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We present a search for gravitational waves from the coalescence of subsolar-mass black hole binaries
using data from the first half of Advanced LIGO and Virgo’s third observing run. The observation of a
subsolar-mass black hole merger may be an indication of primordial origin; primordial black holes may
contribute to the dark matter distribution. We search for black hole mergers where the primary mass is
0.1–7 M⊙ and the secondary mass is 0.1–1 M⊙. A variety of models predict the production and
coalescence of binaries containing primordial black holes; some involve dynamical assembly, which may
allow for residual eccentricity to be observed. For component masses> 0.5 M⊙, we also search for sources
in eccentric orbits, measured at a reference gravitational-wave frequency of 10 Hz, up to e10 ∼ 0.3. We find
no convincing candidates and place new upper limits on the rate of primordial black hole mergers. The
merger rate of 0.5–0.5 ð1.0–1.0Þ M⊙ sources is< 7100ð1200Þ Gpc−3 yr−1. Our limits are ∼3–4 times more
constraining than prior analyses. Finally, we demonstrate how our limits can be used to constrain arbitrary
models of the primordial black hole mass distribution and merger rate.
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Introduction.—Gravitational-wave astronomy has ente-
red an era of routine observations. The Advanced LIGO [1]
and Virgo [2] observatories have now completed three
observing runs (O1, O2, and O3); each was accompanied
by significant increases in sensitivity [3]. To date, over 50
binary black hole mergers have been reported [4–6]. These
observations have had significant impact on the study of the
merger rate and population of compact objects [7]; notable
events confirm the likely existence of black holes with
component masses in the pair-instability gap (> 50 M⊙)
[4,8] or in the region 3–5 M⊙ [9]. The possibility that these
extremal parts of the distribution [10–13] or a fraction of
the bulk of observed mergers [14–22] may be due to the
coalescence of primordial black holes (PBHs) is under
active investigation.
Currently, there is no clear observational evidence for the

existence of PBHs. However, in addition to providing an
explanation for some of the observed LIGO and Virgo
mergers [11], primordial black holes may be the origin of
some observed microlensing incidents [23], excess cross-
correlation between cosmic x-ray and cosmic microwave
background [24], the current excess in gravitational-wave

background observed by NANOGrav [25], and the seeds
for galaxy and supermassive black hole formation [26–28].
Many of these observations are also consistent with more
mundane explanations and standard stellar formation sce-
narios [7]. In contrast, there are no known mechanisms
through standard stellar evolution to produce subsolar-mass
black holes; the observation of a single subsolar-mass black
hole would be decisive for the existence of primordial black
holes or for even more exotic scenarios such as dark matter
triggered formation of black holes [29–31].
Several searches for gravitational waves from the coa-

lescence of subsolar-mass mergers have already been
conducted using data from LIGO’s first two observing
runs (O1, O2); these include searches for comparable mass
binary black holes [32–34], eccentric mergers [35], and
high-mass-ratio sources [36]. No likely candidates have
been found. In this Letter, we report a search for gravita-
tional waves from the coalescence of black holes with
primary mass 0.1–7 M⊙ and secondary mass 0.1–1 M⊙
using the open data from the first half of the third observing
(O3a) run of Advanced LIGO and Virgo. The parameter
space for our search region is shown in Fig. 1. The most
significant candidate in our search has a false alarm rate of
1 per O(month). Given the time observed, we consider our
results consistent with a null observation and place new
limits on the rate of subsolar-mass mergers that are 3–4
times more stringent than prior analyses due to the
significant improvement of sensitivity and detector robust-
ness of O3 compared to O1 and O2 [4].
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Our limits on the rate of subsolar-mass mergers can be
related to constraints on the fraction of dark matter com-
posed of PBHs; this requires a model of the binary’s
formation to predict the PBH abundance from the observed
merger rate. Current astrophysical models have large
uncertainties in their predictions of both the black hole
mass function and binary formation rate [18–20,37–40].
Primordial black holes may form binaries in the early
Universe if they can decouple from the cosmic ex-
pansion. However, it is under investigation what fraction
of binaries would be disrupted in the following evolution.
Reference [41] shows with N-body simulations that a
significant fraction would be disrupted if the fraction that
primordial black holes contribute to the dark matter is
fPBH ¼ 100%. Primordial black holes can also form binaries
in the late Universe by dynamical capture due to gravita-
tional-wave dissipation [18,42,43]; this scenario may also
lead to residual eccentricity by the time it is observable by
gravitational-wave detectors [44]. However, the event rate of
binaries formed in the early Universe is expected to be
dominant compared with the late Universe channel, depend-
ing on the intensity of binary disruption [41].
Because of the wide variety of models, in this Letter, we

consider a fiducial model that assumes a monochromatic
distribution of primordial black hole mass. The same model
was used in past subsolar-mass searches [32–36], and we
include it for comparison purposes. We also consider the
uncertainty on the rate estimates arising from the fraction of
binaries that are disrupted after formation [41]. Constraints

for specific models with broad mass distributions can be
derived from our observational constraints.
Search.—We conduct our analysis in a similar manner to

our previously presented search of the first two observing
runs [35]; however, for the first time we include data from
the Virgo observatory. We use the open-source PyCBC

toolkit [45,46] to conduct a matched-filtering-based search
[47]. Matched filtering allows us to extract a potential
signal using the predicted gravitational waveform as a
template. Potential candidates are assessed for consistency
between the operating observatories [48] and against
the expected morphology of the gravitational waveform
[49,50]. Each candidate is assigned a ranking statistic value
that takes into account these factors in addition to the
measured noise variance [51,52].
The statistical significance of each candidate is assessed

by comparing it to an empirically measured distribution of
false alarms [45]. The distribution is measured by con-
ducting numerous fictitious analyses, whereby we offset
detectors’ data in time. This procedure purposefully vio-
lates the time-of-flight constraints between the detectors to
remove coincident astrophysical sources and create ana-
lyses containing only false alarms [53–55].
As matched filtering requires accurate models of the

expected gravitational-wave signal, we use a combination
of the TaylorF2 post-Newtonian approximant accurate
to 3.5PN [56–59] and the TaylorF2e model [60–62].
TaylorF2e is an extension of TaylorF2, which includes
corrections for moderate eccentricity. Both TaylorF2 and
TaylorF2e model only the inspiral portion of a gravita-
tional-wave signal and do not account for the phase where
the binary finally merges. The merger can be safely
neglected as we search for sources only up to a total mass
of 8 M⊙. For these sources, the merger occurs at a
frequency above the most sensitive band of the instruments.
To search for a broad region, we use the stochastic

algorithm [63] to create a discrete bank of templates
designed to ensure that we recover > 95% of a signal’s
signal-to-noise ratio if it has parameters within the boun-
daries of our search. Our bank is designed to recover
binaries in quasicircular orbits where the primary mass is
0.1–7 M⊙ and the secondary mass is 0.1–1 M⊙. In
addition, for sources with component masses > 0.5 M⊙,
the bank is designed to recover sources with eccentric orbits
up to e10 ∼ 0.3, where e10 is the eccentricity at the fiducial
dominant-mode gravitational-wave frequency of 10 Hz. We
assume that PBHs will have negligible spin; this is
consistent with the predictions of PBH spin distributions
[64–68]. To save on computational cost, we limit the
starting frequency of each template so that its duration is
< 512 s; otherwise a cutoff at a gravitational-wave fre-
quency of 20 Hz is used. The template bank was also
constructed with this lower frequency criteria. These
choices result in a bank with ∼7.8 × 106 templates, where

FIG. 1. The regions searched by recent gravitational-wave
analyses of the LIGO and Virgo data as a function of detector-
frame primary and secondary mass. The region we search for
noneccentric sources (green) and the region sensitive to sources
with eccentricity up to e10 ∼ 0.3 (red) are shown. For comparison,
we include the search region of the most recent subsolar-mass
search by the LIGO-Virgo Collaboration (LVC) [33] (dashed), the
search for high-mass-ratio mergers [36], and searches for standard
stellar-mass sources [4,5], labeled by 3-OGC (3-Open Gravita-
tional-wave Catalog) or GWTC-2 (Gravitational-Wave Transient
Catalog-2). The axes are truncated at 200 M⊙.
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50% of the templates have nonzero eccentricity and use the
TaylorF2e model.
Observational results.—We search for gravitational

waves from the coalescence of subsolar-mass compact
binaries using the public LIGO and Virgo data from the
first half of the third observing run (O3a) [69,70]; data from
the second half of the observing run is not yet available. We
analyze the nearly 150 days of data, where at least two
observatories were operating; the twin LIGO observatories
were operating for ∼100 days of this period. In comparison
to the previous observing run, the LIGO instruments had
∼30%–50% greater range [3].
The most significant candidates from our search are

identified at a false alarm rate of one per O(month) and
shown in Table I; this is consistent with a null observation
and our expectation that the noise candidates follow a
Poisson distribution. Under the assumption of a null
detection, we place limits on the rate of binary mergers
at 90% confidence using the loudest event method of
Ref. [71]. The limit on the merger rate R90 is given as

R90 ¼
2.3
VT

; ð1Þ

where V is the estimated sensitive volume of the analysis
assessed at the false alarm rate of the most significant
observed candidate and T is the duration of the observation
period. We estimate the surveyed volume-time of our
analysis by measuring our analysis’ response to a simulated
population of Oð105Þ sources. We assume that sources are
isotropically distributed in their orientations and sky
location in addition to a uniform distribution in volume.
We measure the mass dependence of our sensitive volume
using separate simulation sets each with fixed-source
masses. For simulations that include eccentricity, we
assume a uniform distribution where e10 ∈ ½0; 0.3Þ.
The resulting upper limit on the merger rate, combined

with the limit from the prior analysis of O1 and O2 [35], is
shown as a function of chirp mass in Fig. 2, where chirp
mass is defined as M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 and
m1;2 are the masses of the two components of a binary.
For sources within our target parameter space, this limit
also holds for sources with varied mass ratios, but the same

chirp mass; a similar conclusion was noted in Ref. [33].
Our results limit the merger rate for 0.1–0.1, 0.5–0.5,
and 1.0 − 1.0 M⊙ sources to < 670 000, 7100, and
1200 Gpc−3 yr−1, respectively. This is an improvement
between 3 and 4 times over previous analyses, which only
used data from the first two observing runs.
Implications for primordial black hole abundance.—We

use the observational upper limits on the subsolar-mass
compact binary merger rate to constrain models of pri-
mordial black hole binary formation. Existing models have
significant uncertainties on the primordial black hole mass
distribution and the binary formation rate [10,18–20,37–
40]. Constraints on models can be derived from the
observational event rate upper limits given a specific
primordial black hole mass distribution. We consider a
fiducial mass distribution, a delta distribution following
Refs. [32,33], and our previous work [35,36] to allow for a
consistent comparison.
For the binary formation rate, we consider the mecha-

nism initially proposed in [37] and developed in [20,22,39–
41,72], where primordial black holes form bounded bina-
ries in the early Universe and merge recently. The binaries
formed in the late Universe is subdominant [44]; there-
fore we use the search results from circular binaries to
constrain the early Universe formation model. The binary
merger rate is given by Refs. [39,40] for a general mass
distribution PðmÞ

TABLE I. The top five candidates in our search with the highest
inverse false alarm rates (IFARs). The Global Positioning System
(GPS) time of each candidate, the component mass m1=2, and the
eccentricity of the template chosen by the search are shown.

GPS time IFAR (yr) m1=M⊙ m2=M⊙ e10

1245411568.354 0.084 0.69 0.21 0.00
1242817372.434 0.079 0.86 0.11 0.00
1246418221.718 0.075 0.13 0.13 0.00
1252963276.322 0.062 1.05 0.52 0.28
1240000657.632 0.057 3.04 0.10 0.00

FIG. 2. Upper limit on the rate of mergers at 90% confidence
(R90) for our search (purple). For comparison, we show the
previous limits from our search of the O1 and O2 data (blue
dashed) [35] in addition to the most recent results from subsolar-
mass searches conducted by the LVC of the O2 data (black
dotted) [33]. These all assume that sources are quasicircular;
constraints assuming a uniform distribution of e10 ∈ ½0; 0.3Þ are
also shown (green). As expected, the limit for eccentric sources
closely matches that for quasicircular binaries where the compo-
nent masses are > 0.5 M⊙. Shaded regions show the one sigma
uncertainty on the rate due to the Monte Carlo estimation of the
search’s surveyed volume-time.
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Rðf̃PBH;m1;m2Þ¼3×106f̃2PBHð0.7f̃2PBHþσ2eqÞ−21
74ðm1m2Þ 3

37

×

�
m1þm2

�36
37

min

�
Pðm1Þ
m1

;
Pðm2Þ
m2

�

×

�
Pðm1Þ
m1

þPðm2Þ
m2

�
Gpc−3yr−1; ð2Þ

where Rdm1dm2 is the event rate at the binary component
massesm1=2M⊙. The normalization for mass distribution isR
PðmÞdm ¼ 1. The parameter σeq ¼ 0.005 is the variance

of dark matter density perturbation at the matter radiation
equality epoch [40], and we keep this factor separate from
other binary disruption effects to perform consistent com-
parison with previous work. Reference [41] has used an N-
body simulation to show most binaries after formation
would be disrupted by their environment if fPBH ¼ 100%
and thus introduced a suppression factor S with value < 1,
which accounts for the disruption as a function of primor-
dial black hole mass and fraction. For a relatively narrow
mass distribution, Ref. [22] shows S (referred to as S2 in
Ref. [22]) is estimated to be 1% for fPBH ¼ 100% and ∼1
for fPBH < 1% and the suppression is only a function of
fPBH. However, underestimation by one order of magnitude
may exist for fPBH ¼ 100% if the merger of binaries
perturbed by the environment after formation is included
[22,34,72]. To account for this uncertainty, we define an
effective fraction that relates to the true fraction by
f̃53=37PBH ¼ Sf53=37PBH . Constraints in our past work [35,36]
on fPBH should also be understood as constraints on
f̃PBH; they implicitly assume the suppression factor is
unity. The true fraction fPBH can be recovered with a
well-understood estimation of S.
For a delta distribution of mass, Eq. (3) is reduced to

Rðf̃PBH; mÞ ¼ 3 × 106f̃2PBHð0.7f̃2PBH þ σ2eqÞ−21
74m−32

37: ð3Þ

Using the observational rate limit given in Fig. 2, the upper
limit on the effective fraction of primordial black hole with
a delta distribution of mass is shown in Fig. 3. A
comparison with previous search results for subsolar-mass
compact binaries is also plotted. The results should be
interpreted as constraints on the combined effect on the
binary merger rate from the abundance of primordial black
holes and the merger rate suppression due to environmental
interaction. Future improvements on theoretical modeling
and observational results can resolve the entanglement.
Overall, results in Fig. 3 show that our constraints are ∼2–3
times tighter than [35] using O1 and O2 data.
Constraints can also be derived on primordial black hole

scenarios that predict broad mass distributions. By extend-
ing Eq. (1), the corresponding 90% upper limits can be
obtained by requiring

Z
Rðθ⃗; m1; m2ÞVTðm1; m2Þdm1dm2 ¼ 2.3; ð4Þ

where R is the model-predicted merger rate density as a
function of the component masses and may include addi-
tional model parameters θ⃗. VT is the surveyed volume-time
of our analysis as a function of the component masses; this
is available as part of our data release.
To illustrate, we consider the scenario that primordial

black holes are produced in the early Universe QCD phase
transition era [10]. This model is shown to have a peak at
∼1 M⊙ and to be able to account for the origin of the
extremal parts of the already observed binary black hole
merger distribution. We choose the mass distribution PðmÞ
by following Ref. [10] from the early Universe scalar
perturbation spectral index 0.96 and use the binary for-
mation rate of Eq. (2). We assume a mass-independent
suppression factor may be applicable here given the narrow
peak of PðmÞ. The observational upper limits on event rate
from our search require f̃PBH ≤ 1% in this scenario. For
more general mass distributions, Eq. (4) is capable of
constraining the PBH abundance or other model parameters
given a specific primordial black hole mass distribution and
prescription that can predict the resulting merger rate
density Rðθ⃗; m1; m2Þ.
Conclusions.—We conduct a search for gravitational

waves from the coalescence of subsolar-mass black holes
using data from the first half of the third observing run of
Advanced LIGO and Virgo. We find no clear detections and

FIG. 3. The upper limits on the effective fraction of the
primordial black hole contribution to dark matter f̃PBH, from
the search for subsolar-mass compact binaries in LVC O1–O3a
data. As a comparison, we also plot the constraints from O1–O2
data [35] for the monochromatic mass distribution and for the
two-point mass distribution of high-mass-ratio (HMR) binaries
[36], where the primary mass is fixed to the average of the 2-OGC
events ≃37 M⊙. Note that this latter limit requires the additional
assumption that the primary mass abundance be consistent with
accounting for the majority of LIGO-observed binary black hole
mergers.
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so place new limits on the rate of mergers. The increased
sensitivity of the O3a data allows us to improve upon the
state-of-the-art limits by 3–4 times. The second half of the
O3 data (O3b) would be expected to improve these limits
by another factor of 1.5–2 times.
We apply our rate limits to a fiducial monochromatic

mass distribution and compare our results to the limits from
prior analyses. Overall, the constraints on the effective
fraction of primordial black holes in dark matter are 2–3
tighter than the previous results. Our observational results
can also help resolve the event rate modeling uncertainties
by constraining model parameters. If we assume that dark
matter consisted entirely of black holes, we constrain the
suppression factor to S ≤ 0.1% for 0.5 − 0.5 M⊙ mergers.
Lastly, we demonstrate how to apply our limits to models

that can predict the rate of PBH mergers.

To aid in comparing our rate limits to the various
formation scenarios leading to subsolar-mass mergers,
we make the detailed constraints available [73]. In addition,
we make available the configuration files and template
bank necessary to reproduce the analysis.
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