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40 Abstract

41 Comprising more than 1,400 species, bats possess adaptations unique among mammals including powered 

42 flight, unexpected longevity, and extraordinary immunity. Some of the molecular mechanisms underlying 

43 these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been 

44 limited to a few divergent lineages, reducing the scope of inferences on gene family evolution across the 

45 Order Chiroptera. We conducted an exhaustive comparative genomic study of 37 bat species, one generated 

46 in this study, encompassing a large number of lineages, with a particular emphasis on multi-gene family 

47 evolution across immune and metabolic genes. In agreement with previous analyses, we found lineage-

48 specific expansions of the APOBEC3 and MHC-I gene families, and loss of the proinflammatory PYHIN gene 

49 family. We inferred more than 1,000 gene losses unique to bats, including genes involved in the regulation of 

50 inflammasome pathways such as epithelial defense receptors, the natural killer gene complex and the 

51 interferon-gamma induced pathway. Gene set enrichment analyses revealed genes lost in bats are involved in 

52 defense response against pathogen-associated molecular patterns and damage-associated molecular 

53 patterns. Gene family evolution and selection analyses indicate bats have evolved fundamental functional 

54 differences compared to other mammals in both innate and adaptive immune system, with the potential to 

55 enhance anti-viral immune response while dampening inflammatory signaling. In addition, metabolic genes 

56 have experienced repeated expansions related to convergent shifts to plant-based diets. Our analyses 

57 support the hypothesis that, in tandem with flight, ancestral bats had evolved a unique set of immune 

58 adaptations whose functional implications remain to be explored.
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62 Introduction 

63 Comparative genomics provides a framework for identifying the molecular mechanisms underlying unique 

64 organismal adaptations, in their endless forms. To date, comparative genomic approaches have revealed the 

65 mechanisms underlying terrestrial adaptations in mudskipper fish (You et al., 2014), heat tolerance in coral 

66 (Bay, Rose, Logan, & Palumbi, 2017), cold stress tolerance in Draba (Nowak et al., 2020), and extreme 

67 longevity in naked mole rats (X. Zhou et al., 2020). In most cases the search for molecular adaptations has 

68 focused on orthologous single-copy genes, but gene loss and duplication can also be adaptive and are critical 

69 to understanding of how phenotypic adaptations evolve. Analyses based on highly contiguous genome 

70 assemblies have uncovered gene expansions likely associated with production of urushiol and anthocyanins in 

71 mango (P. Wang et al., 2020), the earliest events of gene duplication in cytoskeletal and membrane-trafficking 

72 families in eukaryotic cellular evolution (Vosseberg et al., 2020), pseudogenization in genes associated with 

73 testicular descent in afrotherian mammals (Sharma, Lehmann, Stuckas, Funke, & Hiller, 2018), gene losses 

74 associated with diving–related adaptations in cetaceans (Huelsmann et al., 2019), and losses associated with 

75 physiological and metabolic adaptations in fruit bats (Sharma, Hecker, Roscito, Foerster, Langer & Hiller, 

76 2018). Given the importance of gene family evolution, multiple large-scale genome sequencing consortia such 

77 as the Earth BioGenome Project (Lewin et al., 2018), the Vertebrate Genomes Project (Rhie et al., 2020), and 

78 Bat1K (Teeling et al., 2018) aim to generate high-quality genome assemblies for species spanning entire 

79 clades and even the entire phylogenetic ‘Tree of Life’, thereby enabling greater confidence in analyses of gene 

80 loss and gene family evolution. 

81 Gene family expansions and contractions are influenced by selection, including from biological factors 

82 such as pathogens.  Host-pathogen interactions are shaped by reciprocal selection, an evolutionary arms race 

83 which has forced hosts to evolve complex immune defense mechanisms (Papkou et al., 2019; Sironi, Cagliani, 

84 Forni, & Clerici, 2015). Vertebrates have two types of immune response: innate immunity, which is non-

85 specific and acts as a first line of defense; and adaptive immunity, which is highly specific and generates 

86 immune memory (Delves, Martin, Burton, & Roitt, 2017; Janeway & Travers 2001.). Several immune-related 

87 gene families that have experienced substantial evolutionary changes during mammal evolution. While many 

88 important facets of the immune system are conserved, immune gene families have high rates of evolution A
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89 whether measured via substitution rate ratios or birth–death turnover (Bernatchez & Landry, 2003; Goebel et 

90 al., 2017; Minias, Pikus, Whittingham, & Dunn, 2019; Santos et al., 2016; Shultz & Sackton, 2019; Van 

91 Oosterhout, 2009). This is especially true of the Major Histocompatibility Complex (MHC), which is 

92 responsible for generating cell surface proteins that play essential functions in the adaptive immune system 

93 (Janeway & Travers 2001). 

94 This combination of highly conserved, and highly variable components of the immune system, is 

95 particularly intriguing among bats. Among mammals, bat diversity is second only to that of rodents, and 

96 encompasses over 1,400 species that occupy a broad diversity of ecological niches on six continents (Fenton 

97 & Simmons, 2015; Nogueira et al., 2018). The success of bats is likely related to a suite of adaptations unique 

98 both to the clade as a whole and to various subclades within the Order Chiroptera. The most obvious of these 

99 is powered flight, allowing bats to occupy a unique aerial niche not utilized by any other mammal. While this 

100 unique niche limits body size, within that constraint bats have been exceptionally successful and have 

101 diversified in ways unparalleled among other mammals. For example, bats evolved virtually every mammalian 

102 dietary strategy (e.g., frugivory, carnivory, nectarivory, piscivory) and have done so in a relatively short 

103 evolutionary time frame (Dumont et al., 2012). Another less obvious but likely more interesting adaptation is 

104 the exceptional longevity and increased health span (the period of life during which an organism is in 

105 generally good health) exhibited by many bat species given their body size. Many species such as the 

106 Bechstein’s bat (Myotis bechstein) the little brown bat, Brandt’s bat (Myotis brandtii), greater mouse-eared 

107 bat (Myotis myotis) and greater horseshoe bat (Rhinolophus ferrumequinum) have unexpectedly long health 

108 spans, living 30 - 40 years (Fleischer, Gampe, Scheuerlein & Kerth, 2017; Foley et al., 2018; Podlustsky, 

109 Khritankov, Ovodov & Austad, 2005; Seim et al., 2013; Wilkinson & Adams, 2019). Such longevity defies the 

110 expectation that large species are longer-lived than small species; despite constrained body size, bats live 

111 longer than other mammals of similar size (Austad & Fischer, 1991; Healy et al., 2014). Bat longevity and 

112 health span may be influenced by their exposure to extrinsic mortality factors. Powered, mostly nocturnal 

113 flight may lower bats’ exposure to some sources of extrinsic mortality, including predation (Healy et al., 

114 2014). Yet, the risk of exposure to another extrinsic source of mortality, contagious infection, increases 

115 among bat species that roost in large colonies (Brook & Dobson, 2015; H. Han et al., 2015). Thus, to achieve 

116 such longevity and decreased senescence, long–lived bat populations must overcome the burden of 

117 infectious diseases.  
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118 The uniqueness of bats extends to the immune repertoire. Early in the age of whole-genome 

119 analyses, it was clear that inflammation-related gene families had expanded or contracted, and certain 

120 single–copy genes associated with immunity and cell repair had experienced selection in bats (G. Zhang et al., 

121 2013). There is still debate as to whether bats harbor a disproportionately large number of viruses, or 

122 whether viral load is simply a function of species richness (Moratelli & Calisher, 2015; Olival et al., 2017; 

123 Mollentze & Streicker, 2020). Howeverthere is no doubt that several recent viral intrusions into our own 

124 species ultimately originated from bat hosts (Drexler et al., 2012; Goldstein et al., 2018; Hu et al., 2017; 

125 Memish, Perlman, Van Kerkhove, & Zumla, 2020; Towner et al., 2007). This likely includes the current SARS-

126 CoV-2 pandemic (Boni et al., 2020; Lau et al., 2020). Bats appear to have the ability to tolerate these viruses 

127 with few health impacts, hence recent studies have focused on bat comparative genomics (Jebb et al., 2020) 

128 and its emphasis on viral response (reviewed in: Gorbunova, Seluanov, & Kennedy, 2020;  Hayman, 2019). 

129 Although little is known from this perspective, there is a growing body of functional analyses showing that 

130 bats are unusual among mammals in how they deal with viruses (Ahn et al., 2019; A. Banerjee et al., 2020; 

131 Miller et al., 2016; Schountz, Baker, Butler, & Munster, 2017; Xie et al., 2018). 

132 The ‘inflammosome’ is typically highly conserved across mammals, but bats exhibit a reduced 

133 inflammatory response that may be tied to their ability to cope with viral infection while experiencing 

134 minimal impact (Pavlovich et al., 2018). For example, the PYHIN gene family, namely, appears to have been 

135 almost completely lost in bats (Ahn, Cui, Irving, & Wang, 2016; G. Zhang et al., 2013) while at least one PYHIN 

136 gene can be found in all other eutherians examined. Similarly, in bats, the inflammatory function of 

137 interferons (G. Zhang et al., 2013) appears distinct among bat species, where IFN contractions and 

138 constitutive expression of IFN-α has been observed in some bats (P. Zhou et al., 2016), and the APOBEC3 

139 repertoire, which is associated with anti-viral response, is expanded (Jebb et al., 2020; Hayward et al., 2018). 

140 All of these functional patterns suggest an overall dampened inflammatory reaction despite a robust immune 

141 response to viruses whose origins may lie in the gene repertoires available to bats (A. Banerjee, Rapin, 

142 Bollinger, & Misra, 2017; A. Banerjee et al., 2020). 

143 Gene family evolution also likely plays a role in the unique dietary ecology of bats. Several studies 

144 have found a variety of mechanisms influencing dietary adaptation. For example, convergent amino acid 

145 substitutions in several lineages of frugivorous bats have occurred independently (Gutiérrez-Guerrero et al., 

146 2020; Shen, Han, Zhang, Rossiter, & Zhang, 2012; Teeling et al., 2018; K. Wang et al., 2020), and are 

147 associated with the shift to a high-sugar diet. Another strategy has been to repurpose a given gene to A
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148 accommodate such dietary shifts (Shen, Han, Jones, Rossiter, & Zhang, 2013). With the exception of olfactory 

149 receptors (Hayden et al., 2014; Hughes et al., 2018; Tsagkogeorga, Müller, Dessimoz, & Rossiter, 2017), the 

150 roles of gene loss and gain in shaping dietary evolution of bats have not been comprehensively explored. 

151 Here we investigate bat gene family evolution related to immunity, metabolism, and dietary 

152 adaptations, using the most extensive genomic sampling within bats to date. Despite variability in quality of 

153 assemblies, the ecological diversity of lineages for which assemblies are available allows, for the first time, an 

154 investigation of gene family evolution across 10 families, two suborders, and a complete coverage of the 

155 entire range of diets. We find two major patterns. First, system-wide gene losses related to inflammatory 

156 response and selection on genes associated with antiviral immunity appear to have influenced bat lineages. 

157 This suggests that bats— compared to other mammals such as cow, dog, horse, pig, mouse and human— 

158 have evolved complex, complementary adaptations across multiple functional pathways to simultaneously 

159 reduce inflammatory response while maintaining strong antiviral defenses, potentially underlying their 

160 suspected tolerance of viruses. Second, the move from the ancestral arthropod diet to high-sugar nectar and 

161 fruit-based diets is associated with lineage-specific gene family expansions in metabolic gene families. 

162 Materials and Methods

163 Whole genome sequencing

164 We generated a whole genome assembly for a male Phyllostomus hastatus, PE091, collected in Jenaro 

165 Herrera, Peru. Field-collected tissues from Phyllostomus hastatus specimen PE091 were lawfully collected 

166 under permit #0122–2015–SERFOR–DGGSPFFS, exported under SERFOR permit #0002287, and imported 

167 under USFW 3-177 2015MI1694291.

168 Samples were preserved in RNAlater for one week before flash–freezing in a liquid nitrogen dry shipper, 

169 following previously published protocols (Yohe et al., 2019). High molecular weight genomic DNA was 

170 extracted from flash-frozen liver using the Qiamp DNA Micro Kit (Germantown, MD, USA) and sequenced on a 

171 PromethION instrument (Oxford Nanopore Technologies, New York, NY, USA) at Cold Spring Harbor 

172 Laboratory. Additionally, short-read Illumina whole genome sequencing was performed at Novogene, Inc 

173 (California, USA). Genomic DNA from lung was randomly fragmented to 350bp, end-repaired, adenylated, 

174 ligated with Illumina sequencing adapters, and further PCR–enriched. The final libraries were purified 

175 (AMPure XP system) and library quality and size verification were assessed on an Agilent 2100 Bioanalyzer 

176 (Agilent Technologies, CA, USA). Molar concentration was assessed using real-time PCR. A
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177 De novo genome assembly was performed using Flye v.2.7.1 (Kolmogorov, Yuan, Lin, & Pevzner, 

178 2019) using default --nano-raw parameterization. The obtained pre-assembly was polished using Illumina 

179 short-reads with POLCA tool built-in MaSuRCA genome assembly and analysis toolkit (Zimin et al., 2013). 

180 Genome database construction 

181 Publicly-available genome assemblies for an additional 36 bat species (Supplementary Table 1) were 

182 downloaded from open-source databases to maximize bat taxonomic sampling (D. Dong et al., 2017; Eckalbar 

183 et al., 2016; Gutiérrez-Guerrero et al., 2020; Jebb et al., 2020; Parker et al., 2013; Seim et al., 2013; K. Wang 

184 et al., 2020; Zepeda Mendoza et al., 2018; G. Zhang et al., 2013).  Assemblies were masked with 

185 RepeatMasker v.4.1.0 (Smit, Hubley, & Green, n.d.) using a custom library combining known mammalian 

186 transposable elements (TE) from Repbase (v20181026), a de novo mammalian TE library generated using 

187 assemblies from the Zoonomia Project (Genereux et al., 2020) and the Dfam database, and a custom bat–

188 specific TE library generated by manual curation (Jebb et al., 2020).

189 All assemblies were annotated or re-annotated with the MAKER annotation pipeline v.2.31.10 (Holt & 

190 Yandell, 2011) to avoid bias in downstream analyses caused by differences in genome assembly annotation 

191 quality. Two iterations of MAKER were performed for each species. During the first run we provided 

192 expressed sequence tags (ESTs) and transcriptomic data as inputs (Davies et al., 2020; Potter et al., n.d.) 

193 (Supplementary Table 2). If species-specific transcriptomic data were unavailable, we used information from a 

194 related species of the same genus. We used two databases for protein homology the Uniprot/Swiss-Prot 

195 protein sequence database (Bateman, 2019) and a bat–specific protein database obtained from high-quality 

196 genome annotations for six bat species (Jebb et al., 2020). Repeat evidence was provided using the repeat 

197 annotation GFF3 file generated by RepeatMasker. Gene models generated on the first run were used for gene 

198 predictions with two gene software packages, SNAP (Korf, 2004) and Augustus (Stanke & Waack, 2003). Only 

199 gene models with an AED score < 0.25 and with more than 50 amino acids were retained. For the second run, 

200 focusing on re-annotation, the MAKER control file was edited to include the GFF3 output file from the first 

201 run gene predictions generated by SNAP and the Augustus gene prediction species model as inputs. 

202 Functional annotation was performed with BlastP (Camacho et al., 2009) using the Uniprot/Swiss-Prot 

203 database and protein domain annotation with InterProScan (Jones et al., 2014). 
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204 Homology inference 

205 Protein homology was inferred among the proteins of 43 mammals: Including Homo sapiens and Mus 

206 musculus, two well-studied model organisms, and more closely related species from the superorder 

207 Laurasiatheria: Sus scrofa, Bos taurus, Equus caballus, Canis lupus familiaris, and the 37 bat species 

208 (Supplementary Table 1). Orthologous groups (orthogroups) were assigned with Orthofinder v.2.4.0 (Emms & 

209 Kelly, 2019). When no orthologs were inferred for the Chiroptera in a given orthogroup, we independently 

210 analyzed the genome data to confirm gene losses in bats (Supplementary Fig. 1). To this end, we performed a 

211 BLAST search against the 37 bat genomes using the following criteria: an e-value of 1e-6 and an identity and 

212 protein coverage greater than 80%. Then, genomic regions with a BLAST hit were extracted along with 200bp 

213 upstream and downstream. Sequences were aligned with the MAFFT aligner tool v.7.402 (Katoh & Standley, 

214 2013) and visualized using Geneious version 11.1.3 (Kearse et al., 2012) to discriminate annotation errors. 

215 Additionally, BLAST searches were also performed against transcriptomic data from 22 bat species 

216 (Supplementary Table 2) (Potter et al., n.d.). For these searches, potential matches were filtered more strictly, 

217 and those with identity and protein coverage ≥ 90% were retained. Subsequent blast hit extraction, alignment 

218 and visualization were as for the genome searches.

219 Enrichment in chiropteran gene losses 

220 We conducted pathway enrichment analyses with the final list of genes missing from all bat species using two 

221 databases: BioPlanet (R. Huang et al., 2019) and DICE GOnet (Pomaznoy, Ha, & Peters, 2018). In each case, we 

222 used the list of gene symbols as input with a cutoff value of 0.05 (BioPlanet) and a similar p–value in the DICE 

223 GOnet biological process classification for the mouse model. In both cases, all genes found to be missing were 

224 used as input and compared to a reference set of genes annotated in the corresponding database.

225 Inferring bat phylogeny

226 To infer gene family evolution, we first inferred an ultrametric phylogenomic tree based on 350 single copy 

227 orthologous genes (207,551 amino acid sites). All the orthologs were concatenated into a single 207,551–

228 amino acid “contig” and sequence alignment was performed using the MAFFT aligner tool v.7.402 (Katoh & 

229 Standley, 2013). We evaluated the best-fit models of protein evolution with ProtTest v.3 (Darriba, Taboada, 

230 Doallo, & Posada, 2011) using two criteria: the Akaike Information Criterion (AIC) and the Bayesian 

231 Information Criterion (BIC) (distribution JTT, +G +I +I +G and 80% consensus threshold). A maximum likelihood 

232 tree was inferred for the concatenated data set with RAxML v.8 (Stamatakis, 2014). Estimation of species A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

233 divergence times was performed with Bayesian phylogenetic methods using the MCMCtree tool in the PAML 

234 v.4.9 package (Yang, 2007). We calibrated divergence dates using six points based on fossil records: 1) 

235 Icaronycteris, considered as one of the oldest echolocating fossil bats, dated at 52 Mya (Gunnell & Simmons, 

236 2005; Simmons, Seymour, Habersetzer, & Gunnell, 2008); Tachypteron, the oldest known emballonurid fossil 

237 from the early Middle Eocene, with an age range of 48.6 to 40 Mya (Storch, Sigé, & Habersetzer, 2002); 

238 Hipposideros africanum, the oldest fossil record of the family Hipposideridae, its records date at 41.3 Mya 

239 (Ravel et al., 2016); Vespertillionidae indet. (41.3 Mya) (Eiting & Gunnell, 2009); Phyllostomidae indet. (30 

240 Mya) (Nicholas J Czaplewski, 2010), and Palynephyllum (11.8 Mya) (Nicolas J Czaplewski, Takai, Naeher, & 

241 Setoguchi, 2003; Dávalos, Velazco, Warsi, Smits, & Simmons, 2014). Additionally, we included and 

242 corroborated the molecular dates for the base of the ingroup root estimated by Teeling et al. (2005).

243 Gene family evolution

244 While previous analyses that included bat species have analyzed signals of positive selection across bats (e.g. 

245 Parker et al., 2013), fewer have explicitly centered on gene family evolution (Jebb et al., 2020; Tsagkogeorga 

246 et al., 2017). To analyze our comprehensive bat-focused sample, we modeled gene family expansions and 

247 contractions using CAFE (Computational Analysis of Gene Family Evolution) v.4.2.1 (M. V. Han, Thomas, Lugo-

248 Martinez, & Hahn, 2013). CAFE fits a birth and death parameter (λ) to estimate the probability of gene gains 

249 or losses across a specified phylogeny (Hahn, De Bie, Stajich, Nguyen, & Cristianini, 2005), and we used the 

250 newly inferred phylogeny to this end. 

251 When we included all species in the CAFE analysis, we observed a systematic bias in gene family 

252 contractions among fragmented genomes. This effect of genome quality on downstream gene predictions is 

253 well documented and leads to an overestimation of gene gains and losses (Denton et al., 2014; Tsagkogeorga 

254 et al., 2017). To mitigate the bias, only genome assemblies with BUSCO completeness scores over 80%, 

255 totaling 34 species (28 bat species and 6 outgroup mammals) were used for CAFE. This smaller subset of 

256 protein sequences was filtered, retaining only the longest isoform. Homology clustering was performed with 

257 Orthofinder v.2.4.0 (Emms & Kelly, 2019). 

258 We filtered the final input for CAFE to reduce systematic bias in inferring gene family evolution. First, 

259 we retained only gene families present at the most recent common ancestor of the phylogeny, with at least 

260 one gene present in each of the four clades assigned: a) Euarchontoglires (Homo sapiens and Mus musculus), 

261 b) non-Chiroptera Laurasiatheria (Bos taurus, Canis familiaris, Equus caballus, Sus scrofa), c) Yangochiroptera 

262 and d) Yinpterochiroptera. Second, gene families missing in more than 50% of bat species were excluded. A
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263 Finally, families with large gene copy number variance (≥100 gene copies) were excluded for the global birth 

264 and death (λ) rate inference.

265 To analyze families with at least one gene copy across the taxa sampled, we first estimated a global λ 

266 for all branches. The global model was compared against a three multi-λ model that fits each lineage with its 

267 own gene family evolution rate. To test which model fits better with our dataset, we performed a likelihood 

268 ratio test for 100 gene family evolution simulations. We ran CAFE in error correction mode to account for 

269 genome assembly and annotation errors and estimate the global distribution of error with the assumption 

270 that all branches share a unique λ rate (λ=0.0033734) as described in Han et al. (2013). Finally, we used 

271 complementary tools; the Protein Analysis Through Evolutionary Relationships (PANTHER v.15) (Mi, 

272 Muruganujan, Ebert, Huang, & Thomas, 2019) and Gene Ontology Analysis (GOnet) to annotate genes with 

273 gene ontology (GO) terms (Ashburner et al., 2000; Carbon et al., 2019) and assign them to gene families, 

274 pathways, and biological process categories.

275 Selection tests

276 We identified genes under positive selection by evaluating 268 single–copy genes involved in immune 

277 response, based on a curated database of 1,793 genes downloaded from the IMMPORTDB repository 

278 (Bhattacharya et al., 2014) available at https://www.immport.org/home. Gene alignments were built with 

279 MAFFT v.7.402 (Katoh & Standley, 2013) and manually filtered to remove sequences with less than 70% of 

280 protein coverage based on the homologous human protein. Only alignments represented by at least 30% of 

281 the species were used for downstream analysis. For each gene in the codeml analyses, we built a phylogeny 

282 with RAxML (Stamatakis, 2014) and a codon alignment for each gene with PAL2NAL (Suyama, Torrents, & 

283 Bork, 2006). 

284 We tested for evidence of positive selection among sites along bat lineages using the strict branch–

285 site model (Yang, Wong, & Nielsen, 2005; J. Zhang, Nielsen, & Yang, 2005) with maximum-likelihood 

286 estimations implemented in codeml in PAML v.4.9 (Yang, 2007). We implemented model 2 as this allows the 

287 dN/dS ratio (ω) to vary across branches and sites and to detect if selection differs in a few amino acid residues 

288 in specific lineages (foreground branches). We compared two hypotheses, assigning the 37 bat species as 

289 foreground branches: 1) the null hypothesis with a fixed ω (ω=1) for all branches does not allow for positive 

290 selection, and 2) an alternative hypothesis assuming that the foreground branches have a greater proportion 

291 of sites under positive selection (ω > 1) than the background branches. The null hypothesis was tested against 

292 the alternative model with the likelihood-ratio test (LRT); the p-value was calculated under a chi-square A
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293 distribution with 1 degree of freedom, additionally we adjusted the p-value using the false discovery rate 

294 (FDR) correction. To detect sites under positive selection, we used the Bayes Empirical Bayes (BEB) (Yang et 

295 al., 2005) approach to calculate posterior probabilities that a site has a significant value of ω >1. The residues 

296 with a high posterior probability (P > 95%) were considered.

297 To determine how robust the signals of positive selection detected were, we used the adaptive 

298 Branch-Site Random Effects Likelihood (aBSREL) (Smith et al., 2015) model, as implemented in HyPhy 

299 (Kosakovsky Pond, Frost, & Muse, 2005). The aBSREL model explores whether a proportion of sites have 

300 evolved under positive selection in each branch of the phylogeny, and was applied to all alignments using 

301 their respective gene trees. The false discovery rate method of multiple testing correction was applied to all 

302 p-values generated for each branch and gene.

303 Results

304 Genome sequencing

305 The final assembly for P. hastatus comprised 2.1 Gb and has a N50 contig length >39 Mb. Assembly quality 

306 completeness was estimated at 95.4%. These values are similar to those observed for bat assemblies inferred 

307 using similar methods (Jebb et al., 2020). 

308 Homology inference 

309 BUSCO analysis results indicated that the bat genome assemblies contained between 68.5 and 96.5% of the 

310 single–copy orthologs present among mammals (Figure 1). Orthologs were grouped into 42,441 groups, of 

311 which 1,193 were single copy. In total, 5,528 orthogroups had at least one representative in each of the entire 

312 set of 43 species that were analyzed. In contrast, 1,055 orthogroups were represented in at least 50% of bat 

313 species but missing from the six outgroup taxa (Supplementary table 3). To annotate diets, we used the semi–

314 quantitative database compiled by Rojas, Ramos, Fonseca and Dávalos (2018), which focuses on neotropical 

315 noctilionoids (Yangochiroptera), supplemented with summaries from Animal Diversity Web 

316 (https://animaldiversity.org/).

317 Enrichment in chiropteran gene losses

318 We inferred the first densely sampled chiropteran phylogeny based on hundreds of loci (Figure 1). Our results 

319 confirmed the monophyly of the suborders Yinpterochiroptera and Yangochiroptera but the phylogeny of the 

320 neotropical leaf-nosed bats (family Phyllostomidae) differed from previous phylogenies (Davalos, Velazco, & 

321 Rojas, 2020), in the paraphyly of plant-eating lineages. As the obtained phylogeny is the best supported by all A
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322 genome-scale analyses available thus far (S.J. Rossiter and M. Hiller pers. obs.), we used this phylogeny for 

323 gene family evolution analyses.

324 A total of 1,115 genes (Supplementary Table 4) were identified as missing in bats, even after filtering 

325 BLAST searches against the genomes and transcriptomes. Based on this list, we identified eight over-

326 represented pathways in BioPlanet (Supplementary Table 5) and 63 GO terms in GOnet (Supplementary Table 

327 6). While the former included 104 genes, of which 49 were unique, the latter included 339 unique missing 

328 genes. As expected, over-represented categories included chemosensory gene losses in the categories of 

329 olfactory transduction, G-protein–coupled receptors (GPCR), and signal transduction. BioPlanet pathways 

330 were also enriched for less common categories including immune system pathways that include alpha and 

331 beta defensins, antigen process and presentation, and graft-versus-host disease (Supplementary Table 5). 

332 GOnet analyses also identified the expected enrichments in chemosensory gene losses and general response 

333 to stimuli categories, but also included many more immune categories. Of the latter, the categories 

334 comprising the most genes were defense response (58 genes), defense response to other organism (54), 

335 response to bacterium (53), innate immune response (46), defense response to bacterium (44), humoral 

336 immune response (34), adaptive immune response based on somatic recombination of immune receptors 

337 built from immunoglobulin superfamily domains (23), lymphocyte mediated immunity (23), and leukocyte 

338 mediated immunity (23). Although these categories share many genes across them, a preponderance of 

339 immune system losses is evident in Supplementary Table 6. We used BioRender to summarize the immune 

340 gene ontology categories and connections, highlighted in Figure 2. 

341 Gene family evolution

342 To determine branches and gene families with significant gene family expansions and contractions, we 

343 analyzed 14,171 orthogroups under two models: a global rate of gene family evolution, and a three multi–λ 

344 model. The three–rate model best fit the data (p < 0.01), this analysis estimated a higher rate of gene family 

345 turnover (λYangochiroptera = 0.0048) in the ancestral Yangochiroptera lineage than in the Yinpterochiroptera 

346 ancestral lineage (λYinpterochiroptera = 0.0024), with the lowest turnover rate for outgroup lineages (λOutgroups = 

347 0.0017).

348 With an estimated error distribution of 0.049 (i.e., 4.9% of gene families showed an error in gene size), we 

349 identified 2,555 orthogroups with significant expansions or contractions along at least one of the branches in 

350 the species tree (Supplementary Table 7). Given our focus on immune system and metabolic evolution, we 

351 extracted PANTHER annotations for the most frequent (900 orthogroups) biological process categories: A
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352 immune response, metabolic process, and cellular process. All GOnet annotations were used and binned into 

353 immune, metabolic, and two additional processes: response to stress (271 orthogroups) and autophagy (19). 

354 PANTHER and GOnet annotations were mostly complementary; orthogroups were often annotated in one 

355 database but not the other (1,268 orthogroups). When annotations were available from both databases, 

356 these tended to agree on both immune and metabolic categories (594 orthogroups), or to agree on one or 

357 the other (404), with only 48 orthogroups disagreeing completely in immune and metabolic annotations 

358 between the databases. The remaining 241 were not annotated in either database. Categories, locations, and 

359 size of significant gene family changes were summarized using tools in the R package ggtree (Yu, Smith, Zhu, 

360 Guan, & Lam, 2017) and are shown in Figure 3. Although several pairs of sister species showed apparently 

361 large differences along corresponding tips (e.g., Rhinolophus, Miniopterus), such variation is common in 

362 analyses that include genome assemblies of varying quality (Denton et al., 2014; Tsagkogeorga et al., 2017). 

363 Therefore, we focus our discussion on the more robust inference of gene family expansions and contractions 

364 for non-sister lineages in immunity and metabolism genes. 

365 Selection tests

366 Branch–site selection tests identified 37 of 268 single–copy genes with evidence for positive selection, of 

367 which 27 remained after false discovery rate correction (Table 1). This subset included genes involved in 

368 interferon-gamma (IFNG) signaling, inflammatory response, as well as cytokines, chemokines, and 

369 interleukins. A total of 16,979 branches across 268 genes were analysed using the aBSREL model in HyPhy. 

370 After FDR correction, 683 branches from 191 gene trees were found to be significant, 25 of which were 

371 consistent with CODEML results (Supplementary table 8).

372 Discussion

373 Gene losses in inflammation–related gene families and positive selection in single–copy genes associated with 

374 immune and cell repair functions in mammalian models have been evident since the very first bat genome 

375 assemblies were published (G. Zhang et al., 2013). Although subsequent studies have confirmed those initial 

376 results (Ahn et al., 2016; Seim et al., 2013), confidence in assessing both gene losses and gene family 

377 expansions has strengthened only recently, with the publication of highly contiguous assemblies for a few bat 

378 species (Jebb et al., 2020; Scheben et al., 2020). Examining a comprehensive sample of bat lineages while 

379 checking against high quality genome assemblies and multi organ RNA Seq, our analyses reveal system wide 

380 gene losses with the potential to modify the sensitivity, targets, and magnitude of immune responses across 

381 all bats. These inferred losses are particularly concentrated along inflammasome activation pathways, which A
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382 are triggered by the innate immune recognition of pathogenic signals through both pathogen-associated 

383 molecular patterns (PAMPs) and damage associated molecular patterns (DAMPs). In contrast with more 

384 pathogen–driven PAMPs, DAMPs result from host cellular distress signals such as mitochondrial stress and 

385 reactive oxygen species (ROS) (Zheng, Liwinski, & Elinav, 2020), which bats produce during active flight 

386 (Costantini, Lindecke, Petersons, & Voigt, 2019). Bat cells, in turn, display exceptional mechanisms of repair 

387 (Pickering, Lehr, Kohler, Han, & Miller, 2014) and resist damage (Harper, Salmon, Leiser, Galecki, & Miller, 

388 2007), connecting molecular signaling and cell processes to extreme longevity (Salmon et al., 2009; Wilkinson 

389 & Adams, 2019). 

390 Based on our genomic surveys, immune-related losses can be divided into three categories: the 

391 epithelial defense receptors (defensins), the Natural Killer gene complex (NKC) and the interferon-induced 

392 pathway (IFI; HIN; PYHIN) (Figure 2). This particular combination of losses in crucial components of immune 

393 activation seems contradictory, as it would imply that these losses could lead to an ineffective immune 

394 response in bats. This contradiction notwithstanding, these results complement previous findings indicating 

395 that bats have evolved efficient mechanisms of regulation that allow them to mount a low intensity immune 

396 response to primarily intracellular pathogens. Integrating these genomic findings with published functional 

397 data suggests complex, systemic adaptation, in line with both previous analyses of bat immune system 

398 responses (A. Banerjee et al., 2020; Basler, 2020; P. Zhou, 2020) and the growing body of evidence for cellular 

399 mechanisms underlying longevity (Z. Huang, Whelan, Dechmann, & Teeling, 2020; Z. Huang et al., 2019, 

400 Kacpryzk et al., 2017). We review these losses in a stratigraphic order, from the outer cellular matrix to the 

401 inner cellular pathways, starting with the defensins.

402 While defensins are the primary barrier of the immune system, with broad antimicrobial activity that 

403 covers bacteria, fungi, and viruses (Semple & Dorin, 2012; Xu & Lu, 2020), bat defensin losses consist mainly 

404 of orthologs of genes localized to epithelial cells. Our results indicate that both α and β defensin genes have 

405 undergone a rapid evolutionary change through either loss or positive selection (Table 1, Figure 2a, 

406 Supplementary Table 4). Rapid evolution and diversification of defensins, driven by the microbiome, varies 

407 considerably among species, even in closely related species (Tu et al., 2015). Among vertebrates, an 

408 expansion of β defensins occurred in mammals, with bovines having the largest number of copies (Tu et al., 

409 2015), while α defensins, exclusive from mammals (Xiao et al., 2004), are lost in bovines (Fjell et al., 2008).

410 Defensins can function as modulators of the host’s cell surface receptors, and α and β defensins 

411 genes have pleiotropic effects on the regulation of carcinogenesis and inflammation (Xu & Lu, 2020). By A
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412 acting as chemokines to alter the adaptive immune response, defensins also serve as a bridge between innate 

413 and adaptive immunity (Grigat, Soruri, Forssmann, Riggert, & Zwirner, 2007). In humans, defensins can elicit 

414 proinflammatory cytokine production (Niyonsaba et al., 2010; Wiens, Wilson, Lucero, & Smith, 2014), but 

415 overexpression of certain defensins can actually enhance viral infection (Rapista et al., 2011). We hypothesize 

416 that specific defensin losses in bats (Figure 2a) complement several other mechanisms (Ahn et al., 2019; A. 

417 Banerjee et al., 2017; Xie et al., 2018) contributing to a dampened inflammatory response, reduced host–

418 driven damage from viral infections, and enhanced longevity (Baker & Schountz, 2018; Brook & Dobson, 

419 2015; Gorbunova et al., 2020). For example, modifying defensin repertoires on epithelial cells would result in 

420 fewer instances of both immune cell recruitment and initiation of inflammatory pathways known to damage 

421 healthy tissue (e.g., focal necrosis in lungs, spleen and lymph nodes during the inflammatory response during 

422 SARS-Cov2 infection (Merad & Martin, 2020)). In humans, loss of β-defensins prevents the inhibition of 

423 neutrophil apoptosis and thus averts the production of proinflammatory cytokines and chemokines (Nagaoka, 

424 Niyonsaba, Tsutsumi-Ishii, Tamura, & Hirata, 2008), avoiding the amplification of the immune response, and 

425 may have a similar effect in bats. Losses of some epithelial surface defensins would thus reduce inflammation 

426 without compromising responses to intracellular pathogens.

427 Another result with inferred implications for reducing proinflammatory reactions involves losses of 

428 Natural Killer (NK) receptors that play an important role in the recognition of MHC-I molecules and regulation 

429 of cytotoxic activity against virus–infected cells. While killer-cell immunoglobulin like receptors (KIR) and killer 

430 cell lectin-like receptors (KLR) receptor losses has been previously reported for Pteropus alecto and Myotis 

431 davidii (Papenfuss et al., 2012; G. Zhang et al., 2013), our analyses confirm these losses across Chiroptera 

432 (Supplementary Table 4). Although the Killer Cell Lectin Like Receptor K1 (KLRK1 or NKG2D) gene is present in 

433 bats, its ligands, gene subfamilies RAET1 and H60 responsible for binding and activating NKG2D receptors, 

434 recruiting natural killer cells, and stimulating them to secrete Interferon gamma (IFN-γ) (Zhi et al., 2010), were 

435 absent in all bat species (Figure 2b). 

436 We hypothesize that these losses lead to low recruitment of proinflammatory NK cells and reduce B-

437 cell signaling (Arapović et al., 2009; Stolberg et al., 2014; Takada et al., 2008; Wortham et al., 2012), as they 

438 do in mice and humans. Loss of this particular mechanism of activation of the MHC-I pathway prevents 

439 proliferation of immune cells, which can be cytotoxic, proinflammatory, and targets of viral infections 

440 (Djelloul, Popa, Pelletier, Raguénez, & Boucraut, 2016; Wortham et al., 2012). For example, NKG2D–deficient 

441 mice infected with influenza viruses exhibit less airway damage and reduced inflammation without A
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442 compromising viral clearance; similarly, knockout of NKG2D in mice and humans during cytomegalovirus 

443 infection helps to avoid the destruction of non-infected cells by NK  (Muntasell et al. 2010; Slavuljica, 

444 Krmpotić, & Jonjić, 2011). NKG2D stimulation is a central pathway to tumor, stress and viral-mediated NK cell 

445 hyper responsiveness (Wortham et al. 2012) and has been shown to be involved in autoimmune disorders, 

446 such as rheumatoid arthritis, type I diabetes, and celiac disease (reviewed in Caillat-Zucman, 2006; Guerra et 

447 al. 2013), and inflammatory diseases such as Crohn’s disease (Vadstrup et al. 2017), chronic respiratory 

448 diseases (Wortham et al. 2012; Guerra et al. 2013) and more recently with age-dependent COVID–19 severity 

449 (Akbar & Gilroy, 2020). During viral exposure, rarer activation of NKG2D function would therefore lead to less 

450 inflammatory exacerbation. Reducing instances of NKG2D activation might also reduce B cell signaling, as it 

451 occurs in NKG2D–deficient mice (Lenartić et al., 2017; Zafirova et al., 2009), and complements losses of 

452 immunoglobulin heavy chain variable regions IGHV1, IGVH3, and IGHV14 genes that modify the B cell 

453 receptor signaling pathway, and thus B lymphocyte differentiation (M. Banerjee, Mehr, Belelovsky, Spencer, 

454 & Dunn-Walters, 2002; McHeyzer-Williams, Okitsu, Wang, & McHeyzer-Williams, 2012; Reddy et al., 2010). 

455 Based on the roles of both NKG2D and B cell activation in promoting inflammation in viral infection, and since 

456 some viral proteins have been shown to specifically target the NKG2D receptor via the RAET1 and H60 loci 

457 (Arapović et al., 2009), we propose that these losses resulted from selection during viral infections early in the 

458 evolutionary history of bats. While the functional implications for bats need to be tested, in humans, lack of 

459 specificity of the T and B cells in children results in a broader immune response to novel viruses (Pierce et al., 

460 2020), and it may confer analogous advantages in bats. 

461 Complementing losses in defensins and NK signaling, the third large group of gene losses involves the 

462 IFN-γ pathway (Figure 2c). While representatives of the PYRIN and HIN domain (PYHIN) gene family, immune 

463 sensors of cytosolic DNA activating the inflammasome and IFN-γ, are present in all mammals, they have not 

464 been found in any of the bat genomes analyzed thus far examined (Ahn et al., 2016; G. Zhang et al., 2013; 

465 Jebb et al., 2020). Previous genomic analyses linked losses in this inflammasome pathway not only to immune 

466 implications, but also to the unique demands of bat flight and in response to increased ROS production (G. 

467 Zhang et al., 2013). In other mammals, the presence of dsDNA, DAMPs and PAMPs, or, especially, bacteria 

468 and DNA viruses, induces the (PYHIN) AIM2 inflammasome, while the IFI16 inflammasome (Interferon-

469 inducible protein 16, also missing in bats) recognizes viruses replicating in the nucleus (Zheng et al., 2020). 

470 Hence, these bat gene losses could undermine innate defense against viruses. We hypothesize that bats have 

471 evolved mechanisms to overcome this potential disadvantage in rapid recognition and response against A
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472 viruses through expansion of MHC-I class genes (Supplementary Table 7). These genes are involved in the 

473 recognition and binding of intra cellular peptides, and previous studies have described a unique 5–amino acid 

474 insertion at the exon 2 peptide binding region (PBR) on bats which may allow the host to recognize longer 

475 peptides (Ng et al., 2016; Papenfuss et al., 2012). Besides implications for immunity, IFN-γ pathway gene 

476 losses also point to changes in autophagy. In mice, loss of the IFN-γ inducible immunity related GTPase gene 

477 (IRGM1 and IRGM2) results in an IFN-γ induced autophagic death program in lymphocytes (Feng et al., 2008). 

478 Along with the loss of other IFN-γ related genes (IGTO, IIGP, TGTP2), these losses may help achieve apoptosis 

479 of infected cells without runaway inflammation. 

480 While some mechanisms of activation of IFN-λ are lost in bats, IFN-γ itself is under positive selection 

481 within branches (Table 1, Supplementary Table 7). IFN-γ is a crucial part for the first line of defense against 

482 viruses, helps shape adaptive immune memory (Schroder, Hertzog, Ravasi, & Hume, 2004), and its deficiency 

483 increases inflammation (Loo et al., 2017). Thus, evolutionary adaptation may have shaped bats’ unique ability 

484 to induce a rapid antiviral response without triggering runaway inflammation. This fine-tuned response may 

485 be achieved by expressing high levels of IFN-γ early on, which recruits broad-spectrum immune cells to the 

486 site of injury, while negatively regulating the IFN-γ pathway receptors that trigger inflammation (Ahn et al., 

487 2019; Ferber et al., 1996). 

488 By generating a controlled induction of immune response, bats’ unique regulatory mechanisms, have 

489 sparked an extraordinary immune tolerance against viruses, a key factor in bats as natural viral reservoirs. 

490 Evidence of this viral tolerance has been observed in bats with high viral load (reviewed in; Subudhi, Rapin, & 

491 Misra, 2019; Irving et al., 2021). In addition, in silico experiments have shown that a trade-off of this viral 

492 tolerance in bats is the rapid spread of viruses within the host; thus, favoring viruses to evolve adaptations 

493 that increase their replication rates (Brook et al. 2020). While this rapid transmission may not have a 

494 significant harmful effect in bats, it could be detrimental for other species, as recent spillovers have shown. 

495 In contrast to a pattern of proinflammatory signal losses common to all bats, most other variation in 

496 gene families within Chiroptera corresponded to cell processes and metabolic functions with the notable 

497 exceptions of APOBEC3 and MHC-I. Besides confirming the previously reported APOBEC3 expansion in 

498 Pteropus vampyrus (Hayward et al. 2018), we also inferred expansions in the common ancestors of Desmodus 

499 and Artibeus, of Vespertilionids, Myotis, and of M. brandtii and lucifugus, including species-specific 

500 expansions in the latter. With this denser sampling, expansions formerly traced to Myotis myotis and 

501 Pipistrellus kuhlii (Jebb et al. 2020), are instead part of broader vespertilionid dynamics especially within A
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502 Myotis. Other species-specific expansions were inferred in the phyllostomids Tonatia saurophila and 

503 Desmodus rotundus, both of which shift from an ancestral bat insectivorous diet to one including vertebrates, 

504 exclusively so for Desmodus. While MHC-I expansions have been highlighted in Pteropus alecto (Ng et al. 

505 2016) and Rousettus aegyptiacus (Pavlovich et al. 2018), here we find much greater expansions in neotropical 

506 noctilionoids including Noctilio, Mormoops, and especially within Phyllostomidae including Artibeus, Sturnira, 

507 Tonatia, Leptonycteris, Musonycteris, Anoura, Desmodus, and Macrotus. As with APOBEC3, MHC-I evolution 

508 in vespertilionids was found to be dynamic, with significant expansions inferred for every Myotis species, as 

509 well as Pipistrellus and Eptesicus. While APOBEC3 function has been examined in Pteropus alecto (Hayward et 

510 al. 2018), our analyses highlight the need for characterization in vespertilionids. With greater potential for 

511 ligand binding, rich MHC-I repertoires may provide both better self recognition for NK tuning and finer 

512 resolution of MHC-I pathogen mimics (Parham & Moffett, 2013), suggesting further research avenues in 

513 phyllostomids, vespertilionids, and Miniopterus. Our analyses overlooked both the potential for unique MHC-I 

514 features that alter antigen presentation, as in Pteropus alecto, and population variation, already found in the 

515 phyllostomids Carollia perspicillata (Qurkhuli et al. 2019), suggesting these as potential research avenues.

516 Expansions and contractions in metabolic genes were common throughout the bat phylogeny (Figure 

517 3), but many ecological differences across species (e.g., biogeography, hibernation, life history) could be 

518 driving these changes (Seim et al. 2013; Y. Han et al. 2015). Taking advantage of our relatively dense taxon 

519 sampling within bats (Figure 1), we focus on parallel adaptation to plant–rich diets across suborders 

520 Yinpterochiroptera and Yangochiroptera, a set of traits of known metabolic implications (Voigt & Speakman, 

521 2007). Shifts from the ancestral bat insectivorous diet to including nectar and fruit and the resulting 

522 mutualistic relationships between bats and plants appear to have led to elevated rates of diversification and 

523 the evolution of new morphological traits (Dumont et al., 2012; Jones, Bininda-Emonds, & Gittleman, 2005), 

524 but gene family evolution has remained underexplored. Regarding significant expansions (Supplementary 

525 Table 7), we identified few —only nine— sets of duplications independently replicated across all pteropodids 

526 and phyllostomids with convergent, plant–based diets (Figure 1). In addition to a trace amine associated 

527 receptor (TAAR) of unknown chemosensory function (Liberles & Buck, 2006) and a putative homolog of the 

528 yeast protein transport protein YIP1, two genes stand out as candidates for diet–linked adaptive gene family 

529 evolution: those encoding homologs of inositol monophosphatase 1 (IMPA1) and integrin alpha-D/beta-2 

530 (ITAD). Glycolysis, the metabolic pathway that breaks down glucose to ultimately phosphorylate more ADP 

531 into ATP than the reverse, begins with the phosphorylation of glucose into D-glucose 6-phosphate (Berg, A
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532 Tymoczko, & Stryer, 2002). This metabolite, however, cannot diffuse through the membrane and is thus 

533 highly osmotic; its accumulation would cause cells to swell. Through the synthesis of myo-inositol from D-

534 glucose 6-phosphate, IMPA1 provides one avenue to protect cells, particularly in the brain (Parthasarathy, 

535 Parthasarathy, & Vadnal, 1997), from the osmotic stress of this glucose metabolite (Rafikov et al., 2019). We 

536 found independent IMPA1 duplications in the pteropodid ancestor, A. jamaicensis, A. caudifer, P. discolor, 

537 and the common ancestor of phyllostomids and Mormoops. Except for the aerial insectivore Mormoops, all 

538 the lineages with IMPA1 duplications include nectar and fruit in their diet (Figure 1), are expected to at least 

539 occasionally experience high blood glucose levels (Amitai et al., 2010; Ayala & Schondube, 2011; Kelm, Simon, 

540 Kuhlow, Voigh & Ristow, 2011; Welch, Herrera & Suarez, 2008; Meng, Zhu, Huang, Irwin, & Zhang, 2016), and 

541 therefore require options for processing metabolites from glycolysis. Although beta integrins, including ITAD, 

542 are regulators of leukocyte function and therefore not annotated as directly involved in metabolism, 

543 leukocyte adhesion has been found to modulate glucose homeostasis via lipid metabolism (Meakin et al., 

544 2015). Specifically, mice deficient in a paralogous beta-2 integrin become spontaneously obese in old age 

545 despite a normal diet (Z. Dong, Gutierrez-Ramos, Coxon, Mayadas, & Wagner, 1997), and when fed a fat rich 

546 diet show obesity, inflammation, high neutrophil activity and insulin resistance in skeletal muscle (Meakin et 

547 al., 2015). Likewise, mice deficient in this same integrin are unable to respond to fasting by increasing fat 

548 uptake and reduce insulin levels slowly compared to normal mice (Babic et al., 2004). We found single ITAD 

549 duplications in lineages that include sugar rich foods in their diet: ancestral pteropodids and phyllostomids, as 

550 well as Leptonycteris yerbabuenae, two each in Macroglossus, Anoura, and Tonatia, and three in Artibeus 

551 jamaicensis. While the function of these lineage–specific bat paralogs remain unknown, their phylogenetic 

552 distribution warrants future exploration and functional analysis.

553 In summary, our results, grounded on the most comprehensive survey of bat genomes to date, 

554 suggest bats have evolved complex mechanisms of inflammasome regulation. These may have evolved to 

555 prevent uncontrolled inflammatory response against DAMPs byproducts of the high metabolic rate required 

556 for powered flight (Banerjee et al., 2017; Banerjee et al., 2020; Subudhi, Rapin & Misra, 2019; Xie et al., 2018), 

557 to better respond against intra-cellular pathogens such as viruses, or some combination of both. Regardless 

558 of the ecological origin of selection, compared to mammals such as humans or mice, bat genomes reveal 

559 systemwide immune evolution that prevents or dampens aggressive inflammatory responses. In contrast with 

560 these gene losses, we found significant expansions in gene families involved with glucose degradation, 
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561 coinciding with the transition from a diet based mainly on insects to a high-glucose content diet that includes 

562 fruit and nectar. 

563 By undertaking large-scale comparative genomic analyses encompassing many ecologically divergent 

564 lineages, the present study demonstrates the impact of genomics in non-model organisms. Such analyses 

565 allow elucidating the broad evolutionary mechanisms in a given clade, with potential for functional 

566 implications. Yet, heterogeneity in assembly quality continues to limit the scope of inference. Hence, the need 

567 to generate high quality genomes for future studies endures. 

568
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Tables

Table 1. Branch–site codeml results for all species on single–copy immune system genes. FDR, false discovery rate; LR, likelihood ratio; P, nominal P-

value.

Symbol Name Category Alt Null LRT P-val FDR

Bbc3 BCL2 Binding Component 3 Inflammatory response -4704.07 -4724.64 41.15 0.00 0.000

BPIFB5 BPI fold containing family B member 4 Antimicrobials -5438.63 -5448.49 19.73 0.00 0.000

CCL1 C-C motif chemokine 1 Chemokines/Cytokines/Anti

microbials

-2449.96 -2454.54 9.16 0.00 0.023

CD3E CD3e molecule TCR signaling Pathway -4463.25 -4485.65 44.80 0.00 0.000

CD79B CD79b molecule BCR Signaling Pathway -4298.73 -4303.68 9.91 0.00 0.017

CD86 CD86 molecule Antimicrobials -5668.52 -5673.13 9.22 0.00 0.023

CSF2 colony stimulating factor 2 Cytokines -1895.79 -1901.28 10.98 0.00 0.012

CXCL13 C-X-C motif chemokine 13 Chemokines/Cytokines/Anti

microbials

-2446.76 -2474.82 56.11 0.00 0.000

DEFB129 † Beta-defensin 129 Antimicrobials -4093.98 -4100.00 12.05 0.00 0.008

DEFB133 defensin beta 133 Antimicrobials -935.69 -944.53 17.67 0.00 0.001

F2RL1 F2R like trypsin receptor 1 Antimicrobials -10695.69 -

10741.51

91.64 0.00 0.000

HRK† Harakiri, BCL2 Interacting Protein Inflammatory response -1232.08 -1248.01 31.86 0.00 0.000

IFNG interferon gamma Antigen Processing and 

Presentation

-5525.65 -5538.95 26.60 0.00 0.000

IL17A Interleukin-17A Cytokines/Interleukins -4495.35 -4500.65 10.60 0.00 0.014
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IL17RC interleukin 17 receptor C Cytokines -3585.03 -3623.10 76.14 0.00 0.000

IL1A interleukin 1 alpha Cytokines -6876.43 -6880.12 7.39 0.01 0.052

IL20RA interleukin 20 receptor subunit alpha Cytokine Receptors -12518.47 -

12522.21

7.49 0.01 0.051

INHBE Inhibin beta E chain Cytokines/TGFb family -8225.60 -8257.30 63.40 0.00 0.000

JUN Jun proto-oncogene, AP-1 

transcription factor subunit

BCR Signaling Pathway -4109.81 -4141.82 64.03 0.00 0.000

MAPKBP1 Mitogen-Activated Protein Kinase 

Binding Protein 1

Antimicrobials/Inflammatory 

response

-17784.73 -

17791.00

12.54 0.00 0.006

NPFF neuropeptide FF-amide peptide 

precursor

Cytokines -2619.77 -2623.89 8.23 0.00 0.037

NRG1 neuregulin 1 Cytokines -1737.10 -1741.12 8.05 0.01 0.038

TRDC T cell receptor delta constant TCR signaling Pathway -4159.64 -4192.39 65.50 0.00 0.000

TRDV3 T cell receptor delta variable 3 TCR signaling Pathway -2903.04 -2908.09 10.09 0.00 0.016

TRH Pro-thyrotropin-releasing hormone Cytokines -6601.02 -6606.58 11.12 0.00 0.012

TRIML1 Tripartite Motif Family Like 1 Antimicrobials -10302.78 -

10307.91

10.27 0.00 0.015

TYROBP TYRO protein tyrosine kinase-binding 

protein

NaturalKiller Cell Cytotoxicity -1824.09 -1829.22 10.27 0.00 0.015

†Genes non significant in aBSREL
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Figures 

Figure 1. Phylogeny, dietary diversity, and BUSCO completeness across bat genomes. A) Species tree based on 

>300 genome –wide loci dated using penalized likelihood smoothing. *Genomes excluded from CAFE 

analyses. B) Diet composition and relative reliance indicated by color intensity (Rojas et al., 2018).  C) BUSCO 

completeness for the corresponding genome. 
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Figure 2. Graphical summary of the cellular location and biological process categorization for genes involved 

in the inflammasome activation pathway found to be missing across all bats. A) Gene loss ofspecific epithelial 

α and β defensins. B) Gene losses of NKG2D ligands RAET1 and H60, involved in recruiting NK cells and IFN-γ 

stimulation. C) Losses in IFN-γ activating PYRIN and HIN domain (PYHIN) gene family (AIM2, IFI16, PYHIN1), 

along with the IFN-γ inducible related GTPase genes (IRGM1, IRGM2, IGTO, IIGP, TGTP2); loss of IRGM1 and 2 

results in increase macrophage survival and CD4+ T cells apoptosis.
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Figure 3. Gene ontology categories, phylogenetic locations, and relative size of significant gene family 

expansions (A) and contractions (B) inferred using CAFE. “Other” category comprises mostly Panther cellular 

processes, and GOnet response to stress and autophagy. Pie sizes are relative to a maximum of 594 

expansions and 579 contractions.
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