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The dynamics and radiation of ultrarelativistic electrons in strong counterpropagating laser beams are inves-
tigated. Assuming that the particle energy is the dominant scale in the problem, an approximate solution of
classical equations of motion is derived and the characteristic features of the motion are examined. A specific
regime is found with comparable strong field quantum parameters of the beams, when the electron trajectory
exhibits ultrashort spike-like features, which bears great significance to the corresponding radiation properties.
An analytical expression for the spectral distribution of spontaneous radiation is derived in the framework of the
Baier-Katkov semiclassical approximation based on the classical trajectory. All the analytical results are further
validated by exact numerical calculations. We consider a non-resonant regime of interaction, when the laser
frequencies in the electron rest frame are far from each other, avoiding stimulated emission. Special attention
is devoted to settings when the description of radiation via the local constant field approximation fails and to
corresponding spectral features. Periodic and non-periodic regimes are considered, when lab frequencies of
the laser waves are always commensurate. The sensitivity of spectra with respect to the electron beam spread,
focusing and finite duration of the laser beams is explored.
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I. INTRODUCTION

Electromagnetic processes in strong laser fields are characterized by nonperturbative multiphoton dynamics. An efficient
treatment of nonlinear processes in strong field QED has been provided within the Furry picture [1], regarding the strong field
as classical and employing the electron wave function in such fields for the calculation of amplitudes of QED processes. The
Volkov wave function of an electron in a plane wave laser field [2] has been successfully and extensively employed to explore
the nonlinear Compton effect, nonlinear Breit-Wheeler [3–5], and nonlinear Bethe-Heitler pair production processes [6]. The
multiphoton processes in a plane wave field enter into play at large values of the classical strong field parameter ξ ≡ −ea/m � 1,
where a is the amplitude of the vector potential, a ≡

√
A2, while e and m the electron charge and mass, respectively. Relativistic

units ~ = c = 1 are used throughout the paper, unless specified otherwise. Present day laser facilities attain intensities of up to
5 × 1022W /cm2 in optical wavelengths [7, 8], corresponding to ξ ∼ 100. For the next generation extreme laser infrastructures an
order of magnitude increase of intensity is expected [9, 10], opening a bright avenue for investigation of extreme nonlinear strong
field QED processes [11–14] in laser-plasma or laser-electron beam interactions.

The desire to increase the effective laser field with a given laser beam energy gave rise to the concept of multi-beam configura-
tions and to the notion of a dipole wave [15–21]. The simplest case of a multi-beam configuration is the counterpropagating laser
beam setup, which is an attractive setup to study QED effects [22–29]. All of the above admit no exact analytical solution for the
wave function and are, therefore, not accessible to strong field QED calculations within the Furry picture. The common way of
treating strong field QED processes in laser-plasma interaction is to approximate the emission by that in the presence of the local
constant field when the field intensity is very high (ξ � 1). The local constant field approximation (LCFA) is rigorously derived
in the asymptotic limit ξ � 1 for the plane wave case (more precise condition is (ξ/χ1/3)[ω/(ε − ω)]1/3 � 1 [30, 31], with typical
emission frequencies ω/ε ∼ χ/(χ + 1) and the electron energy ε). In this case the formation length of the process becomes smaller
than the field wavelength, and the process probability depends solely on the quantum parameter χ = e

√
−(FµνPν)2/m3, where

Fµν is the electromagnetic tensor and Pµ = (ε,P) the particle 4-momentum. Due its simplicity, this approximation allows for
the inclusion of QED processes in kinetic Monte Carlo and particle-in cell (PIC) simulations involving fields of complex forms
[32–34]. However, recently deficiencies and failures of LCFA have been observed in low [30, 35–37] and high energy limits [38].
LCFA violation in counterpropagating laser waves is demonstrated in [39] which is due to emergence of an additional small time
scale in the electron dynamics.

Beyond LCFA treatment, one may apply the Wentzel-Kramers-Brillouin (WKB) approximation to describe the electron
quantum (quasiclassical) dynamics [40, 41]. A similar high-energy approximation describing the electron dynamics in a focused
laser field, when the electron longitudinal momentum dominates over transverse one, is developed in [42] and applied for
description of corresponding nonlinear QED processes [43–45]. As WKB approximation is closely connected with the classical
description, a WKB wave function in closed analytical form can be derived in the cases when such solution is available for the
electron classical trajectory. In the 60s’ this observation motivated Baier and Katkov to develop the operator approach and with its
help to express the amplitudes of strong field QED processes, such as radiation and pair production, as a function of the electron
classical trajectory in the external field [46–48].

We consider the setup of counterpropagating laser beams. Here one should distinguish resonant and non-resonant regimes
of interaction. The resonance appears when the frequencies of the laser waves match in the average rest frame of the electron
[49], which would lead to stimulated emission of laser photons [50, 51], to coherent electron scattering from the moving laser
grating (Kapitza-Dirac effect [52–55]). Rather than the widely explored topic of stimulated processes in the resonant regime, we
discuss in this paper the non-resonant regime, relevant to the investigation of spontaneous radiation in this setup. The equation of
motion is highly nonlinear and is known to exhibit chaotic dynamics when the corresponding field are strong [56, 57]. In the
quantum domain, approximations to the wave function of a scalar particle experiencing this field have been discussed in [58, 59].
Radiation in this setup and its reaction to the electron dynamics have been investigated within LCFA via PIC-QED simulations
[22, 25–27, 29]. In particular, this configuration turned out to be favorable to QED cascades where the emitted γ-photons are
energetic enough to produce electron-positron pairs, starting an avalanche-like dynamics. Moreover, it was shown that radiation
reaction can essentially modify the trapping of particles in this field [24, 28].

In the present paper an electron interacting with counterpropagating laser beams in the non-resonant regime is considered,
using laser fields of equal frequency and the ultrarelativistic electron moving initially along the propagation direction of the first
laser beam. An approximate analytical solution to the classical equation of motion is derived, imposing a restriction on the laser
parameters and electron initial momentum, in particular, demanding ξ1ξ2 � γ2, for the lasers’ field parameters ξ1, ξ2 and γ as the
average Lorentz factor of the electron in the fields. Based on the approximated analytical trajectory, the radiation is calculated in
the realm of the semiclassical Baier-Katkov formalism. We compare the obtained formula with a fully numerical calculation and
discuss radiation features in different regimes. Furthermore, the influence of the pulses width and focusing, which cannot be
accounted for analytically, are studied numerically.

The paper is organized as follows. In Sec. II an approximate solution to the Lorentz equation in the counterpropagating beams
is derived. The investigation of the photon emission is given in Sec. III. Radiation spectra in strong fields are discussed along
with a numerical example. The validity of the analytical treatment and the deviations with respect to numerical calculations are
analyzed. The impact of finite duration and focusing of the laser beam is investigated numerically. Conclusions are given in
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Sec. IV.

II. THE CLASSICAL DYNAMICS

The classical equation of motion for the particle in electromagnetic (EM) fields reads

dP
dτ

= eγ [E (τ, x(τ)) + v × B (τ, x(τ))] , (1)

where τ is the proper time, γ = ε/m is the relativistic Lorentz-factor, ε =
√

m2 + P2 is the energy, P is the momentum, E,B
are the electric and magnetic fields, correspondingly, and v = P/ε is the velocity. In the general case, Eq. (1) cannot be solved
analytically because of its nonlinearity, as x(τ) depends on the momentum via x(τ) =

∫
dτP(τ)/m. In the following, we seek for

an approximated solution to the particle’s equation of motion in the presence of counterpropagating circularly polarized waves
with the four-vector potential A = A1 + A2 where

Aµ1 ≡ a1g1(k1 · x)
[
cos(k1 · x)eµx + sin(k1 · x)eµy

]
; Aµ2 ≡ a2g2(k2 · x)

[
cos(k2 · x)eµx + sin(k2 · x)eµy

]
. (2)

The four-wavevectors of the beams are k1 = (ω, 0, 0, ω), k2 = (ω, 0, 0,−ω) and ex = (0, 1, 0, 0), ey = (0, 0, 1, 0) are the unit vectors.
The dimensionless functions g1(k1 · x), g2(k2 · x) are slow wave envelopes. In this section they will be set to unity. We will refer to
them when considering the influence of the turn-on process on the relation between the average momentum and its initial value in
Sec. III. The electric and magnetic fields are derived from the vector potential through E = − ∂A

∂t and B = ∇ × A:

E1 = −a1ω [− sin (k1 · x) ex + cos (k1 · x) ey] ; E2 = −a2ω [− sin (k2 · x) ex + cos (k2 · x) ey] (3)
B1 = a1ω [cos (k1 · x) ex + sin (k1 · x) ey] ; B2 = −a2ω [cos (k2 · x) ex + sin (k2 · x) ey] . (4)

A. Classical trajectory

For solving the equation of motion Eq. (1) the phases appearing in the fields arguments are expressed via the trajectoryx(τ)

φ1(τ) ≡ k1 · x(τ) =
k1 · P̄

m
τ + δφ1(τ), φ2(τ) ≡ k2 · x(τ) =

k2 · P̄
m

τ + δφ2(τ) (5)

where

δφ1 ≡

∫
dτ

k1 · δP(τ)
m

, δφ2 ≡

∫
dτ

k2 · δP(τ)
m

, (6)

with δPµ = Pµ(τ) − P̄µ. The bar symbol designates time-averaged quantities. The key assumption lying in the basis of our
derivation is∫

sin φ1dτ ≈ −
m

k1 · P̄
cos φ1 ,

∫
sin φ2dτ ≈ −

m
k2 · P̄

cos φ2 ,

∫
sin(φ1 − φ2)dτ ≈ −

m
(k1 − k2) · P̄

cos(φ1 − φ2), (7)

as well as similar relations where in the right wing cos→ sin and in the left wing sin → − cos. By employing this assumption, the
4-momentum P of the particle can be derived. With the momentum, expressions for δφ1, δφ2 according to Eq. (6) are calculated
under certain restrictions, which assure the validity of the assumption of Eq. (7).

Since the vector potential is independent on the transverse coordinates, the canonical momentum in these directions is conserved
P⊥(τ) = p⊥ − eA(τ). Without loss of generality, we choose the initial transverse momentum p⊥ to be on the x-axis. Then,

Px(τ) = px + mξ1 cos φ1 + mξ2 cos φ2 , (8)
Py(τ) = mξ1 sin φ1 + mξ2 sin φ2 , (9)

where −ea1,2 = mξ1,2. Applying the assumption of Eq. (7), the x, y components of the trajectory read

x(τ) =

(
px

m
τ +

mξ1

k1 · P̄
sin φ1 +

mξ2

k2 · P̄
sin φ2

)
, (10)

y(τ) = −

(
mξ1

k1 · P̄
cos φ1 +

mξ2

k2 · P̄
cos φ2

)
. (11)
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Now let us consider the oscillations on the z axis

dPz

dτ
=

e
m

P⊥ × B. (12)

Employing Eqs. (8), (9) and (4), one can find out that the terms scaling like ξ2
1 , ξ

2
2 cancel. Therefore we have

dPz

dτ
= −pxω

[
ξ1 sin φ1 − ξ2 sin φ2

]
− 2ωmξ1ξ2 sin (φ1 − φ2) . (13)

Accordingly, Pz = P̄z + δPz can be written out explicitly as

δPz = pxω

[
mξ1

k1 · P̄
cos φ1 −

mξ2

k2 · P̄
cos φ2

]
+

2m2ξ1ξ2ω

(k1 − k2) · P̄
cos (φ1 − φ2) , (14)

where P̄z is the time-averaged momentum along z direction, whose relation to the initial momentum of the electron before
interacting with the laser pulses will be discussed in Sec. II C. Integrating over τ, one obtains the z-component of the trajectory

z(τ) =
P̄z

m
τ +

2m2ξ1ξ2ω

[(k1 − k2) · P̄]2 sin (φ1 − φ2) + pxω

[
mξ1

(k1 · P̄)2 sin φ1 −
mξ2

(k2 · P̄)2 sin φ2

]
. (15)

Let us now calculate the energy and its oscillatory part: ε =
√

m2 + P2
x + P2

y + (P̄z + δPz)2. With Eqs. (8,9),

ε =

[
m2 + m2ξ2

1 + m2ξ2
2 + 2px (mξ1 cos φ1 + mξ2 cos φ2) + P̄2

z + p2
x + 2P̄zδPz + 2m2ξ1ξ2 cos(φ1 − φ2) + δP2

z

]1/2
. (16)

Using δPz given by Eq. (14) and recalling that (k1 − k2) · P̄ = −2ωP̄z, one can find out that the terms proportional to cos(φ1 − φ2)
cancel each other. The expression for the energy may be further simplified to

ε =

{
m2 + m2ξ2

1 + m2ξ2
2 + p2

x + P̄2
z + δP2

z + 2px

[
mξ1

(1 − v̄z)
cos φ1 +

mξ2

(1 + v̄z)
cos φ2

]}1/2

(17)

with k1 · P̄ = ωε̄ (1 − v̄z), k2 · P̄ = ωε̄ (1 + v̄z), where the average velocity on the z axis is defined as v̄z = P̄z/ε̄. With a Taylor
expansion the following expression is obtained

ε ≈ ε̄ + δε + O
(
δPz

ε̄

)2
, (18)

where the average energy, effective mass, and the oscillatory part are defined as

ε̄ =

√
m2
∗ + p2

x + P̄2
z , m∗ ≡ m

√
1 + ξ2

1 + ξ2
2 , δε = pxω

[
mξ1

k1 · P̄
cos φ1 +

mξ2

k2 · P̄
cos φ2

]
. (19)

Notice that for vanishing transverse momentum px = 0 the energy is constant, in accordance with [49]. The expansion in Eq. (18)
is justified if δPz � ε̄. Here we have taken into account that for an ultrarelativistic electron, the amplitude of δPz is always larger
than δε according to Eqs. (14) and (19) and thus δε/ε < δPz/ε � 1. Taking into account the explicit form of δPz, Eq. (14), the
validity condition δPz � ε̄ reads

mξ1 pxω

k1 · P̄ε̄
=

pxmξ1

(1 − v̄z)ε̄2 � 1 (20)

mξ2 pxω

k2 · P̄ε̄
=

pxmξ2

(1 + v̄z)ε̄2 � 1 (21)

2m2ξ1ξ2ω

(k1 − k2) · P̄ε̄
=

m2ξ1ξ2

v̄zε̄2 � 1. (22)

So far φ1, φ2 were not specified yet. With the help of δε, δPz we evaluate δφ1, δφ2 and thus obtain the phases φ1, φ2. Accordingly,
the validity criterion for the basic assumption of this derivation, Eq. (7), is determined. Substituting Eqs. (14, 19) in (6) we have

δφ1 = Φ1 + C1 sin φ2 −C12 sin(φ1 − φ2), δφ2 = Φ2 + C2 sin φ1 + C12 sin(φ1 − φ2), (23)



5

where Φ1,Φ2 are arbitrary constants and the coefficients are

C1 ≡
2pxmξ2ω

2

(k2 · P̄)2 =
2pxmξ2

ε2(1 + v̄z)2 C2 ≡
2pxmξ1ω

2

(k1 · P̄)2 =
2pxmξ1

ε2(1 − v̄z)2 C12 ≡
2m2ξ1ξ2ω

2

[(k1 − k2) · P̄]2 =
m2ξ1ξ2

2ε2v̄2
z
. (24)

Eq. (5) together with Eq. (23) form an implicit system for the solution of the phases. Without loss of generality, we assumed
that v̄z > 0, i.e. the particle copropagates with the ξ1 beam, leading to asymmetry between the two beams. As a consequence,
k1 · P̄ � k2 · P̄, so that if the beams amplitudes are of the same order of magnitude, C2 is considerably larger than C1. In the
following we assume that C1,C12 � 1, yielding the following expressions

φ1(τ) ≈ Φ1 +
k1 · P̄

m
τ, φ2(τ) ≈ Φ2 +

k2 · P̄
m

τ +
2pxmξ1ω

2

(k1 · P̄)2 sin φ1. (25)

In order to prove the consistency of this closure, one should accomplish two things. First, one has to show that the contributions
of C1,C12 to the momentum are of second order, justifying the neglection. For this purpose, we consider a general function F
with the following argument φ(τ) = φ0(τ) + ν sin f (τ), where ν is a small constant and φ0(τ), f (τ) are general functions. Taylor
expanding with respect to ν yields

F[φ(τ)] ≈ F[φ0(τ)] + νF′[φ0(τ)] sin f (τ). (26)

In our case, φ0 designates the approximated phases φ1 or φ2 given in Eq. (25) and ν is either C1 or C12, φ stands for the full phases
including the neglected terms proportional to C12,C1, and F(φ) either ε cos(φ) or ε sin φ, where ε stands for the amplitudes of the
various momentum oscillations appearing in Eqs. (8), (9),(14). Since F′ ∼ ε , the correction scales as O(εν). One should notice
that the amplitude of the momentum oscillations are assumed to be considerably smaller with respect to the particle energy, being
the dominant energy scale. Hence, ε is a small parameter and the corrections corresponding to C1,C12 may be neglected, up to
the second order.

Second, one should verify that the approximation of Eq. (7) indeed holds. Plugging the phases Eq. (25) into Eq. (7) we notice
that all the three integrals take the form I ≡

∫
cos

[
ατ + β sin(κτ)

]
dτ with different choices of α, β, κ. In order to calculate this

integral, we recall the identity

eiβ sin(κτ) =
∑

s
Js(β)eisκτ, (27)

where Js(β) is the Bessel function. Multiplying eiατ on both sides, one readily obtains the real and imaginary part, respectively, as

cos
[
ατ + β sin(κτ)

]
=

∑
s

Js(β) cos [(α + sκ)τ] ; sin
[
ατ + β sin(κτ)

]
=

∑
s

Js(β) sin [(α + sκ)τ] . (28)

The integral can thus be obtained as

I = −
1
2

∑
s

Js(β)
1

α + sκ
[
ei(α+sκ)τ + e−i(α+sκ)τ

]
. (29)

For a certain β we know that Js(β) vanishes if the index s is larger enough than β. Therefore, further simplification can be
accomplished if

sκ/α . βκ/α � 1. (30)

The integral is thus approximated by

I ≈ −
1
α

cos
[
ατ + β sin(κτ)

]
, (31)

where Eq. (28) has been considered. This result is in agreement with Eq. (7). Now let us find the conditions for which Eq. (30)
is satisfied for all three cases. For the first integral, β vanishes and Eq. (30) is trivially fulfilled. For the second case, one has
α = (k2 · P̄)/m2, κ = (k1 · P̄)/m2 and β = C2, so that Eq. (30) yields

pxmξ1

ε̄2 �
(1 + v̄z)(1 + v̄z)

2
. (32)

For the third integral β, κ are as in the second case but α = [(k2 − k1) · P̄]/m2, imposing the condition

pxmξ1

m2
∗

� v̄z(1 − v̄z). (33)
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Thus, Eq. (7) was explicitly shown to be valid, given that Eqs. (32) and (33) are satisfied. Combining C1,C12 � 1 with Eqs. (20-22)
and (32-33), yields the final validity criteria

m2ξ1ξ2

ε2 � v̄z min
[
1, 2v̄z

]
,

pxmξ2

ε2 � (1 + v̄z)2,
pxmξ1

ε2 � v̄z(1 − v̄z). (34)

Let us conclude the derivation. The final expressions for the trajectory and momentum are Eqs. (10,11,15) and Eqs. (8,9,14,19),
correspondingly. The phases φ1(τ), φ2(τ) are given by Eq. 25) and k1 · P̄, k2 · P̄ appear in Eq. (II A). The validity criteria
corresponding to this solution are Eqs. (34. In the ultrarelativistic regime 1 − v̄z � 1 they are simplified to

pxmξ2

2ε2 ,
m2ξ1ξ2

ε2 ,
2pxmξ1

m2
∗

� 1. (35)

The above criteria can be fulfilled in a scenario where an ultrarelativistic electron moves along the laser propagation direction
with a small deviating angle. Alternatively, one may write the instantaneous momentum in a covariant form as follows

Pµ(τ) = P̄µ − e
[
Aµ1(φ1) + Aµ2(φ2)

]
+ kµ1

[
ep · A1(φ1)

k1 · P̄
−

A1(φ2) · A2(φ2)
(k1 − k2) · P̄

]
+ kµ2

[
ep · A2(φ2)

k2 · P̄
+

A1(φ2) · A2(φ2)
(k1 − k2) · P̄

]
. (36)

One may verify that in the case if one of the laser beams vanishes, our result Eq. (36) recovers the familiar plane wave solution [5].
The above derivation expresses the physical quantities of interest, namely the trajectory and the 4-momentum, as a function of

the proper time τ. However, for practical applications it is favorable to use the laboratory time as the independent variable. The
two quantities are simply related through dt = ε

m dτ. Performing the integration we obtain

t(τ) =
ε̄

m
τ + pxω

[
mξ1

(k1 · P̄)2 sin φ1(τ) +
mξ2

(k2 · P̄)2 sin φ2(τ)
]
. (37)

The latter along with x(τ) provides a parametric description of the particle coordinate as a function of the laboratory time.
Alternatively, one may further approximate the phases. We start by writing Eq. (37) as

τ =
m
ε̄

{
t − pxω

[
mξ1

(k1 · P̄)2 sin φ1(τ) +
mξ2

(k2 · P̄)2 sin φ2(τ)
]}
. (38)

Substituting (38) into the phase φ1 given in (25) one obtains

φ1 = Φ1 + ω1t − pxωω1

[
mξ1

(k1 · P̄)2 sin φ1 +
mξ2

(k2 · P̄)2 sin φ2

]
, (39)

where ω1 ≡ (1 − v̄z)ω. This equation is implicit, since φ1 appears in both wings. Nevertheless, it proves useful as a starting point
for approximation of the phases, as we immediately show. According to the validity condition Eq. (34), one notices that the
coefficients of the sine functions in Eq. (39) are much smaller than 1. As a result, Eq. (26) may be employed here. The fact that
Eq. (39) is implicit (φ1 appears in both wings) poses no difficulty, since the argument f (τ) in (26) is general and has no influence
on the final result. Due to (26) and according to the same reasoning that led us to neglect C1,C12, they may be omitted, leading to

φ1(t) ≈ Φ1 + ω1t, φ2(t) ≈ Φ2 + ω2t +
2pxmξ1ω

2

(k1 · P̄)2 sin(ω1t), (40)

where ω2 ≡ (1 + v̄z)ω. Hence, one observes that ω1, ω2 are the characteristic oscillation frequencies associated with the ξ1, ξ2
beams, respectively. Notice that according to our convention the particle copropagates with the ξ1 beam, so that v̄z is positive, and
hence ω2 is considerably larger than ω1, which indicates the non-resonant regime of interaction.

B. Characteristics of the trajectories

With the obtained analytical expression for the electron momentum and coordinate, we study in this section the main
characteristics of the motion. As the dynamics is strongly effected by both of the laser beams, we would expect to find some
unusual features in the electron trajectory, where the acceleration is large and which may yield radiation emission deviating from
the LCFA results based on the Baier-Katkov technique [47]. We inspect the electron velocity in all components for 3 different
field parameters in Fig. 1, featuring various behaviors. The results shown in the figure are obtained within the analytical treatment
presented above and proved by the fully numerical solutions of Eq. (1). In all cases the initial transverse momentum vanishes
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(a) (b) (c)

Figure 1. The electron velocity for three different field configurations. In all cases, the electron is copropagating with the ξ1 laser beam and the
velocity is shown for one period of ξ1. Simulation parameters are: (a) ξ1 = 50, ξ2 = 1; (b) ξ1 = 20, ξ2 = 20; (c) ξ1 = 1, ξ2 = 50. In all cases the
electron has no transverse momentum and its energy in the field is ε = 2.6m∗.

px = 0 and the energy is ε = 2.6m∗, corresponding to ω2/ω1 = 25. The plots present a time interval of 2π/ω1, so it consists of one
cycle of the ξ1 beam and 25 cycles of the ξ2 beam.

In panel (a) the laser parameters are ξ1 = 50, ξ2 = 1. In the x-y plane the particle performs a cyclic motion with a radius of
mξ1/ε and a frequency ω1 and on top of it rapid oscillations with frequency ω2 and amplitude mξ2/ε. According to Eq. (14), the
amplitude of the oscillation on the z axis scales as ∼ m2ξ1ξ2/ε2 and is, therefore, considerably smaller as compared to those in the
x, y axes.

Panel (b) depicts the case of ξ1 = ξ2 = 20. In the x-y plane the oscillations amplitude are now identical, so that the particle
moves in circles with frequency ω2 according to ξ2. An interesting point is that the origin of the circle also exhibits a cyclic
motion due to ξ1 with a frequency of ω1. Both the fast ξ2 circle and the slow ξ1 circle have the same radius because of the identical
oscillation amplitudes. In addition, one can observe that the tilting angle of the total velocity with respect to the z axis is gradually
changing. The reason is that the oscillation frequency on the z axis is ω2 −ω1. As a result, the relative phase between vz and vx for
example gradually increases during the time interval under consideration from 0 to 2π.

Panel (c) presents the dynamics for ξ1 = 1, ξ2 = 50. It is quite similar to the previous case, but now the radius of the slow ξ1
circle is negligible, such that the motion takes the form of a single circle with time dependent tilt.

With respect to radiation emission, the more irregular the trajectory is, the more interesting is the spectral shape. Hence, in
the following we concentrate on the ξ1 � ξ2 case, like in panel (a) of Fig. 1, where the dynamics is much more complex. Fig. 2
shows a two dimensional projection of the velocity on the x-y plane for ξ1 = 50, ξ2 = 1 with three different particle energies ε.

Panel (a) corresponds to ε = 130m. As mentioned in Fig. 1, one can see that the dynamics is a combination of a large circle due
to ξ1 and rapid oscillations corresponding to ξ2, which have a smooth sine-shape, see in the inset. When the energy is increased,
see panel (b) with ε = 182m, several interesting changes take place. First of all, the number of the ξ2 oscillations contained in
one cycle of ξ1 increases since the ratio of the frequencies, ω2/ω1, is now 51 instead of 25 in panel (a). Furthermore, the radius
of the circle as well as the amplitude of the small oscillations becomes smaller. This is because the amplitude of the transverse
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Figure 2. The transverse velocity in the x − y plane for ξ1 = 50, ξ2 = 1, px = 0 with three electron energies: (a) ε = 130m; (b) ε = 182m; (c)
ε = 250m. The transverse momentum in all panels is zero. The inside is just the zoom in of the velocity for a certain time. The plots are for one
cycle of ξ1.
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Figure 3. The y component of the velocity as a function of time is shown for half period of ξ1. The time is in units of T = 2π/ω. The electron
has an average energy ε̄ = 182m copropagating with ξ1 and the transverse momentum is px = 2.5m. The field parameters are ξ1 = 50, ξ2 = 1.

velocity v⊥ ∼ mξ1/ε decreases with the energy increase. More interestingly, a sharp spike-like feature emerges for each cycle of
ξ2 oscillation. It should be emphasized that the time scale corresponding to these spike-like features is significantly shorter than
both 1/ω1 and 1/ω2.

In order to shed light on this spike-like feature, we take advantage of the approximated phases Eq. (40) and derive from the y
component of the trajectory (11) the corresponding acceleration

v̇y =
mξ1ω1

ε̄
cos φ1 +

mξ2ω2

ε̄
cos φ2 =

m2

ε̄2 (χ1 cos φ1 + χ2 cos φ2) , (41)

where in the last expression we take into account that the quantum parameter is proportional to the acceleration χ = ε2|v̇|/m3 [47].
Here χ1 = ξ1εω1/m, and χ2 = ξ2εω2/m are the quantum parameters induced, respectively, by beams 1 and 2. Let us take a close
look at the time interval corresponding to 0 < φ1 < π/2. One can see that as long as χ2 < χ1, the acceleration does not change its
sign. Namely, the velocity will monotonously decrease, as the case in Fig. 2(a). Increasing the energy results in higher values of
the ratio ω2/ω1, and at a certain point χ2 exceeds χ1. When χ2 becomes large enough, the acceleration v̇y will change its sign
during the time interval. If χ2 is only slightly higher than χ1, the acceleration is positive for a very short time, leading to sharp
spikes, as encountered in Fig. 2(b). In case χ2 is significantly larger than χ1, the acceleration is positive about half of the time,
giving rise to the whirl appearing in Fig. 2(c), where the energy is further increased to ε = 250m. The impact of these phenomena
on the radiation emission has been explored in Ref. [39].

Finally, let us examine the influence of the transverse momentum px . From the final expressions for the momentum and energy,
one observes that this quantity has several contributions. First, it gives rise to the oscillations in the longitudinal momentum
Pz and the energy ε, see Eqs. (14) and (19), respectively. This means that the energy of the electron in the field is not constant
anymore. Moreover, the non-zero transverse momentum also adds a slow sine-term (with frequency ω1) to the phase φ2, see
Eq. (25). As a result, the rapid oscillations corresponding to ξ2 are periodically modulated. This phenomenon is demonstrated in
Fig. 3, where the y-component of velocity is plotted as a function of time within half a cycle of ξ1. To verify our analytical results
(black), the numerical solution is also shown in this figure as a blue line. The agreement between the numerical solution and the
analytical one is excellent, as the two curves are on top of each other. In addition, as we expected, the frequency of the small
oscillations increases with time up to t/T ≈ 7, with T = 2π/ω, and then gradually decreases again.

C. Drift momentum

From the discussion above, we can see that the drift momentum of the particle in the laser fields, especially the average energy
in the field, is an essential parameter for our approximation. However, the drift momentum depends on the asymptotic momentum
of the particle before entering in the laser fields as well as the way of switching on the laser pulses. In this section, we will derive
the relation explicitly. The relation between P̄µ and the asymptotic momentum of the particle pµ is governed by the ponderomotive
force [60, 61], arising from the turn on process of the laser fields:

dP̄z

dτ
= −

1
2m

∂

∂z
|eA|2. (42)

Substituting Eq. (2) and keeping the envelope functions g1, g2, we have

dP̄z

dτ
=

ω

2m

[
ξ2

1
d

dφ1
g2

1[φ1(τ)] − ξ2
2

d
dφ2

g2
2[φ2(τ)]

]
. (43)
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Suppose that the copropagating laser pulse with the amplitude ξ1 is turned on first. During this process the second integral for P̄z
is vanishing, and the particle momentum reads

P̄(1)
z = pz +

ωξ2
1

2m

∫ τ

dτ′
d

dφ1
g2

1[φ1(τ′)] = pz +
m2ξ2

1
2(k1 · p)

ω. (44)

Here φ1 = (k · p)τ/m, because in the absence of the counterpropagating pulse k1 · P is exactly conserved. It is worthwhile to
mention that this result is similar to the one corresponding to the plane wave case. Now the second pulse is turned on. Its
contribution to the momentum is given by

P̄z = P̄(1)
z −

ωξ2
2

2m

∫ τ

dτ′
d

dφ2
g2

2[φ2(τ′)]. (45)

Recalling the approximation derived above Eq. (26), and assuming that the pulse is turned on adiabatically, namely g′2/g2 → 0,
the oscillatory part of the phase may be omitted, yielding g2(φ2) ≈ g2

(
k2·P̄
m τ

)
. Since the first pulse effect comes into play through

the neglected oscillatory term in φ2, it does not influence the integration. We further assume that k2 · P̄ remains constant during
the turn on of the second pulse. Then, the integral in (45) is straightforwardly carried out, yielding for P̄z and ε̄:

P̄z = pz +
1
2

 m2ξ2
1

k1 · p
−

m2ξ2
2

k2 · P̄(1)

ω, ε̄ = p0 +
1
2

 m2ξ2
1

k1 · p
+

m2ξ2
2

k2 · P̄(1)

ω, (46)

where Eqs. (44), and ε̄ =

√
m2
∗ + P̄2

z were employed. Hence

P̄µ = pµ +
m2ξ2

1
2(k1 · p)

kµ1 +
m2ξ2

2

2[k2 · P̄(1)]
kµ2 . (47)

Examining the final momentum (47), one may observe that our assumption k2 · P̄ = k2 · P̄(1) was justified. We underline that

k1 · P̄ = k1 · p +
m2ξ2

2 (k1 · k2)
2[k2 · P̄(1)]

, k2 · P̄ = k2 · p +
m2ξ2

1 (k1 · k2)
2[k1 · p]

. (48)

Namely, neither k1 · P nor k2 · P are conserved. One may observe that k1 · P is modified during the rise of the counterpropagating
pulse and vice versa. In case the counterpropagating beam is turned on first, an analogous derivation leads to

P̄µ = pµ +
m2ξ2

1

2[k1 · P̄(2)]
kµ1 +

m2ξ2
2

2(k2 · p)
kµ2 , (49)

where P̄(2)
µ = pµ +

m2ξ2
1

2(k2·p) k2µ.
The relation between the drift momentum and the asymptotic initial momentum has been also investigated by numerically

solving the Lorentz equation (1) and comparing with the analytical results. Table I presents the average 4-momentum of the
electron after both laser beams are turned-on, corresponding to different initial momenta and intensities of the lasers. Since the
order by which the lasers are turned-on affects the final state, the table contains both options. For the sake of simplicity, we
assume the initial p⊥ = 0 for all situations. From the expression for the final momentum Eqs. (47) and (49), one can see that two

case ξ1 ξ2 pz Order (ε̄, P̄z)A (ε̄, P̄z)N

1 10 10 0 a (51.495,49.505) (51.502,49.450)
b (51.495,-49.505) (51.502,-49.450)

2 3 20 20 a (200.637,199.613) (200.637,199.612)
b (25.471,15.452) (25.835,15.321)

3 30 2 -1 a (187.816,185.391) (187.815,185.390)
b (43.522,31.451) (29.531,-0.396)

Table I. The average 4-momentum of an electron after both laser beams are turned-on. We consider three different cases for different initial
momentum pz and field parameters. In all the cases, the initial transverse momentum is chosen to be zero such that P̄x = P̄y = 0. The fifth
column, named Order, indicates the order by which the two laser beams are turned-on; (a) The ξ1 beam is turned-on first. (b) The ξ2 beam is
turned-on first. The 4-momentum is given in units of the electron rest mass m. The superscript N designates the numerical calculation and A the
analytical one.



10

factors determine which of the beams will be dominant. The obvious one is the corresponding field intensity. The surprising one
is the relative direction between the propagation direction of the particle and the beam under consideration. It stems from the
denominator k · P̄, namely, counterpropagating beams have lower influence than copropagating beams.

In the first case the two beams have identical intensity and the particle is initially at rest, so the only thing that breaks the
symmetry is the turn-on order. It demonstrates that a given beam will have a stronger influence if it is the first to be turned on. The
reason is that after the turned-on, the particle will copropagate with the first beam and thus this beam will have a large influence in
the final results. This also reflects in the direction of the average momentum as in this case the particle always copropagates with
the first beam at the end, see in Table I.

For the second case appearing in the table, one may naively assume the ξ2 beams should be dominant, since ξ2/ξ1 ∼ 7 and the
contribution to the final momentum of each beam scales like ∼ ξ2. However, due to the fact that ξ1 is copropagating, its effect
is actually of the same order of magnitude as of the ξ2 beam. This can be seen by the fact that the order of the turn-on causes
an order of magnitude difference between the final energies. Namely, when ξ1 is turned-on first (Order (a)), the particle is first
accelerated to ultrarelativistic energy and then slightly deccelerated when ξ2 is turned-on. The final energy is about ε ≈ 200m,
which is much larger than the final energy ε ≈ 25m of the second scenario (Order (b)), where the particle is first deccelerated and
then accelerated.

In the third case a new situation is encountered. The particle flips its direction of motion during the turn-on of the second
beam if the ξ2 beam is turn-on first, Order (b) in the table. One may see that it initially propagates to the left and only after the
second pulse rises it flips direction and propagates to the right. Both from analytical and from experimental perspectives, such a
scenario should be avoided. From an experimental point of view, as it will lead to collisions of electrons in the beam with those
following them. From analytical perspective, since a direction flip implies that the particle average velocity should vanish at a
certain point in the middle of the turn-on process, violating the validity conditions. Indeed, the analytical expression in this case
fails to reproduce the numerical result.

To complete the discussion, we specify several considerations which were taken into account when choosing the above
parameters. First, we made sure that the validity criteria derived above are met. Second, the final propagation direction is always
copropagating with the first turn-on beam, in agreement with the convention introduced in the previous subsection. Third, both
laser amplitudes were chosen to be higher than 1. Since the contribution of each beam scales as ∝ ξ2, a beam with nonrelativistic
intensity would have no influence on the final momentum.

D. Systematic errors analysis of the trajectory

In the following, the accuracy of the analytical solution derived in the previous sections is systematically put to a test. For the
sake of this purpose, we define the relative deviation of the analytical prediction (subscript a) of a quantity X with respect to the
numerically calculated value (subscript n) as follows

∆X ≡
1

2T

∫ T

−T
dt

∣∣∣∣∣Xa − Xn

Xn

∣∣∣∣∣ , (50)
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Figure 4. The analytical (blue) and numerical (red) longitudinal velocity for (a) ε1 = 0.5 and (b) ε1 = 0.1. In both cases ε2 = 0. The dashed line
corresponds to advancing the analytical solution in time through the turn-on process and the solid to determining Φ1,Φ2 according to the particle
location when the turn on is over, see text. The time is in the unit of T = 2π/ω.



11

  

0 0.1 0.2 0.3 0.4 0.5 0 0.02 0.04 0.06 0.080 0.05 0.10 0.15 0.20

Out[]= ϵ1 Out[]= ϵ1 Out[]= ϵ1

Out[]= Δ⊥ Out[]= Δz Out[]= Δε

Figure 5. The relative deviation between analytical and numerical calculations of the following quantities: (a) the transverse velocity; (b) the
longitudinal velocity ; (c) the energy. The x, y axes are the small parameters stemming from the analytical derivation as ε1 ≡ 2pxmξ1/m2

∗ and
ε2 ≡ m2ξ1ξ2/ε̄

2. The average energy is fixed to be ε = 200m and the amplitude of the first beam is ξ1 = 100. The initial momentum and the ξ2
beam amplitude are in the range 0 < px < 15m and 0 < ξ2 < 60, respectively.

with X being either the transverse velocity v⊥ ≡
√
v2

x + v2
y , the longitudinal one vz or the energy ε. The integration time is taken

to infinity, i.e. T → ∞. These deviations are explored as a function of ε1 ≡ 2pxmξ1/m2
∗ and ε2 ≡ m2ξ1ξ2/ε̄2, being the small

parameters of the derivation for ultrarelativistic particles, see Eq. (35). In the following we restrict ourselves to ξ1 > ξ2, and hence
the third small parameter is by definition smaller than ε2, namely pxmξ2/(2ε̄2) < ε2. For quantitative comparison of the analytical
and numerical quantities, we specify the arbitrary constants Φ1,Φ2 in the phases φ1, φ2, which is done in two ways, see Fig. 4.

Before our broader parameter survey, it is worthwhile to take a close look at a specific case in order to gain intuition regarding
the nature of deviation. Fig. 4 presents the longitudinal velocity for ξ1 = 50, ε = 200m, px = 0 for a different ξ2 value: ξ2 = 20
and ξ2 = 40 corresponding to ε1 = 0.05 (upper plot) and ε1 = 0.1 (lower plot), respectively. One can see that the main deviation
stems from an inaccuracy in the phases φ1, φ2, rather than in the amplitudes. Moreover, the comparison between the dashed and
solid curves in Fig. 4 demonstrates that the two approaches to determine the phases Φ1,Φ2 give almost identical results and the
first method was employed in the following calculations.

Fig. 5 depicts the relative deviations ∆⊥,∆z,∆ε defined in Eq. (50) as a function of ε1, ε2. We fixed the parameters ξ1 = 100, ε =

200m and varied ξ2, px in the ranges 0 < ξ2 < 60, 0 < px < 15m, respectively. The initial momentum on the z axis was tuned in
order to keep the energy ε constant. One may notice that for vanishing ξ2, the analytical calculation is accurate regardless of the
value of px. This occurs due to the fact that vanishing of ξ2 corresponds to the plane wave limit, where the analytical solution
Eq. (36) is exact without any restriction.

Furthermore, we can see from all three panels in Fig. 5 that the influence of the small parameter ε2 is considerably stronger as
compared to that of ε1. This is because ε2 affects the phase while ε1 stems from the Taylor expansion of the energy (Eq. (18)) and
the discrepancy mainly originates from the dephasing in time, as shown in Fig. 4. The amplitude of the oscillation in v⊥, vz and ε,
on the other hand, can be predicted quite well by the analytical expression even for nonnegligible ε1, ε2, which provides us a way
to crudely estimate the relative error. For example, the average and oscillatory parts of v⊥ may be roughly estimated, respectively,
as ∼ mξ1/ε and ∼ mξ2/ε, and therefore the relative error is approximately ∆⊥ ∼ ξ2/ξ1. The relative error for vz is ∼ m2ξ1ξ2/(v̄zε2),
which is smaller than ∆⊥. For the energy, according to (19), the oscillations are closely related to ε1, i.e. δε/ε ≈ ε1/2. If we plug
in the simulation parameters, these estimations qualitatively explain that for the same small parameter ε1 and ε2, v⊥ has the largest
deviation. For Fig. 5(c), we can see that the analytical results predict a very good approximation when ε2 = 0 no matter how
large ε1 is. The reason is that when px is zero the energy is constant (see Eq. (19)). Consequently, the phase plays no role and the
approximation is quite good for the entire range of ε1 values presented in the figure.

III. RADIATION

Using the classical trajectory developed in Sec. II A, the radiation is calculated according to the Baier-Katkov method [47]. For
the sake of simplicity, we start with a spinless particle. Analogous derivation for the spinor case is given later. The Baier-Katkov
expression for the emitted intensity I reads

dI =
αε

(2π)2ε′T0
|Tµ|

2d3k′ (51)
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where α is the fine structure constant, T0 is the interaction time, ε′ = ε − ω′, and

Tµ(k′) =

∫ ∞

−∞

dtvµ(t)eiψ, ψ ≡
ε

ε′
k′ · x(t), (52)

where vµ = dxµ/dt, k′µ is the emitted photon four-momentum characterized by its energy ω′ and the emission direction n as

k′µ = ω′ (1,n) , (53)

with n = (cosϕ sin θ, sin ϕ sin θ, cos θ). In the realm of this theory, the oscillation δε are assumed to be small as compared to ε,
which holds in our case as shown in the previous section. Accordingly, the factor appearing in the phase may be approximated as
ε
ε′
≈ ε̄

ε̄′

[
1 +

(δε)2

ε̄ε̄′

]
. In the following derivation the second order correction is neglected. Moreover, for simplicity reasons, the

average energy ε̄ is replaced from now on by ε. Furthermore, since the trajectory is given in terms of the proper time τ, we change
the integration variable in Eq. (52), leading to

Tµ(k′) =

∫ ∞

−∞

dτ
Pµ(τ)

m
eiψ. (54)

Substituting the trajectory and the emitted wavevector (53) into expressions (54), the phase reads

ψ = ψnpτ − zx
1 sin(φ1) + zy1 cos(φ1) − zx

2 sin(φ1) + zy2 cos(φ2) − z3 sin (φ1 − φ2) , (55)

where u ≡ ω′

ε−ω′
, and the following quantities were introduced

zx
1 =

mξ1u
ω1

[
nx +

pxω

ω1ε
(nz − 1)

]
, zy1 =

mξ1u
ω1

ny, zx
2 =

mξ2u
ω2

[
nx −

pxω

ω2ε
(nz + 1)

]
, zy2 =

mξ2u
ω2

ny, z3 =
m2ξ1ξ2u
v̄z∆ωε

nz, (56)

The linear term coefficient in (55) reads

ψnp ≡
uε2

m
(1 − v̄x cosϕ sin θ − v̄z cos θ) . (57)

The phase ψ may be simplified by introducing

z1 =

√
(zx

1)2 + (zy1)2, z2 =

√
(zx

2)2 + (zy2)2, ϕ1 = tan−1
(zy1
zx

1

)
, ϕ2 = tan−1

(zy2
zx

2

)
. (58)

Therefore, the phase takes the form

ψ = ψnpτ − z1 sin(φ1 − ϕ1) − z2 sin(φ1 − ϕ2) − z3 sin (φ1 − φ2) . (59)

Notice that in the particular case of px = 0, the second term in the expressions for zx
1, z

x
2 vanishes, leading to

z1 =
mξ1u sin θ

ω1
, z2 =

mξ2u sin θ
ω2

, z3 ≡
m2ξ1ξ2u
v̄z∆ωε

cos θ (60)

as well as ϕ1 = ϕ2 = ϕ. Let us calculate the y component of T in detail. Employing (9), (52) we obtain

Ty =

∫
dτ

[
ξ1 sin φ1 + ξ2 sin φ2

]
eiψ. (61)

In order to analytically solve this integral, the identity [5]

(1, cos φ, sin φ)e−z sin(φ−ϕ) =
∑

s
(B0, B1, B2)e−isφ. (62)

is invoked. The functions B0, B1, B2 are related to the Bessel function and its first derivative Js(z), J ′s(z) through

B0(s, z, ϕ) = Js(z)eisϕ B1(s, z, ϕ) =

[ s
z

Js(z) cosϕ − iJ ′s(z) sin ϕ
]
eisϕ B2(s, z, ϕ) =

[ s
z

Js(z) sin ϕ + iJ ′s(z) cosϕ
]
eisϕ. (63)

As a result, the integral in (61) is solved, yielding

Ty = 2π
∑
s1

∑
s2

∑
s3

δ(Ωs1,s2,s3 )
[
ξ1B0(2)B2(1) + ξ2B0(1)B2(2)

]
B0(3), (64)
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where 1 ≡ (s1, z1, ϕ), 2 ≡ (s2, z2, ϕ) and 3 ≡ (s3, z3, 0) respectively, and the δ function argument is given by

Ωs1,s2,s3 ≡ ψnp −
ε

m
[s1ω1 − s2ω2 − s3 (ω1 − ω2)] . (65)

One may notice that different combinations of the indices s1, s2, s3 may yield the same δ function argument. As a result, when
squaring T , interference terms will arise. This interference depends on the quantity ω2/ω1. If this ratio is an integer, the motion
is periodic with the frequence 2π/ω1. Otherwise, the motion is non-periodic. In the following we discuss each of the cases
separately.

Since the dynamics of the electron can be either periodic or non-periodic in ω1 based on the ratio ω2/ω1 being integer or not,
the expression for the emitted spectrum is also different, as the interference between different harmonics in the spectrum depends
on the periodicity of the motion. In this section, we will separately discuss the emission for the non-periodic and periodic cases.

A. The non-periodic case

In the non-periodic case, when the ratio ω2/ω1 is not an integer, it is convenient to define sL ≡ s1 + s3, sR ≡ s2 − s3. Hence, one
may write

Ty = 2π
∑
sL

∑
sR

Myδ(ΩsL ,sR ), (66)

with ΩsL ,sR ≡ ψnp −
ε
m (sLω1 − sRω2). The matrix element takes the form

My =
∑
s3

B0(3)
[
ξ1B0(2)B2(1) + ξ2B0(1)B2(2)

]
. (67)

An analogous procedure may be applied for the other components as well, yielding

Tµ = 2π
∑
sL

∑
sR

Mµ(sL, sR, ω
′, cos θ)δ(ΩsL ,sR ), (68)

where

Mt =
∑
s3

B0(3)
[
ε

m
B0(1)B0(2) +

pxωξ1

ω1ε
B1(1)B0(2) +

pxωξ2

ω2ε
B0(1)B1(2)

]
, (69)

Mx =
∑
s3

(
px

m
B0(1)B0(2)B0(3) + B0(3)

[
ξ1B0(2)B1(1) + ξ2B0(1)B1(2)

])
, (70)

Mz =
∑
s3

(
B0(1)B0(2)

[
P̄z

m
B0(3) −

mξ1ξ2

v̄zε
B1(3)

]
+ B0(3)

pxω

ε

[
ξ1

ω1
B1(1)B0(2) −

ξ2

ω2
B0(1)B1(2)

])
. (71)

As the squaring T does not mix terms associated with different sL, sR indices, the interference takes place only between terms
included withinM(sL, sR). Finally, the emitted intensity may be obtained by integrating (51) over the polar angle.

dI
dω′dϕ

=
αm
2πε′

∫
d(cos θ)ω′2

∑
sL

∑
sR

∣∣∣∣M(sL, sR, ω
′, cos θ)

∣∣∣∣2δ(ΩsL ,sR ) (72)

where the identity δ2(ΩsL ,sR ) = τ0
2π δ(ΩsL ,sR ) is used. The proper interaction time is given by τ0 = (m/ε)T0. The condition imposed

by the δ function, ΩsL ,sR = 0, determines the relation between cos θ and ω′, ϕ

1 − ρ − v̄z cos θ = v̄x cosϕ
√

1 − cos2 θ. (73)

Squaring and solving this equation one obtains two possible angles

cos θ± =
v̄z(1 − ρ) ± v̄x cosϕ

√
∆

v̄2
z + v̄2

x cos2 ϕ
, (74)

where the following quantities were introduced

∆ ≡ v̄2
z + v̄2

x cos2 ϕ − (1 − ρ)2 , ρ ≡
ε′

εω′
(sLω1 + sRω2) . (75)
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Notice that when squaring (73) a redundant solution may be added, which solves the equation

1 − ρ − v̄z cos θ = −v̄x cosϕ
√

1 − cos2 θ, (76)

rather than the original one. Thus, the solutions given in (74) are physical only when a positive results appear after substituting it
into the right wing of (73). In quantitative terms, this condition reads

1 − ρ
v̄z

< cos θ ≤ 1. (77)

A solution that does not meet this criterion is therefore excluded. Employing the δ function to perform the integration leads to

dI
dω′dϕ

=
αεω′2

2πε′
∑
i=±

∑
sL

∑
sR

∣∣∣∣M(sL, sR, ω
′, θi)

∣∣∣∣2∣∣∣∣ dΩsL ,sR

d(cos θ)

∣∣∣∣−1

θ=θi
. (78)

The reciprocal of the derivative of the δ function, required for the integration, reads∣∣∣∣ dΩsL ,sR

d(cos θ)

∣∣∣∣−1
=

mε′

ε2ω′
κ with κ ≡

∣∣∣∣∣ 1
v̄x cosϕ cot θ − v̄z

∣∣∣∣∣ . (79)

Plugging (79) into (78) the final result follows

dI
dω′dϕ

=
αω′m2

2πε2

∑
i=±

∑
sL

∑
sR

∣∣∣∣M(sL, sR, ω
′, θi)

∣∣∣∣2κ(θi). (80)

For spinor particle the initial emission expression (51) is modified as follows

|Tµ|
2 → |K|2 ≡ −

(
ε′2 + ε2

2εε′

)
|Tµ|

2 +
ω′2

2ε′2ε′2
|T0|

2. (81)

Therefore, the final results for scalars (80) is multiplied by
(
ε′2+ε2

2εε′
)

and a second term is added

dI
dω′dϕ

=
αm2ω′

4πε5ε′

∑
i=±

∑
sL

∑
sR

κ(θi)
[
−ε2

(
ε2 + ε′2

)
|Mµ(sL, sR)|2 + ω′2m2|M0(sL, sR)|2

]
. (82)

B. The periodic case

Now, we consider the case of periodic motion when ω2 = nω1, with an integer n. As a result, the kinematic relation which
follows from the δ function is modified. Using the relation between sL, sR and s1, s2, s3 one obtains sLω1 + sRω2 → s∗ω1, with the
definition s∗ ≡ s1 + ns2 − s3(n − 1). Accordingly, ρ in (75) is replaced by ρ = ε′

εω′
s∗ω1. As a consequence of the periodicity, the

summation over s2 takes place inside the matrix element, similarly to s3. Correspondingly, we have

Mt =
∑
s2

∑
s3

B0(3)
[
ε

m
B0(1)B0(2) +

pxωξ1

ω1ε
B1(1)B0(2) +

pxωξ2

ω2ε
B0(1)B1(2)

]
, (83)

Mx =
∑
s2

∑
s3

(
px

m
B0(1)B0(2)B0(3) + B0(3)

[
ξ1B0(2)B1(1) + ξ2B0(1)B1(2)

])
, (84)

My =
∑
s2

∑
s3

B0(3)
[
ξ1B0(2)B2(1) + ξ2B0(1)B2(2)

]
, (85)

Mz =
∑
s2

∑
s3

(
B0(1)B0(2)

[
P̄z

m
B0(3) −

mξ1ξ2

v̄zε
B1(3)

]
+ B0(3)

pxω

ε

[
ξ1

ω1
B1(1)B0(2) −

ξ2

ω2
B0(1)B1(2)

])
. (86)

Compared to the non-periodic case, the interference between different harmonics in the spectrum is much more complicated in the
periodic case as there is a double summation inside the squaring of the matrix elements. The final result, analogous to (82) of the
non-periodic case, is given by

dI
dω′dϕ

=
αm2ω′

4πε5ε′

∑
i=±

∑
s∗

κ(θi)
[
−ε2

(
ε2 + ε′2

)
|M

µ
s∗ |

2 + ω′2m2|M0
s∗ |

2
]
. (87)

It is worth to point out that the periodic case is most likely to be observed in a short laser pulse, when the condition ω2 = nω1 can
be fulfilled within the broad bandwidth of the laser pulse. We discuss this issue below.
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C. Vanishing initial transverse momentum

In this subsection several quantities are explicitly evaluated for the particular case of vanishing initial transverse momentum,
px = 0. It allows us to simplify the expressions and thus to obtain order of magnitude estimations which will prove useful later on.
Substituting px = 0 to (74), the emitted photon angle reduces to

cos θ =
1 − ρ
v̄z

(88)

Since ρ � 1, the corresponding sine function is approximately given by sin θ ≈
√

1 − 1
v̄2
z

+
2ρ
v̄2
z

. Substituting this expression to the
Bessel arguments definitions (60) one obtains

z1 =
ξ1m∗m
ω1ε

√
u(us − u), z2 =

ξ2m∗m
ω2ε

√
u(us − u) (89)

where we have defined us ≡
2ε(sLω1+sRω2)

m2
∗

and the relation v̄2
z = 1 − m2

∗

ε2 was employed. The maximal value of z1, z2 corresponds to
u = us/2, namely

zmax
1 =

ξ1 (sLω1 + sRω2)
ω1m∗

=
m∗uξ1

ω1ε
, zmax

2 =
ξ2 (sLω1 + sRω2)

ω2m∗
m∗uξ2

ω2ε
. (90)

D. Spectra in the strong field regime: ξ1 � 1

In what follows we consider in detail the case where the copropagating beam is of relativistic intensity. It should be stressed
that the spectrum may not be approximated by LCFA even though ξ1 � 1. The physical conditions and the nature of this specific
LCFA violation is discussed in [39].

In the strong field regime the argument of the Bessel function in Eq. (58) can be the order of 108 or even larger with the
increasing of the laser field strength. This means the sum over the harmonics in the emission spectrum covers an extremely large
region. In order to make the calculation feasible, we have employed an optimised scheme for the calculation, based on the logic
proposed by Ritus [5].

It is well known that an ultrarelativistic particle emits mainly within a cone of angle ∼ 1/γ along its propagation direction.
Hence, the emission angle θ may be approximated by the angle of the particle’s momentum between P with respect to the z axis.
Examining the classical momentum P, one observes that this angle lies in the range sin θd < sin θ < sin θu and its time-averaged
value is sin θc, where

sin θc ≡

√
m2
∗ + p2

x

ε
, sin θd ≡

px cosϕ + m(ξ1 − ξ2)
ε

, sin θu ≡
px cosϕ + m(ξ1 + ξ2)

ε
. (91)

In the case considered here, namely ξ � 1, ξ2 � ξ1, and due to px � mξ1 (see Eq. (20)), this range is very narrow and the angle
may be crudely estimated according to the average value θc. Accordingly, one may show that the second term in the brackets
appearing in the expression for zx

1, z
x
2 is negligible. As a result, the px = 0 expressions (60) provides an order of magnitude

estimation for z1, z2, z3. Plugging in sin θc ≈ m∗/ε, cos θc ≈ 1 one obtains

zc
1 =

m∗ξ1u
ω1ε

, zc
2 =

m∗ξ2u
ω2ε

, zc
3 =

mξ1ξ2u
v̄zω2ε

(92)

Notice that zc
1, z

c
2 coincide with the maximal value possible for these quantities, see Eq. (90). Furthermore, one may observe that

since v̄z ≈ 1 and m∗ ≈ mξ1 we have zc
3 ≈ zc

2.
In the following we take advantage of these relations in order to accelerate the harmonics summation (sL, sR, s3) appearing

in the final emission formula (82) as well as derive simplified validity conditions. We follow the logic presented by Ritus [5]
for emission in a circularly polarized laser. Since u ∼ χ, and χ =, these arguments may be much larger than 1. As a result, the
number of harmonics contributing to the emission may be enormous, and an efficient way to carry out the summation is required.
First, we replace the summation by integration. Second, since Bessel function of high order is maximal for z ≈ s and strongly
suppressed for either z � s or z � s, the integration is centred around

sc
L = zc

1 + zc
3, sc

R = zc
2 − zc

3, sc
3 = zc

3. (93)
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Figure 6. The time-dependent quantum parameter χ(t) as a function of ϕ for both non-periodic case (a) and periodic case (b). The solid black
curves are for the one cycle of the laser pulse and the dashed blue curves are for another cycle that is ten period away. The emission spectra for
non-periodic case (c) and periodic case (d). Here ϕ1 is corresponding to χ(t) near maximum, ϕ2 is for χ(t) in the middle and ϕ3 is for χ(t) near
minimum. The other parameters are ξ1 = 20 and ξ2 = 0.3 with px = 0. The non-periodic case is for ε = 4m∗ with ω2/ω1 = 60.1, while the
periodic case is for ω2/ω1 = 60 (ε = 4.02m∗).

In order to estimate the integration range, we define zd
1 , z

d
2 , z

d
3 and zu

1, z
u
2, z

u
3 analogously to zc

1, z
c
2, z

c
3 appearing in Eq. (92) with

θ = θd and θ = θu respectively. Accordingly, the upper and lower limits of the integration are respectively

su
L = zu

1 + zu
3, su

R = zu
2 − zu

3, su
3 = zu

3. sd
L = zd

1 + zd
3 , sd

R = zd
2 − zd

3 , sd
3 = zd

3 . (94)

In mathematical terms, our improved summation scheme may be formulated as

∑
sL

→

∫ su
L

sd
L

dsL,
∑
sR

→

∫ su
R

sd
R

dsR,
∑
s3

→

∫ su
3

sd
3

ds3 (95)

The replacement of the summation by integral in the calculation is appropriate only when su − sd is large enough, which strongly
depends on the chosen parameters.

In the following we present typical spectra in the strong field regime (ξ1 = 20, ξ2 = 0.3, px = 0), and use it to discuss the
differences between the periodic and non-periodic cases derived above. Please note that the radiation reaction is neglected in the
applied parameter regime, as the energy emitted during one laser cycle is very small compared with the electron energy.

Non-periodic case versus periodic case with px = 0. In Fig. 6(a) and (c), we consider the non-periodic case. The energy was
chosen to be ε = 4m∗, so that the ratio ω1/ω2 is 60.1, namely non-integer. Since the radiation of an ultrarelativistic electron
emitted to a certain direction originates from the vicinity of the location where the particle velocity points to the detector, it
implies that the emission should depend on ϕ. However, due to the non-periodicity, we can see from Fig. 6(a) that the emission
at a given ϕ takes place with different χ values in different ω1 cycles. As a result of this χ-averaging, the difference between
emissions at various ϕ disappears with long enough pulse of ξ1, see the spectra in Fig. 6(c) for three different ϕ. The spectrum
was evaluated with the aid of the non-periodic formula (82) together with (95).

In the periodic case, Fig. 6(b) and (d), the electron energy is tuned ε = 4.02m∗ to fulfil the integer ratio ω2/ω1 = 60. As
opposed to the non-periodic case, here a particular value of χ parameter corresponds to the emission at a given ϕ at any period of
the trajectory (see Fig. 6 (b)), and therefore the emission depends on ϕ. In Fig. 6(d) the black, blue and red curves are calculated
with different values of ϕ, respectively. One may see that these three curves significantly differ from each other.
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Figure 7. The emission spectra for the same parameters as in Fig. 6. The blue curve corresponds to the non-periodic case and the black solid and
dashed lines correspond to the periodic case for specific values of ϕ corresponding to the minimum χmin and the maximum χmax , respectively.
The circles (squares) designate the numerical calculation of a finite pulse of 10 (5) cycles. The filling (open) markers are related to ϕ for
χmin(χmax).

Now we examine numerically the spectrum obtained for the non-periodic case, but with finite number of cycles in the laser
pulse (as compared to the infinite pulse assumed by the analytical derivation). For the numerical calculations, we have evaluated
Eq. (51) numerically, employing the numerical trajectory for the electron, as for realistic laser pulses the trajectory is not available
analytically. In Fig. 7 full (hollow) circles designate 10 cycles with ϕ corresponding to, respectively, the miminum (maximum) χ
and full (hollow) squares are for 5 cycles with the same ϕ. First of all, the non-periodic spectrum, which represents averaging over
ϕ, lies indeed in the middle between those curves, as expected. Secondly, one may see that the spectra for the finite laser pulse are
far from the infinite pulse calculation. Moreover, the shorter the pulse is, the closer the results are to the periodic case. The reason
is that the averaging out of the azimuthal dependence, as explained above, requires many cycles of interaction. The criterion
which determines when one may employ the periodic formula is that the χ-averaging is not significant, namely

N(n − n∗) � 2π (96)

where N is the number of cycles in the laser pulse, n = ω2/ω1 and n∗ is the closest integer number to n. For the parameters
considered above this quantity reads 0.5 and 1, respectively. Consequently, the periodic expression provides a good estimation to
the final result for short laser pulse, provided that the condition (96) is fulfilled.

Non-periodic case versus periodic case with px , 0. Previously, we have discussed the emission of an electron in CPW with
vanishing transverse momentum. However, in a realistic experimental setup, the electrons in a beam always have non vanishing
transverse momentum because of the angle spreading of the beam. In order to study the influence of the transverse momentum on
the radiation process, we have in this section calculated the emission spectrum of an electron with px , 0 for both non-periodic
and periodic cases.

In Fig. 8, the spectra for px being 0.25% of the total energy have been investigated. Both of the spectra are not sysmetric with
respect to the azimutal angle ϕ as the x−direction is favorable. For the non-periodic case, even the gradual shift of χ regarding the
azimuthal angle still happens for px , 0, the spectrum is nevertheless ϕ dependent because the transverse momentum breaks the
sysmmetry. Furthermore, the spectrum for the periodic case with nonzero px has fringes with respect to ϕ. This means that the
quantum parameter χ still has the similar dependence on the azimuthal angle like in Fig. 6(b).

E. Validity condition

In the following we derive the validity conditions for the emission formula obtained in the previous section. For this purpose,
we recall that the next order correction to the trajectory employed in this paper reads

φ1 → φ1 + C1 sin φ2 −C12 sin(φ1 − φ2) φ2 → φ2 + C2 sin φ1 + C12 sin(φ1 − φ2) (97)

Let us substitute these modifications into the expression (55) for to the phase ψ and examine the additional terms. Next, we take
advantage of the identity

sin (ατ + β1 sin κ1τ + β2 sin κ2τ − ϕ) =
∑
s1

∑
s2

Js1 (β1)Js2 (β2) sin
[
(α + s1κ1 + s2κ2) τ − ϕ

]
(98)
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Please note that κ here is just a parameter and not related to Eq. (79). Consequently, sin, cos functions in (55) are replaced
according to

cosατ → I1(Λ) ≡ α
∫

dτ sin (ατ + β1 sin κ1τ + β2 sin κ2τ − ϕ) , (99)

sin ατ → I2(Λ) ≡ α
∫

dτ cos (ατ + β1 sin κ1τ + β2 sin κ2τ − ϕ) (100)

with Λ denoting (α, β1, κ1, β2, κ2, ϕ). Using (98) one obtains

I1 = −
∑
s1

∑
s2

Js1 (β1)Js2 (β2)
1 + (s1κ1 + s2κ2) /α

cos
[
(α + s1κ1 + s2κ2) τ − ϕ

]
, (101)

I2 =
∑
s1

∑
s2

Js1 (β1)Js2 (β2)
1 + (s1κ1 + s2κ2) /α

sin
[
(α + s1κ1 + s2κ2) τ − ϕ

]
. (102)

In the previous section the trigonometric identity zx
1 cos φ1 + zy1 sin φ1 = z1 sin(φ1 − ϕ1) was employed, where z1, ϕ1 are given by

(58) respectively. Analogously, in this case we have

zx
1I2(Λ0) + zy1I1(Λ0) = z1I2(Λ1) (103)

where

Λ0 =

(
ω1ε

m
,C1,

ω2ε

m
,−C12,

(ω1 − ω2)ε
m

, 0
)
, Λ1 =

(
ω1ε

m
,C1,

ω2ε

m
,−C12,

(ω1 − ω2)ε
m

, ϕ1

)
(104)

As a result, the modified phase may be written as

ψ = ψnpτ − z1I2(Λ1) − z2I2(Λ2) − z3I2(Λ3) (105)

where

Λ2 =

(
ω2ε

m
, 0, 0,C12,

(ω1 − ω2)ε
m

, ϕ2

)
, Λ3 =

(
(ω1 − ω2)ε

m
,C1,

ω2ε

m
,−2C12,

(ω1 − ω2)ε
m

, 0
)
. (106)

Let us estimate the neglected contribution to the phase, namely the difference between (59) and (105). For the sake of simplicity,
we split the corrections to 3 contributions, ∆ψ1,∆ψ2,∆ψ3 associated with z1, z2, z3, respectively.

∆ψ = ∆ψ1 + ∆ψ2 + ∆ψ3 . (107)
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Figure 8. The emission spectra for the non-periodic case (a) and periodic case (b). Here we have px = 0.25m, being about 0.25% of the total
energy, for both cases. The non-periodic case is for ω2/ω1 = 60.2, while the periodic case is for ω2/ω1 = 60. The other parameters are the same
as in Fig. 6.
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In explicit terms, the corrections take the form ∆ψ1 = −z1
[
I2 (Λ1) − sin (φ1 − ϕ1)

]
, and for ∆ψ2,∆ψ3 we have z1 → z2, z3. Since

C1,C12 � 1, we consider only first order corrections, namely s1 = 0, s2 = ±1 and s1 = ±1, s2 = 0. Therefore, one readily obtains

I2 (Λ1) − sin (ατ − ϕ) ≈
β1

2

( 1
1 + κ1/α

sin
[
(α + κ1) τ − ϕ

]
−

1
1 − κ1/α

sin
[
(α − κ1) τ − ϕ

])
+ (β1, κ1 → β2, κ2) (108)

where J1(β) = −J−1(β) ≈ β/2 was used. Using Eqs. (108), (104) yields

∆ψ1 = −η1
[
sin(φ1 + φ2 − ϕ1) + sin(φ1 − φ2 − ϕ1)

]
+ η2

[
sin(φ2 − ϕ1) − sin(2φ1 − φ2 − ϕ1)

]
(109)

where ω1/ω2 � 1 was employed. Analogously, for the other contribution one finds

∆ψ2 = −η3 sin(φ1 − ϕ2) − η4 sin(2φ2 − φ1 − ϕ2) ∆ψ3 = −η5 sin(φ1 − 2φ2) + η6 sin φ1 + η7 sin
[
2(φ1 − φ2)

]
+ η8τ (110)

The following coefficients were defined

η1 ≡
z1C1ω1

2ω2
, η2 ≡

z1C12ω1

2ω2
, η3 ≡

z2C12ω2

2ω1
, η4 ≡

z2C12

4
, η5 ≡

z3C1

4
, η6 ≡

z3C1ω2

2ω1
, η7 ≡

z3C12

2
, η8 ≡

(ω1 − ω2)εz3C12

m
.

In order to formulate the general validity condition, we notice that the phase (59) contains a linear term with low (ω1) and
high (ω2, ω2 − ω1) frequencies. Therefore, we require that the coefficients of the high frequency corrections, will be smaller as
compared to z2, z3. Similarly, the coefficients of the low frequency should be lower than z1, and the one corresponding to the
linear term smaller than ψnp. Hence the general validity condition may be cast in the form

η1, η2, η4, η5, η7 � z2, z3 η3, η6 � z1 η8 � ψnp . (111)

We call attention to the fact that these conditions depend on the emitted photon properties ω, θ, ϕ. As a result, for given interaction
parameters (laser amplitudes, particle energy), part of the spectrum may be described by our analytical expression whereas a
different part may exhibit deviations. Hence, one should verify that (111) holds for the entire spectral range of interest. In the
strong field case, however, the situation is much simplified and simple criteria are derived, which hold for the entire spectrum.

Let us consider explicitly the strong field regime (ξ1 � 1). As explained in Sec. III D, in this regime the emission is restricted
to a limited angle range, for which the Bessel coefficients may be approximated by zc

1, z
c
2, z

c
3. Substituting these expressions to the

requirement (111) and employing the trajectory validity conditions in Sec. II D as well as the approximation ω2
ω1

=
1+v̄z
1−v̄z ≈

4ε2

m2
∗

, we
find that η4, η5, η7, η8 obey (111) by definition. Employing Eq. (92) as well as the expressions for C1,C12, the validity condition is
simplified to

η1

z2
=

pxξ1

2m∗ξ2
� 1,

η6

z1
=

pxξ2

2m∗ξ1
� 1 ,

η2

z2
=

m2ξ2
1

2ε
� 1,

η3

z1
=

m2ξ2
2

2ε
� 1 . (112)

The last three conditions are automatically fulfilled according to the validity conditions for the trajectory. Hence, only a single
additional condition, corresponding to η1 Eq. (112), is required to validate the applied formalism:

px

2ξ2
� 1. (113)

As demonstrated above, the analytical approximation depends on several criteria being fulfilled. In the following, we examine
in detail the strong field case, where the number of quantities required to be low is relatively small, allowing for a tractable study
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Figure 9. The relative deviation in percentage between the analytical and the numerical spectrum as a function of the small parameter ε1. See
text for details.
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Figure 10. The emitted spectra for various pulse duration and spot sizes. w0 is the spot radius and σ0 the pulse duration. The solid line stands for
the analytical expression (w0, σ0 → ∞).

of the error. The main quantities, which stem from the trajectory approximation, are ε1, ε2 given in Sec. II D. In the following we
investigate systematically and quantitatively the relation between these parameters and the corresponding error. For the sake of
this purpose, a new quantity is introduced

∆ =
∆1 + ∆2 + ∆3

3
, ∆i ≡ 100

|In(ui) − Ia(ui)|
In(ui)

(114)

measuring the relative difference ∆ (in percent) between the analytical (Ia) and numerical (In) results. It is evaluated in 3 points
ui on the spectrum. Fig. 9 shows the deviation ∆ as a function of ε1, assuming that ε2 vanishes. One can see that error grows
monotonically, and that ε1 = 0.1 yields a deviation of 15%. In order to examine the influence of ε2, the calculation was generalized
to two dimensions, and the results are presented in Tab. II. One may see that the impact of ε2 is significantly smaller as compared
to ε1. The results presented in this subsection provides quantitative information which may be valuable when applying our
expressions in practice.

ε1

ε2 0.03 0.06 0.09 0.12 0.15

0.03 3.01 10.25 13.85 18.35 25.46
0.06 3.05 10.60 14.19 19.10 26.19
0.09 3.10 11.00 14.72 19.83 26.99
0.12 3.19 11.40 15.57 20.56 27.81
0.15 3.32 11.80 16.79 21.45 28.90

Table II. The relative difference between the analytical and numerical results as a function of the parameters ε1 and ε2.

F. Realistic pulse effects

The analytical derivation presented above assumes that the laser fields are one dimensional, of infinitely long duration and
sinusoidal. This approximation is appropriate for long pulses (dozens of cycles) which are focused on large spots (radius of
dozens of wavelengths). However, realistic pulses tend to be short and tightly focused, in order to maximize the obtained intensity
for a given pulse energy. Therefore, for practical reasons it is highly important to thoroughly examine the dependence of the
emission on pulse duration and focal size. In particular, we wish to establish qualitatively which spectral features are affected by
shortening / focusing the laser pulse, what is the amplitude of the deviation and to find the conditions for which the spectrum
recovers the analytical result.

Fig. 10 depicts the angle integrated emission of a particle interacting with pulses with normalized amplitudes ξ1 = 12.5, ξ2 =

0.1, ε = 80m, respectively. The solid line stands for the analytical expression. Numerical calculations corresponding to variety of
pulse durations (denoted by σ0) and focal radii (denoted by w0) were carried it. For the sake of comparison, we wanted to keep
the energy of the particle in the main part of the pulse identical for all compared cases. For this purpose, the initial electron energy
was zero and its initial location z0 was tuned, namely the distance to the beginning of the ξ1 and ξ2 beams. From an experimental
point of view, it may be realized by placing atoms which are ionized by the laser field.



21

As expected, the analytical formula coincides fairly well with the numerical calculation for a long pulse with large focus
w0 = 50, σ0 = 20. Let us examine the influence of the temporal width first. Decreasing the duration to σ = 10 does not change
much the spectrum. However, for ultrashort pulses (full circles) with σ = 5, the emission significantly increases. This may be
explained by the fact that the rapid rise of the pulse is accompanied by stronger acceleration and enhanced χ value. Moreover, the
shorter the pulse is, the larger the edge effect will be in the emission spectrum. This edge effect will induce deviations of the
spectrum from the LCFA predictions and enhance the emission, especially in the high energy domain [39].

As for the spatial focusing, one observes an opposite trend. Namely, a small spot results in a significant decrease in the emitted
spectrum, as well as in a deformation of its spectral shape. We suggest that this outcome stems from the fact that tightly focused
beams rapidly expel the particle from the focus due to the transverse pondermotive force. Furthermore, one may notice that even
moderate focusing, w0 = 20, results in a considerable deviation from the one dimensional case. Thus, Fig. 10 shows that finite
duration yields significant deviation from the analytical expression only for ultrashort pulses, whereas the focal radius has greater
influence and should be fairly large in order to recover the theoretical result.

IV. SUMMARY AND CONCLUSION

We have investigated the radiation properties of a relativistic electron in counterpropagating laser waves within the semiclassical
formalism introduced by Baier and Katkov. This formalism is valid when the electron dynamics in the background classical fields
is quasiclassical. It treats a photon emission quantum mechanically, fully taking into account the quantum recoil of the emitted
photon. As the formalism employs the electron classical trajectory in the given fields, we firstly investigate in detail the electron
classical dynamics in the counterpropagating laser beam setup. The classical momentum and trajectory are analytically derived
assuming that the particle energy is the dominant scale and that the angle between the particle propagation direction and the
beams axis is small (see the exact conditions in Eq. (34)). The trajectory characteristics as a function of the laser parameters
and the particle energy are discussed. In particular, we show that in the case when the quantum parameters induced by each of
the beams are comparable, χ1 ≈ χ2, a peculiar spike-like feature arises. Since its typical time scale is significantly shorter as
compared to 1/ω1, 1/ω2, it will bear great significance to the corresponding radiation properties. Moreover, a detailed comparison
with the full numerical solution was carried out resulting in a good agreement and validating our analytical solution in the given
conditions. The dependence of the small deviations with respect to the exact solution on the parameters has been systematically
investigated. We have observed an interesting relationship of the cycle-averaged momentum in the field to the asymptotic one. We
show that the final average momentum depends on the order by which the laser beams are turned on.

Further, employing the approximated analytical trajectory, the radiation has been calculated in the Baier-Katkov semiclassical
framework. The Baier-Katkov integrals were analytically solved yielding closed formulas in terms of sums over Bessel functions.
Different regimes, periodic and non-periodic, are explored.

We concentrated on the strong field regime, which was found to be of particular interest for anomalous LCFA violation
[39]. An optimised calculation method based on a physical reasoning is suggested, which enables quick summation over the
numerous Bessel harmonics appearing in the analytical formula. The result is employed to compare in detail the periodic and
the non-periodic regimes. We have observed that as opposed to the non-periodic case, where non-uniformity in the azimuthal
direction finally averages to zero, in the periodic case considerable dependence on the azimuthal angle appears. We found that in
a rather short laser pulse the emission in the non-periodic case becomes similar to the periodic one. Furthermore, we analyze
numerically the effect introduced by a finite duration and spot size of the beams, which are not included in the analytical derivation.
We demonstrate that the ultrashort pulse results in enhanced emission while tightly focused beam reduce the emitted energy and
give physical explanations.

Finally, elaborated analytical analysis of the validity condition is presented. In the general case, it depends on the energy and
angle of the emitted photon. In the strong field case, it reduces to a simple restriction on the ratio between the energy and the laser
amplitude. The error in the spectrum is evaluated numerically and systematically explored as a function of the small quantities
lying in the foundation of the theoretical approximation.
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[2] D. M. Wolkow, “Über eine Klasse von Lösungen der Diracschen Gleichung,” Z. Phys. 94, 250 (1935).



22

[3] A. I. Nikishov and V. I. Ritus, Zh. Eksp. Teor. Fiz. 46, 776 (1964), [Sov. Phys. JETP 19, 529 (1964)].
[4] A. I. Nikishov and V. I. Ritus, Sov. Phys. JETP 19, 1191 (1964).
[5] V. I. Ritus, J. Sov. Laser Res. 6, 497 (1985).
[6] V. P. Yakovlev, “Electron-positron pair production by a strong electromagnetic wave in the field of a nucleus,” J. Exp. Theor. Phys. 49, 318

(1965), [Sov. Phys. JETP 22, 223 (1966)].
[7] J.W. Yoon, C. Jeon, J. Shin, S.K. Lee, H.W. Lee, I.W. Choi, H.T. Kim, J.H. Sung, , and C.H. Nam, Opt. Express 27, 20412 (2019).
[8] The Vulcan facility, https://www.clf.stfc.ac.uk/Pages/Vulcan-laser.aspx.
[9] The Extreme Light Infrastructure (ELI), http://www.eli-laser.eu/.

[10] Exawatt Center for Extreme Light Stidies (XCELS), http://www.xcels.iapras.ru/.
[11] M. Marklund and P. K. Shukla, “Nonlinear collective effects in photon-photon and photon-plasma interactions,” Rev. Mod. Phys. 78, 591

(2006).
[12] G A Mourou, T Tajima, and S V Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).
[13] G. V. Dunne, “New strong-field qed effects at extreme light infrastructure,” Eur. Phys. J. D 55, 327 (2009).
[14] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum

systems,” Rev. Mod. Phys. 84, 1177 (2012).
[15] S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, “Multiple colliding electromagnetic pulses: A way to lower the

threshold of e+e− pair production from vacuum,” Phys. Rev. Lett. 104, 220404 (2010).
[16] Andrea Golla, Benoıt Chalopin, Marianne Bader, Irina Harder, Klaus Mantel, Robert Maiwald, Norbert Lindlein, Markus Sondermann,

and Gerd Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” The European Physical Journal
D 66, 190 (2012).

[17] Ivan Gonoskov, Andrea Aiello, Simon Heugel, and Gerd Leuchs, “Dipole pulse theory: Maximizing the field amplitude from 4π focused
laser pulses,” Phys. Rev. A 86, 053836 (2012).

[18] A. Gonoskov, A. Bashinov, S. Bastrakov, E. Efimenko, A. Ilderton, A. Kim, M. Marklund, I. Meyerov, A. Muraviev, and A. Sergeev,
“Ultrabright gev photon source via controlled electromagnetic cascades in laser-dipole waves,” Phys. Rev. X 7, 041003 (2017).

[19] Aleksei V Bashinov, Arkady A Gonoskov, Arkadii Valentinovich Kim, Mattias Marklund, Gérard Mourou, and Aleksandr M Sergeev,
“Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction
force taken into account,” Quantum Electronics 43, 291 (2013).

[20] Aleksei V Bashinov, Punit Kumar, and Evgenii Sergeevich Efimenko, “Confinement of electrons in the focus of the dipole wave,” Quantum
Electronics 49, 314 (2019).

[21] J. Magnusson, A. Gonoskov, M. Marklund, T. Zh. Esirkepov, J. K. Koga, K. Kondo, M. Kando, S. V. Bulanov, G. Korn, C. G. R. Geddes,
C. B. Schroeder, E. Esarey, and S. S. Bulanov, “Multiple colliding laser pulses as a basis for studying high-field high-energy physics,”
Phys. Rev. A 100, 063404 (2019).

[22] J G Kirk, A R Bell, and I Arka, “Pair production in counter-propagating laser beams,” Plasma Phys. Contr. F. 51, 085008 (2009).
[23] Stepan S. Bulanov, Timur Zh. Esirkepov, Alexander G. R. Thomas, James K. Koga, and Sergei V. Bulanov, Phys. Rev. Lett. 105, 220407

(2010).
[24] A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, “Anomalous radiative

trapping in laser fields of extreme intensity,” Phys. Rev. Lett. 113, 014801 (2014).
[25] Z. Gong, R. H. Hu, Y. R. Shou, B. Qiao, C. E. Chen, X. T. He, S. S. Bulanov, T. Zh. Esirkepov, S. V. Bulanov, and X. Q. Yan,

“High-efficiency γ-ray flash generation via multiple-laser scattering in ponderomotive potential well,” Phys. Rev. E 95, 013210 (2017).
[26] T. Grismayer, M. Vranic, J. L. Martins, R. A. Fonseca, and L. O. Silva, “Seeded qed cascades in counterpropagating laser pulses,” Phys.

Rev. E 95, 023210 (2017).
[27] T. Grismayer, M. Vranic, J. L. Martins, R. A. Fonseca, and L. O. Silva, “Laser absorption via quantum electrodynamics cascades in

counter propagating laser pulses,” Phys. Plasmas 23, 056706 (2016).
[28] J G Kirk, “Radiative trapping in intense laser beams,” Plasma Phys. Cont. Fus. 58, 085005 (2016).
[29] M. Jirka, O. Klimo, S. V. Bulanov, T. Zh. Esirkepov, E. Gelfer, S. S. Bulanov, S. Weber, and G. Korn, “Electron dynamics and γ and e−e+

production by colliding laser pulses,” Phys. Rev. E 93, 023207 (2016).
[30] A Di Piazza, M Tamburini, S Meuren, and C H Keitel, “Implementing nonlinear Compton scattering beyond the local-constant-field

approximation,” Phys. Rev. A 98, 012134 (2018).
[31] T. G. Blackburn, D. Seipt, S. S. Bulanov, and M. Marklund, “Radiation beaming in the quantum regime,” Phys. Rev. A 101, 012505

(2020).
[32] N. V. Elkina, A. M. Fedotov, I. Yu. Kostyukov, M. V. Legkov, N. B. Narozhny, E. N. Nerush, and H. Ruhl, “Qed cascades induced by

circularly polarized laser fields,” Phys. Rev. ST Accel. Beams 14, 054401 (2011).
[33] C. P. Ridgers, J. G. Kirk, R. Duclous, T. G. Blackburn, C. S. Brady, K. Bennett, T. D. Arber, and A. R. Bell, “Modelling gamma-ray

photon emission and pair production in high-intensity laser-matter interactions,” J. Compt. Phys. 260, 273 (2014).
[34] D. G. Green and C. N. Harvey, “Simla: Simulating particle dynamics in intense laser and other electromagnetic fields via classical and

quantum electrodynamics,” Comp. Phys. Commun. 192, 313 (2015).
[35] A Di Piazza, M Tamburini, S Meuren, and C H Keitel, “Improved local-constant-field approximation for strong-field QED codes,” Phys.

Rev. A 99, 022125 (2019).
[36] A. Ilderton, B. King, and D. Seipt, “Extended locally constant field approximation for nonlinear Compton scattering,” Phys. Rev. A 99,

042121 (2019).
[37] A. Ilderton, B. King, and A. J. MacLeod, “Absorption cross section in an intense plane wave background,” Phys. Rev. D 100, 076002

(2019).
[38] T. Podszus and A. Di Piazza, “High-energy behavior of strong-field qed in an intense plane wave,” Phys. Rev. D 99, 076004 (2019).

https://www.clf.stfc.ac.uk/Pages/ Vulcan-laser.aspx
http://www.eli-laser.eu/
http://www.xcels.iapras.ru/
http://dx.doi.org/10.1103/PhysRevA.86.053836
http://dx.doi.org/ 10.1103/PhysRevA.100.063404
http://dx.doi.org/10.1103/PhysRevE.95.023210
http://dx.doi.org/10.1103/PhysRevE.95.023210


23

[39] Q. Z. Lv, E. Raicher, C. H. Keitel, and K. Z. Hatsagortsyan, “Anomalous violation of the local constant field approximation in colliding
intense laser beams,” Phys. Rev. Research in press (2021).

[40] V. Popov, V. Mur, and B. Karnakov, JETP Letters 66, 229 (1997).
[41] G. R. Mocken, M. Ruf, C. Müller, and C. H. Keitel, “Nonperturbative multiphoton electron-positron–pair creation in laser fields,” Phys.

Rev. A 81, 022122 (2010).
[42] A. Di Piazza, “Ultrarelativistic electron states in a general background electromagnetic field,” Phys. Rev. Lett. 113, 040402 (2014).
[43] A. Di Piazza, “Analytical tools for investigating strong-field qed processes in tightly focused laser fields,” Phys. Rev. A 91, 042118 (2015).
[44] A. Di Piazza, “Nonlinear breit-wheeler pair production in a tightly focused laser beam,” Phys. Rev. Lett. 117, 213201 (2016).
[45] A. Di Piazza, “First-order strong-field qed processes in a tightly focused laser beam,” Phys. Rev. A 95, 032121 (2017).
[46] V. N. Baier and V. M. Katkov, Sov. Phys. JETP 26, 854 (1968).
[47] V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (World

Scientific, Singapore, 1994).
[48] V. B. Berestetskii, , E. M. Lifshitz, and L. P. Pitevskii, Quantum electrodynamics (Pergamon, Oxford, 1982).
[49] H. K. Avetissian, Relativistic nonlinear electrodynamics (Springer, New York, 2016).
[50] A. Friedman, A. Gover, G. Kurizki, S. Ruschin, and A. Yariv, “Spontaneous and stimulated emission from quasifree electrons,” Rev. Mod.

Phys. 60, 471–535 (1988).
[51] M.V. Fedorov, “Free-electron lasers and multiphoton free-free transitions,” Progress in Quantum Electronics 7, 73 – 116 (1981).
[52] P. L. Kapitza and P. A. M. Dirac, “The reflection of electrons from standing light waves,” Math. Proc. Cambr. Phil. Soc. 29, 297–300

(1933).
[53] H. Batelaan, “Colloquium: Illuminating the kapitza-dirac effect with electron matter optics,” Rev. Mod. Phys. 79, 929–941 (2007).
[54] Sven Ahrens, Heiko Bauke, Christoph H. Keitel, and Carsten Müller, “Spin dynamics in the kapitza-dirac effect,” Phys. Rev. Lett. 109,

043601 (2012).
[55] M.M. Dellweg and C. Müller, “Spin-polarizing interferometric beam splitter for free electrons,” Phys. Rev. Lett. 118, 070403 (2017).
[56] G. Lehmann and K. H. Spatschek, “Phase-space contraction and attractors for ultrarelativistic electrons,” Phys. Rev. E 85, 056412 (2012).
[57] A. V. Bashinov, A. V. Kim, and A. M. Sergeev, “Impact of quantum effects on relativistic electron motion in a chaotic regime,” Phys. Rev.

E 92, 043105 (2015).
[58] H. Hu and J. Huang, “Analytical solution for the klein-gordon equation and action function of the solution for the dirac equation in

counterpropagating laser waves,” Phys. Rev. A 92, 062105 (2015).
[59] B. King and H. Hu, “Classical and quantum dynamics of a charged scalar particle in a background of two counterpropagating plane waves,”

Phys. Rev. D 94, 125010 (2016).
[60] D. Bauer, P. Mulser, and W.H. Steeb, “Relativistic pondermotive force, uphill acceleration andtransition to chaos,” Phys. Rev. Lett. 75,

4622 (1995).
[61] B. Quesnel and P. Mora, “Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,” Phys. Rev. E 58,

3719 (1998).


	Ultrarelativistic electrons in counterpropagating laser beams
	Abstract
	I Introduction
	II The classical dynamics
	A Classical trajectory
	B Characteristics of the trajectories
	C Drift momentum
	D Systematic errors analysis of the trajectory

	III Radiation
	A The non-periodic case
	B The periodic case
	C Vanishing initial transverse momentum
	D Spectra in the strong field regime: 1 1
	E Validity condition
	F Realistic pulse effects

	IV Summary and conclusion
	 Acknowledgment
	 References


