement of the grid stops either when
the difference between two subsequent orbital radii is
< 10−5M or when the difference in the energy fluxes
of two subsequent points is < 10−5q2.

6. For a given ` and each m = ` − 1, ..., 1 loop on the
orbital radii with an equally spaced grid from the ISCO
radius. The loop stops when the total energy flux of the
central BH is smaller than 10−6 times the total energy
flux of the central BH for the ` = m dominant mode.

7. For a given ` and each m = ` − 1, ..., 1 repeat steps 4
and 5.

8. For the harmonic index ` = 2, ..., `max = 12 repeat the
steps 2 to 7.

9. For each `,m mode, interpolate the total energy flux as
function of the orbital angular frequency.

10. Sum over the modes and integrate Eqs. (40) and (41)
to compute the orbital phase both in the BH and in the
ECO cases. The initial condition on the orbital angular
frequency is Ω0 = Ω(r = 10M) and the integration
stops at the inspiral-plunge transition frequency [88]
Ω(tmax) = Ω(r = rISCO + 4q2/3).

The gravitational waveform is computed via Eq. (44),
where for the modes with negative m we make use of the fol-
lowing symmetries

Z∞`−mω = (−1)` (Z∞`mω)
∗
, (49)

−2S`−mω(ϑ) = (−1)` −2S`mω(π − ϑ) . (50)

For each `,m mode the asymptotic amplitudes at infinity and
the spin-weighted spheroidal harmonics are interpolated func-
tions of the time-dependent orbital angular frequency. The
waveform is constructed by summing over the modes with
` ≤ 4 and −` ≤ m ≤ `. In the cases of small reflectivity
(|R|2 ≤ 10−6) the waveform is constructed by summing over
the `,m modes until ` = 5.

We tested our code by reproducing standard results for the
Kerr BH case [27–30]. Furthermore, we reproduced the re-
sults of Ref. [31] for a Kerr-like ECO using the same assump-
tions, i.e., we considered the Kerr BH case and artificially im-
pose that only a fraction (1−|R|2) of the radiation is absorbed
at the surface.

The fractional truncation error of the code is estimated
in the dephasing as ∆tr = 1 − ∆φ`max+1(tf )/∆φ`max

(tf ),
where the energy fluxes are truncated at `max = 12 and tf
is the time at which the orbital radius is r = rISCO + 4q2/3.
For a reference compact object with χ = 0.9, |R|2 = 0.9,
ε = 10−10, and q = 3× 10−5, we find ∆tr = 2× 10−5.

III. RESULTS

In this section we present our main results. In
Secs. III A, III B, III C we consider an agnostic model with
generic values of ε andR. In Sec. III D, we shall specialize to
the Boltzmann reflectivity model of Ref. [53].

A. Energy fluxes and resonances

ECO ℛ=-1
ECO ℛ=+1
Kerr

0.05 0.10 0.15 0.20
0.00

0.05

0.10

0.15

MΩ

q-
2 E
 22

FIG. 1. Total energy flux of the ` = m = 2 mode as a function
of the orbital angular frequency for a point particle in quasicircular
equatorial orbit from r = 10M to r = rISCO. We compare the
case of a central Kerr BH with spin χ = 0.9 to the case of a central
ECO with a perfectly reflecting surface (|R|2 = 1), χ = 0.9, and
ε = 10−10. In the latter case the flux is resonantly excited when the
orbital frequency matches the low-frequency QNMs of the ECO.

Let us start by discussing the modified energy flux in the
case of a spinning horizonless compact object. As a repre-
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sentative example, Fig. 1 shows the ` = m = 2 compo-
nent of the total energy flux as a function of the orbital fre-
quency for ε = 10−10, χ = 0.9, and for two choices (Dirich-
let and Neumann) of perfectly-reflecting boundary conditions.
As expected, the flux is resonantly excited when the fre-
quency matches the low-frequency QNMs of the central ECO
(Ω = ωR/m). This is a striking difference with respect to the
BH case, since the Kerr QNMs have higher frequencies and
cannot be resonantly excited by quasicircular inspirals. In the
small-ε limit, the Dirichlet and Neumann modes are described
by [4]

ωR ∼ −
π(p+ 1)

2|r0
∗|

+mΩH , (51)

ωI ∼ −
βl
|r0
∗|

(
2Mr+

r+ − r−

)
[ωR(r+ − r−)]

2l+1
(ωR −mΩH) ,

(52)

where r± = M ±
√
M2 − a2,

√
βl = (l+2)!(l−2)!

(2l)!(2l+1)!! , and
p is an odd (even) integer for Neumann (Dirichlet) modes.
As shown in Fig. 1, for fixed χ and ε the modes are equi-
spaced with ∆ωR = π/|r0

∗|, whereas consecutive Dirichlet
and Neumann mode frequencies are separated by half this
width. The difference between consecutive resonances scales
as ∆ωR ∼ | log ε|−1, therefore the resonances are denser in
the ε→ 0 limit.

Interestingly, the resonances appear at the same frequen-
cies in all the individual fluxes: Ė∞, ĖH , and Ėout. This is
due to the fact that the QNMs are associated to the poles of
the Wronskian appearing in each solution of the Teukolsky’s
equation. However, when |R|2 = 1 the fluxes ĖH and Ėout

are exactly equal to each other since in this case Ėradius = 0.
Therefore for the perfectly reflecting case resonances appear
only in the flux at infinity.

Equation (52) shows that ωI � ωR, which implies that the
resonances are typically very narrow and hard to resolve [49,
51, 52]. The energy flux across a single resonance is very well
fitted by a forced harmonic oscillator model [89]

ĖECO

ĖBH

=
[(1− b)(mΩ)2 − ω2

R − ω2
I ]2 + (2mΩωI)

2

(mΩ− ω2
R − ω2

I )2 + (2mΩωI)2
,

(53)
where b = 1−(Ωmax/Ωmin)2, and Ωmax and Ωmin are the or-
bital angular frequencies of the maximum and the minimum
of each resonance. The width of each resonance in the or-
bital frequency scales as δΩ ∼ ωI [51], where ωI ∼ ω2l+2

R
from Eq. (52). It follows that the width of the resonances in-
creases with the orbital angular frequency as shown in Fig.1.
In the nonspinning and perfectly reflecting case we recover
the results of Ref. [51], namely that low-frequency resonances
do not contribute significantly to the GW phase (see Ap-
pendix A). However, as discussed below, for highly spin-
ning compact objects, the ISCO frequency occurs at higher
frequencies with respect to the nonspinning case and higher-
frequency resonances can be efficiently excited, contributing
a significant dephasing with respect to the BH case.

The system shown in Fig. 1 is purely indicative, since for
this choice of the parameters the central ECO is unstable and

-q-2E 22
radius

-q-2E 22
radius,TH

q-2E 22
∞

E 22
∞,TH

0.05 0.10 0.15 0.20
10-10

10-8

10-6

10-4

0.01

MΩ

FIG. 2. Energy fluxes emitted at the radius and at infinity by a point
particle around a central ECO with χ = 0.9, ε = 10−10, and R =√

0.9 for the ` = m = 2 mode. The fluxes are compared with those
of Ref. [31] in which the effect of the ECO was accounted for by
simply removing a fraction (|R|2 of the tidal heating (TH) from a
standard Kerr EMRI flux.

would tend to spin down on short time scales [3, 4]. This is
also shown by the fact that ωI in Eq. (52) is positive (ωR <
mΩH ), as expected due to the ergoregion instability. Stable
solutions require either smaller values of the spin or partial
absorption [3, 4]. In all these cases the resonances are less
evident, as shown in Fig. 2, where we considered a model with
|R|2 = 0.9, a value that guarantees stability for χ = 0.9 [4].

Several comments are in order. First of all, also for a
smaller reflectivity we observe resonances in Ė∞ as in the
perfectly-reflecting case of Fig. 1: in this case they are less
peaked but, as shown below, could still have a sufficiently
large width to be efficiently excited. Second, the same reso-
nant frequencies appear also in Ėradius. This is due to the fact
that for |R| < 1 the fluxes ĖH and Ėout do not exactly com-
pensate each other, leaving a net flux at the ECO radius that
can be resonantly excited. Near the resonances and at high
frequencies, this flux is comparable to Ė∞ and contributes
significantly to the GW phase.

Finally, in Fig. 2 we also show the fluxes at infinity and
at the ECO radius computed with the simplified model of
Ref. [31], i.e., by artificially removing a fraction (|R|2) of
the tidal heating from a standard EMRI flux around a central
Kerr BH. We observe that the energy flux at infinity in this
case is similar to the exact result, except for the presence of
the resonances (which are absent in the model of Ref. [31]).
On the other hand, the energy flux at the radius can change
significantly. Due to the presence of the resonances, Ėradius

computed in Ref. [31] is, roughly speaking, a sort of averaged
value of the exact result. The latter is modulated by the pres-
ence of resonances, which can be as high as the flux at infinity.

In Fig. 3 we show the difference between the total energy
flux of the ` = m = 2 mode in the horizonless case with
respect to the BH case. In particular, the left panel shows
the absolute value of this quantity in a logarithmic scale, in
order to appreciate the relatively small numbers involved. In
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FIG. 3. Difference between the total energy flux of the ` = m = 2 mode in the ECO case with respect to the BH case. Left panel: absolute
value of the difference for χ = 0.8, ε = 10−10, and several values of the reflectivity. The dotted lines are the estimated differences in the total
energy flux due to the absence of tidal heating relative to the BH case as in Ref. [31]. Right panels: same as in the left panel but without the
absolute value and in a linear scale, to appreciate the change of sign during the oscillations associated with the resonances.

the right panel grid, instead, we show the same quantity in a
linear scale and without the absolute value, to appreciate the
change of sign during the oscillations.

For |R|2 ≈ 1 the differences between the consistent model
and the model of Ref. [31] are due to two factors: the ex-
citation of resonances and the (subleading) fact that the flux
computation in the consistent model is more accurate, since
it accounts for the fraction of the GWs that are reflected by
the object and make their way to infinity rather than being
reabsorbed by the particle, as implicitly assumed in [31]. Fur-
thermore, for smaller values of the reflectivity, the difference
between our consistent model and the simplified one is even
more important. In this case the resonances are suppressed
in amplitude but still appear in the total energy flux with a
larger width, as shown in the left panel of Fig. 3. The right
panel grid in Fig. 3 shows the oscillatory trend of the total
energy flux in the horizonless case compared to the energy
flux in Ref. [31] for small reflectivities. The amplitude of the
oscillations increases with the orbital angular frequency and
descreases with the reflectivity. These oscillations are related
to the resonances and, as we shall see in Sec. III B, they can
contribute significantly to the GW phase also for small values
ofR.

Interestingly, when the superradiance condition, Ω < ΩH ,
is met, the flux at the radius can be negative, due to superra-
diant energy and angular-momentum extraction from the cen-
tral object [9]. Since Ėradius and Ė∞ have the opposite sign,
it is interesting to check if they can exactly compensate each
other at some given frequency, giving rise to a total zero flux
and hence to “floating” orbits [90, 91]. As clear from Fig. 2,
limiting to the case of ` = m = 2 mode only such orbits
would exist. However, they exist only near high-frequency
resonances, where Ėradius (which is typically subdominant)
can be as large (in absolute value) as Ė∞. When including
the contribution of ` > 2 multipoles, we find that the total flux
at infinity is larger than the flux at the radius, because modes
with different (`,m) are resonantly excited at different fre-

quencies. The net result is that the total flux, Ė∞ + Ėradius,
is overall positive and the orbit shrinks during the adiabatic
evolution.

B. Dephasing

|ℛ 2=0.9
|ℛ 2=0.9 TH
|ℛ 2=0.1

|ℛ 2=0.1 TH
|ℛ 2=10-3

|ℛ 2=10-3 TH
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FIG. 4. GW dephasing between the BH and the ECO case as a
function of time for χ = 0.8, q = 3 × 10−5, ε = 10−10, and
several values of the reflectivity. The dotted lines show the dephas-
ing due to the absence of tidal heating relative to the BH case as in
Ref. [31]. The vertical dashed line denotes the time corresponding to
a resonant orbital frequency. The horizontal line is a reference value
∆φ = 0.1 rad [92, 93].

With the total flux at hand until `max = 12, we now move
to study the dephasing between a horizonless compact object
and the standard Kerr case. This is shown in Fig. 4 for a
fiducial binary with M = 106M�, µ = 30M�, χ = 0.8,
and ε = 10−10. We analyze different values of the reflec-
tivity |R|2 and for each of them we compare our exact result
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with that of the model adopted in Ref. [31]. As expected,
the dephasing increases monotonically in time (except possi-
bly when a resonance is crossed, in which case the dephas-
ing can have an antispike and decreases near the resonant fre-
quency, see Appendix B) and also as a function of the reflec-
tivity. When |R|2 ≈ 1, the difference with respect to the
model adopted in Ref. [31] is small until the inspiral moves
across a resonance. In particular for |R|2 = 0.9, the dephas-
ing with respect to our exact results deviates from the dephas-
ing due to the absence of tidal heating at t = 9.47 months
(marked in Fig. 4 by a dashed vertical line) due to the pres-
ence of a ` = m = 2 resonance at MΩ = 0.0473 with
MωI = −4.22 × 10−5. Subsequent resonances are excited
at later times.

The simplified model of Ref. [31] and the exact result dif-
fer significantly for small reflectivities even if the resonances
are less evident. This is due to a number of factors: the en-
ergy fluxes at the ECO radius and at infinity display some dif-
ferences in the two models due to the fact that a fraction of
energy is reflected by the object and leaves the system; more-
over, both fluxes (at the radius and at infinity) can be reso-
nantly excited only in our consistent model and these reso-
nances contribute significantly to the GW phase for interme-
diate values of R. The dephasing in the consistent model is
always larger than the dephasing with tidal heating only (for
very small values of R, the two models differ but both pro-
duce a tiny dephasing, as expected). The dephasing depends
mildly on the compactness of the object, see Appendix B for
an analysis of this contribution.

C. Overlap
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FIG. 5. Mismatch between the plus polarization of the waveforms
with a central ECO and a central BH as a function of time, for χ =
0.8, q = 3× 10−5 and several values of the reflectivity.

In Fig. 5 we show the mismatchM ≡ 1 − O between the
waveforms in the ECO case and in the Kerr case with the same
mass and spin for various values ofR and two choices of ε.

As clear from the plot, the value of ε does not affect the
mismatch significantly as long as ε � 1. Consistently with

dephasing presented above, the mismatch is larger for the con-
sistent model, especially at small reflectivity, as can be appre-
ciated by comparing our Fig. 5 with the corresponding plot
in Ref. [31]. As a useful rule of thumb, two waveforms can
be considered indistinguishable for parameter estimation pur-
poses if M . 1/(2ρ2), where ρ is the signal-to-noise ratio
of the true signal [92, 94]. For an EMRI with ρ ≈ 20 (resp.,
ρ ≈ 100) one has M . 10−3 (resp., M . 5 × 10−5). In
Fig. 5 the more conservative thresholdM = 10−3 is denoted
with a dashed horizontal line. Exceeding this threshold is a
necessary but not sufficient condition for a deviation to be de-
tectable. This level of mismatch is quickly exceeded after less
than one year of data even for small values of the reflectiv-
ity. For example, for the fiducial case considered in Fig. 5
(χ = 0.8, M = 106M� and µ = 30M�), and assuming
ρ = 20, the threshold is exceeded after roughly one year un-
less

|R|2 . 10−8 . (54)

Note however that the above bound is solely based on the mis-
match calculation and does not take into account, e.g., correla-
tions with other waveform parameters. A rigorous parameter
estimation is necessary to derive an accurate projected upper
bound (in the case of no detection). This interesting analysis
goes beyond our scope and is left for future work.

D. A case study: EMRI constraints on Boltzmann reflectivity

Although so far we have considered only the case in which
|R|2 = const, an advantage of our framework is that the re-
flectivity coefficient can be a generic complex function of the
model’s parameters and of the frequency. We now consider a
specific model for the ECO reflectivity. In particular, we shall
assume a model recently proposed to describe quantum BH
horizons, which gives rise to “Boltzmann” reflectivity [53, 95]

R(ω) = e
− |k|2TH , (55)

where TH = r+−r−
4π(r2++a2)

is the Hawking temperature of a Kerr
BH. In this model the reflectivity depends explicitly on the
spin and on the frequency. Furthermore, it provides sufficient
absorption to quench the ergoregion instability [53]. Note that
Eq. (55) can also contain a phase term, which depends on the
specific model and on the perturbation function on which the
corresponding boundary condition is imposed [53, 63, 95].
For simplicity, here we shall neglect such phase term, which
anyway would not affect our analysis. 3

Figure 6 shows the dephasing (left panel) and the overlap
(right panel) obtained in the Boltzmann reflectivity model as
compared to the classical BH case. An interesting feature of

3 Recently Refs. [63, 96] proposed an alternative model for the ECO reflec-
tivity that is related to the tidal response of the ECO to external curvature
perturbations. In this model the reflectivity contains extra terms that multi-
ply the Boltzmann factor.



10

χ=0
χ=0.2
χ=0.5

χ=0.8
χ=0.85

0 2 4 6 8 10 12 14
10-4

0.001

0.010

0.100

1

10

t [months]

Δ
ϕ
[r

ad
]

χ=0
χ=0.2
χ=0.5

χ=0.8
χ=0.85

2 4 6 8 10 12 14
10-9

10-6

0.001

1

t [months]

ℳ
(h

+
EC

O
|h

+
BH

)

FIG. 6. Left: GW dephasing between the Kerr case and a quantum BH horizon with Boltzmann reflectivity [in Eq. (55)], ε = 10−10,
q = 3 × 10−5 and various values of the spin, as a function of time. Right: Mismatch between the plus polarization of the waveform with a
central quantum BH horizon with Boltzmann reflectivity and a central BH as a function of time for several values of the primary spin.

this model is that there is no free parameter that continuously
connects it to the classical Kerr case, so there is a concrete
chance to rule it out with observations, or to provide evidence
for it. Interestingly, owing to its spin dependence, the Boltz-
mann reflectivity is much smaller at the relevant orbital fre-
quencies when the central object is highly spinning. There-
fore, as shown in Fig. 6, the dephasing and the mismatch with
respect to the standard Kerr BH case are very small when
χ & 0.8. The oscillatory trend in the dephasing is due to the
contribution of high frequency resonances appearing at late
times.

IV. CONCLUSION

EMRIs will be unparalleled probes of fundamental physics
and unique sources for the LISA mission and evolved con-
cepts thereof [46]. Developing a consistent model of partially
absorbing ECO, we studied the signal emitted by a point parti-
cle in circular motion. The EMRI dynamics is affected by the
modified boundary conditions at the object’s surface, which
give rise to modified tidal heating, modified fluxes, and reso-
nant QNM excitations in a consistent fashion. We showed that
the GW emission and orbital dynamics in the consistent model
is quite rich: in addition to some quantitative differences with
respect to the simplified model studied in Ref. [31], there are
also qualitatively new features such as resonances that might
give a relevant contribution to the GW phase in some regions
of the parameter space. In principle, these resonances could
also jeopardize detection if not suitable accounted for in the
waveform.

Overall, we found that the already very stringent poten-
tial bounds derived in Ref. [31] can be further improved by
some orders of magnitude by taking into account a consis-
tent ECO model. These projected constraints suggest that
EMRI could place the strongest bounds on the reflectivity
of supermassive objects, orders of magnitude more stringent
than those potentially coming from echo searches in the post-

merger phase of comparable-mass coalescences [18, 19]. In
particular, we showed that an EMRI detection is potentially
sensitive to an effective reflectivity of the central supermas-
sive object as small as |R|2 ∼ O(10−8). As a reference, we
remind that in the BH case the reflectivity is exactly zero and
that for a neutron star it is practically unity, even when ac-
counting for dissipation due to viscosity [2]. Furthermore, we
showed that this unique sensitivity to small reflectivity coef-
ficients can be used to constrain specific ECO models, such
as those of quantum BH horizons featuring Boltzmann reflec-
tivity [53, 95]. Our approach is general and the reflectivity
coefficient can be an arbitrary complex function of the model
parameters and of the frequency, so the same analysis can be
applied to other specific ECO models, e.g. [63, 96].

However, the above conclusion is based on several simpli-
fications that should be relaxed in future work. In particular,
we focused on circular, equatorial orbits while EMRIs are ex-
pected to be eccentric and nonplanar, introducing two further
parameters (the eccentricity and the Carter constant) in the
description of the inspiral. Future work should also include
leading-order self-force effects [97–99], which are needed for
an accurate parameter estimation with EMRIs [71]. Both can
be done with the minor adjustments of the code of Refs. [81–
84] described here. Finally, the upper bounds estimated here
are based on the overlap calculation, and therefore neglect
possible correlations among the waveform parameters, which
is particularly relevant for generic orbits and relatively small
signal-to-noise ratio. From the parameter-estimation point of
view, it is important to develop modified kludge waveforms
to include ECO effects in a practical way or, more ambi-
tiously, to perform accurate data analyses using exact wave-
forms (either using the Fisher-information matrix or, ideally,
a Bayesian inference), extending recent work in the context of
standard waveforms [100–102].
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Appendix A: Dephasing in the nonspinning case

For completeness, here we show the dephasing in the case
of a nonspinning, perfectly reflecting ECO relative to the
Schwarzschild BH case for different values of the compact-
ness parameters ε. Figure 7 shows that the dephasing essen-
tially does not depend on ε and is not affected by the reso-
nances, which in the nonspinning case are too narrow to be
efficiently excited.
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FIG. 7. Dephasing as a function of time in the case of a nonspinning,
perfectly reflecting ECO relative to the Schwarzschild BH case for
different values of the compactness parameters ε and q = 3× 10−5.
In this case the resonances in the flux at infinity do not contribute to
the dephasing, which is well approximated by the simplified model
of Ref. [31].

Appendix B: Fluxess and dephasing as function of the
compactness

In Fig. 8 we show the difference between the ECO and Kerr
BH total energy fluxes for several values of ε as a function

of time. We note that, as ε decreases, more resonances ap-
pear and they also appear at lower frequencies. The first low-
frequency resonances might give a large contribution to the
phase since the orbital evolution is slower at low frequency
and the particle can spend more time to move across the reso-
nance. On the other hand, in our ECO model the width of each
resonance is proportional to ωI ∼ ω2l+2

R and therefore low-
frequency resonances are also more narrow. The two effects
are competitive and the actual contribution of a resonance on
the GW phase depends on the specific parameters of the con-
figuration.

ϵ=10-10

ϵ=10-20

ϵ=10-30

0 2 4 6 8 10 12
10-10

10-8

10-6

10-4

t [months]
q-

2 |
E

22
EC

O
-
E

22
BH

|

FIG. 8. Resonances in the ` = m = 2 energy flux for an ECO with
χ = 0.8, |R|2 = 0.9 and several values of ε as a function of time.

Finally, in Fig. 9 we show the dephasing for some values
of |R|2 and ε. The dependence on ε is mild, except for the
possible excitation of the resonances, whose impact depends
on the specific values of χ, ε andR.
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FIG. 9. GW dephasing between the BH and the ECO case as a func-
tion of time for χ = 0.8, q = 3× 10−5 and several values of ε.
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