
ar
X

iv
:2

00
2.

02
71

4v
2 

 [
m

at
h.

N
T

] 
 1

2 
O

ct
 2

02
0

RESIDUAL GALOIS REPRESENTATIONS OF ELLIPTIC CURVES

WITH IMAGE CONTAINED IN THE NORMALISER OF A NON-SPLIT

CARTAN

SAMUEL LE FOURN AND PEDRO LEMOS

Abstract. It is known that if p > 37 is a prime number and E/Q is an elliptic curve
without complex multiplication, then the image of the mod p Galois representation

ρ̄E,p : Gal(Q/Q) → GL(E[p])

of E is either the whole of GL(E[p]), or is contained in the normaliser of a non-split
Cartan subgroup of GL(E[p]). In this paper, we show that when p > 1.4×107 , the image
of ρ̄E,p is either GL(E[p]), or the full normaliser of a non-split Cartan subgroup. We use
this to show the following result, partially settling a question of Najman. For d ≥ 1, let
I(d) denote the set of primes p for which there exists an elliptic curve defined over Q and
without complex multiplication admitting a degree p isogeny defined over a number field
of degree ≤ d. We show that, for d ≥ 1.4× 107, we have

I(d) = {p prime : p ≤ d− 1}.

1. Introduction

Let p be a prime, and let E be an elliptic curve defined over Q. Fix an algebraic closure Q
of Q, and denote by E[p] be the group of p-torsion points of E(Q). This is a 2-dimensional
Fp-vector space endowed with an Fp-linear action of the Galois group GQ := Gal(Q/Q).
We thus have an associated Galois representation

ρ̄E,p : GQ → GL(E[p]).

When E does not have complex multiplication, Serre [16] shows that, for p large enough,
the image of ρ̄E,p is the whole of GL(E[p]). In the same paper [16], he asks whether it is
possible to prove a uniform lower bound exists for his result to hold, i.e. whether there exists
a positive constant B such that if E/Q is an elliptic curve without complex multiplication
and p is a prime larger than B, then ρ̄E,p is surjective. This problem is commonly known
as Serre’s uniformity question. The progress made towards finding an answer to it can be
summarised in the following result, due to the work of several mathematicians, amongst
whom we highlight Bilu, Mazur, Parent, Rebolledo and Serre (the terminology used in the
statement of the following theorem will be explained in the next section).

The second named author is funded by the Royal Society Research Fellows Enhancement Award
RGF\EA\181052.
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2 SAMUEL LE FOURN AND PEDRO LEMOS

Theorem 1.1 ([13, 3, 4, 17]). Let E/Q be an elliptic curve without complex multiplication.
Suppose that p is a prime not lying in the set {2, 3, 5, 7, 11, 13, 17, 37}. If the image of ρ̄E,p

is not GL(E[p]), then it is contained in the normaliser of a non-split Cartan subgroup of
GL(E[p]).

The main result of this paper is the following improvement on Theorem 1.1.

Theorem 1.2. Let E/Q be an elliptic curve without complex multiplication. Let p be a
prime number, and suppose that one of the following statements holds:

(a) p > 1.4× 107;
(b) p /∈ {2, 3, 5, 7, 11, 13, 17, 37} and j(E) /∈ Z.

If ρ̄E,p is not surjective, then its image is the normaliser of a non-split Cartan subgroup of
GL(E[p]).

We will at times mention Theorem 1.2 (a) or Theorem 1.2 (b), by which we mean the
result of Theorem 1.2 assuming condition (a) or (b), respectively.

The proof of Theorem 1.2 (a) (section 6) shows, in fact, that if an elliptic curve E
without complex multiplication is such that j(E) ∈ Z and admits a prime p not in the set
{2, 3, 5, 7, 11, 13, 17, 37} such that the image of ρ̄E,p is neither GL(E[p]) nor the normaliser
of a nonsplit Cartan subgroup, then log |j(E)| ≤ max(12000, 7

√
p) ≤ 27000. In particular,

there are only finitely many such elliptic curves up to isomorphism. One would could then
hope that the remaining cases might be treated algorithmically, but the authors admit
they could not find a reasonably efficient way to do so. However, we wish to point out that
some work has already been done in this direction. For example, in [1], the integral points
of X+

ns(p) are determined for all primes p ≤ 97. Unfortunately, the algorithms employed
there (which are already great improvements over existing techniques) need several CPU
years to compute even the single case p = 97. Solving the remaining cases p ≤ 1.4 · 107 in
our case thus appears as a serious technical challenge deserving of its own project.

As an immediate application of Theorem 1.2, we are able to partially settle a question
of Najman [15]. Let d ≥ 1 be a positive integer. Najman [15] defines I(d) to be the set
of primes p for which there exists an elliptic curve E defined over Q without complex
multiplication and an isogeny φ : E/K → E′ of degree p defined over a number field K of
degree ≤ d. For instance, a celebrated result of Mazur [13] states that

I(1) = {2, 3, 5, 7, 11, 13, 17, 37}.
Najman [15] shows that

I(d) ⊆I(1) ∪ {p prime : p ≤ d− 1 when p ≡ 1 (mod 3)}∪
{p prime : p ≤ 3d− 1 when p ≡ 2 (mod 3)}.

Assuming that ρ̄E,p is surjective whenever E/Q does not have complex multiplication and
p /∈ I(1), he proves that one has

(1.1) I(d) = I(1) ∪ {p prime : p ≤ d− 1}.
Theorem 1.2 allows us to remove the condition on the surjectivity of ¯ρE,p, albeit adding
one on the size of d.
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Theorem 1.3. For d ≥ 1.4 × 107, we have I(d) = {p prime : p ≤ d− 1}.
The proof of this result is a simple combination of Theorem 1.2 and Najman’s own

arguments. We refer the reader to [15] for details.

1.1. Plan of the proof of Theorem 1.2. From now on, we assume that a basis of E[p]
has been chosen and systematically identify GL(E[p]) with GL2(Fp).

The following result of Zywina [18, Proposition 1.13] will be used to prove Theorem 1.2.

Proposition 1.4 (Zywina). Let E/Q be an elliptic curve without complex multiplication.
Let p /∈ I(1) be a prime such that ρ̄E,p is not surjective.

(1) If p ≡ 1 (mod 3), then ρ̄E,p(GQ) is the normaliser of a non-split Cartan subgroup of
GL2(Fp).

(2) If p ≡ 2 (mod 3), then ρ̄E,p(GQ) is either the normaliser of a non-split Cartan
subgroup of GL2(Fp), or is conjugate in GL2(Fp) to the group

G(p) :=
{
a3 : a ∈ Cns(p)

}
∪
{(

1 0
0 −1

)
· a3 : a ∈ Cns(p)

}
,

where Cns(p) is an explicit choice of non-split Cartan subgroup made in the next section.

Remark 1.5. For the convenience of the reader, and following a suggestion made by an
anonymous referee, we reproduce Zywina’s proof of this result in Appendix B.

We are then reduced to showing that when p ≡ 2 (mod 3) the image of ρ̄E,p cannot be
contained in a conjugate of G(p). When the j-invariant of E/Q is not integral, we will rule
out this possibility using Mazur’s formal immersion argument (see [13]). More precisely, an
elliptic curve defined over Q whose residual Galois representation ρ̄E,p has image contained
in G(p) will give rise to a Q-rational point x on a modular curve XG(p). If the j-invariant is
not in Z, then some prime ℓ divides the denominator. We will first point out that ℓ cannot
be p (this is Proposition 5.2). It will then follow that there exists a Q-rational point x in
the residue class modulo λ of a cusp c (here, λ is a prime of the residue field of the cusp c
dividing ℓ). We will show the existence of a non-trivial quotient of the jacobian of XG(p)

with finite Mordell–Weil group (this is Section 3) and use the standard formal immersion
arguments due to Mazur to prove that such a point cannot exist (Sections 4 and 5). This
will give us Theorem 1.2 (b).

Remark 1.6. The reader will notice that this situation contrasts with that of the modular
curve X+

ns(p) associated to the normaliser of a non-split Cartan. Indeed, it is well-known
that the conjecture of Birch and Swinnerton-Dyer implies the inexistence of a non-trivial
quotient of the jacobian of X+

ns(p) with finite Mordell–Weil group. This is a major obstacle
to the study of the rational points of X+

ns(p), and thus to giving a positive answer to Serre’s
uniformity question.

In the case where j(E) ∈ Z, the assumptions on the mod p Galois representation of E
give rise to an integral point on XG(p). We then follow the steps of Bilu and Parent in [3]
as follows. First, by applying Runge’s method, we obtain an upper bound for log |j(E)|
which is linear in

√
p. An explicit version of Serre’s surjectivity theorem obtained by the
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first author on the basis of isogeny theorems of Gaudron and Rémond [7] provides a lower
bound linear in p, which gives rise to a contradiction for p ≥ 1.4× 107.

2. Cusps of modular curves

We give a brief review of some basic facts about cusps of modular curves and set down
some notation that will be used later in the paper. The reader should be warned that our
definition of cusps at infinity differs slightly from the standard one.

Let p be an odd prime, and let X(p) be the (compactification of the) classical modular
curve which classifies pairs (E, (P,Q)), where E is an elliptic curve and the pair (P,Q) is
an Fp-basis of E[p]. This is a smooth projective curve over Q whose base change to Q(ζp)
has p − 1 connected components. Given a subgroup H of GL2(Fp), we will denote the
modular curve H\X(p) by XH .

Define

(2.1) Mp :=
(
(Z/pZ)2 − {(0, 0)}

)
/± 1.

If we regard the elements of Mp as column vectors, we have a natural left action of
GL2(Fp) on Mp. We can therefore define an action of GL2(Fp) on Mp × F×

p by letting

GL2(Fp) act on F×
p via multiplication by the determinant.

Lemma 2.1. There is a bijection between the cusps of X(p) and the set Mp × F×
p which

is equivariant for the action of GL2(Fp). Moreover, if σ ∈ GQ and c is a cusp of X(p)

corresponding to the pair

((
a
b

)
, d

)
, then σc corresponds to

σ ·
((

a
b

)
, d

)
:=

(
χp(σ)

−1

(
a
b

)
, χp(σ)

−1d

)
,

where χp is the cyclotomic character.

Proof. Following [6, VI.5], we have a canonical Galois equivariant bijection between the
cusps of X(p) and the set

Isom(µp × Z/pZ, (Z/pZ)2)/± U,

where U is the group of matrices
(
1 u
0 1

)
, u ∈ Hom(Z/pZ, µp),

and the (left) action of Gal(Q/Q) is induced by its natural action on µp and trivial one on
Z/pZ. Furthermore, the action of GL2(Fp) corresponds to composition (in other words, to
left matrix multiplication).

Given a class γ in Isom(µp × Z/pZ, (Z/pZ)2)/± U represented by

(ζp, 0) 7→ (a, b), (1, 1) 7→ (c, d),

we associate to it the element ((
a
b

)
,det γ

)
∈Mp × F×

p ,
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where the determinant of γ is defined to be ad − bc. It is easy to see that this function
is well defined. It is also clear that this function commutes with the actions of GL2(Fp)
and of the Galois group, so we just need to check that it is a bijection. But this is clearly
surjective, as, given a pair (a, b) ∈ (Z/pZ)2 − {(0, 0)}, it is always possible to find a pair
(c, d) such that ad − bc is equal to a given element of F×

p . As the two sets have the same
number of elements, the result follows. �

Corollary 2.2. If H is a subgroup of GL2(Fp), then there is a bijection between the set of
cusps of XH and the set H\(Mp × F×

p ). Moreover, if detH = F×
p , this bijection induces a

bijection between the set of cusps of XH and (H ∩ SL2(Fp))\Mp.

Proof. The first assertion follows immediately from Lemma 2.1 and the definition of XH .
In order to prove the second one, start by observing that, given a class in H\(Mp × F×

p ),
there is always a representative of this class whose second entry is 1 (this is due to the
assumption that detH = F×

p ). Therefore, the map (H ∩ SL2(Fp))\Mp → H\(Mp × F×
p )

given by (
a
b

)
7→

((
a
b

)
, 1

)

is well-defined and bijective. �

Corollary 2.3. Let H be a subgroup of GL2(Fp) such that detH = F×
p . Under the identi-

fication of Corollary 2.2, the Galois orbit of a cusp of XH represented by an element

(
a
b

)

of Mp is the set of cusps of XH represented by the elements in the set
{
γ ·

(
a
b

)
∈Mp : γ ∈ H

}
.

In particular, we obtain a one-to-one correspondence between the Galois orbits of cusps of
XH and the set H\Mp.

Proof. For each λ ∈ F×
p , choose γλ ∈ H such that det γλ = λ. The first observation we

want to make is that we have the following equality of sets:

(2.2) H = {hγλ : λ ∈ F×
p , h ∈ H ∩ SL2(Fp)}.

Indeed, if g ∈ H, and if we set d := det g, we have gγ−1
d ∈ H ∩ SL2(Fp). Thus, g is of the

form hγd for some h ∈ H ∩ SL2(Fp). The other inclusion is obvious.

According to Lemma 2.1, the Galois orbit of a cusp represented by

((
a
b

)
, 1

)
is the set

of cusps represented by the elements of the set

Σ :=

{((
λa
λb

)
, λ

)
∈Mp × F×

p : λ ∈ F×
p

}
.

Of course, the set of cusps of XH represented by Σ and the set of those represented by

γ−1
λ · Σ =

{(
λγ−1

λ

(
a
b

)
, 1

)
∈Mp × F×

p : λ ∈ F×
p

}



6 SAMUEL LE FOURN AND PEDRO LEMOS

is the same. As detH = F×
p , we know from Corollary 2.2 that we can also identify the set

of cusps of XH with (H ∩ SL2(Fp))\Mp. Therefore, the Galois orbit of our cusp is the set
of cusps of XH represented by the elements of the set

(2.3)

{
λγ−1

λ ·
(
a
b

)
∈Mp : λ ∈ F×

p

}
.

As detλγ−1
λ = λ, we see that {λγ−1

λ : λ ∈ F×
p } runs through a set of representatives of

(H ∩ SL2(Fp))\H. Equality (2.2) and the fact that the cusps of XH represented by a set
of elements of Mp does not change under the action of an element of H ∩ SL2(Fp), yield
that the Galois orbit of our cusp is represented by the set

{
γ ·

(
a
b

)
∈Mp : γ ∈ H

}
,

as we wanted. �

We define the cusps at infinity of a modular curve XH to be those cusps represented by
elements of Mp × F×

p of the form
((

a
0

)
, a

)
, a ∈ F×

p

under the identification of Corollary 2.2. Note that the set of cusps at infinity of XH forms
a full Galois orbit.

Before finishing this section, we wish to mention some of the modular curves that we
will use throughout this article. We start by considering the case where H is the upper
triangular subgroup of GL2(Fp). In this case, the curve XH is usually denoted by X0(p).
This modular curve has two distinct cusps: one cusp at infinity and one not at infinity,
as one can easily check using the identification of Corollary 2.2. Both cusps are defined
over Q. The cusp at infinity will be denoted by ∞, while the other one will be denoted
by 0.

Let Csp(p) be the split Cartan subgroup of GL2(Fp) consisting of diagonal matrices, i.e.,

Csp(p) :=

{(
a 0
0 b

)
∈ GL2(Fp) : a, b ∈ F×

p

}
.

When H = Csp(p), we will denote XH by Xsp(p). The normaliser of Csp(p) will be
denoted by Nsp(p). This is the subgroup of GL2(Fp) consisting of diagonal and anti-
diagonal matrices. When H = Nsp(p), the curve XH will be denoted by X+

sp(p). We have

a canonical morphism Xsp(p) → X+
sp(p) of degree 2, which is unramified at the cusps. The

curve X+
sp(p) has (p+1)/2 cusps, of which exactly one is at infinity. The cusp at infinity is

defined over Q, while the others are defined over Q(ζp)
+ := Q(ζp+ ζ−1

p ). The pre-image of

the cusp at infinity of X+
sp(p) in Xsp(p) consists of two cusps, both defined over Q, of which

one is at infinity and the other is not. The remaining p − 1 cusps of Xsp(p) are defined
over Q(ζp).
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Finally, we make the following choice of non-split Cartan subgroup of GL2(Fp). Fix a
generator ǫp of the cyclic group F×

p . Define

Cns(p) :=

{(
a ǫpb
b a

)
∈ GL2(Fp) : a, b ∈ F×

p

}
.

Its normaliser will be denoted by Nns(p). Explicitly, this is given by

Nns(p) = Cns(p) ∪
(
1 0
0 −1

)
Cns(p).

We have a canonical finite morphism Xsp(p) → X+
sp(p) of degree 2. The modular curve

X+
ns(p) has (p − 1)/2 cusps, all of them at infinity. Their field of definition is Q(ζp)

+.
The modular curve Xns(p), on the other hand, has p + 1 distinct cusps. Like in the case
of X+

ns(p), they are all at infinity, but their field of definition is now Q(ζp).

3. Quotients of modular jacobians with finite Mordell–Weil group

Let p be an odd prime, and let H(p) denote the group Nns(p) ∩ Nsp(p). Let H be a
subgroup of Nns(p) of index d ≥ 2 containing H(p). We shall write JH for the jacobian of
the modular curve XH . The main result of this section is the following proposition.

Proposition 3.1. Suppose that p = 11 or p ≥ 17. Then the jacobian JH of XH admits a
non-trivial optimal quotient A such that

(1) A(Q) is finite;
(2) the kernel of the canonical projection JH → A is stable under the action of the Hecke

operators Tℓ, where ℓ 6= p is a prime.

Let πns : XH(p) → X+
ns(p) denote the canonical projection. As H is contained in Nns(p)

and contains H(p) by assumption, the morphism πns factors through XH :

(3.1)

XH(p)

XH X+
ns(p)

πns
πH

π′

H

.

As the index of H in Nns(p) is d, we have deg π′H = d and deg(πH) = (p + 1)/(2d).
Moreover, the morphisms πH and π′H are unramified at the cusps because πns is.

Lemma 3.2. The modular curve XH has cusps not at infinity.

Proof. In the language of Corollary 2.2, the set of cusps of XH(p) is identified with the set

H(p)\Mp × F×
p ,

and the cusps at infinity are, by definition, those represented by an element of the form
((

a
0

)
, a

)
, a ∈ F×

p .
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It follows that XH(p) has (p− 1)/2 cusps at infinity. Therefore, XH has at most (p− 1)/2
cusps at infinity. As π′H is a morphism of degree d unramified at the cusps, the number
of cusps of XH is d(p − 1)/2 (recall that X+

ns(p) has (p − 1)/2 cusps). Since d ≥ 2 by
assumption, this number is strictly larger than (p− 1)/2. As a consequence, there exists a
cusp of XH which is not at infinity. �

Remark 3.3. Note that the proof of Lemma 3.2 relies crucially on the fact that d > 1. If
d = 1, then XH is the modular curve X+

ns(p) and, indeed, all of its cusps are at infinity.

Let πsp : XH(p) → X+
sp(p) be the canonical projection. By pulling back by πH and

pushing forward via πsp, we obtain a morphism

φ := πsp,∗ ◦ π∗H : XH → Pic(X+
sp(p)).

Lemma 3.4. If c ∈ XH(p)(Q(ζp)) is not a cusp at infinity, then πsp(c) is not at infinity.

Proof. Let

((
a
b

)
, d

)
be an element ofMp×F×

p representing c. Suppose, for contradiction,

that πsp(c) is at infinity. Then there exists γ ∈ Nsp(p) and α ∈ F×
p such that

γ ·
(
a
b

)
=

(
α
0

)
.

It follows that a = 0 or b = 0. However, the cusps of XH(p) represented by elements of

Mp × F×
p of the form ((

a
0

)
, d

)
or

((
0
b

)
, d

)

are easily seen to be cusps at infinity, which is a contradiction. �

We also recall a well-known morphism

η : X+
sp(p) → J0(p)/(1 + wp)J0(p)

(where wp is the Atkin–Lehner involution of J0(p)) that has been studied, for instance,
by Mazur in [13] and by Momose in [14]. This morphism is defined as follows. Start by
considering the two degeneration maps

d1 : Xsp(p) → X0(p) and dp : Xsp(p) → X0(p)

whose moduli interpretations are

d1 : (E, (A,B)) 7→ (E,A) and dp : (E, (A,B)) 7→ (E/B,E[p]/B).

We define an auxiliary morphism

η′ : Xsp(p) → J0(p)

by requiring that a point x ∈ Xsp(p)(Q) be mapped to the class of the divisor d1(x)−dp(x).
Letting ωp denote the involution of Xsp(p) whose moduli interpretation is

(E, (A,B)) 7→ (E, (B,A)),
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(where A and B are distinct subgroups of E(Q) of order p) it is easy to check that the
following relations hold:

(3.2) wp ◦ dp = d1 ◦ ωp and wp ◦ d1 = dp ◦ ωp.

It follows that
η′ ◦ ωp = −wp ◦ η′.

Therefore, the morphism

Xsp(p)
η′−→ J0(p) → J0(p)/(1 + wp)J0(p)

factors through X+
sp(p). The morphism X+

sp(p) → J0(p)/(1 + wp)J0(p) through which it
factors is the morphism η aforementioned.

Despite the following lemma being a well-known result, the authors were not able to
find a reference offering a concise proof. Due to this, a proof of this lemma can be found
in Appendix A.

Lemma 3.5. Let c ∈ X+
sp(p)(Q(ζp)) be a cusp. We have

η(c) =

{
0 if c is at infinity

cl(0−∞) otherwise.

By abuse of notation, we shall denote by η the map Pic(X+
sp(p)) → J0(p)/(1 +wp)J0(p)

obtained from η using the universal property of jacobians. Define ν to be the composition

η ◦ φ : XH → J0(p)/(1 + wp)J0(p),

which is clearly a morphism defined over Q.

Lemma 3.6. Let c ∈ XH(Q(ζp)) be a cusp. If c is a cusp at infinity, we have

ν(c) =

(
p+ 1

2d
− 1

)
cl(0−∞).

If, on the other hand, c is not at infinity, we have

ν(c) =

(
p+ 1

2d

)
cl(0−∞).

Proof. If c is not at infinity, the the pull-back of c by πH is a sum of (p + 1)/2d cusps of
XH(p) not at infinity. Then, using Lemma 3.4, we conclude that φ(c) is a sum of (p+1)/2d

cusps of X+
sp(p) not at infinity. The image of this divisor under η is then

(
p+ 1

2d

)
cl(0−∞)

by Lemma 3.5.
If c is a cusp at infinity, then, using the language of Corollary 2.2, it is represented by

an element of Mp × F×
p of the form

((
a
0

)
, a

)
, a ∈ F×

p .
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The pullback of c by πH corresponds then to pulling back this element by the map

H(p)\Mp × F×
p → H\Mp × F×

p .

There is only one cusp at infinity of XH(p) in the pre-image of c. Indeed, the cusps in the
pre-image of c are all of the form γc for some γ ∈ H ⊆ Nns(p). But the only elements

of Nns(p) fixing the line generated by

(
a
0

)
are in H(p), which proves the claim. It then

follows from Lemma 3.4 that φ(c) is the sum of one cusp at infinity with (p + 1)/2d − 1
cusps not at infinity. Using Lemma 3.5, we conclude that

ν(c) =

(
p+ 1

2d
− 1

)
cl(0−∞),

as we wanted. �

Let J̃p be the Eisenstein quotient of J0(p) (see [12, II.10 Definitions 10.4]), and let ϑ be
the composition

JH → J0(p)/(1 +wp)J0(p)
pr−→ J̃p,

where the first map is the one induced by ν, and pr is the natural projection.

Proof of Proposition 3.1. Denote the image of ϑ in J̃p by B. This is an abelian variety
defined over Q, and we need to show that it is not trivial. Let c be a cusp of XH at infinity,
and let c′ be one not at infinity (the existence of such a cusp is guaranteed by Lemma 3.2).
Then, by Lemma 3.6, we have

ϑ(cl(c′ − c)) = pr(cl(0−∞)).

A theorem of Mazur [12, III.1 Corollary 1.4] now yields that the order of pr(cl(0−∞)) is
(p− 1)/ gcd(p− 1, 12), which is not 1 because p = 11 or p ≥ 17. This shows that B is not

trivial. Also, B(Q) is finite because J̃p(Q) is.
LetK denote the kernel of ϑ, and let K0 denote the connected component of the identity.

We define A to be JH/K
0. As A is Q-isogenous to B, it follows that it is not trivial and

that A(Q) is finite. This proves statement (1).
Let ℓ be a prime different from p. One easily checks that the morphism

JH → J0(p)/(1 + wp)J0(p)

commutes with the action of Tℓ. By the work of Mazur [13], we already know that the

Hecke operator Tℓ preserves the kernel of the projection J0(p)/(1 + wp)J0(p) → J̃p, from
where it follows that it also preserves K. As Tℓ is an endomorphism of abelian varieties
(and is, in particular, continuous), it maps K0 to itself. This finishes the proof of the
proposition. �
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4. Formal immersions

For a cusp c of XH , let

ιc : XH/Q(ζp) → JH/Q(ζp)

be the Abel–Jacobi map centred at c. Let A be a non-trivial quotient of JH satisfying the
conditions of Proposition 3.1. Define fc : XH/Q(ζp) → A/Q(ζp) to be the composition

XH/Q(ζp)
ιc−→ JH/Q(ζp) → A/Q(ζp),

where the second map is the canonical projection.
Let R be the ring Z[ζp, 1/p]. Let XH/R be the minimal regular model of XH over R,

and let A/R be the Néron model of A over R. The Néron mapping property allows us to
extend the morphism fc to a morphism

fc/R : XH/R → A/R

over R. If R′ is an R-algebra, we will write XH/R′ , A/R′ and fc/R′ for the base change of
XH/R, A/R and fc/R to R′.

Recall that if X and Y are two noetherian schemes and γ : X → Y is a morphism, we
say that γ is a formal immersion at the point x ∈ X if the induced homomorphism

γ̂#x : ÔY,f(x) → ÔX,x

of completed local rings is surjective.
Given a prime ideal λ of R, we will write Rλ for the λ-adic completion of R at λ.

Proposition 4.1. Let λ be a maximal ideal of R whose characteristic is 6= 2 (it is also
different from p because p is a unit in R). The morphism fc/Rλ

is a formal immersion at c̃,
where c̃ stands for the reduction of c modulo λ.

As c̃ and f(c̃) = 0 are both defined over k(λ), the residue field of Rλ, proving this
proposition is equivalent to showing that the induced k(λ)-linear map of cotangent spaces
of the special fibres

(4.1) f∗c/k(λ) : Cot(A/k(λ)) → Cotc̃(XH/k(λ))

is surjective. As XH/k(λ) is 1-dimensional, it is enough to show that f∗c/k(λ) is not trivial.

To prove this we will make use of a result due to Mazur [13, Lemma 2.1], that we now
recall.

4.1. Mazur’s lemma. The content of this subsection is completely contained in a more
general form in Mazur’s paper [13]. Given a cusp c ∈ XG(p)(Q(ζp)), we will denote by

ιc/R : XH/R → JH/R

the extension of the Abel–Jacobi map ιc to R. We obtain a homomorphism

(4.2) ι∗c/R : Cot(JH/R) → Cotc(XH/R)

of free R-modules.
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A theorem of Raynaud asserts that the Picard variety Pic0XH/R of XH/R is canonically

identified with JH/R. This identification induces an isomorphism between the respective
tangent spaces:

i : H1(XH/R,OXH/R) → Tan(JH/R).

Of course, Cot(JH/R) is naturally the R-dual of Tan(JH/R), while Grothendieck–Serre

duality establishes an R-duality between H0(XH/R,Ω
1
XH

) and H1(XH/R,OXH/R). We thus
obtain an isomorphism

Θ : Cot(JH/R) → H0(XH/R,Ω
1
XH/R).

The natural homomorphism v : H0(XH/R,Ω
1
XH/R) → Cotc(XH/R) gives then rise to a

homomorphism v◦Θ from Cot(JH/R) to Cotc(XH/R). The following lemma, due to Mazur,
says that this homomorphism is, up to a sign, ι∗c/R.

Lemma 4.2 (Mazur [13]). We have ι∗c/R = ±v ◦Θ.

The reason why the homomorphism v ◦Θ is so useful is because we can explicitly write
v in terms of the q-expansion at c of global differential forms of XH : the point is that we
can identify Cotc(XH/R) with R in such a way that the diagram

H0(XH/R,Ω
1
XH

) Z[[q1/p]]⊗Z R

Cotc(XH/R) R

v

q-exp

∑
aiqi/p 7→a1

∼=

commutes.

4.2. Formal immersion at the cusps. The last results we need before we are ready to
prove Proposition 4.1 are the following two lemmas.

Lemma 4.3. Let ω be an element of H0(XH/Z[1/p],Ω
1
XH/Z[1/p]). Let c be a cusp of XH and

let
∞∑

n=1

an(c, ω)q
n/p ∈ Z[[q1/p]]⊗Z R

be the q-expansion of ω at c. If σ ∈ GQ, then an(
σc, ω) = σan(c, ω).

Proof. The result follows from the analogous assertion for X(p), so we show that the lemma
holds in this case. Indeed, recall (see [8, 1.2]) that the q-expansion of a modular form f
at a cusp of X(p) is the evaluation of f at the triple (Tate(q), ωcan, αp), where Tate(q)

is the Tate curve over Z((q1/p)) ⊗ R, ωcan is its canonical differential, and αp is a p-level
structure. The result follows from the fact that the formation of f commutes with arbitrary
base change (we may take this base change to be the conjugation by an element of the
absolute Galois group of Q). �
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Lemma 4.4. Let r be a prime number different from p, and let ω be as in the statement
of Lemma 4.3. Let Tr be the r-th Hecke operator. There exists σ ∈ GQ such that

a1(c, Trω) = ar(
σc, ω).

Proof. By the description of the action of Hecke operators on modular forms of level p
given in [8, 1.11], we know that a1(c, Trω) = ar(c

′, ω) for some cusp c′ of XG(p) (be aware
that the ω we are using here is not the ω used in [8, 1.11]). In order to actually show that
c′ must be a conjugate of c, let us start by working on X(p). So, let ω be a modular form
of X(p) over Z[1/p], and let c be a cusp of X(p). The description in [8] yields that if c is
a cusp of X(p) correponding to the p-level structure on a Néron p-gon given by

(ζp, 0) 7→ (α, β), (1, 1) 7→ (γ, δ),

then a1(c, Trω) = ar(c
′ω), where c′ is the cusp of X(p) correponding to the p-level structure

(ζp, 0) 7→ (α, β), (1, 1) 7→ (γ′, δ′),

where rγ′ = γ and rδ′ = δ (in Z/pZ). Thus, using the notation of Lemma 2.1, if c is

a cusp of XH represented by

((
α
β

)
, 1

)
(they all are represented by an element of this

form because detH = F×
p ), then c′ will be represented by

((
α
β

)
, r−1

)
. Identifying the

set (H ∩ SL2(Fp))\Mp with the set H\Mp × F×
p as was done in the proof of Corollary 2.2,

the cusp c is represented by

(
α
β

)
, and c′ is represented by γr

(
α
β

)
, where γr is an element

of H of determinant r. Corollary 2.3 now yields that c′ is in the Galois orbit of c. �

Proof of Proposition 4.1. The proof is standard. As A/k(λ) is not trivial, there exists a non-
zero ω ∈ Cot(A/k(λ)). By specialisation results due to Raynaud (as stated, for example,
in [13, Corollary 1.1]), the requirement that the characteristic of λ is not 2 allows us to
regard Cot(A/k(λ)) as a k(λ)-linear subspace of Cot(JH/k(λ)).

Let
∞∑

n=1

an(c, ω)q
n/p ∈ k(λ)[[q1/p]]

be the q-expansion of ω at c/k(λ). Lemma 4.2 asserts that f∗c/k(λ)(ω) = ±a1(c, ω). If

a1(c, ω) 6= 0, then f∗c/k(λ) is not trivial, and we are done. Suppose now that a1(c, ω) = 0.

If r is a prime different from p, we know that A is stable under the action of Tr. Thus,
Trω ∈ Cot(A/k(λ)). By Lemma 4.4, there exists σ ∈ GQ such that a1(c, Trω) = ar(

σc, ω).
By Lemma 4.3, we then have

a1(c, Trω) =
σar(c, ω).

In particular, a1(c, Trω) = 0 if and only if ar(c, ω) = 0. If there exists a prime r 6= p such
that ar(c, ω) 6= 0, we see that f∗c/k(λ)(Trω) 6= 0 and we are done. We are going to show

that such a prime always exists if a1(c, ω) = 0.
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Suppose, for the sake of contradiction, that such a prime does not exist. It then follows
that an(c, ω) = 0 for every integer n ≥ 1 such that p ∤ n. Using the q-expansion principle,
we therefore conclude that ω is fixed by a conjugate of the group

U(p) :=

{(
1 a
0 1

)
∈ GL2(Fp) : a ∈ Fp

}
⊆ GL2(Fp).

As ω is also fixed by the action of H, it is fixed under the action of the subgroup of GL2(Fp)
generated by H(p) and the conjugate of U(p) in question. An elementary argument shows
that this is the whole of GL2(Fp), and so ω = 0, which is a contradiction. Therefore, there
exists a prime r 6= p such that ar(c, ω) 6= 0, and the proposition follows. �

Given a point x ∈ XH(Q(ζp)
+) and a maximal ideal λ of R, define

Bλ(x) := {y ∈ XH(Q) : y ≡ x (mod λ)}.
In other words, Bλ(x) is the set of Q-rational points in the residue class of x modulo λ.

Corollary 4.5. Let c be a cusp of XH and let λ be a maximal ideal of R of characteristic
different from 2 (once again, we note that the characteristic is also not p). We then have
Bλ(c) = ∅.

Proof. Say that the characteristic of λ is ℓ. Suppose, for contradiction, that Bλ(c) is non-
empty, and let x ∈ Bλ(c). Consider fc : XH/Q(ζp) → A/Q(ζp). The first observation one
must make is that fc(x) is a torsion point in A(Q(ζp)). This is an easy argument that can
be found (for the case of a different modular curve) in the paper of Darmon and Merel [5].
It goes as follows. We first show that a multiple of ιc(x) is a Q-rational point in JH . Indeed,
ιc(x) = cl(x− c). Now, given σ ∈ Gal(Q(ζp)/Q), we find

σιc(x)− ιc(x) = cl(x− σc)− cl(x− c) = cl(c− σc),

because x is defined over Q. The Drinfeld–Manin theorem yields the existence of a positive
integer mσ such that mσ · cl(c− σc) ∈ JH(Q). Taking m := maxσ{mσ}, we get

m · σιc(x) = m · ιc(x)
for all σ ∈ Gal(Q(ζp)/Q). It follows that m ·fc(x) is Q-rational. As A(Q) is finite, m ·fc(x)
is torsion, and so is fc(x) in the first place.

As the characteristic of λ is not 2 nor p, reduction modulo λ gives rise to an injective
group homomorphism

A(Q(ζp))tors →֒ A/k(λ)(k(λ)).

As x/k(λ) = c/k(λ) and the image of c in A is 0, knowing that fc(x) is a torsion point allows
us now to conclude that fc(x) = fc(c) = 0.

To achieve a contradiction, we are now going to make use of Proposition 4.1. Consider the
Rλ sections of XG(p) defined by x and c. Let hx : ÔXH ,x/k(λ)

→ Rλ be the homomorphism

of completed local rings at the special fibres induced by x, and let hc : ÔXH ,c/k(λ) → Rλ
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be that induced by c. Note that as c/k(λ) = x/λ, we have ÔXH ,x/k(λ)
= ÔXH ,x/k(λ)

. The

statement that fc(x) = fc(c) means that

hx ◦ f̂#c = hc ◦ f̂#c .
But the statement of Proposition 4.1 is precisely that f̂#c is surjective, which leads to
hx = hc. But this is only possible if x = c. However, this is a contradiction, as x was
assumed to be defined over Q, but the field of definition of c is Q(ζp). �

5. The image of the residual Galois representation in the non-integral

case

When the prime p, besides not being in the set {2, 3, 5, 7, 13}, satisfies p ≡ 2 (mod 3),
the group G(p) (as defined in Proposition 1.4) is a proper subgroup of Nns(p) containing
H(p), as the following lemma shows.

Lemma 5.1. If p ≡ 2 (mod 3), the group H(p) is a subgroup of G(p).

Proof. Explicitly, the group H(p) is
{(

a 0
0 ±a

)
: a ∈ F×

p

}
∪
{(

0 ǫpb
±b 0

)
: b ∈ F×

p

}
.

We only have to show that these elements are contained in G(p). As p ≡ 2 (mod 3), the
endomorphism of F×

p given by a 7→ a3 is surjective. It follows from the definition of G(p)

that all the elements of the form

(
a 0
0 ±a

)
, a ∈ F×

p , are contained in G(p). Similarly,

the function F×
p → F×

p given by b 7→ ǫ2pb
3 is surjective, from where it follows that all the

elements of the type

(
0 ǫpb
±b 0

)
, b ∈ F×

p , are in G(p). �

As a consequence, we can take H = G(p) and the results of the previous sections will
hold.

The last ingredient we need to be ready to prove Theorem 1.2 (b) is the following
result [11]. Its usefulness resides in the fact that it implies that, in our situation, our
elliptic curve has potentially good reduction at p. For a proof, we refer the reader to [11,
Proposition 2.2].

Proposition 5.2. Suppose that p ≥ 5 and the image of ρ̄E,p is contained in the normaliser
of a non-split Cartan subgroup of GL(E[p]). Then E has potentially good reduction at every
prime ℓ satisfying ℓ 6≡ ±1 (mod p).

Proof of Theorem 1.2 (b). Suppose that the image of ρ̄E,p is neither GL(E[p]) nor the
normaliser of a non-split Cartan subgroup of GL(E[p]). Zywina’s result (Proposition 1.4)
then asserts that p ≡ 2 (mod 3) and that the image G of ρ̄E,p is conjugate to the group
G(p) in GL(E[p]). By choosing an appropriate basis for GL(E[p]), we may in fact assume
that the image of ρ̄E,p is contained in G(p).
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As we are assuming that j(E) /∈ Z, there is some prime ℓ such that vℓ(j(E)) < 0.
Proposition 5.2 shows that ℓ ≡ ±1 (mod p). In particular, ℓ ∤ 2p. Let λ be any prime ideal
of Z[ζp] lying above ℓ. The elliptic curve E gives rise to a Q-rational point x in XG(p). As
E has potentially multiplicative reduction at ℓ, it follows that there is a cusp c of XG(p)

such that x̃ = c̃, where c̃ and x̃ denote the reductions of c and x modulo λ, respectively.
In other words, x ∈ Bλ(c). But this contradicts Corollary 4.5. �

The proof of Theorem 1.2 (a)—i.e., the case where E has integral j-invariant—will be
the subject of the next section.

6. Runge’s method on the curve XG(p) and end of proof of Theorem 1.2

In this section, we deal with the case where j(E) ∈ Z and E defines a rational point of
the modular curve XG(p), denoted by P . As we only need to treat this case, we assume
that p ≡ 2 mod 3 and p /∈ I(1) in all this section. We will prove the following.

Proposition 6.1. If P ∈ XG(p)(Q) and j(P ) ∈ Z,

log |j(P )| ≤ 7
√
p.

Before proving this proposition, here are its consequences for the end of the proof of
Theorem 1.2.

Corollary 6.2. For any prime p /∈ I(1) congruent to 2 mod 3 and any elliptic curve E
over Q without complex multiplication, if the image of ρ̄E,p is included in a conjugate of
G(p) and j(E) ∈ Z, then p ≤ 1.4× 107.

Proof of Corollary 6.2. Assume that Proposition 6.1 holds. By the explicit surjectivity
theorem of [10, (7) and Theorem 5.2] (only making use of the fact that the image is
contained in the normaliser of a nonsplit Cartan), based on isogeny theorems of Gaudron
and Rémond [7], we also have (if log |j(E)| ≥ 12 · 985)

p2 ≤ 4 · 107
(
log |j(E)|

12
+ 3 + 4 log(2)

)2

,

which gives

log |j(E)| ≥ 6p

103.5
− 70.

This yields p ≤ 1.4 · 107 when combined with the bound of Proposition 6.1. Finally, if
log |j(E)| ≤ 12 · 985, we get by the same surjectivity theorem an absolute upper bound on
p2 giving a smaller upper bound on p. �

The proof of Proposition 6.1 relies on Runge’s method, which starts with the following
fact.

Lemma 6.3. The set of cusps of XG(p) consists of two Galois orbits. One of these Galois
orbits is the set of cusps at infinity, identified via Corollary 2.2 with the orbit

(Ocubes)/±1 ⊂Mp, Ocubes :=

{(
a
b

)
∈ F2

p\{(0, 0)} : a+
√
ǫpb is a cube in F×

p2

}
.
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Proof. By Corollary 2.3, we have a correspondence between the Galois orbits of the set
of cusps of XG(p) and the set G(p)\Mp. Fix a square root

√
ǫp of ǫp and consider the

one-to-one map

θ :Mp → F×
p2
/{±1},

(
a
b

)
7→ a+

√
ǫpb.

Let γ =

(
x

√
ǫpy

y x

)
be an element of Cns(p). An easy calculation shows that

θ

(
γ

(
a
b

))
= (x+

√
ǫpy)(a+

√
ǫpb).

Moreover, the action of the matrix

(
1 0
0 −1

)
corresponds, under θ to the action of the

Frobenius automorphism on F×
p2
. We thus see that (Ocubes)/±1 is a Galois orbit for the

action of G(p) on Mp. Indeed, if γ ∈ G(p)∩Cns(p), then the action of γ on elements of Mp

corresponds, under θ to multiplication by a cube, and so it is clear that it preserves cubes.
Also, the action of Frobenius on F×

p2
maps cubes to cubes.

The complement of (Ocubes)/±1 in Mp is also a Galois orbit because any non-cube of

F×
p2

can be obtained from a specified non-cube by multiplying by an appropriate cube and

applying the Frobenius automorphism if needed. Finally, by definition of cusps at infinity,
we see that (Ocubes)/±1 is precisely the set of cusps at infinity of XG(p). �

Proof of Proposition 6.1. As we explain right below, Lemma 6.3 announces that it is possi-
ble to apply Runge’s method to integral points of XG(p) with respect to the j-invariant, as
there are two Galois orbits of cusps. Indeed, one can then construct (following the results
of [9]) a modular unit U ∈ Q(XG(p)), i.e. a function whose sets of zeros and sets of poles

are the two orbits of cusps. We will then prove that U ∈ Z[j] and p3/U ∈ Z[j] after looking
at the q-expansions, which directly gives that U(P ) is an integer, nonzero and bounded
when j(P ) ∈ Z, as j(P ) can be large only when P is close from the cusps. As U goes
(quickly) to 0 or infinity when P comes close to cusps, studying further the q-expansions
will then prove that P is far away from the cusps and allow to bound |j(P )|. For more
general results on Runge’s method on modular curves, the reader is invited to consult [2]
where the applicability domain (and general bound) is given for every modular curve.

To do it in practice, one needs to define properly a modular unit. We follow the results of
[9] and ideas of Bajolet, Bilu and Matschke [1] here: even though we do not exactly use their
own results except at the very end, their arguments definitely inspired the construction of
our modular unit. We use the following notations.

• e(x) := e2iπx for any complex number x.
• H is the upper half-plane and τ will denote any element of H, for which qτ := e(τ)

(we will generally drop the subscript when τ is obvious). For any rational number r, the
convention is qrτ := e(rτ).



18 SAMUEL LE FOURN AND PEDRO LEMOS

For any nonzero pair a := (a1, a2) in Q2 ∩ [0, 1[2 (to simplify notations) with common
denominator p, we can define a modular function ga on H whose q-expansion is H is

(6.1) ga(τ) = qB2(a1)/2e(a2(a1 − 1))
+∞∏

n=0

(1− qn+a1e(a2))(1 − qn+1−a1e(−a2)),

where B2(X) = X2 − X + 1/6 is the second Bernoulli polynomial. There is a modular
transformation formula for these units, but we only need the following fact: for O a subset
of F2

p\{(0, 0)} (stable by − Id and the action of G(p)), choosing for every (a, b) ∈ O their

lift (ã, b̃) ∈ (Z ∩ [0, p[)2 and then (a1, a2) :=
(ã,̃b)
p , and for m ∈ N∗, the product

(6.2) UO,m :=
∏

(a,b)∈O
gm
(ã/p,b̃/p)

is automorphic of degree 0 for the congruence subgroup associated to G(p) and defines up
to multiplication by a root of unity a function on Q(XG(p)) if

(6.3) m
∑

(a,b)∈O
a2 = m

∑

(a,b)∈O
b2 = m

∑

(a,b)∈O
ab = 0 ∈ Z/pZ

and 6 divides m|O| [9, Theorem 5.2 in Chapter 3].
This is what we use to define our key function (with O = Ocubes), whose properties are

summed up below.

Proposition 6.4. The function on H defined by

U := ζ · UOcubes,3 = ζ ·
∏

(a,b)∈F2
p

a+
√
ǫpb cube in F∗

p2

g3
(ã,b̃)
p

with ζ the root of unity chosen such that the constant term of the q-expansion of U is
1, induces a rational function on X(p) (also denoted by U) which satisfies the following
properties.

• It belongs to Q(XG(p)).
• Its zeroes are the cusps at infinity of XG(p), and its poles make up the second Galois
orbit of cusps of XG(p).

• It is integral over Z[j] as well as p3U−1.

Proof. First, U does define a function on Q(XG(p)) by [9, Theorem 5.2 in Chapter 3] .
Indeed, m = 3 is enough, and for the orbit Ocubes, the vanishing conditions (6.3) hold
because the set of cubes of F∗

p2 is stable by multiplication by scalars of F∗
p, so each of the

three sums of (6.3) has to be equal to itself times any scalar in F∗
p, hence it is 0.

Regarding the divisors, each of the modular function ga is nonvanishing on H so the
divisor of U is supported on the cusps. The analysis of the q-expansion at infinity later
proves that its image in XG(p) is a zero of U , so all its Galois conjugates are as U is Q-
rational, and the only other Galois orbit (by Lemma 6.3) must be made up with the poles
of U .
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For integrality, each ga1,a2 is integral over Z[j] [9, Theorem 2.2 of Chapter 2] so U is and
it is easily seen from the q-expansions that

∏

(a,b)∈Mp

g3
ã/p,̃b/p

= ±p3,

so p3/U is also integral over Z[j]. �

Consequently, for every P ∈ XG(p)(Q) with j(P ) ∈ Z,

(6.4) U(P ) ∈ Z and 0 ≤ log |U(P )| ≤ 3 log(p),

which is the whole point of considering this modular unit. We now use the expansion at
infinity to bound qτ .

For every τ ∈ H, gathering the q-expansions (6.1),

log |U(τ)| = Ordq(U) log |q|+ log |ρU |+ log |R(τ)|
with

Ordq(U) = 3
∑

(a,b)∈Ocubes

B2(ã/p)/2, ρU =
∏

(a,b)∈Ocubes

ρ3
ã/p,̃b/p

and

ρ(a1,a2) =

{
−e((a1 − 1)a2/2) if a1 6= 0
−2i sin(πa2/2) if a1 = 0.

Finally,

log |R(τ)| = 3
∑

(a,b)∈Ocubes

log |Ra1,a2(τ)|

where

log |Ra1,a2(τ)| =
∑

n≥0

log |1− qn+a1e(a2)|+ log |1− qn+a1e(a2)|.

We will obtain the following estimates and equalities.

Proposition 6.5. We have

Ordq(U) =
p2 − 1

4p
, |ρU | = (p− 1)3,

and

| logR(τ)| ≤ 2(p2 − 1)
|q|

1− |q| +
π2p(p− 2)

3| log |q|| .

Proof. First, for a = 0, all nonzero b’s satisfy that (a, b) ∈ Ocubes because ǫp is a cube in
F∗
p2 (check its order). This gives (p−1) elements in the orbit. Moreover, Ocubes is stable by

scalar multiplication by F∗
p, hence all fibers of (a, b) 7→ a have the same cardinality except

above 0. They are thus of cardinality (p− 2)/3. This allows us to compute

Ordq(U) =
3

12
(p− 1) +

(p− 2)

2

p−1∑

a=1

((a/p)2 − (a/p) + 1/6) =
p2 − 1

4p
.
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Similarly, for ρ, as all terms except for a1 = 0 have modulus 1,

|ρU | =
p−1∏

b=1

|1− e(b/p)|3 = (p− 1)3.

Finally, for R(τ), we use that | log |1 − z|| ≤ − log |1 − |z|| for |z| ≤ 1 for n = 0, and

| log |1 − z|| ≤ |z|
1−|z| for the other terms (if a1 = 0, the first n = 0 term is put into ρ(0,a2).

We thus get for a1 6= 0

| log |Ra1,a2(τ)|| ≤ | log(1− |q|a1)|+ | log(1− |q|1−a1)|+ 2|q|
1− |q| ,

and

| log |R0,a2(τ)|| ≤
2|q|

1− |q| .

Gathering the previous inequalities for the product expansion,

| logR(τ)| ≤ 2(p2 − 1)
|q|

1 − |q| + 2(p − 2)

p−1∑

a=1

| log(1− xa)|, x = |q|1/p

≤ 2(p2 − 1)
|q|

1 − |q| +
π2(p− 2)

3| log(x)|

≤ 2(p2 − 1)
|q|

1 − |q| +
π2p(p− 2)

3| log |q||
by[3, Lemma 3.5].

�

Now, assume γ ∈ SL2(Z) is such that its reduction modulo p is of the shape

(
a ǫpb
b a

)
,

where a+ εpb is not a cube in F∗
p2 . The composition U ◦ γ is a modular unit on XG(p) (not

necessarily defined over Q anymore), but by arguments similar to the previous ones, we
have the following:

log |U(γτ)| = Ordγ U · log |qτ |+ log |ρU,γ |+ log |Rγ(τ)|,
where

Ordγ U = −p
2 − 1

8p
, log |ρU,γ | = 0, and | logRγ(τ)| ≤

π2p(p+ 1)

3| log |q|| .

The argument behind each of those computations is that by our hypothesis on γ, the
function (a, b) 7→ a1((a, b) · γ)) on Ocubes does not have 0 in its image, and each other
element of F∗

p has (p + 1)/3 elements in its fiber (again by stability by multiplication by
F∗
p).
Putting this together, we obtain

∣∣∣∣log |U(τ)| − p2 − 1

4p
log |q| − 3 log(p − 1)

∣∣∣∣ ≤ 2(p2 − 1)
|q|

1− |q| +
π2p(p− 2)

3| log |q||
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and for the choice of γ above,
∣∣∣∣log |U(γτ)| + p2 − 1

8p
log |q|

∣∣∣∣ ≤
π2p(p+ 1)

3| log |qτ ||
.

Now, let us assume that there is a noncuspidal point P ∈ XG(p)(Q) with j(P ) ∈ Z. There
is a lift τ ∈ H such that |qτ | is small and a γ ∈ SL2(Z) such that γ · τ is above P in the
complex uniformization of XG(p). This means that P is close to the cusp γ−1(∞). Up to
Galois conjugation (which fixes P but changes the cusps), we can reduce to two situations:
either γ = Id (which means that τ belongs to the usual fundamental domain for SL2(Z)),
or γ is chosen as above such that its reduction modulo p corresponds to a matrix of Cns(p)
not in G(p). In these two cases, we respectively have U(τ) = U(P ) and U(γτ) = U(P ),
and this is where we use (6.4) to bound the corrresponding term in one of the two previous
inequalities. The first case gives

p2 − 1

4p
| log |q|| ≤ 3 log(p− 1) + 2(p2 − 1)

|q|
1− |q| +

π2p(p− 2)

3| log |q|| .

Assuming p ≥ 100 and | log |q|| ≥ √
p, we can bound roughly the coefficients and the

nondominant terms to obtain

| log |q|| ≤ 1.2 +
13p

| log |q|| .

Proceeding similarly in the second case (with the same assumptions on p and |q|), we obtain

| log |q|| ≤ 1.2 +
27p

| log |q|| .

Both cases give rise to second-degree polynomial inequalities which we can readily solve,
and using then the estimates of [2, Corollary 2.2], after simplification,

log |j(P )| ≤ 7
√
p.

We can retrieve the remaining cases p < 100 by refining the estimates above (or by using
the main theorem of [1]), and the case log |q| ≤ √

p by [2, Corollary 2.2] again, which
concludes the proof. �

Appendix A. The proof of Lemma 3.5

Proof of Lemma 3.5. Using the identification of Corollary 2.2, the action of the map d1 on
the cusps corresponds to the canonical projection

Csp(p)\Mp × F×
p → T (p)\Mp × F×

p ,

where T (p) is the upper triangular subgroup of GL2(Fp). Using equation (3.2), we see that
dp = wp ◦ d1 ◦ ωp. One easily checks that the action of ωp on the cusps of Xsp(p) is given
by

ωp :

((
a
b

)
, d

)
7→

((
b
a

)
,−d

)
.
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Let c be the cusp at infinity of X+
sp(p), and let c′ be the cusp at infinity of Xsp(p) (which

obviously lies over c). We will show that η′(c′) = 0, from where it will immediately follow
that η(c) = 0.

The image of c′ under d1 is the cusp at infinity of X0(p). To compute dp(c
′), we start

by calculating ωp(c
′). Being a cusp at infinity, c′ is represented by an element of Mp × F×

p

of the form ((
a
0

)
, a

)
a ∈ F×

p .

The involution ωp then maps c′ to the cusp represented by

((
0
a

)
,−a

)
. The image of

this cusp under d1 is the cusp 0 of X0(p). As wp swaps the cusp 0 with ∞, we conclude
that dp(c

′) is also the cusp at infinity of X0(p). It follows from the definition of η′ that
η′(c′) = 0, as we wanted.

Now let c be a cusp of X+
sp(p) not at infinity. Let c

′ be a cusp of Xsp(p) lying over it (in

this situation, c′ is necessarily not at infinity). We will now show that η′(c′) = cl(0 −∞),
which will conclude the proof of the lemma.

Let ((
a
b

)
, d

)
, a, b, d ∈ Fp

be an element of Mp × F×
p representing the cusp c′. Note that a, b ∈ F×

p because otherwise

c′ would lie over the cusp at infinity of X+
sp(p). As b ∈ F×

p , the image under d1 of c′ is the

cusp 0. The cusp ωp(c
′) is represented by

((
b
a

)
,−d

)
. As a ∈ F×

p , the image of ωp(c
′)

under d1 is the cusp 0. Using again the fact that wp swaps the cusps of X0(p), we conclude
that dp(c

′) = ∞. Therefore, η′(c′) = cl(0−∞), as we wanted. �

Appendix B. The proof of Proposition 1.4

Following a suggestion made by an anonymous referee, we add here, as an appendix,
Zywina’s proof of Proposition 1.4 (which is Proposition 1.13 in his paper [18]). We must
emphasise that none of the results and ideas in this appendix are due to the authors of this
paper, and that the original version of this proof can be found in [18]. The main reason
for the existence of this appendix is the fact that Zywina’s paper remains unpublished.

Fix a decomposition subgroup Dp of GQ over p, and let I be the corresponding inertia
subgroup.

Proof of Proposition 1.4. As p does not lie in I(1), we know (Theorem 1.1) that the image
of ρ̄E,p is contained in the normaliser of a non-split Cartan subgroup. By choosing a basis
of E[p] appropriately, we may assume that this normaliser of non-split Cartan is Nns(p).
Let j(E) be the j-invariant of E. We start by showing that we must have vp(j(E)) ≥ 0.

Suppose that vp(j(E)) < 0. Our elliptic curve E/Qp
is either isomorphic to a Tate curve

over Qp, or is a quadratic twist of one. Therefore, there exists a character ψ : Dp → F×
p ,
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trivial or quadratic, such that

ρ̄E,p|Dp ∼
(
ψχp ∗
0 ψ

)
.

As χp : Dp → F×
p is surjective, it follows that the image of ρ̄E,p(Dp) in PGL2(Fp) has order

divisible by p− 1. Note however that the image of Nns(p) in PGL2(Fp) has order 2(p+1).
If the image of ρ̄E,p were contained in Nns(p), then p−1 would divide 2(p+1), which is not
possible because p ≥ 19. This leads us to conclude that if the image of ρ̄E,p is contained
in the normaliser of a non-split Cartan subgroup, then vp(j(E)) ≥ 0, as we wanted.

Now that we know that vp(j(E)) ≥ 0, we will show that ρ̄E,p(I) is a subgroup of index 1
or 3 of Cns(p). Before proving this, we point out that ρ̄E,p(I) is cyclic. Indeed, the
representation ρ̄E,p|I factors through the tame inertia subgroup of I because the order of
Nns(p) is not divisible by p. The cyclicity of ρ̄E,p(I) now follows from the fact that the
tame inertia subgroup is pro-cyclic.

There is a finite extension K of Qp of ramification degree e ∈ {1, 2, 3, 4, 6} over which E
acquires good reduction (see section 5.6 of [16]). We will denote by v the valuation of K
normalised so that v(p) = e. Let IK denote the inertia subgroup of Gal(Qp/K). Let

[p](X) =
∞∑

i=1

aiX
i, ai ∈ Zp

be the multiplication by p in the formal group of E. As every ai lies in Zp, the integers
v(ai) are non-negative multiples of e. As either v(ap) = 0 (the ordinary case), or v(ap) 6= 0
and v(ap2) = 0 (the supersingular case), the Newton polygon of [p](X) can then either start
with a line segment connecting (1, e) to (p, 0), or with a line segment connecting (1, e) to
(p2, 0). Using [16, Proposition 10, section 1.10] and the fact that the representation

ρ̄E,p|IK : IK → GL2(Fp)

is semisimple (because the order of Nns(p) is coprime to p), we conclude that in the ordinary
case we have [16, Proposition 11, section 1.11]

(B.1) ρ̄E,p|IK ∼
(
χp 0
0 1

)
,

while in the supersingular case we have

(B.2) ρ̄E,p|IK ⊗Fp Fp ∼
(
θe2 0
0 θpe2

)
,

where θ2 is a fundamental character of level 2. We show that (B.1) cannot occur.
If ρ̄E,p|IK were as in (B.1), then the image of ρ̄E,p(IK) in PGL2(Fp) would be a cyclic

group of order p− 1. Since the square of any element in Nns(p)−Cns(p) is a scalar matrix,
the order of every element in the image of Nns(p) in PGL2(Fp) divides p+1. In particular,
we would have p− 1 | p+ 1. However, this is not possible, as p ≥ 19.
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We are thus in situation (B.2). The group ρ̄E,p(IK) is therefore a cyclic group of order

p2 − 1

gcd(p2 − 1, e)
,

and so the order of ρ̄E,p(I) is a multiple of this number. Also, it follows that ρ̄E,p(I) is
contained in Cns(p). Indeed, a generator of ρ̄E,p(I) must have order (p2−1)/ gcd(p2−1, e) ≥
(p2 − 1)/6, but every element of Nns(p)−Cns(p) has order dividing 2(p− 1). As p ≥ 19, it
follows that a generator of ρ̄E,p(I) must be an element of Cns(p), and so ρ̄E,p(I) is contained
in Cns(p).

As the order of Cns(p) is p2 − 1, we can therefore conclude that ρ̄E,p(I) is a subgroup
of index 1, 2, 3, 4 or 6 of Cns(p). Note however that if this index were even, then ρ̄E,p(I)
would be contained in the subgroup of squares of Cns(p) (as Cns(p) is cyclic, this is the
only subgroup of index 2). However, this would contradict the fact that the determinant
of ρ̄E,p|I surjects to F×

p . Therefore, the index of ρ̄E,p(I) in Cns(p) is odd, and so it is 1 or 3.
Now let H denote the group ρ̄E,p(GQ) ∩ Cns(p). By what we have seen, H has index 1

or 3 in Cns(p) (it contains ρ̄E,p(I)). Note that if H = Cns(p), then ρ̄E,p(GQ) = Nns(p), as
the image of ρ̄E,p cannot be contained in Cns(p) (recall that this is due to the fact that
the image of complex conjugation must have trace 0 and determinant −1, and there is no
element in Cns(p) simultaneously satisfying both of these properties). It remains to treat
the case where H has index 3 in Cns(p).

Suppose that H has index 3 in Cns(p). As Cns(p) is cyclic, there is only one subgroup
of index 3: the subgroup of cubes. As H contains ρ̄E,p(I), the det(H) = F×

p . Note that
if p ≡ 1 (mod 3), then it is not possible to have H of index 3 in Cns(p), because then
det(H) 6= F×

p . Thus, if p ≡ 1 (mod 3), the image of ρ̄E,p must be Nns(p).
Suppose then that p ≡ 2 (mod 3) and that H has index 3 in Cns(p). It is easy to check

that Nns(p)/H is isomorphic to D3, the dihedral group of size 6. The image of ρ̄E,p(GQ)
in Nns(p)/H has index 3. Now, all the index 3 subgroups of D3 are conjugate, from where
it follows that the image of ρ̄E,p is a conjugate of G(p) in GL2(Fp). �
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