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ABSTRACT
We construct, for any finite commutative ring R, a family of representations
of the general linear group GLnðRÞ whose intertwining properties mirror
those of the principal series for GLn over a finite field.
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1. Introduction

Among the irreducible, complex representations of reductive groups over finite fields, the sim-
plest to construct and to classify are the principal series: those obtained by Harish-Chandra induc-
tion from a minimal Levi subgroup; see, for instance, [13]. In this paper we use a generalization
of Harish-Chandra induction to construct a “principal series” of representations of the group
GLnðRÞ, where R is any finite commutative ring with identity. Our main results assert that the
well-known intertwining relations among the principal series for GLn over a finite field also hold
for the representations that we construct.

The study of the principal series for reductive groups over finite fields can be viewed as the
first step in the program to understand all irreducible complex representations of such groups in
terms of what Harish-Chandra called the ‘philosophy of cusp forms’ [10, 20]. This program has
met with considerable success. The basic ideas appear already in Green’s determination [8] of the
irreducible characters of GLnðkÞ, where k is a finite field, and these ideas have since been devel-
oped and generalized to a very great extent; see [7] for an overview.

The theory for groups over finite rings is in a far less advanced state. Most efforts so far have
been directed toward groups over principal ideal rings: see for instance [21] and references
therein. By contrast, the results presented below are valid for all finite rings, with the essential
jump in generality being from principal ideal rings to local rings. Moreover, our results depend
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on the algebraic properties of the base ring in only a very limited way: for instance, we give a
uniform construction of a family of irreducible representations of GLnðRÞ for all finite local rings
R, and to our knowledge these are the first results obtained in this degree of generality.

The present paper is part of a project whose aim is to extend the philosophy of cusp forms to
reductive groups over finite rings. Our construction, which is a special case of a general induction
procedure developed in [3], extends in a natural way to produce more general ‘Harish-Chandra
series’. The analysis of the intertwining properties of these more general series seems, however, to
be substantially more involved than the results for the principal series presented here. See [3,
Section 5] and [4] for some partial results in this more general setting.

1.1. Notation and definitions

Let R be a finite commutative ring with 1. Let G ¼ GLnðRÞ, let L ffi ðR�Þn be the subgroup of
diagonal matrices in G, and let U and V be the upper-unipotent subgroup and the lower-uni-
potent subgroup, respectively, in G. Let B ¼ LU be the subgroup of upper-triangular matrices.
We write G(R), L(R), etc., when it is necessary to specify R.

The ring R decomposes as a direct product of local rings: R ffi R1 � � � � � Rm, and this decom-
position is unique up to permuting the factors [17, Theorem VI.2]. There is a corresponding
decomposition GðRÞ ffi GðR1Þ � � � � � GðRmÞ, and similarly for L, U, and V. If R is a local ring
then we let N(R) be the subgroup of monomial matrices in G(R), that is, products of permutation
matrices with diagonal matrices. If R is not local then we define NðRÞ ¼ NðR1Þ � � � � � NðRmÞ,
where the Ri are the local factors of R as above. Let WðRÞ ¼ NðRÞ=LðRÞ: It will be convenient to
realize W(R) as a subgroup of G(R), as follows: if R is local, then we identify W(R) with the
group of permutation matrices; and in the general case we identify W(R) with the product of the
permutation subgroups in GðRÞ ffi GðR1Þ � � � � � GðRmÞ: Note that following Lemma 4, we will
be able to assume without loss of generality that R is a local ring.

If v : L ! GLðXÞ is a representation of L on a complex vector space X, and if w 2 W, then
we let w�v denote the representation v � Ad�1

w : L ! GLðXÞ: We let Wv ¼ fw 2 Wjw�v ffi vg:
For each subgroup H � G we let eH denote the idempotent in the complex group ring C½G	

corresponding to the trivial character of H: eH ¼ jHj�1 P
h2H h: Since L normalizes U and V, the

idempotents eU and eV commute with C½L	 inside C½G	:
We consider the functors

i : RepðLÞ ! RepðGÞ X 7!C G½ 	eUeV
C L½ 	X
r : RepðGÞ ! RepðLÞ Y 7!eUeVC G½ 	
C G½ 	Y ,

where RepðGÞ denotes the category of complex representations, identified in the usual way with
the category of left C½G	-modules. This is a special case of the construction defined in [3, Section
2], which generalizes a definition due to Dat [6]. The functors i and r are two-sided adjoints to
one another; see [3, Theorem 2.15] for a proof of this and other basic properties.

Definition. Let us say that an irreducible representation of G is in the principal series if it is iso-
morphic to a subrepresentation of iv for some representation v of L.

Example. For each representation v : L ! GLðXÞ of L, the representation iv ¼ C½G	eUeV
C½L	X
of G is a nonzero quotient of the representation C½G	eU
C½L	X, the latter being the representa-
tion of G obtained by first extending v from L to LU by letting U act trivially on X, and then
inducing from LU to G. If this representation C½G	eU
C½L	X is irreducible, then it must equal iv:

If R is a field, then the map C½G	eU !f 7!feV
C½G	eV is known to be an isomorphism of C½G	-C½L	

bimodules; see [15, Theorem 2.4]. It follows that in this case the functors i and r are naturally
isomorphic to the familiar functors of Harish-Chandra induction and restriction, i.e., the functors
of tensor product with the bimodules C½G	eU and eUC½G	, respectively. The same is not true if R
is not a product of fields, as the following example illustrates.
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Example. Let 1L denote the trivial representation of L. Then we have C½G	eU
C½L	1L ffi
C½G=LU	, with G acting by permutations of G/LU; and likewise C½G	eV
C½L	1L ffi C½G=LV	: Let
w0 2 G be the permutation matrix that conjugates U into V, and vice versa; then the map
gLV 7!gw0LU induces a G-equivariant isomorphism C½G=LV	!ffi C½G=LU	: Making these identifi-
cations, the map

C G½ 	eU
C L½ 	1L �����!f
17!feV
1
C G½ 	eV
C L½ 	1L (*)

becomes, up to a nonzero scalar multiple, the map C½G=LU	 ! C½G=LU	 of multiplication on
the right by the characteristic function of the double coset LUw0LU: If R is a field, then the latter
map is well-known to be invertible (as are all of the standard generators of the Iwahori-Hecke
algebra C½LU G=LU	; see for instance [5, §67A]).

By contrast, suppose now that R is not a field. Let m be a maximal ideal of R, and let V0 be
the subgroup of V comprising those lower-unipotent matrices over R that reduce, modulo m, to
the identity matrix. The product I ¼ LUV0 is a subgroup of G (namely, the group of upper-tri-
angular-modulo-m matrices). Since V0 is a subgroup of V we have eV ¼ eV0eV , and so the map
(�) factors through the map

C G½ 	eU
C L½ 	1L �����!f
1 7!feV0
1
C G½ 	eV0
C L½ 	1L,

whose image is isomorphic to the permutation module C½G=I	: The latter has strictly smaller
dimension than C½G=LU	, and so (�) cannot be an isomorphism.

For general rings, the permutation module C½G=LU	 can be quite complicated. For instance,
for R ¼ Z=pkZ (with p a prime and k a positive integer), the results of [18] show that the inter-
twining algebra of this representation depends both on p and on k. By contrast, it follows from
Theorem 2 below that for any R the intertwining algebra of i1L is isomorphic to the tensor prod-
uct C½Sn	
m, where G ¼ GLnðRÞ and where m is the number of maximal ideals in R.

Example. Suppose that R is a finite discrete valuation ring, with maximal ideal m and residue
field k, and let r be the largest integer such that mr 6¼ 0: Reduction modulo mr gives rise to a
group extension

0 ! Gr ffi ðMnðkÞ,þÞ ! GðRÞ ! GðR=mrÞ ! 0,

which one can use to study the representations of G(R) via Clifford theory; see [11], for example.
In [12], Hill identified a class of representations that are particularly amenable to this approach:
an irreducible representation p of G(R) is called regular if its restriction to Gr contains a character
whose stabilizer under the adjoint action of GðkÞ is an abelian group (see [12, Theorem 3.6] for
details and alternative characterizations of regularity). Explicit constructions of all such represen-
tations are given in [16, 22].

An application of [3, Theorem 3.4] gives the following criterion for regularity of the induced
representations iv : if v is an irreducible representation of L(R), then iv is regular if and only if
the restriction of v to the subgroup LðRÞ \ Gr ffi kn has trivial stabilizer under the permutation
action of Sn. Moreover, the representations iv, for v satisfying the above condition, account for
all of the regular representations associated to the split semisimple classes in MnðkÞ:

For n¼ 2, all of the principal series representations of GðRÞ ¼ GL2ðRÞ can be described in
terms of regular representations, as follows. Let v : L ! C� be an irreducible representation of L.
If iv is irreducible, then there is a character s : R� ! C�, an integer k, and a regular representa-
tion p of GðR=mkÞ associated to a split semisimple class in M2ðkÞ such that iv is isomorphic to
the representation ðs � detÞ 
 p, where p is pulled back to a representation of G(R). If iv is not
irreducible, then there is a character s : R� ! C� such that iv is isomorphic to the
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representation ðs � detÞ 
 ð1G�StÞ, where 1G is the trivial representation, and St is the Steinberg
representation of GðkÞ pulled back to G(R).

To prove these assertions, we use the obvious isomorphism L ffi R� � R� to write v as a prod-
uct v1 
 v2: The criterion for regularity given above shows that if iv is not itself regular, then v1
and v2 agree on 1þmr: Supposing this to be the case, we use Lemma 14 (below) to write iv ffi
ðv1 � detÞ 
 ið1
 v�1

1 v2Þ, where the character 1
 v�1
1 v2 is trivial on L \ Gr and is therefore

pulled back from a character v0 of LðR=mrÞ: Now [3, Theorem 3.4] implies that ið1
 v�1
1 v2Þ is

the pullback to G(R) of the representation iv0 of GðR=mrÞ: If iv0 is not regular then we can repeat
the above procedure, as many times as necessary. In the case where iv is not irreducible we have
v1 ¼ v2, by Theorem 1 (below), and then Lemma 14 gives iv ffi ðv1 � detÞ 
 i1L, where i1L is the
pullback to G(R) of the representation i1LðkÞ (by [3, Theorem 3.4]). The latter representation is,
as is well known, isomorphic to sum of the trivial representation and the Steinberg
representation.

For n � 3 the relationship between the principal series and the regular representations
becomes more complicated.

2. Main results

We will show that the following well-known properties of the Harish-Chandra functors are
shared by the functors i and r for R an arbitrary finite commutative ring.

Theorem 1. There is a natural isomorphism ri ffi �w2W w� of functors on RepðLÞ. Consequently, if
v and r are irreducible representations of L, then

dimC HomGðiv, irÞð Þ ¼ #fw 2 Wjw�v ¼ rg:
When r ¼ v, we have the following more precise statement:

Theorem 2. For each irreducible representation v of L one has EndGðivÞ ffi C½Wv	 as algebras.

Theorems 1 and 2 readily imply the following combinatorial formula for the number of principal
series representations. Following [1], we let PkðnÞ denote the number of multipartitions of n with
k parts: i.e., the number of k-tuples ðkð1Þ, :::, kðkÞÞ, where each kðiÞ is a partition of some non-
negative integer ni, and

P
i ni ¼ n:

Corollary 3. If R is isomorphic to a product R1 � � � � � Rm of finite local rings, and for each j we
set kj ¼ jR�

j j, then the principal series of GLnðRÞ contains precisely
Q

j PkjðnÞ distinct isomorphism
classes of irreducible representations.

Remarks.
� In the case where R is a field, Theorems 1 and 2 are essentially due to Green [8]; see [23] for

the case v ¼ 1L, and see [19] for an exposition. Both of these results have been generalized to
arbitrary Harish-Chandra series for arbitrary reductive groups: see [10] and [14], respectively.

� Theorems 1 and 2 can be extended, using [3, Theorem 2.15(5)], to the setting of smooth rep-
resentations of the profinite groups GðOÞ, where O is the ring of integers in a nonarchime-
dean local field.

� Some of our results apply beyond the case of GLn: For instance, an analogue of Theorem 1
holds whenever G is a split classical group: indeed, such groups are easily seen to satisfy prop-
erties (a)–(f) in Proposition 5 below, and our proof of Theorem 1 relies only on those proper-
ties. We have restricted our attention here to GLn, both in order to simplify the exposition,
and because that is the case in which we use these results in [4].
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� On the other hand, adapting our proof of Theorem 1 to the case where L is replaced by a
larger Levi subgroup does not seem to be so straightforward. For one thing, the failure of
Proposition 5(d) in this more general setting greatly complicates matters.

3. Proofs

The first step in the proof of the main results is to reduce to the case of local rings.

Lemma 4. If Theorems 1 and 2 and Corollary 3 are true for all finite commutative local rings,
then they are true for all finite commutative rings.

Proof. Let R be a finite commutative ring, and write R as a product of local rings R1 � � � � � Rm:
All of the groups and the representation categories in Theorems 1 and 2 and in Corollary 3 then
decompose into products accordingly: GðRÞ ffi GðR1Þ � � � � � GðRmÞ, RepðGðRÞÞ ffi RepðGðR1ÞÞ �
� � � � RepðGðRmÞÞ, and so on. The bimodule C½GðRÞ	eUðRÞeVðRÞ decomposes as the tensor product
of the bimodules C½GðRjÞ	eUðRjÞeVðRjÞ, and likewise for eUðRÞeVðRÞC½GðRÞ	, so the functors i and r
are compatible with the above decompositions. By definition, the group W also decomposes com-
patibly. Thus Theorems 1 and 2 and Corollary 3 over R follow immediately from the correspond-
ing results over the local factors Rj. w

Assume from now on that R is a finite commutative local ring Let m denote the maximal
ideal of R, and let k denote the residue field R=m: Recall that W ffi Sn is then the group of per-
mutation matrices in G. We write ‘ for the word-length function on W with respect to the stand-
ard generating set S ¼ fð12Þ, :::, ðn� 1nÞg:

The following proposition collects the group-theoretical ingredients of the proof of Theorem 1.

Proposition 5.
a. The multiplication map U � L� V ! G is injective.
b. The reduction-mod-m map GðRÞ ! GðkÞ is surjective.
c. For each subgroup H of G, let H0 denote the intersection of H with the kernel G0 of the above

reduction homomorphism. Then the multiplication map U0 � L0 � V0 ! G0 is a bijection, and
the same is true for any ordering of the three factors.

d. For each w 2 W the multiplication maps

ðU \ UwÞ � ðU \ VwÞ ! U and ðV \ UwÞ � ðV \ VwÞ ! V

are bijections, where Uw ¼ w�1Uw, etc.
e. G is the disjoint union G ¼ tw2W Gw, where Gw ¼ VwLUG0:
f. For each r, t 2 W with ‘ðtÞ 
 ‘ðrÞ and t 6¼ r one has ULV \ t�1Ur ¼ ;:

Proof. Parts (a), (b), and (d) are well-known and easily verified.
For part (c), the map U0 � L0 � V0 ! G0 is injective by part (a). Now the ideal m is nilpotent,

so every matrix of the form 1þ x with x 2 MnðmÞ is invertible, and thus G0 ¼ f1þ xjx 2
MnðmÞg, while L0, U0, and V0 are the subgroups in which x is, respectively, diagonal, strictly
upper-triangular, or strictly lower-triangular. Counting matrix entries then shows that the finite
sets U0 � L0 � V0 and G0 have equal cardinality, and so the injective multiplication map
is bijective.

Part (e) follows immediately from the Bruhat decomposition of GðkÞ [5, (65.4)].
In part (f) we may assume without loss of generality that R is a field, since ULV \ t�1Ur is

empty if its reduction modulo m is empty. This assumption implies that ðB,N,W, SÞ is a BN-pair
in G, where we are writing B for the upper-triangular subgroup LU of G; see, e.g., [5, (65.10)].
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Let w0 denote the longest element ð1, 2, :::, nÞ7!ðn, :::, 2, 1Þ of W. It follows from [2, Ch. IV §2
Lemme 1] that, under the stated assumptions on t and r, we have tBw0B \ Brw0B ¼ ;: Since
ULVw0 ¼ ULw0U ¼ Bw0B, while t�1Urw0 � t�1Brw0B, we conclude that ULV \ t�1Ur ¼ ;: w

We equip C½G	 with the Hermitian inner product hji for which the group elements g 2 G con-
stitute an orthonormal basis; and with the conjugate-linear involution � defined on basis elements
by g� ¼ g�1: The two structures are related by the identity habcjdi ¼ hbja�dc�i for all a, b, c, d 2
C½G	: An element a 2 C½G	 is called self-adjoint if a ¼ a�:

Lemma 6. There is a self-adjoint, invertible element z 2 C½G	 that commutes with eU, eV, and
C½L	, and that satisfies zðeUeVÞ2 ¼ eUeV and zðeVeUÞ2 ¼ eVeU :

Proof. This follows from a general fact about pairs of orthogonal projections on a finite-dimen-
sional Hilbert space: see [9, Theorem 2], for example. w

Remark. If R is a field then [15, Theorem 2.4] implies that there is a unique element z as in
Lemma 6. This is not the case over a general ring.

Lemma 7. For each w 2 W we have eVeUweVw ¼ eVeUeVw :

Proof. It is clear that eV ¼ eVeðV\UwÞ and similarly that eU ¼ eðU\UwÞeU : Proposition 5(d) gives
eðV\UwÞeðU\UwÞ ¼ eUw , and it follows that eVeU ¼ eVeUweU : The same reasoning gives eUweVw ¼
eUweUeVw , and so eVeUeVw ¼ eVeUweUeVw ¼ eVeUweVw : w

Lemma 8. For each w 2 W the map

uw : eUweVwC G½ 	 !x 7!eVxeVeUC G½ 	
is an isomorphism of C½L	-C½G	 bimodules.

Proof. The following argument is taken from [6, Lemme 2.9]. The map uw is well-defined,
because

eVeUweVwC G½ 	 ¼ eVeUeVwC G½ 	 � eVeUC G½ 	
by Lemma 7. The map uw is injective, because for each f 2 C½G	 we have

w�1zweUweVw eVeUweVw fð Þ ¼ zwðeUweVwÞ2f ¼ eUweVw f

where z is as in Lemma 6, and in the first equality we used that V ¼ ðV \ VwÞðV \ UwÞ: The
domain and target of uw are isomorphic as vector spaces: indeed, eVeUC½G	 ¼ w0weUweVwC½G	,
where w0 is the longest element of W. Since uw is injective it is thus also an isomorphism. w

For each subset K � G, we let C½K	 denote the vector subspace of C½G	 spanned by K.

Proposition 9. For each w 2 W the map

U : C wL½ 	 ! eUeVC Gw½ 	eUeV wl 7!eUeVwleUeV

is an isomorphism of C½L	-bimodules.

Here the sets wL and Gw are invariant under multiplication by L, on either side, and we are
using these multiplication actions to view C½wL	 and C½Gw	 as C½L	-bimodules.

4862 T. CRISP ET AL.



Proof. U is clearly a bimodule map. Let us show that it is injective. For h 2 C½L	 we have

UðwhÞ ¼ eUeVeUw�1 eVw�1wh:

The maps

eUw�1 eVw�1C G½ 	�����!x 7!eVx eVeUC G½ 	
and

eVeUC G½ 	�����!x 7!eUx eUeVC G½ 	
are isomorphisms by Lemma 8, so we are left to prove that the map

wh 7!eUw�1 eVw�1wh ¼ weUheV

is injective on C½wL	: It is, because Proposition 5(a) implies that the cosets UlV are all disjoint as
l ranges over L. Thus U is injective.

To prove that U is surjective, first note that Gw ¼ VwLG0U because G0 is normal in G. Since
eVv ¼ eV and ueU ¼ eU for all v 2 V and u 2 U, we find that eUeVC½Gw	eUeV is spanned by ele-
ments of the form eUeVwlgeUeV , where l 2 L and g 2 G0: We will show that each element of this
form is in the image of U:

For each x 2 Vw we have

gx ¼ xðx�1gxÞ 2 VwG0 ¼ VwðVw
0 L0U

w
0 Þ ¼ VwL0U

w
0

by Proposition 5(c). Let a : Vw ! Vw,b : Vw ! L0 and c : Vw ! Uw
0 be the (unique) functions

satisfying gx ¼ aðxÞbðxÞcðxÞ for all x 2 Vw: Writing eU ¼ eU\VweU\Uw and eV ¼ eV\UweV\Vw , we
then have

eVwlgeUeV ¼ eVwlgeU\VweU\UweV\UweV\Vw

¼ eVwlg jU \ Vwj�1
X

x2U\Vw

x
� �

eUweV\Vw

¼ jU \ Vwj�1
X

x2U\Vw

eVwlaðxÞbðxÞcðxÞeUweV\Vw :

Since cðxÞ 2 Uw we have cðxÞeUw ¼ eUw for each x 2 U \ Vw: Since aðxÞ 2 Vw we have
wlaðxÞl�1w�1 2 V, and consequently eVwlaðxÞ ¼ eVwl for each x. Continuing the computation
with the space-saving notation h ¼ jU \ Vwj�1 P

x2U\Vw lbðxÞ 2 C½L	, we find that

eVwlgeUeV ¼ eVwheUweV\Vw ¼ eVeUw�1\VwheUweV\Vw

¼ eVwheU\VweU\UweV\UweV\Vw ¼ eVwheUeV ,

and so eUeVwlveUeV ¼ UðwhÞ: w

Proposition 10. The set feUeVwleUeV 2 C½G	jw 2 W, l 2 Lg is linearly independent.

Proof. We know from Proposition 9 that for each w 2 W the set feUeVwleUeV jl 2 Lg is linearly
independent. We must show that for different choices of w these sets are independent from
one another.

Suppose we had elements hw 2 C½L	, not all zero, with
P

w2W eUeVwhweUeV ¼ 0: Let t 2 W
be an element of minimal length such that ht is nonzero. To compactify the notation we shall
write y ¼ t�1:

Let z be as in Lemma 6, and write f ¼ y�1zy: Thus f is a self-adjoint, invertible element of
C½G	 which commutes with eUy and eVy and which satisfies fðeUyeVyÞ2 ¼ eUyeVy : For each r 2 W
with r 6¼ t such that hr 6¼ 0 we have
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hf2eUyðeUeVthteUeVÞjeUeVrhreUeVi ¼ hf2eUyeUeVeUyeVy thtjrhreUr eVr eUeVi
¼ hf2eUyeUeVeUyeVy thteVeUeVr eUrh�r jri ¼ hf2eUyeUeVeUyeVyeUyeVry eUry thth

�
r jri

¼ hf2eUyeUeVyeUyeVyeUyeVyeUry thth
�
r jri ¼ hf2ðeUyeVyÞ3eUry thth

�
r jri

¼ heUyeVyeUry thth
�
r jri ¼ hteUhth�r eVeUr jri ¼ heUhth�r eV jt�1eUri ¼ 0:

Here we have repeatedly used the equality habcjdi ¼ hbja�dc�i; in the fourth step we used
Lemma 7 to replace eUeVeUy with eUeVyeUy and to replace eUyeVry eUry with eUyeVyeUry ; in the fifth
step we used Proposition 5(d) to write eUyeUeVy ¼ eUyeVy ; and in the final equality we used
Proposition 5(f), which applies because of the minimality of ‘ðtÞ, and which implies that the
functions eUhth�r eV and t�1eUr are supported on disjoint subsets of G and are there-
fore orthogonal.

It follows from this that

0 ¼ hf2eUyeUeVthteUeV j
X
w2W

eUeVwhweUeVi

¼ hf2eUyeUeVthteUeV j eUeVthteUeVi
¼ hfeUyeUeVthteUeV j feUyeUeVthteUeVi,

where the last equality holds because f is self-adjoint, eUy is a self-adjoint idempotent, and f and
eUy commute. Thus feUyeUeVthteUeV ¼ 0: Since f is invertible, and left multiplication by eUy is
injective on eUeVC½G	 (Lemma 8), we conclude that eUeVthteUeV ¼ 0: By Proposition 9 this
implies that ht ¼ 0, contradicting our choice of t and completing the proof of the proposition. w

Proof of Theorem 1. The functor ri is naturally isomorphic to the functor of tensor product (over
C½L	) with the C½L	-bimodule eUeVC½G	eUeV , while the functor �w2W w� is naturally isomorphic
to the tensor product with the bimodule C½W3L	: Since G ¼ tGw we have

eUeVC G½ 	eUeV ¼
X
w2W

eUeVC Gw½ 	eUeV :

Proposition 9 thus implies that the C½L	-bimodule map

C W3L½ 	 ¼ �
w2W

C wL½ 	�������!h7!eUeVheUeV eUeVC G½ 	eUeV
is surjective. Proposition 10 implies that this map is injective, so it is an isomorphism of bimod-
ules, and induces a natural isomorphism of functors ri ffi �w�: The formula for the intertwining
number follows from this isomorphism and from the fact that i and r are adjoints. w

We now turn to the proof of Theorem 2. Every irreducible representation v of the abelian
group L ffi ðR�Þn has the form

v1 
 � � � 
 vn : diagðr1, :::, rnÞ7!v1ðr1Þ � � � vnðrnÞ
where each vi is a linear character R� ! C�: For each such v we let ev ¼ jLj�1 P

l2L vðlÞ�1l be
the corresponding primitive central idempotent in C½L	:
Lemma 11. The algebra EndGðivÞ is isomorphic to the subalgebra eveUeVC½G	eUeVev of C½G	:

Proof. We have

iv ffi C G½ 	eUeV
C L½ 	C L½ 	ev ffi C G½ 	eUeVev ¼ C G½ 	zeUeVev
where z is as in Lemma 6. Since zeUeV and ev are commuting idempotents in C½G	, their product
E ¼ zeUeVev is an idempotent and we have EndGðC½G	EÞ ffi ðEC½G	EÞopp via the action of
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EC½G	E on C½G	E by right multiplication. Now EC½G	E is a finite-dimensional complex semisim-
ple algebra, so it is isomorphic to its opposite, and we have EC½G	E ¼ eveUeVC½G	eUeVev: w

Lemma 12. For the trivial representation 1L of L we have EndGði1LÞ ffi C½W	 as algebras.

Proof. First suppose that R is a field, so that the functor i is isomorphic to the functor of Harish-
Chandra induction. Then, as we noted above, i1L is isomorphic to the permutation representation
on C½G=LU	, and the isomorphism EndGði1LÞ ffi C½W	 is a special case of well-known results of
Iwahori-Matsumoto and Tits (see [5, §68] for an exposition).

Now let R be a local ring with residue field k: The quotient map R ! k induces a surjective
map of algebras

eLðRÞeUðRÞeVðRÞC GðRÞ½ 	eUðRÞeVðRÞeLðRÞ ! eLðkÞeUðkÞeVðkÞC GðkÞ½ 	eUðkÞeVðkÞeLðkÞ: (13)

Theorem 1 implies that the domain of (13) is isomorphic as a vector space to C½W	, while we
have just seen that the range of (13) is isomorphic as an algebra to C½W	: Since (13) is surjective,
it is an algebra isomorphism. w

Remark. The isomorphism in Lemma 12 is not canonical. One can trace through the various
maps appearing in the proof to construct a set of Iwahori-Hecke generators of
eLeUeVC½G	eUeVeL, although this will depend on the choice of an element z as in Lemma 6.

Lemma 14. Let v ¼ v1 
 � � � 
 vn be an irreducible representation of L, let s : R� ! C� be a
character of R�, and let v0 ¼ sv1 
 � � � 
 svn. Then iv0 ffi ðs � detÞ 
 iv:

Proof. The algebra automorphism

C G½ 	 ! C G½ 	, g 7!sðdetgÞg (15)

sends ev0 to ev, and fixes eU and eV . Thus (15) induces an isomorphism of C½G	-modules

C G½ 	eUeV
C L½ 	Cv0!ffi ðs � detÞ 
C G½ 	eUeV
C L½ 	Cv:

w

Lemma 16. If v ¼ vn1 is a tensor-multiple of a single character of R�, then EndGðivÞ ffi EndGði1LÞ
as algebras.

Proof. Lemma 14 ensures that iv ffi ðv1 � detÞ 
 i1L: w

Lemma 17. For each w 2 W there is a natural isomorphism of functors i � w� ffi i:

Proof. The functor i � w� is given by tensor product with the C½G	-C½L	 bimodule C½G	eUeVw ¼
C½G	eUweVw , while the functor i is given by tensor product with C½G	eUeV : These two bimodules
are isomorphic, by Lemma 8. w

Lemma 17 implies that in order to compute the intertwining algebra EndGðivÞ for an arbitrary
character v of L we may permute the factors vi so that v takes the form

v ¼ vn11 
 vn22 
 � � � 
 vnkk where vj 6¼ vi unless j ¼ i: (18)

(The exponents indicate tensor powers.) We then have Wv ffi Sn1 � � � � � Snk :
In the next lemma we shall consider general linear groups of different sizes, and we shall

accordingly embellish the notation with subscripts to indicate the size of the matrices involved:
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so, for example, La denotes the diagonal subgroup in Ga ¼ GLaðRÞ, and ia is a functor from
RepðLaÞ to RepðGaÞ:
Lemma 19. If v is as in (18) then EndGnðinvÞ ffi 
k

j¼1EndGnj
ðinjðvnjj ÞÞ as algebras.

Proof. Let us write L0 for the block-diagonal subgroup Gn1 � � � � � Gnk � Gn, which contains as
subgroups the groups U 0 ¼ Un1 � � � � � Unk and V 0 ¼ Vn1 � � � � � Vnk : Let U

00 be the subgroup of
block-upper-unipotent matrices

U 00 ¼
1n1�n1 �

. .
.

0 1nk�nk

2
64

3
75 2 Gn

8><
>:

9>=
>;,

and let V 00 ¼ ðU00Þt be the corresponding group of block-lower-unipotent matrices.
Let i0 : RepðL0Þ ! RepðGnÞ be the functor of tensor product with the C½Gn	-C½L0	 bimodule

C½Gn	eU 00eV 00 : The semidirect product decompositions U ¼ Un ¼ U 03U 00 and V ¼ Vn ¼ V 03V 00

give equalities eU ¼ eU0eU 00 and eV ¼ eV 0eV 00 , and hence an isomorphism of C½Gn	-C½Ln	 bimod-
ules

C Gn½ 	eUneVn ffi C Gn½ 	eU00eV 00
C L0½ 	C L0½ 	eU 0eV 0 :

It follows that

inv ffi i0 
k
j¼1injðvnjj Þ

� �
:

Since i0 is a functor, we obtain from this isomorphism a map of algebras

i0 : 
k
j¼1

EndGnj
ðinjðvnjn ÞÞ ! EndGnðinvÞ: (20)

Now, the C½L0	-bimodule map

C L0½ 	 ! C Gn½ 	eU 00eV 00 , h7!heU 00eV 00

is injective, because the multiplication map L0 � U 00 � V 00 ! Gn is one-to-one. It follows from
this that the identity functor on RepðL0Þ is a subfunctor of ResGn

L0 � i0: Thus i0 is a faithful functor,
and in particular the map (20) is injective. Since the domain and the range of this map have the
same dimension as complex vector spaces, by Theorem 1, we conclude that (20) is an algebra iso-
morphism. w

Proof of Theorem 2. Lemma 17 allows us to assume that v has the form (18), and in this case we
have algebra isomorphisms

EndGðivÞ ���!Lem: 19

ffi 

j
EndGnj

ðinjðvnjj ÞÞ

���!Lem: 16

ffi 

j
EndGnj

ðinj1Lnj Þ

���!Lem: 12

ffi 

j
C Snj
� � ffi C Wv½ 	: w

Proof of Corollary 3. Choose an ordering fv1, :::, vkg of the character group R̂� : Lemma 17 and
the intertwining number formula in Theorem 1 imply that for each principal series representation
p of GLnðRÞ there is a unique k-tuple of non-negative integers n1, :::, nk having

P
i ni ¼ n, such

that p embeds in iðvn11 
 � � � 
 vnkk Þ:
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Theorem 2 implies that the number of distinct irreducible subrepresentations of iðvn11 
 � � � 

vnkk Þ is equal to the number of distinct irreducible representations of Sn1 � � � � � Snk : The latter
number is equal to the number of k-tuples ðkð1Þ, :::, kðkÞÞ, where each kðiÞ is a partition of ni.
Allowing the exponents ni to vary shows that the total number of principal series representations
is equal to PkðnÞ, as claimed. w
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