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Using topological band theory analysis we show that the nonsymmorphic symmetry operations
in hexagonal lattices enforce Weyl points at the screw-invariant high-symmetry lines of the band
structure. The corepresentation theory and connectivity group theory show that Weyl points are
generated by band crossings in accordion-like and hourglass-like dispersion relations. These Weyl
points are stable against weak perturbations and are protected by the screw rotation symmetry.
Based on first-principles calculations we found a complete agreement between the topological pre-
dicted energy dispersion relations and real hexagonal materials. Topological charge (chirality) and
Berry curvature calculations show the simultaneous formation of Weyl points and nodal-lines in
4d transition-metal trifluorides such as AgF3 and AuF3. Furthermore, a large intrinsic spin-Hall
conductivity was found due to the combined strong spin-orbit coupling and multiple Weyl-point
crossings in the electronic structure. These materials could be used to the spin/charge conversion
in more energy-efficient spintronic devices.

INTRODUCTION

The intersection between band-theory of solids and
topology has recently attracted a lot of interest in
the condensed matter physics community. In the past
decade, topological insulators opened the door to novel
phases of matter with unique properties [1]. The field of
topological materials has rapidly expanded and new kind
of topological phases have appeared, including Chern in-
sulators [2], topological insulators [3], crystalline topolog-
ical insulators [4], Dirac semimetals [5], Weyl semimetals
[6] and nodal-line semimetals [7] among others. Weyl
semimetals have been the subject of intensive research
because they were the first topological material found
without a bulk energy gap which is protected by the non-
trivial topology of the band structure [6]. The existence
of Weyl semimetals was predicted theoretically about ten
years ago and was finally found experimentally in 2015
[8, 9].

It is theoretically known that a Weyl semimetal can
only arise in a crystal where time-reversal symmetry or
inversion symmetry are broken [10]. For these cases the
Hamiltonian around the Weyl point could be described
in such a way that the energy crossings are linearly dis-
persing energy-bands which act as monopoles of Berry
curvature in momentum space [6]. These monopoles are
characterised by a quantised topological charge (or chiral-
ity) and the total chiral charge must be zero (this result is
known as the Nielsen-Ninomiya theorem [11]). However,
the space group symmetries in solids can be complicated
and high-order Weyl crossings [12, 13] or Weyl points and
nodal-lines combinations can be present at the material.

The variety of topological band crossing in materials is

the essential ingredient that guarantees the existence of
the novel charge and spin transport properties that Weyl
semimetals show [14]. Therefore, the generation of new
materials with stable Weyl points is an emergent field
of great interest from a fundamental point of view and
possible technological applications. Weyl points in the
band structure can be emergent by the nonsymmorphic
symmetries of the crystal; these Weyl points are com-
monly called symmetry-enforced energy band crossings.
Previous works have investigated several nonsymmorphic
energy band crossings [15–17] and the possible materials
realisation [18, 19]. In particular, Weyl points protected
by screw rotations and Weyl nodal lines protected by
glide reflections were reported recently in trigonal and
hexagonal lattices [20, 21].

In this work, we study the generation of Weyl points
due to the screw nonsymmorphic symmetry in hexago-
nal systems with the P6p and P6p22 space groups. First,
based on corepresentation theory [22] and band connec-
tivity group theory [23], we study the combinatorics of
the complete electronic band structure. We note the ap-
pearance of accordion-like and hourglass-like energy dis-
persion relations inducing the existence of Weyl points
protected by the screw and time-reversal symmetries.
This analysis appears in Appendix A. Second, using first-
principles calculations we corroborate the energy band
crossings for hexagonal materials. In particular we anal-
yse the electronic band structure of the materials In2Se3,
KCaNd(PO4)2, PI3, AgF3, AuF3, TaGe2 and Nb3CoS6

with the refined structural parameters from the Materi-
als project and AFLOW database [24, 25]. This appears
in Appendix B. The content of both appendices A and B
expands and enhances the previous analysis carried out

ar
X

iv
:2

00
5.

02
95

9v
2 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  1
4 

Ja
n 

20
21



2

in [21]. In particular we have added the analysis of the
energy bands along the high symmetry line K-H and we
have described a complete combinatorial band structure
that appears on materials with symmetry groups P63 and
P6122. Third, we use the topological band analysis to de-
duce and infer topological properties of the Weyl points
in AgF3 and AuF3 materials. These materials are pos-
sible Weyl-semimetal candidates with inversion symme-
try breaking. Following the Nielsen-Ninomiya theorem,
we predict the presence of both Weyl points and nodal
lines at AgF3 and AuF3. We find interesting distribu-
tions of Weyl points as it is the case of the second and
third conduction bands of AgF3 where we find 6 Weyl
points with +2 chirality, 24 points with +1 chirality and
36 points with −1 chirality. We also show the existence
of Weyl nodal lines on the tenth and eleventh conduc-
tion bands of AgF3. This analysis of the distribution of
Weyl points allows us to confirm that the Weyl points do
not necessarily come in pairs with opposite chirality [13],
and furthermore, that Weyl nodal lines exist whenever
the distribution of Weyl points along the high symmetry
lines and their total chirality satisfy a numerical condi-
tion. Finally, we analyse the spin transport properties
and we find a strong spin-Hall effect due to the presence
of Weyl fermions in the valence band of AgF3 and AuF3

materials. This interesting spin-transport property in 4d
transition-metal fluorides may help in the quest for the
use of Weyl nodes in developing the next-generation of
energy-efficient information technology [26].

ELECTRONIC STRUCTURE OF AgF3 AND AuF3

(P6122)

Let us start by focusing on the materials that we have
studied. We have chosen the materials AgF3 and AuF3

because they are both possible Weyl-semimetals with
the same nonsymmorphic hexagonal symmetry (P6122)
generated by a sixfold screw rotation along the z-axis
for a hexagonal lattice and a 2-fold rotation. Due to
the lack of inversion, mirror, and roto-inversion sym-
metries these materials can be classified as chiral crys-
tals [27]. In particular, we have chosen the right-handed
P6122 space group, which is an enantiomorphic variant
of P6522 space group (left-handed). In appendix A, we
have shown that these enantiomorphic pairs (P6122 and
P6522) present energetically degenerate band structures,
which is in agreement with the work by Li et al [28].
However, it has been recently shown that the topologi-
cal charges and surface Fermi arc can be reversed for the
crystal with opposite enantiomer, which can be measured
by chiral optical response experiments [29, 30].

The electronic band structures of AgF3 and AuF3 ma-
terials have similar features and the topological proper-
ties of their conduction and valence bands could be un-
derstood via topological band analysis of the symmetry

group P6122. If one takes a close look at the valence and
conduction band structures that could be seen in Fig-
ures 1a), 2a) and 3 one notices that there are interesting
crossings at the high symmetry lines Γ-A, K-H and M-L.
These crossings appear due to the nonsymmorphicity of
the screw rotation and could be understood via a topo-
logical band analysis of the corepresentations of the high
symmetry points and of the high symmetry lines. We
have carried out a comprehensive study of these topolog-
ical band structures for the symmetry groups P6p and
p6p22 in Appendices A and B, and we have shown that
these hour-glass and accordion-like band structures on
the high symmetry lines are unavoidable and therefore
they are topologically protected by the symmetry.

Our interest is focused on the band crossings that ap-
pear in the interior of the high symmetry lines and not on
the crossings that do exist on the high symmetry points
which produce Kramers-Weyl points as has been done in
references [27, 31–36]. Here we have focused on studying
a pair of bands that do cross inside the high-symmetry
lines and the electronic properties that they induce on
the hexagonal materials [21]. These crossings are globally
stable and can not be taken off by large perturbation of
the system. In particular, we will concentrate our study
on enforced band crossings of the third and second to
last valence bands on AgF3 and AuF3 and on five-pairs
of conduction bands of AgF3.

Weyl points on valence bands of AgF3

The electronic band structure for this material below
the Fermi level is shown in Figure 1a), where it is shown
also the value of the chirality (+1 and −2) for the Weyl
points close to the maximum of the valence band energy
and that belong to the third and second to last bands.
From Figure 1a) we note that close to the valence band
maximum (0 eV) it is possible to find three different Weyl
points with close energy values of -0.220, -0.278 and -
0.267 eV (dotted lines in Figure 1(a)). These nodes live
along the kz-paths Γ-A, K-H, and M-L and they have
also similar kz components 0.449, 0.414, and 0.463 re-
spectively (in fractional coordinates of the kz-line). In
particular, we have calculated the position of these nodal
points using a gradient conjugate technique for a k-mesh
grid of the Brillouin zone (BZ) [37] and these locations
are consistent with the group theoretical predictions (see
Diagram A.45).

Weyl chirality calculations (see Appendix A) reveals
that there are two Weyl points of chirality +1 induced by
the Weyl point along the Γ-A path, 6 points of chirality
+1 induced by the Weyl point along the M-L path and
4 points of chirality −2 induced by the Weyl point along
the K-H path (See Figure 1a)). The sum 2 + 6 − 8 of
those chiralities is zero and Nielsen-Ninomiya theorem
[11] is satisfied. We have also checked that there are
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FIG. 1. a) Valence band structure and chirality for the three Weyl points shown between the high-symmetry k-lines (L-M, Γ-A,
H-K) of the BZ in AgF3. b) Integration of the xy-component of Berry curvature (Ωxy) on the kz-positive (α+) and kz-negative
(α−) regions of the irreducible first BZ as a function of energy. c) σz

xy and σz
yx components of the spin Hall conductivity tensor

as a function of energy. d) log(|Ωxy| + 1) on the k-plane touching the three Weyl points. e) Top view of the Berry curvature
field on the k-plane touching the three Weyl points. M and Γ are sources (+1 chirality) while K is a sink (−2 chirality). Here
M, Γ and K represent the location of Weyl points at the kz-lines L-M, Γ-A and H-K respectively. The Fermi level is set to zero.

no other Weyl points present besides the ones previously
presented.

Transport properties of AgF3

In order to check the local manifestation of the ge-
ometric properties of the wave-functions in k-space, we
have calculated the xy-component of the Berry curvature
(Ωxy) on the k-plane that defines the above mentioned
three Weyl points in Γ-A L-M and H-K respectively, as
it is shown in Figure 1d). We can see a large contribu-
tion of the Berry curvature near to degeneracy points,
where M, Γ and K represent the location of Weyl points
at the kz-lines L-M, Γ-A and H-K respectively. In addi-
tion, the Berry curvature field indicates that among these
Weyl points Γ and M act as ‘sources’ and K as ‘sink’ of
the Berry curvature field in the momentum space (see
Figure 1e)). These topological monopole charges are lo-
cated at the (degenerate) band crossings and their signs
are consistent with the chirality calculated χ=+1 for Γ-
A and M-L and χ=-2 for K-H (see Figure 1a)). These

Weyl points are protected by the nonsymmorphic crystal
symmetry and time-reversal symmetry presented in the
AgF3 (P6122) material. These points are near to the va-
lence band maximum (around 250 meV) and they could
be reached with a strong p-doping of this semiconductor
material.

On the other hand, the integration of the xy-
component of Berry curvature (Ωxy) on the kz-positive
(α+) and kz-negative (α−) regions of the first BZ as a
function of energy is shown in Figure 1b). We found
a high partial contribution to the anomalous Hall con-
ductance (AHC) due to the K-H Weyl points (around
-0.278 eV) even though the total AHC is zero due to
time-reversal symmetry (the positive α+ and negative
α− integration on the full BZ cancel). This phenomenon
could be understood due to different chirality values of
the Weyl points close to the M-L and K-H lines, thus
increasing and decreasing the AHC in a small range of
energy. It is known that positive and negative peaks on
the electrical Hall conductivities can be sources of consid-
erable large spin Hall conductivity (SHC) [38]. We found
that the total integral of the spin Hall curvature, which is
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even in TRS, is not zero and its huge contribution can be
attributed to the presence of Weyl points in the valence
band. From Figure 1c) we can see a large value for the
spin Hall conductivity (SHC) of around 600 (~/e)(S/cm),
far larger than the one of the pure element Ag which lies
around 100 (~/e)(S/cm) [39]. These results are in com-
plete agreement with the crystal symmetry analysis for
the full SHC tensor for the P6122 space group, on which
the σzxy (−σzyx) is not zero [40]. Therefore we propose
that AgF3 can exhibit a large intrinsic spin Hall effect
(SHE) mainly due to the particular contribution of the
Weyl points to the spin-dependent Berry curvature. The
energy dependence of the spin Hall conductivity can be
tuned in order to electrically generate or detect spin cur-
rents in spintronic devices.

Weyl points on valence bands of AuF3

Weyl points were also analysed in the AuF3 material,
which crystallizes at the P6122 space group. The valence
band structure for this material is shown in Figure 2a)
where it is also shown the value of the topological charges
(chiralities of +1) for the three Weyl points (at the Γ-A,
K-H and M-L lines) generated by the last valence bands.
We can notice that the net chirality of these three points
is +12 due to the fact that they must be counted twice,
four-times and six-times at Γ-A, K-H and M-L respec-
tively (these are the multiplicities of the 1-cells that ap-
pear in Table III). If only Weyl points are present, extra
Weyl points with opposite chirality adding to -12 must
appear inside the BZ in order for the total chirality to be
zero [11].

In Figure 2c) we calculated the xy-component of the
Berry curvature (Ωxy) at different kz-planes (kz=0.268,
0.296 and 0.419) for the three Weyl points located at the
high symmetry lines (Γ-A, K-H and M-L lines). In Figure
2c) we can also see three large contributions of the Berry
curvature near to the H-point, these points are located at
the plane kz=0.415 (in fractional reciprocal lattice vec-
tors). These three extra Weyl points have each a chirality
of −1 and they are located on the KHLM-plane. Since
the number of equivalent cells (Table III) to the KHLM-
plane is 12, there are 12 Weyl points with negative chi-
rality for a total contribution of −12. Therefore the net
chirality (total topological charge) of all Weyl points in
the BZ vanishes for the AuF3 material as expected.

Transport properties of AuF3

In order to evidence the contribution of the topologi-
cal states to spin transport properties of AuF3, we have
calculated the energy dependence of the spin Hall con-
ductivity as it is shown in Figure 2b). We can see a
large value for the spin Hall conductivity of around 240

(~/e)(S/cm) for the energy E−EF∼50 meV, and it could
increase to 550 (~/e)(S/cm) for E−EF∼360 meV. These
values are larger than the one of the pure element Au
which is around 40 (~/e)(S/cm) [39]. This result in-
dicates that the F element in the formation of the 4d
transition-metal fluorides can increase the spin trans-
port phenomena in pure 4d transition-metal elements.
These findings may help in the quest for the use of Weyl
nodes and SOC induced phenomena in developing next-
generation of energy-efficient spintronics technology.

WEYL POINTS ON CONDUCTION BANDS OF
AgF3 AND AuF3

We have shown in Appendices A and B that the non-
symmorphicity of the space groups P6p and P6p22 im-
plies the existence of Weyl points along the high sym-
metry lines Γ-A, M-L and K-H. One could expect that
the number of Weyl points between successive bands is
optimal in the sense that the distribution of those Weyl
points satisfies the Nielsen-Ninomiya theorem [11] of zero
net chirality and that the amount of Weyl points is min-
imal.

In the case of the space group P6122 we have seen that
the electronic bands may assemble as shown in diagram
(A.45) for the materials AgF3 and AuF3, as shown in
Figure 3. This assembly incorporates successive bands
(2nd- 3th, 4th- 5th, 6th- 7th, 8th- 9th and 10th- 11th) on
which there are either three Weyl points or two Weyl
points. In the former there is one Weyl point along Γ-
A, one along M-L and one along K-H, and in the latter
there is one Weyl point along Γ-A and the other is either
along M-L or along K-H. Furthermore, the symmetries of
the Brillouin zone induce the Weyl points along Γ-A to
appear twice, the Weyl points along K-H four times and
the Weyl points along M-L six times (see Table III). The
distribution of the number of Weyl points together with
their chiralities along those three high symmetry lines
will allow us to infer certain topological properties of two
successive bands. The only tools that we will use to infer
these properties are the Nielsen-Ninomiya theorem [11],
which tells us that the total chirality is zero, and the
counting of the number of times a high symmetry cell
appears in the BZ, which is topologically equivalent to
the three-dimensional torus.

The specific fact we want to stress is the following.
Whenever the chiralities of the Weyl points located in the
high symmetry lines Γ-A, M-L and K-H do not add up to
a multiple of 12 and no other Weyl points appear in other
high symmetry lines, then there must exist nodal lines
wrapping around high symmetry lines. Furthermore, the
chirality of these nodal lines added to the chiralities of
the Weyl points in the high symmetry lines will always
give a multiple of 12. The reason is the following. In the
pairs of bands of interest (see Figure 3) there are no Weyl
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FIG. 2. a) Valence band structure for the material AuF3 together with the chirality of the three Weyl points shown between
the high-symmetry k-lines (L-M, Γ-A, H-K) of the BZ. b) σz

xy and σz
yx components of the spin Hall conductivity tensor as a

function of energy. c) log(|Ωxy| + 1) on different kz-planes (0.268, 0296, 0.415 and 0.419) where the Weyl points are located
in AuF3. Here M, Γ and K represent the location of Weyl points at the kz-lines L-M, Γ-A and H-K respectively. M, K and Γ
are sources (+1 chirality) while the three points close to K are sinks (−1 chirality). The Weyl point denoted by Γ appears 2
times, the one denoted by M appears 6 times and the one denoted by K appears 4 times. These 12 Weyl points with positive
chirality cancel with the 12 Weyl points with negative chirality induced by the three Weyl points close to the one denoted by
K. The Fermi level is set to zero.

points at the high-symmetry points in reciprocal space.
In addition, the multiplicity of the high symmetry planes
and the bulk are 12 and 24 respectively (see Table III).
As a consequence we have a multiple of 12 for the total
chirality of Weyl points outside high symmetry lines and
high symmetry points. So, if the chiralities along the high
symmetry lines Γ-A, M-L, and K-H are not a multiple of
12 and there are no other Weyl points in any other high
symmetry lines, then it is would be impossible to have
total chirality zero with only Weyl points; hence there
must exist nodal lines or nodal surfaces whose chirality
added to the chiralities of the Weyl points in Γ-A, M-L,
and K-H add to a multiple of 12.

For the P6122 space group, the high symmetry planes
are all fixed only by an antiunitary operator. Since on the
pairs of bands of interest (see Figure 3) there are no de-
generacies along the high symmetry points, there will be
no degeneracies along any high symmetry plane. There-

fore the presence of nodal surfaces could be disregarded
and what will be present are nodal lines. We remark
here that on the complementary pairs of bands there are
indeed degeneracies along high symmetry planes. These
pairs of bands have been studied in [27, 31–36] where not
only appear degeneracies along high symmetry planes but
also Kramer-Weyl points on the high symmetry points.

Now, since the chiralities of some of these nodal lines
need to add up to a multiple of 12 with the chiralities
of the high symmetry lines Γ-A, M-L and K-H, it im-
plies that they must wrap around high symmetry lines.
A nodal line that wraps around the high symmetry lines
Γ-A or K-H will appear 2 or 4 times respectively, and
if it wraps around any other high symmetry line it will
appear 6 times. It is important to highlight here that
these nodal lines are induced by the chiralities along the
high symmetry lines but its precise location cannot be
deduced by the topological analysis. We emphasize that
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these nodal lines are not protected by glide or mirror
symmetries as presented in [7, 41–43]. These nodal lines
are not protected by any specific symmetry, they are in-
duced by the complete symmetry group and the explicit
distribution of the Weyl points and their chiralities along
high symmetry lines.

We have seen above the case of the third and second
to last valence bands of AgF3 and AuF3. For AgF3 the
chiralities of the points along the Γ-A, M-L or K-H add
up to zero and there are no other Weyl points (see Table
I). For AuF3 the chiralities of the points along the Γ-A,
M-L or K-H add up to 12 and there is another Weyl point
whose chirality is −1 and its multiplicity is 12 (see Table
II).

In Tables I and II we show the distribution of Weyl
points as well as their chiralities on the conduction bands
of AgF3 and AuF3 respectively (see Figure 3). It is
worth pointing out the wide range of chirality distribu-
tions of the topologically protected Weyl points along the
high symmetry lines Γ-A, M-L and K-H for each pair of
bands. We see that along Γ-A the Weyl points have chi-
ralities ±1,±2,±3,±2±1 for the pairs of bands (2nd,3rd),
(4th,5th), (6th,7th), (8th,9th) and (10th,11th) respectively,
along M-L the chiralities are always ±1 and along K-H
the chiralities are ±1 or ±2. Also it is important to no-
tice that in all pairs of bands, besides the pair (10th,11th)
of AgF3, the chirality of the Weyl points along Γ-A, M-L
and K-H add up to a multiple of twelve and there is only
presence of Weyl points.

The presence of a nodal line wrapping around Γ-A on
the pair of bands (10th,11th) of AgF3 is worth a closer
look. Along Γ-A there are 2 Weyl points with opposite
chirality, along M-L there is a Weyl point with chirality
−1 and along K-H there is a Weyl point of chirality −2.
The chirality of the points along the high symmetry lines
is +2− 2− 6− 8 = −14, and not being a multiple of 12,
the existence of nodal lines is enforced. We have found a
nodal line wrapping around the Γ-A path with chirality
+1 and a Weyl point of multiplicity 12 on the high sym-
metry plane KHML with chirality +1 thus making the
total chirality zero. The information of the Weyl nodal-
line can be seen in Table I as well as in Figure 4 and
in Figure 5. In Figure 4 we see the energy distribution
of the 8th, 9th, 10th, 11th and 12th conduction bands of
AgF3 and AuF3 along Γ-A. The distribution of the en-
ergy bands for AuF3 presented in Figure 4 b) fits the
accordion-like presentation shown in diagram (A.15) and
therefore there is only one point of intersection of the 10th

and 11th conduction bands. For AgF3 the combinatorial
description of diagram (A.15) is also preserved, but its
presentation is different as it can be seen in Figure 4 a).
For AgF3 the top two points of the accordion-like figure
have less energy than the second points from top to bot-
tom of the same accordion-like figure. This fact changes
the presentation of the accordion-like shape and produces
two intersections of the 10th and 11th conduction bands

Location Coordinates (2π/ai) E − EF χ Multi− Tot.

in BZ kx ky kz (eV ) plicity

Second− Third to last valence bands
ΓA 0 0 0.449 −0.220 +1 2 +2

KH 0.333 0.333 0.414 −0.278 −2 4 −8

ML 0 0.500 0.463 −0.267 +1 6 +6

Second− Third conduction bands
ΓA 0 0 0.454 0.487 −1 2 −2

KH 0.333 0.333 0.227 0.372 −1 4 −4

ML 0 0.500 0.468 0.333 −1 6 −6

ΓK 0.227 0.227 0 0.412 +2 6 +12

ΓKM 0.286 0.306 0 0.368 −1 12 −12

ΓKHA 0.313 0.313 0.271 0.372 +1 12 +12

ΓKHA 0.227 0.227 0.473 0.421 +1 12 +12

ΓMLA 0 0.325 0.496 0.434 −1 12 −12

Fourth− Fifth conduction bands

ΓA 0 0 0.049 0.718 −2 2 −4

KH 0.333 0.333 0.165 0.401 +1 4 +4

KMLH 0.325 0.496 0.089 0.457 −1 12 −12

ΓMK 0.145 0.170 0 0.563 +1 12 +12

Bulk 0.180 0.205 0.183 0.501 −1 24 −24

Bulk 0.305 0.207 0.077 0.457 +1 24 +24

Sixth− Seventh conduction bands

ΓA 0 0 0.446 0.923 +3 2 +6

ML 0 0.500 0.421 0.739 +1 6 +6

ΓKHA 0.233 0.233 0.454 0.589 −1 12 −12

KMLH 0.112 0.442 0.427 0.675 +1 12 +12

ΓALM 0 0.304 0.418 0.697 +1 12 +12

Bulk 0.008 0.321 0.322 0.702 −1 24 −24

Eighth−Ninth conduction bands

ΓA 0 0 0.283 1.001 +2 2 +4

KH 0.333 0.333 0.029 0.792 −1 4 −4

ΓKHA 0.181 0.181 0.107 0.789 −1 12 −12

KMLH 0.147 0.426 0.037 0.816 +1 12 +12

Tenth− Eleventh conduction bands

ΓA 0 0 0.471 1.040 −1 2 −2

Nodal line Wrap ΓA 0.45 1.041 +1 2 +2

ΓA 0 0 0.020 1.045 +1 2 +2

KH 0.333 0.333 0.473 1.033 −2 4 −8

ML 0 0.500 0.467 0.941 −1 6 −6

KMLH 0.083 0.457 0.459 0.979 +1 12 +12

TABLE I. Distribution of Weyl points and nodal lines for
the second-third to last valence bands and for the second-
third, fourth-fifth, sixth-seventh, eighth-ninth and tenth-
eleventh conduction bands in AgF3, as indicated in Figure
3(a). Location denotes the high-symmetry line, plane or
three-dimensional volume where the Weyl points and nodal
lines are located in the Brillouin zone (see Figure 6b) and
Table III), the momentum coordinates kx, ky, kz are given in
fractions of the hexagonal reciprocal coordinates, E−EF de-
notes the energy respect to Fermi level (in eV), χ the chirality
charge and Tot. the total contribution in chirality
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FIG. 3. a) Lower part of the conduction band structure for
AgF3 with the combinatorial structure described in diagram
(A.45). b) Lower part of the conduction band structure for
AuF3 with identical combinatorial structure as AgF3. Calcu-
lated topological chiralities (±1,±2,±3) are indicated close to
the Weyl points. Numbers indicate the band crossing between
2nd- 3th, 4th- 5th, 6th- 7th, 8th- 9th and 10th- 11th conduction
bands.

instead of only one as it is shown in Figure 4 b). This fact
explains why the chirality along the high symmetry lines
does not add to a multiple of 12 and therefore a nodal
line must be present. The explicit combinatorial distri-
bution of the energy bands of Figure 4 a) also shows that
the nodal line is stable. The two crossings of the 10th

and 11th bands are topologically enforced and therefore
a nodal line with non zero chirality is bound to exist.

In Figure 5 we present evidence on the existence of
this nodal line. Figure 5a) is a 3D plot of the k-points in
reciprocal space (fractional coordinates) on which there is
an energy gap of less than 0.00025 eV between the 10th

and 11th bands. The nodal line around Γ-A is clearly
visible from this graph and it is located at kz = 0.45.
Figures 5b) and 5c) represent respectively the energies of
the 10th and 11th conduction bands and the energy gap
between the two, both localized at kz = 0.45 plane. The
energies of Figures 5b) and 5c) are obtained by solving
the DFT equation directly; the nodal line is also clearly
visible. Figure 5d) shows the components yz, zx and
xy of the Berry curvature localized at kz = 0.45 where
the shape of the nodal line could be observed. From the
energy dispersion on the kx and ky directions observed in
Figure 5c) we evidence that the chirality of the nodal line
is ±1. From the analysis of the distribution of all nodal

Location Coordinates (2π/ai) E − EF χ Multi− Tot.

in BZ kx ky kz (eV ) plicity

Second− Third to last valence bands
ΓA 0 0 0.268 −0.141 +1 2 +2

KH 0.333 0.333 0.296 −0.052 +1 4 +4

ML 0.000 0.500 0.419 −0.043 +1 6 +6

KHLM 0.345 0.309 0.415 −0.052 −1 12 −12

Second− Third conduction bands
ΓA 0 0 0.244 1.591 −1 2 −2

KH 0.333 0.333 0.182 1.438 −1 4 −4

ML 0.000 0.500 0.353 1.431 −1 6 −6

ΓKHA 0.294 0.294 0.212 1.441 +1 12 +12

Fourth− Fifth conduction bands

KH 0.333 0.333 0.241 1.539 +1 4 +4

ΓA 0 0 0.251 1.711 −2 2 −4

ΓAHK 0.251 0.251 0.236 1.554 +1 12 +12

KHLM 0.634 −0.270 0.237 1.543 −1 12 −12

Sixth− Seventh conduction bands

ΓA 0 0 0.293 1.833 −3 6 −6

ML 0 0.500 0.300 1.768 +1 6 +6

ΓKHA 0.208 0.208 0.315 1.728 −1 12 −12

ΓMLA 0 0.440 0.298 1.766 +1 12 +12

Eighth−Ninth conduction bands

ΓA 0 0 0.134 2.006 +2 2 +4

KH 0.333 0.333 0.120 1.917 −1 4 −4

ΓKHA 0.170 0.170 0.131 1.946 −1 12 −12

KHLM 0.049 0.475 0.165 1.932 +1 12 +12

Tenth− Eleventh conduction bands

ΓA 0 0 0.409 2.147 +1 2 +2

ML 0 0.5 0.376 2.084 +1 6 +6

KH 0.333 0.333 0.399 2.123 +1 6 +4

KHLM 0.285 0.356 0.399 2.121 −1 12 −12

TABLE II. Distribution of Weyl points for the second-third to
last valence bands and for the second-third, fourth-fifth, sixth-
seventh, eighth-ninth and tenth-eleventh conduction bands in
AuF3, as indicated in Figure 3(b). Location denotes the high-
symmetry line, plane or three-dimensional volume where the
Weyl points are located in the Brillouin zone (see Figure 6b)
and Table III), the momentum coordinates kx, ky, kz are given
in fractions of the hexagonal reciprocal coordinates, E − EF

denotes the energy respect to Fermi level (in eV), χ the chi-
rality charge and Tot. the total contribution in chirality

points presented in Table I we infer that the chirality of
the nodal line is +1.

We found that the resulting band-crossing nodal line
in the hexagonal structure of AgF3 cannot be gapped out
without breaking any symmetry. This nodal line carries
a non-trivial topological charge necessary for Nielsen-
Ninomiya to hold and therefore it cannot be removed
even by large deformations of the Hamiltonian [44]. We
checked this statement by performing external pressure
on the material by shrinking the a and b lattice constants
by 2.3% and we found that the nodal line persists to exist.
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FIG. 4. Electronic band structure for a) AgF3 and b) AuF3

for the 8th, 9th, 10th, 11th, and 12th conduction bands along
the Γ-A path. Both preserve the combinatorical accordion-
like form described in diagram (A.15) but the presentation is
different. For AuF3 the presentation is exactly as described
in diagram (A.15) and therefore there is only one nodal point
for the 10th and 11th conduction bands. For AgF3 the upper
two vertices of the accordion-like shape have less energy than
the second to top ones, thus producing two nodal points for
the 10th and 11th conduction bands instead of one. This extra
nodal point gives rise to the presence of a nodal line wrapping
around Γ-A.

We remark that the topological index that prevents a
nodal line to be shrunk to a point is present only on sys-
tems whose eigenvectors are real-valued. This happens
for instance when time-reversal symmetry and inversion
symmetry are preserved and there is no spin-orbit cou-
pling. On these cases the eigenvectors of the Hamiltonian
are real-valued and the topological index measures the
first Stiefel-Whitney number of the real line bundle de-
fined by one of the eigenstates on a circle that links the
nodal line. If the Stiefel-Whitney number is not zero,
the line bundle is not trivial and therefore the nodal line
cannot be shrunk to a point. This argument appears in
[44, §2.2] and the references therein, although the Stiefel-
Whitney classes are never mentioned [45]. In the case
that interests us there is no inversion symmetry. There-
fore, all eigenvectors are complex-valued and the topo-
logical index vanishes since all complex line bundles over
the circle are trivializable. Hence there is no obstruction
to shrink nodal lines to Weyl points

Let us finish by noting that the Weyl points do not
necessarily appear in pairs of opposite chirality. In ma-
terials with nonsymmorphic hexagonal symmetry with
inversion symmetry breaking, the distribution of Weyl
points must obey the Nielsen-Ninomiya theorem and also
must be counted as many times as the multiplicity of
the cell on which they appear in the reciprocal space.
These conditions break the symmetry under which Weyl
points always come in opposite chirality pairs. In this
work, we have shown many instances on which this is the
case. This feature has been also noted in [13] where the

FIG. 5. Nodal line wrapping around Γ-A for the 10th and
11th conduction bands in AgF3. a) Position of the k-points in
fractional reciprocal coordinates whose energy gap is less than
0.00025 eV. The data for this graph comes from WannierTools
[37]. b) Energies and c) energy gap for the two bands localized
at the kz = 0.45 plane. The data for these two graphs comes
directly from DFT calculations. d) yz, xz and xy components
of the Berry curvature (Ω) localized at kz = 0.45.

topological charge of Weyl phonons in nonsymmorphic
trigonal and hexagonal materials have been studied.

CONCLUSIONS

In summary, we used topological corepresentation the-
ory and connectivity group theory to predict Weyl points
in nonsymmorphic hexagonal crystal structures. Weyl
points appear at the high-symmetry lines with band
crossings in accordion-like and hourglass-like dispersion
relations. Both topology band analysis for hexagonal
systems and first-principles calculations for real mate-
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rials were used to corroborate the behaviour of the en-
ergy bands and the location of the Weyl points at the
first Brillouin zone. These calculations show a complete
agreement.

We also analysed the distribution of Weyl points in
AgF3 and AuF3 materials. Taking into account that the
number of times that a Weyl point appears on the Bril-
louin zone is precisely the multiplicity of the cell on which
it appears, together with the Nielsen-Ninomiya theorem,
we find interesting distributions of the Weyl points and
nodal lines in the valence and conduction bands of these
materials. In particular, we show that the Weyl points
in AgF3 and AuF3 materials do not appear in pairs of
opposite chirality, and moreover, we show the existence
of a Weyl nodal line in a pair of bands where the distri-
bution of Weyl points along the high symmetry lines is
of certain kind.

Our results show the simultaneous formation of Weyl
points and nodal-lines in 4d transition-metal trifluorides
such as AgF3 and AuF3. These materials are feasi-
ble Weyl-semimetal candidates with inversion symmetry
breaking, with Weyl points protected by 6-fold screw and
time-reversal symmetry. In addition, AgF3 and AuF3 ex-
hibit a large intrinsic spin Hall effect (SHE) mainly due to
the strong SOC interaction and the particular contribu-
tion of the Weyl points and nodal lines in the reciprocal
space. These findings may help in the quest for the uti-
lization of Weyl points in developing next-generation of
energy-efficient spin-based information technology.
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Appendix A
Topological band analysys for the P6p and P6p22

groups

In this section we study the band connectivity proper-
ties of the symmetry groups P6p and P6p22 in the pres-
ence of spin orbit coupling and the time reversal opera-
tor. In both cases the interesting features of the bands
appear in the high symmetry lines Γ-A, K-H and M-L

and in the high symmetry plane AKH. We find the ir-
reducible corepresentations at the high symmetry points
and we study the behaviour of the eigenfunctions of the
screw rotation operator along the fixed high symmetry
lines. This procedure allows us to obtain the topological
band connectivity for the symmetry group and allows us
in some cases to produce complete combinatorial band
structures that appear in the electronic band structure
of materials with those symmetries.

Symmetry groups

Let us start by recalling the hexagonal materials with
screw rotation symmetries. For this consider the symme-
tries:

Q6,p : (x, y, z) 7→(y,−x+ y, z + p
6
)

Q6,p : (x, y, z) 7→(x− y, x, z + p
6
)

C3 : (x, y, z) 7→ (−x+ y,−x, z), C2 : (x, y, z) 7→ (−x,−y, z)
Mr : (x, y, z) 7→(y, x,−z + 2r) (A.1)

together with the translational symmetries of the axis
Tx̂, Tŷ, Tẑ whenever the canonical vectors on the x̂ and
the ŷ axis define an hexagonal lattice: i.e. x̂ = 〈1, 0, 0〉,
ŷ = 〈1/2,

√
3/2, 0〉 and ẑ = 〈0, 0, 1〉 in rectangular coor-

dinates.
The groups of interest of this work are the ones that

are generated by the translational symmetries and com-
binations of the above-defined symmetries. The space
groups, the generators, and the relations are summarised
the following list (commuting relations are not listed).
We refer to [23, 46–48] and the references therein for a
more detailed explanation on the group theory content
of this section.

P61(#169) :Q6,1 (A.2)

P65(#170) :Q6,1

P62(#171) :Q6,4, C2

P64(#172) :Q6,2, C2

P63(#173) :Q6,3, C3

P6122(#178) :Q6,1,M 1
6
,M 1

6
Q6,1M 1

6
= Q−1

6,1

P6522(#179) :Q6,1,M 1
3
,M 1

3
Q6,1M 1

3
= Q−1

6,1

P6222(#180) :Q6,4, C2,M 1
3
,M 1

3
Q6,4M 1

3
= Q−1

6,4

P6422(#181) :Q6,2, C2,M 1
6
,M 1

6
Q6,2M 1

6
= Q−1

6,2

P6322(#182) :Q6,3, C3,M0,M0Q6,3M0 = Q−1
6,3,

M0C3M0 = C−1
3 .

The induced action on the momentum space
(kx, ky, kz) of all the symmetries Q6,p is simply a six-fold
rotation, and the induced action of all the Mr’s simply
interchanges kx with ky and sends kz to −kz. The time-
reversal operator will be denoted T and it acts on the mo-
mentum coordinates as T(kz, ky, kz) = (−kx,−ky,−kz).
The time-reversal operator acts on electronic states with
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FIG. 6. a) Crystal structure of the hexagonal phase (P6122)
of AgF3 showing the coordinate system used. The operator
Q6,1 rotates 60◦ and shifts by 1/6 on the z-axis. The operator
M 1

6
rotates 180◦ around a line parallel to the xy-plane which

is perpendicular to the line that joins the bottom atoms of
silver. b) Brillouin zone for the hexagonal Bravais lattice.
High-symmetry points (0-cells), high-symmetry lines (1-cells)
and high-symmetry planes (2-cells) are indicated according to
the Bilbao Crystallographic server [49–51]

.

the property that T2 = 1 whenever there is no spin-orbit
coupling (NOSOC) or spinless particles, and T2 = −1
whenever there is spin-orbit coupling (SOC) interaction
or half-integer spin particles. In Figure 6a) the unit cell
for AgF3 with symmetry group P6122 can be seen. The
operator Q6,1 rotates 60◦ and shifts by 1/6 on the z-axis
and the operator M 1

6
rotates 180◦ around a line parallel

to the xy-plane which is perpendicular to the line that
joins the bottom atoms of silver.

The information of the Brillouin zone in momentum
space for all these groups appears encoded in Figure 6b).
Here we have borrowed the notation from the Bilbao
Crystallographic Server [49–51].

Each cell (high-symmetry points, lines and planes) in
the Brillouin zone is fixed by certain operators, and the
group that these operators define is called the isotropy
group of the cell. Some of the topological information of
the crystal may be deduced by restricting the attention
to the operators Q and M . Note that the induced actions
of the rotations C2 and C3 on the Brillouin zone are the

P6p P6p22

Cell P t.Group #cells P t.Group #cells

Γ, A 〈Q,T〉 1 〈Q,M,T〉 1

L,M 〈Q3,T〉 3 〈Q3,MQ,T〉 3

H,K 〈Q2, Q3T〉 2 〈Q2,M,Q3T〉 2

∆(ΓA) 〈Q〉 2 〈Q,MT〉 2

U(ML) 〈Q3〉 6 〈Q3,TQ2M〉 6

P (KH) 〈Q2〉 4 〈Q2,TMQ3 〉 4

R(AL),Σ(ΓM) 〈Q3T〉 6 〈Q3T, QM〉 6

Q(AH),Λ(ΓK) 〈Q3T〉 6 〈Q3T,M〉 6

S(LH), T (MK) 〈Q3T〉 6 〈Q3T, Q3M〉 6

(ALH), (ΓMK) 〈Q3T〉 6 〈Q3T〉 12

(ΓKHA) 〈Id〉 12 〈TMQ3〉 12

(MKHL) 〈Id〉 12 〈MT〉 12

(ALMΓ) 〈Id〉 12 〈TQ2M〉 12

(ALHΓMK) 〈Id〉 12 〈Id〉 24

TABLE III. Table of subgroups of the isotropy groups which
include combinations of the symmetries Q and T for P6p and
Q, M and T for P6p22. For each cell (high-symmetry points,
lines and planes) we list the isotropy group and the number
of times that equivalent cells appear in the three-dimensional
torus (see Figure 6). This last number multiplied by the size
of the isotropy group equals 12 in P6p and 24 in P6p22.

same as the actions of Q3 and Q2 respectively. In the
table that appears in Table III we list the subgroups of
the isotropy groups generated by these elements localised
in specific cells of the Brillouin zone (see Figure 6(b)).

Note that on the 1-cells (high-symmetry lines) Γ-A and
L-M the isotropy groups of the boundary 0-cells (high-
symmetry points) are bigger than the ones of the interior
of the 1-cell. Also, note that the time-reversal operator
fixes the boundary 0-cells and not the interior. This in-
formation, together with the fact that the operator Q
rotates and translates, induces a very interesting topo-
logical structure on the energy bands on these paths. In
[52] the energy bands for the symmetry groups P6p were
studied on the paths Γ-A and L-M. Here we will extend
the study to the groups P6p22 and we will furthermore
analyse the band structures for the K-H line and the
other high symmetry lines. To carry out this analysis we
need to recall some results in the classification of corep-
resentations. We will review the classification scheme of
the corepresentations and we will outline the commuta-
tion properties of the geometrical operators with the time
reversal operator [22].

Corepresentations

A corepresentation is the name that Wigner [22, §26]
assigned when there is a complex representation of a
group on which half of its elements act as unitary opera-
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tors and the other half act as antiunitary operators. Since
the time-reversal operator is antiunitary, the isotropy
groups of the cells may include antiunitary operators and
therefore their representations are corepresentations.

Denote the isotropy groupG and letG0 be its subgroup
of unitary operators. A corepresentation of G restricts to
a complex representation of the group G0 and the classi-
fication of the irreducible corepresentations is encoded in
the properties of this complex representation. For u ∈ G0

denote by Λ(u) the unitary matrix associated to the cho-
sen representation and denote by Λ the representation of
G0. Take any antiunitary operator a0 ∈ G and define a
conjugate complex representation of G0 by the equation

Λ(u) = Λ(a−1
0 ua0)∗. (A.3)

Now, an irreducible corepresentation of G can be one of
three types. The first type contains only one irreducible
representation Λ of the unitary group G0 and the second
type contains twice the irreducible representation Λ ⊕
Λ; in these two cases Λ ∼= Λ. If β is the matrix that
transforms Λ to Λ then the associated matrix M(a2

0) of
a2

0 satisfies the equation ββ∗ = ±M(a2
0). The first type

is fulfilled when ββ∗ = M(a2
0) and the second type when

ββ∗ = −M(a2
0) [22, pp. 343]. The third type is when the

complex representations Λ and Λ of G0 are inequivalent
representations and therefore both must appear in the
corepresentation.

Antiunitary operators

Note that the previous information only depends on
an antiunitary operator with θ2 = ±1. Clearly the time-
reversal operator is one of such. Nevertheless, when the
time-reversal operator (T) does not belong to the isotropy
group of the cell it is important to determine the proper-
ties of the other antiunitary symmetries which do belong
to the isotropy group.

The antiunitary symmetries that we obtain are of the
form F̂T where F̂ is the operator on the Hilbert space
which lifts the geometrical action given by F . In mo-
mentum space the operators F and T commute, but as
operators the commuting relation may be affected by a
phase factor. Let us first study the case when the geo-
metrical action F is the composition TaOR of a rotation
OR by an orthogonal matrix and a translation Ta by the
vector a. Then the operator F̂ equals the composition
T̂aÔR.

The operators that lift rotations ÔR commute with the
time reversal operator

ÔRT = TÔR (A.4)

because there are no non-trivial complex one dimensional
representations of the groups SO(3) and SU(2) [22, Eqn.

26.17]. On the other hand the commutation relation of

T̂a and T can be deduced by writing the translation oper-
ators in terms of Bloch waves. Recall that a Bloch wave
is of the form

ψk(r) = uk(r)e−ik·r (A.5)

where uk(r) remains invariant under translation by ele-
ments of the lattice of the crystal.

Expanding the composition we obtain:

TT̂aψk(r) =T(uk(r + a)e−ik·re−ik·a)

=u−k(r + a)e−ik·re−ik·a, (A.6)

and in the opposite order we obtain:

T̂aTψk(r) = T̂a(u−k(r)e−ik·r)

= u−k(r + a)e−ik·re−ik·a. (A.7)

Hence the operators that lift translations commute with
the time reversal operator

TT̂a = T̂aT. (A.8)

We emphasise here that the vector a does not have to
belong to the lattice of symmetries of the crystal for
the commutativity to hold. Nevertheless whenever a
does belong to the lattice we recover Bloch’s theorem
T̂aψk(r) = e−ik·aψk(r).

Note that the antiunitary operators ÎT and M̂rT both
square to 1 on the cells that are fixed by the geometrical
operators since either Î, M̂r and T square to 1 whenever
there is no SOC, or Î, M̂r and T square to -1 whenever
there is SOC interaction.

More interestingly, on the cells which are fixed by the
operator Q̂3

6,pT we have that

(Q̂3
6,pT)2|kz=0 = 1 (A.9)

and

(Q̂3
6,pT)2|kz=π =

{
1 whenever p = 2, 4

−1 whenever p = 1, 3, 5.
(A.10)

since by Bloch’s theorem we obtain

(Q̂3
6,pT)2 = Q̂6

6,pT2 = e−ipkz (A.11)

and we have specialised to the planes kz = 0 and kz = π.
Here is worth pointing out that the antiunitary operator
Q̂3

6,pT fixes the points K and H and squares to 1 in K
and squares to -1 in H whenever p is odd and squares
to 1 whenever p is even. Since the path, K-H is fixed
by the group generated by Q̂2

6,p we see that Kramer’s
degeneracy rule may not occur in all states in K. This
fact will be exploited when the topological structure of
the bands along the K-H path is analysed.
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Topological band analysis

In this section we will analyse the topological structure
of the energy bands along all the high-symmetry lines
(1-cells). Of particular interest are the high symmetry 1-
cells Γ-A, M-L, and K-H since the screw rotation operator
Q̂6,p endows them with a very interesting form. In [21]
a comprehensive study for the high symmetry lines Γ-A
and M-L for the symmetry groups P6p has been carried
out. Here we expand the analysis to the high symmetry
line K-H for the symmetry groups P6p and we carry out
a complete topological band analysis for the symmetry
groups P6p22. The similarities of the band analysis on
both cases will be highlighted.

We will start with the symmetry groups P6p and af-
terwards we will continue with P6p22. We will take only
p = 1, 2, 3 since the topological structures for p = 4 and
p = 5 are equivalent to the ones of p = 2 and p = 1
respectively.

For each high symmetry line parallel to the six-fold ro-
tation axis and each p we will also reconstruct the com-
binatorial band diagrams using the information found
in the Bilbao Crystallographic Server (BCS) under the
BANDREP menu [46–48]. We will write the compatibil-
ity relations of interest, we will construct the associated
band representation and we will match this band repre-
sentation with the one we have constructed. We refer to
[46–48] for the explanations on the symbology.

Symmetry groups P6p

Topological band analysis on Γ-A

The isotropy groups of the Γ and A points are gener-
ated by the elements Q6,p and T while the isotropy group
of the Γ-A path is generated only by Q6,p. The opera-

tors Q̂6,p and T commute and in the presence of SOC
interaction they satisfy the equations

Q̂6
6,p = −e−ikzp and T2 = −1. (A.12)

The operator Q̂6,p may be diagonalised on this path
with eigenvalues

Q̂6,pψl(k) = eiπ
l
6 e−ikz

p
6ψl(k) (A.13)

with l ∈ {1, 3, 5, 7, 9, 11}. Specialising to the points Γ
and A we obtain the representations

Q̂6,pψl(Γ) = eiπ
l
6ψl(Γ),

Q̂6,pψl(A) = eiπ
l−p
6 ψl(A). (A.14)

These representations may be lifted to corepresentations
of the groups generated by Q̂6,p and T in the following
way. On Γ the pairs {ψ1(Γ), ψ11(Γ)}, {ψ3(Γ), ψ9(Γ)} and

{ψ5(Γ), ψ7(Γ)} define irreducible corepresentations of the
third type since in this case ψl(Γ) and ψl(Γ) = ψ12−l(Γ)
are not isomorphic representations. Therefore on Γ the
states ψl(Γ) and ψ12−l(Γ) have the same energy.

On A the relation on the representations depends on
the value of p. For p = 1 the pairs {ψ3(A), ψ11(A)} and
{ψ5(A), ψ9(A)} define corepresentations of the third type
and both the representations ψ1(A) and ψ7(A) must ap-
pear twice since the operator T forces each of these rep-
resentations to become quaternionic and therefore they
must come in doublets. Hence the corepresentations de-
fined by ψ1(A) ⊕ ψ1(A) and ψ7(A) ⊕ ψ7(A) are of the
second type. In this case, the combinatorial description
of the band appears in figure (A.15) where the bands are
denoted by the eigenfunctions ψj and the values on Γ
and A are the eigenvalues of the eigenfunctions in Γ and
A respectively:

Γ ∆ A

eiπ/6

eiπ11/6 •
ψ1

ψ11

• e
0

e0

eiπ/6

eiπ11/6 •
ψ11

ψ1

• e
iπ10/6

eiπ2/6

eiπ3/6

eiπ9/6 •
ψ9

ψ3

• e
iπ10/6

eiπ2/6

eiπ3/6

eiπ9/6 •
ψ9

ψ3

• e
iπ8/6

eiπ4/6

eiπ5/6

eiπ7/6 •
ψ7

ψ5

• e
iπ8/6

eiπ4/6

eiπ5/6

eiπ7/6 •
ψ7

ψ5

• e
iπ6/6

eiπ6/6

(A.15)

Now, from the Bilbao Crystallographic Server (BCS)
we obtain the minimal set of compatibility relations:

Γ9Γ12(2)→ ∆9(1)⊕∆12(1) 2∆12(2)← A9A9(2)

Γ7Γ8(2)→ ∆7(1)⊕∆8(1) 2∆11(2)← A10A10(2)

Γ10Γ11(2)→ ∆10(1)⊕∆11(1) ∆7(1)⊕∆9(1)← A8A12(2)

∆8(1)⊕∆10(1)← A7A11(2).

These representations can be assembled into diagram
(A.16) agreeing completely with diagram (A.15).

Γ9Γ12(2)•
∆12(1)

∆9(1)

•A9A9(2)

Γ9Γ12(2)•
∆9(1)

∆12(1)

•A8A12(2)

Γ7Γ8(2)•
∆8(1)

∆7(1)

•A8A12(2)

Γ7Γ8(2)•
∆8(1)

∆7(1)

•A7A11(2)

Γ10Γ11(2)•
∆11(1)

∆10(1)

•A7A11(2)

Γ10Γ11(2)•
∆11(1)

∆10(1)

•A10A10(2)

(A.16)

For p = 2 we have that the pairs {ψ1(A), ψ3(A)},
{ψ5(A), ψ11(A)} and {ψ7(A), ψ9(A)} define corepresen-
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tations of the third type and the combinatorial descrip-
tion of the band appears in diagram (A.17):

Γ ∆ A

eiπ/6

eiπ11/6 •
ψ1

ψ11

• e
iπ11/6

eiπ1/6

eiπ3/6

eiπ9/6 •
ψ7

ψ3

• e
iπ9/6

eiπ3/6

eiπ5/6

eiπ7/6 •
ψ7

ψ5

• e
iπ7/6

eiπ5/6

(A.17)

In this case the minimal set of compatibility relations
from BCS is:

Γ7Γ8(2)→ ∆7(1)⊕∆8(1) ∆7(1)⊕∆12(1)← A8A9(2)

Γ9Γ12(2)→ ∆9(1)⊕∆12(1) ∆8(1)⊕∆9(1)← A10A7(2)

Γ10Γ11(2)→ ∆10(1)⊕∆11(1) ∆9(1)⊕∆10(1)← A11A12(2),

which leads to the diagram (A.18) in agreement with
diagram (A.17).

Γ7Γ8(2)•
∆7(1)

∆8(1)

•A8A9(2)

Γ12Γ9(2)•
∆9(1)

∆12(1)

•A10A7(2)

Γ10Γ11(2)•
∆10(1)

∆11(1)

•A11A12(2)

(A.18)

Finally, for p = 3 the pairs {ψ1(A), ψ5(A)} and
{ψ7(A), ψ11(A)} define corepresentations of the third
type, and the representations ψ3(A) and ψ9(A) must ap-
pear twice thus making ψ3(A)⊕ψ3(A) and ψ9(A)⊕ψ9(A)
corepresentations of the second type. The combinatorial
structure appears in diagram (A.19):

Γ ∆ A

eiπ/6

eiπ11/6 •
ψ1

ψ11

• e
iπ10/6

eiπ2/6

eiπ5/6

eiπ7/6 •
ψ7

ψ5

• e
iπ8/6

eiπ4/6

eiπ3/6

eiπ9/6 •
ψ3

ψ9

• e
0

e0

eiπ3/6

eiπ9/6 •
ψ9

ψ3

• e
iπ6/6

eiπ6/6

(A.19)

The minimal set of compatibility relations from BCS for
this case is:

Γ7Γ8(2)→ ∆7(1)⊕∆8(1) ∆8(1)⊕∆8(1)← A7A7(2)

Γ9Γ12(2)→ ∆9(1)⊕∆12(1) ∆7(1)⊕∆7(1)← A8A8(2)

Γ10Γ11(2)→ ∆10(1)⊕∆11(1) ∆10(1)⊕∆12(1)← A11A9(2)

∆11(1)⊕∆9(1)← A10A12(2),

which leads to diagram (A.20) in agreement with dia-

FIG. 7. Electronic band structure in Γ-A for the space groups
a)P61 (In2Se3), b) P64 (KCaNd(PO4)2) and c) P63 (PI3)
space groups. The topological structure of the energy bands
match with the ones presented in diagrams (A.15), (A.17) and
(A.19) respectively.

gram (A.19).

Γ9Γ12(2)•
∆9(1)

∆12(1)

•A10A12(2)

Γ10Γ11(2)•
∆10(1)

∆11(1)

•A11A9(2)

Γ7Γ8(2)•
∆8(1)

∆7(1)

•A7A7(2)

Γ7Γ8(2)•
∆7(1)

∆8(1)

•A8A8(2)

(A.20)

Parallel to the previous combinatorial description we
have carried out computational first-principles calcula-
tions of hexagonal materials with the P61, P62 and P63

space groups in order to check the theoretical predicted
topological band structures. We have plotted the elec-
tronic band structure along the Γ-A path for each space
groups in Figure 7 and we can see that the expected
combinatorial structures are recovered if we compare
them with diagrams (A.15), (A.17) and (A.19). As a
by-product of our calculations we notice that a set of
Weyl points are generated by the accordion-like (7a) and
hourglass-like dispersion figures (7b and c).

Topological band analysis on M-L

The isotropy groups of the points M and L are gener-
ated by Q3

6,p and T while the isotropy group of the path
M-L between the points is only generated by Q3

6,p. Since

(Q̂3
6,p)

2 = −e−ikzp we may diagonalise this operator on
the path M-L having eigenvalues

Q̂3
6,pψ±(k) = ±ie−ikz

p
2ψ±(k). (A.21)
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Specialising on M and L we obtain the representations

Q̂3
6,pψ±(M) = ±iψ±(M),

Q̂3
6,pψ±(L) = ±ie−iπ

p
2ψ±(L). (A.22)

On M the pair {ψ+(M), ψ−(M)} defines a corepresen-
tation of the third type. On L we have that for p = 1, 3
the representations ψ+(L) and ψ−(L) must appear twice
so that ψ+(L)⊕ψ+(L) and ψ−(L)⊕ψ−(L) define repre-
sentations of the second type. The combinatorial struc-
tures from M to L appear in diagram (A.23) for p = 1
and in diagram (A.24) for p = 3:

M U L

i
−i•

ψ+

ψ−

• 1
1

i
−i• ψ−

ψ+

•−1
−1

(A.23)

i
−i•

ψ+

ψ−

•−1
−1

i
−i• ψ−

ψ+

• 1
1

(A.24)

The minimal set of compatibility relations from BCS
for p = 1 and p = 3 is:

M3M4(2)→ U3(1)⊕ U4(1) 2U4(1)← L3L3(2)

2U3(1)← L4L4(2)

leading to diagram (A.25). This is in agreement with
diagrams (A.23) and (A.24).

M3M4(2)•
U4(1)

U3(1)
•L3L3(2)

M3M4(2)•
U3(1)

U4(1)

•L4L4(2)

(A.25)

For p = 2 the pair {ψ+(L), ψ−(L)} defines a corepre-
sentation of the third type. The combinatorial structure
appears in diagram (A.26):

M U L

i
−i•

ψ+

ψ−
•−ii

(A.26)

The minimal set of compatibility relations from BCS for
this case is

M3M4(2)→ U3(1)⊕ U4(1) U3(1)⊕ U4(1)← L3L4(2)

which assemble into diagram (A.27) which is in agree-
ment with diagram (A.26).

M3M4(2)• U3(1)
U4(1) •L3L4(2) (A.27)

Similarly as with the previous analysis for Γ-A, we have
carried out first-principle calculations for hexagonal ma-
terials with the P6p symmetry along the M-L path. The
results for the electronic band structures are presented
in Figure 8. It can be seen that the previously described
combinatorial structure of the energy bands is recovered.

FIG. 8. Electronic band structure from M-L for a) P61

(In2Se3), b) P64 (KCaNd(PO4)2) and c) P63 (PI3) space
groups. The topological structure of the energy bands match
the ones presented in diagrams (A.23), (A.26) and (A.24) re-
spectively.

Topological band analysis on K-H

The isotropy groups of the points K and H are gen-
erated by Q2

6,p and Q3
6,pT while the isotropy group of

the path K-H between the points is only generated by
Q2

6,p. Since (Q̂2
6,p)

3 = −e−ikzp we may diagonalise this
operator on the path K-H having eigenvalues

Q̂2
6,pψl(k) = e−iπ

l
3 e−ikz

p
3ψl(k) (A.28)

with l ∈ {1, 3, 5}. Specialising on K and H we obtain the
representations

Q̂2
6,pψl(K) = e−iπ

l
3ψl(K),

Q̂2
6,pψl(H) = e−iπ

l−p
3 ψl(H). (A.29)

In order to lift these representations to corepresentations
of the isotropy groups of K and H we need to notice that
the antiunitary operator Q3

6,pT has a special feature in
this 1-cell. Since Q3

6,p and T commute we know that

(Q3
6,pT)2 = e−kzp and therefore the antiunitary operator

Q3
6,pT squares to 1 on K for any p and on H whenever p

is even, and squares to -1 on H whenever p is odd; see
equation (A.10).

On K the pair of representations {ψ1(K), ψ5(K)} de-
fine an irreducible corepresentation of the third type
while ψ3(K) defines a corepresentation of the first type.
Note that Kramer’s degeneracy rule does not apply to the
state ψ3(K) since the antiunitary operator Q3

6,pT squares
to 1 on K.

On H the relations of the representations depend on
p. For p = 1 we have that Q3

6,pT squares to -1 and
all the states come in pairs. The pair {ψ3(H), ψ5(H)}
defines a corepresentation of the third type while ψ1(H)⊕
ψ1(H) defines a corepresentation of the second type. The
combinatorial structure appears in diagram (A.30).
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K P H

eiπ3/3 •
ψ3 • e

iπ2/3

eiπ4/3

eiπ5/3

eiπ1/3 •
ψ1

ψ5

• e
0

e0

eiπ1/3

eiπ5/3 •
ψ5

ψ1

• e
iπ4/3

eiπ2/3

eiπ3/3

•
ψ3

(A.30)

The minimal set of compatibility relations from BCS is:

K1(1)→ P1(1) P1(1)⊕ P2(1)← H1H3(2)

K2K3(2)→ P2(1)⊕ P3(1) 2P3(1)← H2H2(2)

which build into diagram (A.31). This agrees with dia-
gram (A.30).

K1(1)•
P1(1)

•H1H3(2)

K2K3(2)•
P2(1)

P2(1)

•H2H2(2)

K2K3(2)•
P2(1)

P3(1)

•H1H3(2)

K1(1)•
P1(1)

(A.31)

For p = 2 the operator Q3
6,pT squares to 1 on H and

therefore we have that {ψ1(H), ψ5(H)} defines a corep-
resentation of the third type and ψ3(H) defines a corep-
resentation of the first type. The combinatorial structure
appears in diagram (A.32):

K P H

eiπ3/3 •
ψ3 • e

iπ1/3

eiπ5/3

eiπ1/3

eiπ5/3 •
ψ5

ψ1

• e
iπ3/3

(A.32)

The minimal set of compatibility relations from BCS
is:

K1(1)→ P1(1) P1(1)⊕ P3(1)← H2H3(2)

K2K3(2)→ P2(1)⊕ P3(1) P1(1)← H1(2)

which build into diagram (A.33). This agrees with dia-
gram (A.32).

K1(1)•
P1(1)

•H2H3(2)

K2K3(2)•
P2(1)

P3(1)

•H1(1)

(A.33)

For p = 3 the operator Q3
6,pT squares to -1 and there-

fore the pair {ψ1(H), ψ5(H)} defines a corepresentation
of the third type while ψ3(H) ⊕ ψ3(H) defines a corep-
resentation of the second type. The combinatorial struc-
ture appears in diagram (A.34).

FIG. 9. Electronic band structure from K-H for a) P61

(In2Se3), b) P64 (KCaNd(PO4)2) and c) P63 (PI3) space
groups. The topological structure of the energy bands match
the ones presented in diagrams (A.30), (A.32) and (A.34) re-
spectively.

K P H

eiπ1/3

eiπ5/3 • ψ1

ψ5
• e

iπ4/3

eiπ2/3

eiπ3/3 • ψ3

eiπ3/3

•
ψ3 • e

0

e0

(A.34)

The minimal set of compatibility relations from BCS
is:

K1(1)→ P1(1) P2(1)⊕ P3(1)← H2H3(2)

K2K3(2)→ P2(1)⊕ P3(1) 2P1(1)← H1H1(2)

which build into diagram (A.35) and agrees with diagram
(A.34).

K2K3(2)• P2(1)
P3(1) •H2H3(2)

K1(1)• P1(1)

K1(1)•
P1(1)

•H1H1(2)

(A.35)

First principle calculations for hexagonal materials along
the K-H path presented in Figure 9 recover the combina-
torial structure of the electronic energy bands.

Topological Band analysis on A-L-H and Γ-M-K planes

The isotropy group of all cells besides the 0-cells on
the A-L-H and Γ-M-K planes is the group of order two
〈Q̂3T〉 generated by the antiunitary operator Q̂3T.

Since Q̂ and T commute we have that

(Q̂3T)2 = Q̂6T2 = e−ipkz (A.36)
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and therefore on the Γ-M-K plane and on the A-L-H
plane whenever p is even we have (Q̂3T)2 = 1 and on the

A-L-H plane whenever p is odd we have (Q̂3T)2 = −1.

The fact that (Q̂3T)2 = 1 posses no restrictions on
the possible representations of the energy bands along
the plane Γ-M-K and on the plane A-L-H whenever p
is even. Nevertheless, whenever p is odd, the fact that
(Q̂3T)2 = −1 on the plane A-L-H implies by Kramer’s
degeneracy rule that all states come in pairs of equal
energy. Therefore all energy bands along the paths A-L,
L-H, and H-A are degenerate with degeneracy 2 whenever
p is odd.

This previous fact can be seen in the energy bands of
the material PI3 (P63, space group #173) in Figure 13
where the energy bands along the paths A-L, L-H and
H-A are degenerate, and on the paths Γ-M, M-K, and
K-Γ where there is no topological constraint.

Symmetry groups P6p22

Whenever we compare the band representations of the
symmetry groups P6p22 and P6p along the high symme-
try lines parallel to the six-fold rotation axis something
quite interesting happens. It turns out that all minimal
band representations along the high symmetry lines Γ-
A, M-L, and K-H for the symmetry groups P6p22 are
isomorphic to the minimal band representations for the
symmetry groups P6p.

This interesting phenomenon is explained as follows.
The irreducible corepresentations for the groups P6p22
along Γ-A, M-L, and K-H restrict to the irreducible
corepresentations for the groups P6p once the symme-
try M is forgotten. This restriction map is one-to-one
and onto. Let us see with more detail this assertion.

The groups P6p22 are obtained by adding to the
groups P6p a 180◦-degrees rotation along a specific axis;
see (A.2). In momentum space, these rotations behave
as the operator

M(kx, ky, kz) = (ky, kx,−kz) (A.37)

and the commuting relation with Q is MQM = Q−1.
Once lifted as operators on the Hilbert space of states we
have the relations:

M̂2 = −1, M̂Q̂M̂−1 = Q̂−1 and (M̂Q̂)2 = −1, (A.38)

which follow from the presence of SOC interaction.

Topological band analysis on Γ-A

On the Γ and A points, if Q has an eigenvector ψ
with eigenvalue λ then M̂ is an eigenvector of Q with
eigenvalue λ−1. Since the order of Q on Γ and A is finite,

then |λ| = 1 and therefore λ−1 = λ. Hence we have that

the irreducible representations of 〈Q̂, M̂〉 are of the form

Q̂ 7→

(
λ 0

0 λ−1

)
, M̂ 7→

(
0 1

−1 0

)
(A.39)

where λ is an appropriate root of unity. These represen-
tations lift to corepresentations to the group 〈Q̂, M̂ ,T〉
by assigning to the operator M̂T, which squares to 1,
the operator of complex conjugation K. Note that this
choice is coherent since

(M̂T)Q̂(M̂T) = Q̂−1 and (M̂T)−1M̂(M̂T) = M̂,
(A.40)

and K flips the eigenvalues of Q̂ and commutes with the
matrix associated to M̂ .

Whenever λ is not a real number, the irreducible corep-
resentations of the group 〈Q̂, M̂ ,T〉 are of the first kind,

all of them are 2-dimensional and the eigenvalues of Q̂
on these corepresentations are the roots of unity λ and λ.
The restriction of these corepresentations to the group
〈Q̂,T〉 become the corepresentations of the third type
that were described in the analysis of the band diagram
that appears in (A.15).

Whenever λ is real the operator Q̂ commutes with
M̂ , therefore the irreducible corepresentations are of the
third type. Restricting these corepresentations to 〈Q̂,T〉
we obtain the representations of the second type that
were described in the analysis of the band diagram that
appears in (A.15).

Now, on the Γ-A path the isotropy group is 〈Q̂, M̂T〉.
Hence the 1-dimensional representations of Q̂ that appear
in equation (A.13) lift to corepresentations of 〈Q̂, M̂T〉
by assigning to M̂T the operator of complex conjugation
K. Therefore on the path Γ-A the description of the
eigenvectors of Q̂ given in equation (A.13) works for the
groups P6p22 as well.

We conclude that the maximal band representations
for the groups P6122, P6222 and P322 along the path Γ-
A are the same as the ones the appear in figures (A.15),
(A.17) and (A.19) respectively.

First-principle calculations for hexagonal materials
with P6p22 space group symmetry presented in Figure 10
recover the combinatorial structure of the bands shown
in (A.15), (A.17) and (A.19). We can notice the for-
mation of Weyl points in the accordion-like (Figure 10a)
and hourglass-like dispersion (Figure 10b and c), which
are protected by 6-fold screw rotation symmetry.

Topological band analysis on M-L

The previous argument applies identically for the path
M-L since we have that the isotropy group of M and L is
〈Q̂3, M̂Q̂,T〉 with (M̂Q̂)2 = −1 and (M̂Q̂)Q̂3(M̂Q̂)−1 =
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FIG. 10. Electronic band structure along Γ-A for a) P6122
(AgF3), b) P6222 (TaGe2) and c) P6322 (Nb3CoS6) space
groups, The topological structure of the energy bands match
with the ones presented in diagrams (A.15), (A.17) and (A.19)
respectively.

Q̂−3. Here the operator M̂Q̂ plays the role that M̂ played
in the Γ and A points.

On the 1-cell M-L the isotropy group is
〈Q̂3,TQ̂2M̂〉 and note that (TQ̂2M̂)2 = 1 and

that (TQ̂2M̂)Q̂3(TQ̂2M̂) = Q̂−3. Therefore the 1-

dimensional representations of Q̂3 defined for the group
P6p on M-L in equation (A.21) lift as one-dimensional

corepresentations of the group 〈Q̂3,TQ̂2M̂〉 whenever

we represent the operator TQ̂2M̂ as the complex
conjugation K.

Hence the maximal band representations for the groups
P6122, P6222 and P322 along the 1-cell M-L are the
same as the ones the appear in figures (A.23), (A.26)
and (A.24) respectively.

Electronic band structure for P6p22 materials along
the M-L path presented in Figure 11 recover the com-
binatorial structures of the energy bands. From Figures
11a and 11c, we can see the formation of Weyl points with
hourglass-like dispersion given by the relations presented
in diagrams(A.23) and (A.24).

Topological band analysis on K-P-H

The isotropy groups for K and H are generated by Q̂2,
M̂ and Q̂3T. On K we know that (Q̂3T)2 = 1 with

(Q̂3T)M̂(Q̂3T) = M̂−1, (Q̂3T)Q̂2(Q̂3T) = Q̂2. (A.41)

Whenever the eigenvalues of Q̂2 in equation (A.28) are

not real, the 2-dimensional representation of 〈Q̂2, Q̂3T〉
lifts to a representation of 〈Q̂2, M̂ , Q̂3T〉 as it was done

before. Whenever the eigenvalue of Q̂ is real, the 1-
dimensional representation of 〈Q̂2, Q̂3T〉 may be lifted to

one in 〈Q̂2, M̂ , Q̂3T〉 by assigning either i or −i as eigen-

value for M̂ and by representing the operator Q̂3T by

FIG. 11. Electronic band structure along M-L for a) P6122
(AgF3), b) P6222 (TaGe2) and c) P6322 (Nb3CoS6) space
groups. The topological structure of the energy bands match
the ones presented in diagrams (A.23), (A.26) and (A.24) re-
spectively.

complex conjugation K. Hence the 1-dimensional rep-
resentation of 〈Q̂2, Q̂3T〉 may be lifted to two different

1-dimensional representations of 〈Q̂2, M̂ , Q̂3T〉.
On the point H whenever p is odd the operator Q̂3T

squares to -1. Therefore all 2-dimensional irreducible
corepresentations of 〈Q̂2, Q̂3T〉 lift to 2-dimensional irre-

ducible corepresentations of the group 〈Q̂2, M̂ , Q̂3T〉 as
it was done above. Whenever p is even the same argu-
ment as in the case of the point K can be carried out
and the 1-dimensional corepresentations that appear lift
to 1-dimensional representations of the group 〈Q̂2, Q̂3T〉.

We conclude that the maximal band representations
for the groups P6122, P6222 and P322 along the 1-cell
K-P-H are the same as the ones they appear in figures
(A.30), (A.32) and (A.34), respectively. Here it is worth
pointing out that the maximal band representation along
the K-H line for the groups P6122 may appear in the
shape of the following diagram:

K P H

eiπ5/3

eiπ1/3 •
ψ5

ψ1

• e
iπ4/3

eiπ2/3

eiπ3/3

•
ψ3

• e
0

e0

eiπ3/3 •
ψ3 • e

iπ2/3

eiπ4/3

eiπ1/3

eiπ5/3 •
ψ5

ψ1

(A.42)

The open ends on the side of the K-point share the eigen-
value of -1 for the operator Q̂2 and have respectively +i
and −i as eigenvalues for M̂ . These points will be joined
when they reach the Γ-point, hence they will tend to ap-
pear close to each other.

First-principle calculations for P6p22 materials confirm
the combinatorial structure of the energy bands along the
K-H line as can be seen in Figure 12.
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FIG. 12. Electronic band structure along K-H for a) P6122
(AgF3), b) P6222 (TaGe2) and c) P6322 (Nb3CoS6) space
groups. The topological structure of the energy bands match
the ones presented in diagrams (A.42), (A.32) and (A.34) re-
spectively.

Topological Band analysis on A-L-H and Γ-M-K planes

The isotropy groups for the 1-cells on these planes
consist of the groups 〈Q̂3T, Q̂M̂〉, 〈Q̂3T, M̂〉 and

〈Q̂3T, Q̂3M̂〉. The unitary operators M̂, Q̂M̂ and Q̂3M̂
square to -1 and their relation to the antiunitary operator
Q̂3T is the following. On the Γ-M-K plane, and on the A-
L-H plane whenever p is even, we know that (Q̂3T)2 = 1
and

(Q̂3T)Q̂nM̂(Q̂3T)−1 = (Q̂nM̂)−1. (A.43)

Therefore the irreducible corepresentations are of the first
type and of dimension 1 in this case.

On the A-L-H plane whenever p is odd the antiuni-
tary operator obeys the equation (Q̂3T)2 = −1 and it

commutes with the operators Q̂nM̂ , i.e.

(Q̂3T)Q̂nM̂(Q̂3T)−1 = Q̂nM̂. (A.44)

Therefore the irreducible corepresentations are of the
third type and of dimension 2, and all energy bands on
the 1-cells A-L, L-H and A-H are degenerate with degen-
eracy of degree 2.

This could be observed on the energy bands of the
materials AgF3 and AuF3 (P6122 #178) in Figure 3
and CoNb3S6 (P6322 #182) in Figure 14 where the en-
ergy bands along the Γ-M, M-K and Γ-K paths are non-
degenerate and along the paths A-L, L-H and A-H are
degenerate of degree 2.

Complete combinatorial band structure

We may assemble the combinatorial diagrams de-
scribed previously thus having a complete topological
band structure. There are several ways to assemble the

diagrams previously described and in what follows we will
present some complete topological models that appear in
the electronic band structure of the materials with the
prescribed symmetry.

For the symmetry groups P61 and P6122 we may as-
semble the topological band structure as it is shown in
the following diagram:

• • • • • • • • • • • • •
• •

• • • • • • • • • • •
• •

• • • • • • • • • • • • •

• • • • • • • • • • • • •
• •

• • • • • • • • • • •
• •

• • • • • • • • • • • • •
A L M Γ A H K Γ M K H L M

(A.45)

This structure could be seen on the twelve bands above
the Fermi level in the material AgF3 and AuF3 as it is
shown in Figure 3. It is important to notice that any
complete combinatorial band diagram for materials with
symmetry groups P61 or P6122 will contain multiple of
12 of bands. This is due to the combinatorial structure
of the energy bands along the Γ-A line as it is described
in diagram (A.15). This fact agrees with the minimal
insulating filling [41, 53] presented in [54, Table III] for
the symmetry groups P61 and P6122 which in both cases
is 12. The complete combinatorial band structure pre-
sented in (A.45) is therefore minimal.

In the case of the symmetry group P63 the combina-
torial structure of the energy bands can be assembled as
described in the following diagram:

• • • • • • • • • • • • •
• •

• • • • • • • • • • • • •

• • • • • • • • • • • • •
• •

• • • • • • • • • • • • •
A L M Γ A H K Γ M K H L M

(A.46)

This combinatorial structure could be seen on the eight
bands below the Fermi level in the material PI3 as it is
shown in Figure 13. At least two features make this com-
binatorial structure very interesting, the superposition of
the hourglass energy bands along the Γ-A path and the
way the energy bands are joined on the K point. These
features cannot be deduced from the corepresentations
of the isotropy groups nor the combinatorial structure
along the edges of the Brillouin zone. It is through ma-
terial or model energetics how the connectivity manifest
in the band structure could be determined.

This is just one of the possible ways that the topologi-
cal energy bands may be assembled and it is important to
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FIG. 13. Electronic band structure for PI3 (P63 space group)
with the combinatorial structure described in diagram (A.46).

FIG. 14. Electronic band structure for CoNb3S6 (P6322 space
group) describing a complete combinatorial structure with 20
energy bands.

notice that it is not minimal. The minimal connectivity
for P63 may look as diagram (A.47) where the amount of
bands agrees with the minimal insulating filling presented
in [54, Table III] for the symmetry group P63 which is 4.

• • • • • • • • • • • • •
• •

• • • • • • • • • • • • •
A L M Γ A H K Γ M K H L M

(A.47)

The topological assembly of the energy bands for the
symmetry group P6322 is more elaborate. It may require
as much as 20 energy bands as it can be seen in the
electronic band structure of CoNb3S6 that appears in
Figure 14. The complete combinatorial diagram will not
be included in this work.

Appendix B

Material realisation

We have used the materials project database [24] and
AFLOW database [25] in order to show examples of ma-
terials for each of the space groups studied in the topo-
logical analysis. We have chosen materials with nonsym-
morphic space groups generated by a 6-fold rotation sym-
metry with p-screw symmetry operation. Moreover, we
have compared these materials with the ones whose sym-
metry groups also include two extra symmetries of 2-fold
rotation axis around of axis which is perpendicular to the
main z-axis (P6p22 space groups).

The materials used as examples for the predic-
tion of the electronic band structure were: In2Se3,
KCaNd(PO4)2, PI3, AgF3, AuF3, TaGe2 and Nb3CoS6.

For P61 (#169) we have used the compound indium
selenide (In2Se3) in the γ-phase, which is called “defect
wurtzite structure” and it is a common crystal structure
for In2Se3 thin-film epitaxial growth. In2Se3 is a direct
semiconductor with a bandgap energy of around 1.0 eV
and potential application in photovoltaic devices [55].

P62 (#171) is not a common space group for the solid-
state phase of normal materials. Instead we have used the
space group P64 (#172) which is band electronic topolog-
ical equivalent to P62. For P64 (#172) we have used the
double phosphate KCaNd(PO4)2 which is isotypic with
the hexagonal phase of LaPO4. KCaNd(PO4)2 is an in-
sulator material with a bandgap energy of ∼4.5eV which
could be used in optoelectronic devices and white-light-
emitting diodes when it is doped with transition-metal
or rare-earth elements [56].

For the P63 (#173) space group we have used the phos-
phorus triiodide PI3 which is an indirect semiconductor
material (∼2.0 eV) with valence band maximum at the
K-point. The electronic band structure computed for
PI3 in Figure 13 shows the correspondence with the pre-
dicted group theory analysis presented in diagram (A.46).
We can notice the formation of 2, 2 and 3 Weyl points
between the k-lines L-M, Γ-A, H-K respectively. These
Weyl points are symmetry protected by the 6-fold screw
symmetry. We also notice a special energy crossing on
the K-point which is characteristic of 6-fold symmetry
systems like graphene and silicene. This crossing is pre-
dicted by the group theory analysis in diagram (A.46) as
one of the possible ways the topological bands assemble.

The space group P6122 (#178) is a common space
group for triflouride materials. Two of the materials are
AgF3 and AuF3 which have an interesting band structure
topology as it is shown in Figure 3. It is worth noting
that in this case a complete topological band structure
was determined in diagram (A.45) from the band anal-
ysis carried out in the previous section. We can note
an accordion-like dispersion in the Γ-A path (see Figure
10), which produces at least five crossings along this k-
path four of them Weyl points. The evolution of these
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12 bands along the high symmetry lines produces 3 and
4 symmetry protected Weyl points at the L-M and K-H
paths respectively (see Figures 11 and 12).

For the case of P6222 (#180) space group, we have
studied the tantalum germanide (TaGe2) material which
is an intermetallic compound with 12 symmetry opera-
tions and a band structure with Weyl points as presented
in Figures 10, 11 and 12. The electronic band structure
in Figure 10 shows hourglass-like Weyl points in the Γ-A
path which are protected by the nonsymmorphic screw
symmetry.

Finally, we have used as an example for the P6322
(#182) space group the material Nb3CoS6, which is a
quasi-two-dimensional material with Co atoms inserted
between Nb-S layers. It makes a sandwich structure in
the sequence of Co-SNbS-Co and its unit cell is one of
an hexagonal lattice. Moreover, the Co atoms are lo-
calised in a chiral position on the z-axis thus producing a
nonsymmorphic screw symmetry (C2 rotation plus Ta/2
partial translation) for this compound. The electronic
band crossings for CoNb3S6 including SOC interaction
are shown in Figure 14 where we can see the formation
of hourglass-like dispersion on the Γ-A and L-M paths at
different energies. In particular it is noted that the ma-
terial is a metal with hourglass dispersion at the Fermi
energy. These particular energy crossings are protected
by the time-reversal and screw symmetry of the CoNb3S6

material. We can also see the formation of nodal lines
around the Γ-point on the kz=0 plane, which is due to
the band crossings at the Fermi level on the K-Γ-M path
(see Figure 14).

For the six materials described above we have carried
out first-principles calculations and we have reproduced
the predicted crossing points on the energy bands accord-
ing to each space group symmetry.

Computational Method

In order to study the electronic band structure for
the P6p and P6322 hexagonal materials, we carried out
first-principles calculations within the density-functional
theory (DFT) framework. Exchange and correlation ef-
fects were treated with generalized gradient approxima-
tion (GGA) [57] as implemented in the Vienna ab-initio
simulation package (VASP) [58]. The calculations of
spin-orbit coupling (SOC) interaction were included self-
consistently at the DFT level. Electron wave function
was expanded in plane waves up to cut-off energy of 500
eV and a grid of 0.02 (2π/Å) k-space resolution has been
used to sample the first Brillouin zone (FBZ). For the
hexagonal materials, we have used FINDSYM code [59]
to determine the correct crystal symmetry operations.
As it is shown in Figures 7, 8, 9, 10, 11, 12, 3, 13 and
14, we have found full agreement between the different
theoretical approaches to the band structure calculation.

Moreover, we have studied physics beyond the topologi-
cal band crossings using the Wannier representation gen-
erated by the Wannier interpolation technique [60]. We
have used the Wanniertools package [37] in order to cal-
culate the position and chirality (by using the Wilson-
loop method) of possible Weyl points for the P6122 space
group. We also calculated the Berry curvature, the k-
resolved (2403 k-mesh) anomalous Hall conductivity [37]
and the spin Hall conductivity [61] in order to clarify
the contribution of selected Weyl points in the magneto-
transport properties of these hexagonal materials.
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[61] Železný, J. https://bitbucket.org/zeleznyj/

wannier-linear-response/wiki/Home.
[62] Milnor, J. W. & Stasheff, J. D. Characteristic classes

(Princeton University Press, Princeton, N. J.; University
of Tokyo Press, Tokyo, 1974). Annals of Mathematics
Studies, No. 76.

https://link.aps.org/doi/10.1103/PhysRevB.94.155108
https://link.aps.org/doi/10.1103/PhysRevB.94.155108
https://link.aps.org/doi/10.1103/PhysRevLett.115.036806
https://link.aps.org/doi/10.1103/PhysRevLett.115.036806
https://link.aps.org/doi/10.1103/PhysRevLett.115.036807
https://link.aps.org/doi/10.1103/PhysRevLett.115.036807
https://link.aps.org/doi/10.1103/PhysRevE.96.023310
https://link.aps.org/doi/10.1103/PhysRevE.96.023310
www.scopus.com
https://link.aps.org/doi/10.1103/PhysRevMaterials.2.074201
https://link.aps.org/doi/10.1103/PhysRevMaterials.2.074201
https://www.pnas.org/content/112/47/14551
https://link.aps.org/doi/10.1103/PhysRevLett.117.096404
https://link.aps.org/doi/10.1103/PhysRevLett.117.096404
https://doi.org/10.1088
http://dx.doi.org/10.1039/C5RA25124A
http://dx.doi.org/10.1039/C5RA25124A
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
https://link.aps.org/doi/10.1103/PhysRevB.54.11169
https://link.aps.org/doi/10.1103/PhysRevB.54.11169
https://onlinelibrary.wiley.com/doi/abs/10.1107/S0021889804031528
https://onlinelibrary.wiley.com/doi/abs/10.1107/S0021889804031528
http://www.sciencedirect.com/science/article/pii/S001046551400157X
http://www.sciencedirect.com/science/article/pii/S001046551400157X
https://bitbucket.org/zeleznyj/wannier-linear-response/wiki/Home
https://bitbucket.org/zeleznyj/wannier-linear-response/wiki/Home

	Topological electronic structure and Weyl points in nonsymmorphic hexagonal materials
	Abstract
	 Introduction
	 Electronic structure of AgF3 and AuF3 (P6122)
	 Weyl points on valence bands of AgF3
	 Transport properties of AgF3
	 Weyl points on valence bands of AuF3
	 Transport properties of AuF3

	 Weyl points on conduction bands of AgF3 and AuF3
	 Conclusions
	 Acknowledgements
	 Appendix A Topological band analysys for the P6p and P6p22 groups
	 Symmetry groups
	 Corepresentations
	 Antiunitary operators

	 Topological band analysis
	 Symmetry groups P6p
	 Topological band analysis on -A
	 Topological band analysis on M-L
	 Topological band analysis on K-H
	 Topological Band analysis on A-L-H and -M-K planes

	 Symmetry groups P6p22
	 Topological band analysis on -A
	 Topological band analysis on M-L
	 Topological band analysis on K-P-H
	 Topological Band analysis on A-L-H and -M-K planes

	 Complete combinatorial band structure

	 Appendix B Material realisation
	 Computational Method

	 References


