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Table S1: Computed relative energies of the low-lying triplet states of four-coordinated 

iron-porphyrins in the literature (in cm-1):  

Method ΔA-E = E(3Eg(A)) – E(3A2g) 

Configuration Interaction -37911 

Stochastic CASSCF -1752 

MRPT -18473 

CASSCF/CASPT2 1454 

CASSCF/CASPT2 8045 

CCSD(T) 5956 

DLPNO-CCSD(T) 6897 
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Figure S1: Active space CAS(8,11) for 1 (ruffled conformation). The active space is 

composed of the valence d-shell (3d), the double d-shell (4d), plus the σ-bonding 

counterpart of the 3dx2-y2 orbital (1σ). The same active space was used for 1 in saddle 

conformation and [Fe(TTP)] in planar conformation. For clarity, hydrogens are omitted. 
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Carbons are displayed in beige, nitrogens in blue and iron in orange. Negative and 

positive parts of the orbitals are represented as yellow and red isosurfaces.  

 

 

Electronic Spin Hamiltonian  

The electronic spin Hamiltonian is here expressed in the basis of the three 𝑆 ̃=1 pseudospin 

eigenstates ( 𝑀𝑆̃ = 0, ±1 ). It includes the zero-field splitting ( 𝐻ZFS ) and Zeeman effect 

(𝐻Zee,SH), described as follows: 

𝐻̂ = 𝐻ZFS + 𝐻Zee,SH  = 𝑆⃗̃ ∙ 𝐷̿ ∙ 𝑆⃗̃ + 𝜇B𝐵ext
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∙ 𝑔 ∙ 𝑆⃗̃               (S1) 

Where 𝑆⃗̃ is the pseudospin operator, 𝐷̿ the zero-field splitting tensor, 𝜇𝐵 the Bohr magneton, 

𝐵ext
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is the applied field and g the g-matrix. 𝐷̿ and g have the same principal axis system dictated 

by the high symmetry of the molecule. The z-component is along the C4 rotation axis, and the 

x and y components lie anywhere on the porphyrin plane. This enables the use of a unique set 

of x,y,z axes in which both g and 𝐷̿ are diagonal. Were this not the case, additional parameters 

corresponding to the rotation transformation from one principal coordinate system to another 

would be required. In the main text, the components of the D tensor are expressed as: 

𝐷 =
3

2
𝐷ZZ                   (S1a) 

𝐸 =
𝐷XX−𝐷yy

2
                   (S1b) 

The components of the g-matrix are re-expressed into 𝑔⊥ = 𝑔𝑥𝑥 = 𝑔𝑦𝑦 as constrained by the 

molecular symmetry and 𝑔∥ = 𝑔𝑧𝑧. The spin Hamiltonian is re-expressed as: 

𝐻̂ = 𝐷 [𝑆̂̃𝑧
2 −

1

3
𝑆̃(𝑆̃ + 1) +

𝐸

𝐷
(𝑆̂̃𝑥

2 − 𝑆̃𝑦
2)] + 𝜇B𝐵ext

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∙ 𝑔̿ ∙ 𝑆̃             (S1c) 

Where 𝑆̃ is the pseudospin quantum number, 𝑆x̃, 𝑆ỹ and 𝑆z̃ are the components of the 

pseudospin operator.  
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Figure S2: Effective magnetic moment of a powder sample of 1 recorded with a field of 1 T, 

and temperature dependence of the magnetization with applied fields of 1 (red), 4 (magenta) 

and 7 T (blue) (inset). The solid lines represent the best fits obtained by the simulation using 

the spin Hamiltonian (parameters gxx=gyy= 3.07, gzz=1.7, D=94 cm-1, 
𝐸

𝐷
 = 0, χTIP = 1000 × 10–6 

emu). The simulation takes into account 5.5% S = 5/2 impurity, instead of the 7.9% S=2 

impurities in Figure 1 of the main text.  
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THz-EPR  

Experiments were performed at the THz beam line of the synchrotron BESSY II, Helmholtz-

Zentrum Berlin. The experiment is described elsewhere in great detail. 8  12 mg of 

polycrystalline powder of 1 was mixed with PE powder, grinded and pressed into a TPX sample 

holder. An Hg arc lamp was used for irradiation. Inside the FT-IR spectrometer (IFS 125, 

Bruker) the radiation was divided by a 6 µm Mylar multilayer beam splitter. Mirror movements 

corresponded to a scanner velocity of 40 kHz and an experimental resolution of 1 cm-1. The 

sample was placed in the VTI of an Oxford Optistat magnet with outer TPX and inner diamond 

windows and kept at a temperature of 5 K. Radiation passed through the magnet (and the 

sample) in Voigt configuration and was detected with an Infrared 4.2K Si bolometer. At each 

field, 256 scans were acquired. Spectra are shown as Magnetic field division spectra (MDS), 

where the spectrum for the field B0 is obtained by dividing a spectrum measured at B0 + 1 T by 

a spectrum measured at B0 (further details on how to analyze MDS can be found in ref. 8). 

Simulations were performed with EasySpin9 and its extensions for frequency-domain EPR.10 

The simulation used the same spin-Hamiltonian defined in Eq. S1c. 
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Figure S3: THz-EPR spectra of 1. Data (black line) is rescaled and offset according to the 

applied magnetic field B0. Simulation with the parameters shown on top of each plot are shown 
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in red. Gray lines in the back indicate calculated transition energies for a magnetic field applied 

along the x- (dashed), y- (dotted), and z-axis (solid). 
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Nuclear spin Hamiltonian 

As described in the Main Text, the nuclear spin Hamiltonian is constituted of the electric 

quadrupole interactions ( H𝛿 + 𝐻Q ), the nuclear Zeeman effect ( 𝐻Z ), and the magnetic 

hyperfine coupling effect (𝐻HFC,SH). 

𝐻Nuc,SH = H𝛿 + 𝐻Q + 𝐻Z + 𝐻HFC,SH                (S2) 

HNuc,SH = H𝛿 +
𝑒𝑄

2𝐼(2𝐼−1)
(𝑉𝑧𝑧𝐼̂𝑧

2
+ 𝑉𝑥𝑥𝐼̂𝑥

2
+ 𝑉𝑦𝑦𝐼̂𝑦

2
) − 𝑔

𝑁
𝛽

𝑁
𝐼 ∙ 𝐵𝑒𝑥𝑡

⃗⃗ ⃗⃗⃗⃗ ⃗⃗ + 𝐼 ∙ 𝐴 ∙ 𝑆⃗⃗̃         (S2a) 

Where 𝑒 is the elementary charge of the proton, 𝑄 the quadrupole moment of the nucleus 

(taken as 0.16 Barns), I the nuclear spin quantum number, 𝐼𝛼
 
 the α-component of the nuclear 

spin angular momentum operator, 𝑉𝛼𝛼 the α-component of the electric field gradient tensor (the 

α component corresponds to x,y or z component), 𝑔N the nuclear g-factor of the 57Fe nucleus 

(0.181 for the ground state I = 1/2, -0.103 for the excited state I = 3/2), 𝛽N the nuclear magneton, 

and 𝐴 the hyperfine coupling matrix. Due to the high symmetry of the molecule, the electric-

field gradient tensor and the hyperfine coupling matrices have the same principal axis system 

as the g-matrix and the D-tensor. As stated above, this enables the description of one unique set 

of x,y,z axes in which all four matrices are diagonal, thus reducing the required number of 

fitting parameters (vide supra).  

In the main text, the Vαα are expressed indirectly via the quadrupole splitting and η 

parameters 

𝛥𝐸𝑄 =
𝑒𝑄𝑉𝑧𝑧

2
                   (S2b) 

𝜂 =
𝑉𝑥𝑥−𝑉𝑦𝑦

𝑉𝑧𝑧
= 0                    (S2c) 

 The hyperfine coupling operator is calculated under the approximation that the nuclear 

and electronic spins are decoupled. Under this approximation, the electronic pseudospin may 

be replaced by its expectation value. For variable temperature measurements, the fast electron 

spin relaxation regime is used. In this regime, the electron spin expectation value is replaced by 

the Boltzmann average of the spin expectation values for each thermally populated magnetic 

sublevel. In other words, the hyperfine coupling Hamiltonian becomes: 

𝐻𝐻𝐹𝐶 = 𝐼 ∙ 𝐴̿ ∙
∑ ⟨𝑆⟩

𝑖
𝑒

−
𝐸𝑖

𝑘𝐵𝑇
𝑖

∑ 𝑒
−

𝐸𝑖
𝑘𝐵𝑇

𝑖

                  (S3) 

Where i runs over all populated magnetic sublevels ⟨𝑆⟩
𝑖
 is the expectation value of the 

pseudospin operator vector for the magnetic sublevel i, Ei the energy of the magnetic sublevels 

i, 𝑘B the Boltzmann constant, and T the temperature.  
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Figure S4: Fit of the 57Fe Mössbauer spectrum at 80 K under no applied field. The dots 

correspond to the experimental measurements and the red line corresponds to the fit, using the 

following phenomenological parameters: |𝛥𝐸𝑄| = 1.31 mm/s and 𝛿 = +0.56 mm/s. 
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State compositions of the Lz eigenstates and symmetry-adapted relativistic states 

in the D4 point group (after in-state SOC) 

Lz eigenstates: 

| 𝐸 
3

g, MS, +⟩ =
1

√2
 ( | 𝐸 

3
g(y), MS⟩ − i | 𝐸 

3
g(x), MS⟩)              (S4a) 

| 𝐸 
3

g, MS, −⟩ =
1

√2
 ( | 𝐸 

3
g(y), MS⟩ + i | 𝐸 

3
g(x), MS⟩)              (S4b) 

Symmetry-adapted states: 

| 𝐸 
3

g, 𝐴2⟩ =
1

√2
 ( | 𝐸 

3
g, +1, −⟩ +  | 𝐸 

3
g, −1, +⟩ )              (S4c) 

| 𝐸 
3

g, 𝐴1⟩ =
1

√2
 ( | 𝐸 

3
g, +1, −⟩ −  | 𝐸 

3
g, −1, +⟩ )              (S4d) 

| 𝐸 
3

g, 𝐸±⟩ =  ∓| 𝐸 
3

g, 0, ±⟩                 (S4e) 

| 𝐸 
3

g, 𝐵2⟩ =
1

√2
 ( | 𝐸 

3
g, +1, +⟩ +  | 𝐸 

3
g, −1, −⟩ )              (S4f) 

| 𝐸 
3

g, 𝐵1⟩ =
1

√2
 ( | 𝐸 

3
g, +1, +⟩  −  | 𝐸 

3
g, −1, −⟩ )              (S4g) 
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Inclusion of the quintet state into the model 

 

The model has been extended to include the 5 magnetic sublevels of the 5A1g orbital state with 

electronic configuration (dz2)
2(dxy)

1(dx2-y2)
1(dxz)

1(dyz)
1 as low as 800 cm-1 above the 3A2g orbital 

state. This number corresponds to the energy difference between those states calculated via 

CASSCF/NEVPT2 for the ruffled core-conformation of 1. The representation of a S = 2 spin 

function in the D4 group is given according to the following rule: 

χS(ϕ) =
sin(S+

1

2
)ϕ

sin(
1

2
ϕ)

                   (S5a) 

Where χS=2 is the trace of the rotation matrix by an angle ϕ, and S the spin quantum number 

(here S=2). The representation of the S = 2 spin function may thus be decomposed into the 

following sum of irreducible representations: 

ΓS=2 = A1 + B1 + B2 + E                 (S5b) 

The configuration 5A1g (in the D4h point group) is fully symmetric. Hence it is A1 in the D4 

double group. Therefore, the magnetic sublevels of the 5A1g wavefunction are decomposed into 

the following representation: 

Γ = ΓS=2⨂A1 =  A1 + B1 + B2 + E                (S5c) 

The coupling of the symmetry-adapted states is shown in Figure S5. 

 The effect of including the 5A1g state in the model is marginal (Figure S5). Despite 

slightly reducing the magnetic susceptibility at low temperatures, inclusion of the quintet state 

does not have a significant effect on the magnetic susceptibility at high temperature.  

The low-temperature changes may all be explained by the increase of zero-field splitting 

axial parameter (114 cm-1) compared to the value found without including the 5A1g (94 cm-1). 

The increase of the zero-field splitting axial parameter reduces the Zeeman couplings between 

ground and excited magnetic sublevels, hereby reducing the magnetic moment of the ground 

sublevel in the xy plane. Since the ground magnetic sublevel is the only significantly populated 

sublevel at low temperature, this effect entirely explains the slight decrease of low-temperature 

magnetic susceptibility arising from inclusion of the 5A1g into the model. 

On the other hand, the high-temperature susceptibility is only marginally affected by 

the inclusion of the 5A1g state, because the average g-value remains almost identical. Using 

Chibotaru’s method (see below), we indeed found that the average g-value is 2.72, i.e. only 

0.01 higher than the average value calculated without including the quintet state. The 

transverese g-value (g⟂) is 3.06, which is almost identical to that found without inclusion of the 

5A1g state (3.05). In details, however, the orbital contribution (gL,⟂) decreases significantly 
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compared to the value calculated without including the 5A1g, but this downshift is compensated 

by a similar upshift of the spin contribution (gS,⟂). Similarly, the longitudinal g-value (g∥) is 

almost unaffected by the inclusion of the quintet state (1.87 and 1.85 with and without inclusion 

of 5A1g, respectively). However, behind this apparent constancy hides a slight upshift of the 

spin contribution (gS, ∥) compensated by a slight downshift of the orbital contribution (gL, ∥) 

(Table S2).  

 

Table S2: Effect of the inclusion of the quintet state 5A1g in the effective Hamiltonian on the 

g-values of 1. gL and gS correspond to the orbital and spin components of the g-values, 

respectively.  

 g⟂ 

(gL,⟂/ gS,⟂) 

g∥ 

(gL, ∥/ gS, ∥) 

gav 

Not including 5A1g  3.05 

(1.14/1.91) 

1.85 

(0.08/1.77) 

2.71 

Including 5A1g  3.06 

(0.95/2.11) 

1.87 

(0.06/1.81) 

2.72 

 

In general, including the quintet state increases the gS values and decreases the gL values. 

The former phenomenon is readily explained by the mixing of S = 2 character into the S = 1 

magnetic triplet. The latter phenomenon is more indirect. The mixing of the quintet state into 

the magnetic triplet decreases the 3A2g and 3Eθ
g components that are responsible for the large 

orbital angular momentum in the system. On the other hand, there is no first-order orbital 

momentum in 5A1g. Likewise, there is no orbital Zeeman coupling element between the 5A1g 

and 3Eθ
g or 3A2g to induce additional orbital angular momentum under an applied field. Hence 

the mixing of the 5A1g state into the ground triplet only decrease its total orbital angular 

momentum. These findings thus showed that the inclusion of 5A1g have negligible effect on the 

overall magnetic properties of the system. Perhaps more importantly, it should be emphasized 

that the inclusion of the 5A1g state cannot explain the large orbital angular momentum of this 

system, which constitutes one of its main features. Hence, we do not consider it further.  
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Figure S5: (Top) effect of the inclusion in the effective Hamiltonian of the 5A1g state 800 cm-

1 above the 3A2g state on the effective magnetic moment. The red line and the black dashed line 

correspond to the effective magnetic moment of 1 with and without the 5A1g state included in 

the model, respectively. (Bottom) energy diagram showing the magnetic sublevels resulting 

from the SOC between (1) the magnetic sublevels arising from the SOC between the 3A2g and 

3Eθ
g states (left-hand side) and the magnetic sublevels of the 5A1g orbital state (right-hand side). 

The color code represents the representation of the sublevels in the D4 point group. E states are 

shown in green, B1 and B2 states are shown in blue, and the A1 state are shown in red. The A2 

state is shown in orange. 
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Figure S6: magnetic anisotropy of 1, taken as χ⊥ − χ∥ , calculated using the effective 

Hamiltonian with the following parameters (see Main text): Δ𝐴−𝐸 = 950 cm-1, 𝜃 = −0.13𝜋. 

The solid red line represents the fit, and the dots represent the experimental measurements as 

taken from ref. 11. 
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Extraction of the spin Hamiltonian parameters 

 

The magnetic sublevels |𝜙+⟩, |𝜙−⟩ and |𝜙0⟩ constitute the space in which the electronic 

Zeeman and hyperfine coupling operators are expressed (if second-order Zeeman effects with 

higher-lying states are neglected, see main text). In parallel, the fictitious pseudo-spin 

eigenstates |𝑆̃ = 1, 𝑀𝑆̃ = +1⟩, |𝑆̃ = 1, 𝑀𝑆̃ = −1⟩ and |𝑆̃ = 1, 𝑀𝑆̃ = 0⟩ constitute the space in 

which the spin Hamiltonian Zeeman and hyperfine coupling operators are expressed. The 

extraction method consists in finding the spin Hamiltonian parameters such as the matrix 

elements of the electronic operators are one-by-one equivalent to their spin Hamiltonian 

counterpart. 

We will not derive a general method to extract spin Hamiltonian parameters, which has 

been published by Chibotaru and coworkers.12 Instead, we attach to obtain simple expressions 

for the g- and A-values in this specific system. Because of the high C4 symmetry axis of the 

system, the g- and A- matrices must be already diagonal in the chosen molecular framework 

(i.e. the xy plane corresponds to the plane of the porphyrin ligand), and the x- and y- components 

in both these matrices must be identical. This considerably simplify our task as the total number 

of independent spin Hamiltonian parameters must be equal to 4 (𝑔⊥, 𝐴⊥ , 𝑔∥, and 𝐴∥). The 

magnetic moment parameters (𝑔⊥ and 𝑔∥) will be extracted first. A similar demonstration may 

then be done to extract the hyperfine field parameters (𝐴⊥and 𝐴∥).  

First, using time-reversal symmetry arguments, we identify the independent matrix 

elements required to describe the effective Hamiltonian magnetic moment matrices. Second, 

we identify the independent matrix elements required in order to describe the spin Hamiltonian 

magnetic moment matrices. Then, we establish all the independent relationships between spin 

Hamiltonian and effective Hamiltonian matrix elements that need to be fulfilled in order to have 

a one-by-one equivalency between both matrices. Finally, we extract the spin Hamiltonian 

parameters by using the established relationship as a requirement. 

In the basis of |𝜙+⟩, |𝜙−⟩ and |𝜙0⟩, the 𝜇𝑥 , 𝜇𝑦  and 𝜇𝑧  components of the magnetic 

moment vector are each described by a 3x3 Hermitian matrix. Each of these matrices has 6 a 

priori independent matrix elements. Three of these six matrix elements are off-diagonal and 

need to be described with two independent parameters which potentially have a real and 

imaginary part. This adds up to a total of 18 matrix elements and 27 parameters to describe the 

three magnetic moment matrices. Because |𝜙+⟩ , |𝜙−⟩  have opposite first-order angular 

momenta and |𝜙0⟩ has no first-order angular momentum, we can make use of time-reversal 

symmetry to establish relationships between matrix elements and hence reduce the number of 
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independent parameters necessary to describe the magnetic moment matrices. Indeed, let there 

be a state with a first-order angular momentum, for which: 

𝜃|𝜙+
𝑇𝑅⟩ = ⟨𝜙−

𝑇𝑅|                  (S6a) 

Where 𝜃  is the time-reversal operator. And let there be a state without first-order angular 

momentum, 

𝜃|𝜙0
𝑇𝑅⟩ = ⟨𝜙0

𝑇𝑅|                  (S6b) 

Since the states |𝜙+⟩, |𝜙−⟩ and |𝜙0⟩ have undefined phase factors, they relate to the states 

|𝜙±
𝑇𝑅⟩, |𝜙0

𝑇𝑅⟩ by the following relationship 

|𝜙0⟩ = 𝑒𝑖𝛩0|𝜙0
𝑇𝑅⟩                   (S6c) 

|𝜙±⟩ = 𝑒𝑖𝛩±|𝜙±
𝑇𝑅⟩                  (S6d) 

Where 𝛩0, 𝛩± are the respective phase angles. 

and because the magnetic moment operator is time-odd, we have the following equalities: 

⟨𝜙+|𝜇𝛼|𝜙+⟩ = ⟨𝜃𝜙−|𝜇𝛼|𝜃𝜙−⟩ = ⟨𝜙−|𝜃†𝜇𝛼𝜃|𝜙−⟩ = −⟨𝜙−|𝜇𝛼|𝜙−⟩            (S7a) 

⟨𝜙0|𝜇𝛼|𝜙0⟩ = ⟨𝜃𝜙0|𝜇𝛼|𝜃𝜙0⟩ = −⟨𝜙0|𝜇𝛼|𝜙0⟩ = 0              (S7b) 

⟨𝜙−|𝜇𝛼|𝜙+⟩ = 𝑒𝑖(𝛩+−𝛩−)⟨𝜙−
𝑇𝑅|𝜇𝛼|𝜙+

𝑇𝑅⟩ = 𝑒𝑖(𝛩+−𝛩−)⟨𝜃𝜙−
𝑇𝑅|𝜇𝛼|𝜃𝜙+

𝑇𝑅⟩ 

= −𝑒𝑖(𝛩+−𝛩−)⟨𝜙−
𝑇𝑅|𝜇𝛼|𝜙+

𝑇𝑅⟩ = −⟨𝜙−|𝜇𝛼⃗⃗ ⃗⃗⃗|𝜙+⟩              (S7c) 

Obviously, relationship (S7c) becomes: 

⟨𝜙−|𝜇𝛼⃗⃗ ⃗⃗⃗|𝜙+⟩ = 0                  (S7d) 

Finally,  

⟨𝜙0|𝜇𝛼⃗⃗ ⃗⃗⃗|𝜙+⟩ = 𝑒𝑖(𝛩+−𝛩0)⟨𝜙0
𝑇𝑅|𝜇𝛼⃗⃗ ⃗⃗⃗|𝜙+

𝑇𝑅⟩ = 𝑒𝑖(𝛩+−𝛩0)⟨𝜙−
𝑇𝑅|𝜃†𝜇𝛼⃗⃗ ⃗⃗⃗𝜃|𝜙0

𝑇𝑅⟩ 

= −𝑒𝑖(𝛩+ + 𝛩−−2𝛩0)⟨𝜙−|𝜇𝛼⃗⃗ ⃗⃗⃗|𝜙0⟩                (S7e) 

Similarly, the phase factor =  𝑒𝑖(𝛩+ + 𝛩−−2𝛩0) is undefined and may be taken so that: 

 ⟨𝜙0|𝜇𝛼⃗⃗ ⃗⃗⃗|𝜙+⟩ = ⟨𝜙−|𝜇𝛼⃗⃗ ⃗⃗⃗|𝜙0⟩                 (S7f) 

It can be verified that S7f is respected for the chosen phase factors in the description of |𝜙0⟩, 

|𝜙±⟩  (Eq. 8a and 8b in the Main Text). Taking those relationships into accounts greatly 

decreases the number of independent matrix elements down to one diagonal and one off-

diagonal for each matrix, i.e. a total of 6 matrix elements, i.e. ⟨𝜙+|𝜇𝑥|𝜙+⟩ ,  ⟨𝜙+|𝜇𝑦|𝜙+⟩ , 

⟨𝜙+|𝜇𝑧|𝜙+⟩, ⟨𝜙0|𝜇𝑥|𝜙+⟩, ⟨𝜙0|𝜇𝑦|𝜙+⟩, ⟨𝜙0|𝜇𝑦|𝜙+⟩ (9 parameters).  

It is trivial to show with ladder operator techniques that the spin Hamiltonian magnetic moment 

matrices in the basis |𝑆̃ = 1, 𝑀𝑆̃⟩  follow the exact same constraints. Specifically, the 

pseudospin eigenstates |𝑆̃, 𝑀𝑆̃⟩ have the same time-reversal properties as the |𝜙+⟩, |𝜙−⟩ and 

|𝜙0⟩ states, i.e.  
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⟨S̃ = 1, M𝑆̃ = +1|𝜇𝛼
𝑆𝐻|S̃ = 1, M𝑆̃ = +1⟩ = −⟨S̃ = 1, M𝑆̃ = −1|𝜇𝛼

𝑆𝐻|S̃ = 1, M𝑆̃ = −1⟩ 

                    (S8a) 

⟨S̃ = 1, M𝑆̃ = 0|𝜇𝛼
𝑆𝐻|S̃ = 1, M𝑆̃ = 0⟩ = 0               (S8b) 

⟨S̃ = 1, M𝑆̃ = +1|𝜇𝛼
𝑆𝐻|S̃ = 1, M𝑆̃ = −1⟩ = 0               (S8c) 

⟨S̃ = 1, M𝑆̃ = 0|𝜇𝛼
𝑆𝐻|S̃ = 1, M𝑆̃ = +1⟩ = ⟨S̃ = 1, M𝑆̃ = −1|𝜇𝛼

𝑆𝐻|S̃ = 1, M𝑆̃ = 0⟩          (S8d) 

Where 𝜇𝛼
𝑆𝐻  is the 𝛼 - component of the magnetic moment operator described in the spin 

Hamiltonian formalism (see Eq. S1). Those relationships make the number of independent 

matrix elements decrease down to 6 (9 parameters), i.e. 

⟨S̃ = 1, M𝑆̃ = +1|𝜇𝑥
𝑆𝐻|S̃ = 1, M𝑆̃ = +1⟩ = 𝑔𝑥𝑧              (S9a) 

⟨S̃ = 1, M𝑆̃ = +1|𝜇𝑦
𝑆𝐻|S̃ = 1, M𝑆̃ = +1⟩ = 𝑔𝑦𝑧              (S9b) 

⟨S̃ = 1, M𝑆̃ = +1|𝜇𝑧
𝑆𝐻|S̃ = 1, M𝑆̃ = +1⟩ = 𝑔𝑧𝑧              (S9c) 

⟨S̃ = 1, M𝑆̃ = 0|𝜇𝑥
𝑆𝐻|S̃ = 1, M𝑆̃ = +1⟩ =

𝑔𝑥𝑥+𝑖𝑔𝑥𝑦

√2
               (S9d) 

⟨S̃ = 1, M𝑆̃ = 0|𝜇𝑦
𝑆𝐻|S̃ = 1, M𝑆̃ = +1⟩ =

𝑔𝑦𝑥+𝑖𝑔𝑦𝑦

√2
               (S9e) 

⟨S̃ = 1, M𝑆̃ = 0|𝜇𝑧
𝑆𝐻|S̃ = 1, M𝑆̃ = +1⟩ =

𝑔𝑧𝑥+𝑖𝑔𝑧𝑦

√2
               (S9f) 

Hence, the spin Hamiltonian and effective Hamiltonian magnetic moment matrices are 

equivalent under the following conditions: 

⟨𝜙+|𝜇𝛼|𝜙+⟩ = ⟨𝑆̃ = 1, M𝑆̃ = +1|𝜇𝛼
𝑆𝐻|𝑆̃ = 1, M𝑆̃ = +1⟩            (S10a) 

⟨𝜙0|𝜇𝛼|𝜙+⟩ = ⟨S̃ = 1, M𝑆̃ = 0|𝜇𝛼
𝑆𝐻|S̃ = 1, M𝑆̃ = +1⟩            (S10b) 

Those relationships enable the expression of the g-values in terms of the effective Hamiltonian 

magnetic moment matrix elements, which are known from our effective Hamiltonian analysis. 

We immediately find that the g-matrix is diagonal, i.e. 𝑔𝑥𝑧 = 𝑔𝑧𝑥 = 𝑔𝑥𝑦 = 𝑔𝑦𝑥 = 𝑔𝑦𝑧 =

𝑔𝑧𝑦 = 0, which confirms that the molecular framework is colinear the proper axes of the g-

matrix, consistently with the high symmetry of the molecule. The diagonal values may be 

expressed in terms of the effective Hamiltonian magnetic moment matrix elements, i.e.: 

|𝑔zz| = |⟨𝜙+|𝜇𝑧⃗⃗⃗⃗⃗|𝜙+⟩|                 (S11a) 

|𝑔𝑥𝑥| = √2|⟨𝜙0|𝜇𝑥⃗⃗⃗⃗⃗|𝜙+⟩|                (S11b) 

|𝑔𝑦𝑦| = √2|𝑖⟨𝜙0|𝜇𝑦⃗⃗⃗⃗⃗|𝜙+⟩|.                (S11c) 

It is verified that |𝑔𝑥𝑥| = |𝑔𝑦𝑦| = |𝑔⊥| (the sign of the g-values was not investigated and 

arbitrarily set positive for simplicity). 

Eq. S11 correspond to the extracted g-values shown in the main text. This demonstration is 

heavily inspired by Chibotaru’s method, but is adapted for this specific case. Rather than 
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building the Abragam-Bleaney tensor, it makes use of symmetry arguments to establish a 

simple relationship between g-values and matrix elements. 

 The procedure used to extract the A values is completely equivalent to the demonstration 

above. One simply replaces the magnetic moment matrices with the hyperfine field matrices. 

In total analogy, one finds that 𝐴𝑥𝑧 = 𝐴𝑧𝑥 = 𝐴𝑥𝑦 = 𝐴𝑦𝑥 = 𝐴𝑦𝑧 = 𝐴𝑧𝑦 = 0.   

For the diagonal values, 

𝐴⊥

𝑔𝑁𝛽𝑁
= √2|⟨𝜙0|𝐵𝑖𝑛𝑡,𝑥

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|𝜙+⟩|                (S12a) 

𝐴𝑧𝑧

𝑔𝑁𝛽𝑁
= |⟨𝜙+|𝐵𝑖𝑛𝑡,𝑧

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|𝜙+⟩|                (S12b) 

Eq. S12a and S12b correspond to the extracted A-values shown in the main text. In principle, 

the three A values appear from this treatment with a sign that is consistent with the sign of g. In 

our case, since we arbitrarily set the sign of all g-values to be positive, we instead calculated 

the absolute value of A and then chose the sign to be consistent with the experimental direction 

of the internal field.  
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Discussion on the corrections to the microscopic magnetic moments 

 

The microscopic magnetic moments are underestimated in spin Hamiltonian formalism, 

due to the neglection of the second-order Zeeman effects with excited magnetic sublevels (see 

Main Text). A state-specific correction accounting for these second-order couplings must be 

applied to recover the magnetic moment calculated with the developed effective Hamiltonian. 

This correction may be estimated using second-order perturbation theory. Indeed, due to 

Hellmann-Feynman theorem, 

⟨𝜇𝛼⟩ =  − ⟨
𝑑𝐻𝑍𝑒𝑒̂

𝑑𝐵𝛼
⟩ = −

𝑑𝐸

𝑑𝐵𝛼
                  (S13) 

Where 𝐻𝑍𝑒𝑒̂  is defined according to Eq. 4c in the main text. The 𝐵𝛼  correspond to the 

components of the applied field. So, in the framework of second-order perturbation theory, for 

instance for |ϕ0̃⟩,  

⟨𝜇𝛼⟩0 = ⟨ϕ0̃|𝜇𝛼|ϕ0̃⟩ − ∑ 𝐵𝛽 ∑
⟨𝜙0̃|𝜇𝛼|𝜓𝑖⟩⟨𝜓𝑖|𝜇𝛽|𝜙0̃⟩+⟨𝜙0̃|𝜇𝛽|𝜓𝑖⟩⟨𝜓𝑖|𝜇𝛼|𝜙0̃⟩

𝜖0−𝜖𝑖
 𝑖𝛽            (S14) 

It is assumed here that the |ϕ0̃⟩, |ϕ±̃⟩ are eigenstates of the Hamiltonian in the basis of |ϕ0⟩, 

|ϕ±⟩ for a given applied field. The ψi correspond to the excited magnetic sublevels (higher than 

|ϕ±̃⟩) with energies ϵi. 𝜖0 corresponds to the energy of the magnetic state |ϕ0̃⟩. As usual, the 𝛼 

and 𝛽 components represent the x, y or z-components.  

Thus, the first term in Eq. S14 corresponds to the spin Hamiltonian value of 𝜇α 

(assuming the spin Hamiltonian parameters have been calculated with the method described 

above), and the second correspond to the corrections due to second-order Zeeman effects with 

excited magnetic sublevels. It is apparent that these corrections are state-specific because each 

magnetic sublevel interacts with distinct excited sublevels. Hence, the sublevel |ϕ0⟩ interacts 

with the sublevel |ϕ±
′ ⟩ (Figure 8 in Main text) from which it is separated by about 1333 cm-1, 

while the sublevels |ϕ±⟩ mainly interact with the sublevels | 𝐸 
3

g, 𝐵1⟩ and | 𝐸 
3

g, 𝐵2⟩, from which 

they are separated by only 957 cm-1. Consequently, the correction for the |ϕ±⟩ sublevels are 

more important than for |ϕ0⟩ (table 6 in the main text, Eq. S14). Finally, the corrections to the 

spin and orbital momenta are linear with the external field, as predicted by second-order 

perturbation theory (see Eq. S14).  

In detail, these corrections mainly arise from the transverse orbital Zeeman effect, 

owing to the fact that the ground triplet, even after spin-orbit coupling, is still dominated by the 

3A2g electronic configuration (85-88%), while the excited state is dominated by 3Eθ
g. 
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Consequently, the corrections are anisotropic, because 3A2g only interacts with 3Eθ
g through the 

xy component of the orbital moment operator.  

 In principle, the magnetic correction being state-specific, the correction of the magnetic 

susceptibility must be temperature-dependent since it depends on the relative population of the 

magnetic sublevels. This correction term can be approximated to the following expression: 

Δ𝜒 =
2

3𝐵𝑒𝑥𝑡
𝑁

∑ (𝜇𝑖,⊥
𝐸𝐻−𝜇𝑖,⊥

𝑆𝐻)𝑒
−

𝐸𝑖
𝑘𝐵𝑇

𝑖

∑ 𝑒
−

𝐸𝑖
𝑘𝐵𝑇

𝑖

                (S15) 

 

Where the factor 
2

3
 accounts for the powder-averaging of the correction (only the transverse 

magnetic moments deviates significantly from the spin Hamiltonian value), N is the Avogadro 

number, 𝜇𝑖,⊥
𝐸𝐻 and 𝜇𝑖,⊥

𝑆𝐻 are the transverse magnetic moments of the sublevels i described with 

the spin Hamiltonian and effective Hamiltonian, respectively (Table 6 in the Main Text), 𝐸𝑖 the 

energy of the sublevel i. As usual, kB is the Boltzmann constant and T is the temperature. 

 However, this correction can be approached with a standard TIP correction for two 

reasons: (1) the magnetic moments corrections are similar, if not identical, for each magnetic 

sublevel of the triplet (Table 6), and (2) for effective magnetic moments measurements, the 

correction only becomes visible at high temperatures (>100 K) where the population of the 

three sublevels is close to being equalized (Figure S7). 

 

 

Figure S7: (left) thermal average of the magnetic susceptibility correction, and (right) 

corresponding thermal average of Δ𝜒𝑇 (red line) under a field of 1 T. For comparison, the 

phenomenological TIP Δ𝜒 = 1000 ×  10−6 emu is represented by the dashed black line. 
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