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1 Introduction
The proposal of new quantitative methods supposed to handle problems in historical linguistics has cre-
ated a gap between what one could call “classical” approaches to historical language comparison and
the “new and innovative” automatic approaches. Classical linguists are often skeptical of the new ap-
proaches, partly because the results differ from those achieved by classical methods (Anthony and Ringe
2015, Holm 2007), but also because the majority of the new approaches work in a black box fashion
and do not allow inspecting the concrete findings in detail. Computational linguists, on the other hand,
complain about classical historical linguists’ lack of consistency when applying the classical methods.
The use of computer applications in historical linguistics is steadily increasing. With more and more

data available, the classical methods reach their practical limits. At the same time, computer applica-
tions are not capable of replacing experts’ experience and intuition, especially when data are sparse. If
computers cannot replace experts and experts do not have enough time to analyse the massive amounts
of data, a new framework is needed, neither completely computer-driven, nor ignorant of the assistance
computers afford. Such computer-assisted frameworks are well-established in biology and translation.
Current machine translation systems, for example, are efficient and consistent, but they are by no means
accurate, and no one would use them in place of a trained expert. Trained experts, on the other hand, do
not necessarily work consistently and efficiently. In order to enhance both the quality of machine trans-
lation and the efficiency and consistency of human translation, a new paradigm of computer-assisted
translation has emerged (Barrachina et al. 2008: 3).
Following the idea of computer-assisted frameworks in translation and biology, a framework for

computer-assisted language comparison (CALC) could be the key to reconcile classical and compu-
tational approaches in historical linguistics. Computational approaches may still not be able to compete
with human experts, but when used to pre-process the data with human experts systematically correcting
the results, they can drastically increase both the efficiency and the consistency of the classical compar-
ative method.

Figure 1.1: Basic idea of data managment within the CALC framework.
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1 Introduction

This study presents a collection of 12 articles in which several ideas are presented that help to fill the
promise of computer-assisted approaches in historical linguistics with life. The articles reflect my past
efforts to establish computer-assisted language comparison as an integral part of research in both classical
and computational historical linguistics. They are divided into three major building blocks, which are
themselves subdivided into two groups, with two thematically close papers exemplifying my work in this
area.
The first block, titled “Of trees and webs: phylogenies and networks in historical linguistics” concen-

trates on phylogenetic reconstruction in a broad sense. After discussion phylogenetic networks in two
detailed studies, one exploring an Indo-European dataset (List et al. 2014a), and one a dataset of Chinese
dialects (List et al. 2014b), the chapter concentrates on automated approaches to ancestral state recon-
struction, as reflected in a theoretical study that emphasizes the importance of specific linguistic models
and rejects a naive take-over of models from evolutionary biology (List et al. 2016b), and a practical
study which evaluates how well different approaches for ancestral state reconstruction perform across
different datasets (Jäger 2018).
The second block, titled “Data formats and annotation frameworks” focuses on enhanced, computer-

assisted ways to produce, curate, and analyze linguistic data. The chapter starts from a series of stan-
dardization attempts as reflected by the “Cross-Linguistic Data Formats initiative” (https://cldf.
clld.org), which are introduced in an introductory article (Forkel et al. 2018) and exemplified in
form of an article presenting a new linguistic database of phonetic transcription systems (Anderson et al.
2018). Thereafter, the chapter focuses on annotation in historical linguistics, as reflected in two studies,
one presenting a new web-based tool which was designed to help linguists to increase the consistency of
their data annotations (List 2017), and one discussing theoretical and practical challenges of annotation
in Computer-Assisted Language Comparision, taking Burmish languages as an example test case (Hill
and List 2017).
The third block deals with automated approaches to sequence comparison in historical linguistics. In

a first part, two advanced methods for cognate detection are presented. The first study deals with the
detection of partial cognates in multi-lingual wordlists (List et al. 2016b). The second study provides
a description of the state of the art in automated cognate detection and introduces a new approach for
the partitioning of words into cognate sets (List et al. 2017). The second part concentrates on phonetic
alignments and sound correspondences. After a tutorial that introduces the state of the art of sequence
comparison methods in historical linguistics (List et al. 2018), a new method for the automated inference
of sound correspondence patterns across aligned data from multiple languages is proposed (List 2019b).
Each subsection of each block is accompanied by a short summary of the research and then followed

by the original studies as they appeared in the different journals. While I am not always listed as the first
author in all of these studies, my contribution to all of them was so substantial that the studies would
not have appeared without my assistance. In most of the studies, this can also be seen directly from the
author contributions wich are nowadays required by most journals.
In the conclusion, I give a short outlook on computer-assisted approaches in historical linguistics and

point to future challenges. While I conclude that the studies illustrated here are some first steps towards
the goal of making computer-assisted language comparison an integrative part of historical linguistics,
I express optimism that the importance of computer-assisted approaches in historical linguistics will
steadily grow and eventually help to bridge the gap between computational and classical approaches to
historical language comparison.
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2 Of Trees and Webs: Phylogenies and
Networks in Historical Linguistics

2.1 Phylogenetic Networks
Phylogenies in the form of phylogenetic trees play an important role in historical linguistics. On the one
hand, they capture macro-evolutionary patterns by modeling how language families evolved into their
current shape. On the other hand, they can serve as a backbone along which evolutionary processes
which do not necessarily follow the macro-phylogeny in all its details can be plotted. When compar-
ing how a certain set of character traits evolves along a given reference phylogeny, we can gain valuable
insights into specific aspects of language evolution and language change. With respect to lexical evolu-
tion, for example, we know that the words in a given language variety are not necessarily all inherited
from the ancestor language, but may instead also be borrowed from neighboring languages. When in-
vestigating the evolution of a set of words along a given reference phylogeny, borrowing processes may
contradict the macro-phylogeny and lead to conflicting signals in the analysis. These conflicting signals
can be represented in form of lateral edges drawn on top of the reference phylogeny. As a result, the
phylogeny becomes a phylogenetic network in which lateral edges represent processes resulting from
language contact, while vertical edges represent processes resulting from language change.
The procedure of character mapping, which is required to conduct these studies automatically, has

been originally developed in evolutionary biology (Dagan and Martin 2009) and later applied to study
lexical borrowing in historical linguistics (Nelson-Sathi et al. 2011). The following two studies build on
these initial ideas but expand them considerably. While the pilot study by Nelson-Sathi et al. (ibid.) used
a simplified technique to map the evolution of words onto a reference phylogeny, the study by List et al.
(2014a), title “Networks of lexical borrowing and lateral gene transfer in language and genome evolution”
introduces a weighted parsimony approach for character mapping and applies this to an improved dataset
of 40 Indo-European languages. While software, data, and code, were submitted along with the original
study in form of an extended supplementary material that also contained a short tutorial explaining how
the code could be used, the software has later been added to the LingPy software package (http:
//lingpy.org, List et al. 2019).
While the first study merely improved the algorithm for character mapping and the Indo-European

dataset, the second study by List et al. (2014b), titled “Using Phylogenetic Networks to Model Chinese
Dialect History” goes a step further by introducing a new analysis in which lateral connections, i.e.,
individual scenarios of lexical evolution that are in conflict with the reference phylogeny, are displayed
in geographic space. The benefits of these minimal spatial networks are illustrated with help of a lexical
dataset of 40 Chinese dialect varieties. As in the case of the improved minimal lateral network analysis
first presented in List et al. (2014a), the code for the calculation of minimal spatial networks has by now
been incorporated into the LingPy software package.
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Insights & Perspectives

Networks of lexical borrowing and
lateral gene transfer in language
and genome evolution

Johann-Mattis List1)*, Shijulal Nelson-Sathi2), Hans Geisler3) and William Martin2)

Like biological species, languages change over time. As noted by Darwin, there

are many parallels between language evolution and biological evolution.

Insights into these parallels have also undergone change in the past 150 years.

Just like genes, words change over time, and language evolution can be likened

to genome evolution accordingly, but what kind of evolution? There are

fundamental differences between eukaryotic and prokaryotic evolution. In the

former, natural variation entails the gradual accumulation of minor mutations in

alleles. In the latter, lateral gene transfer is an integral mechanism of natural

variation. The study of language evolution using biological methods has

attracted much interest of late, most approaches focusing on language tree

construction. These approaches may underestimate the important role that

borrowing plays in language evolution. Network approaches that were originally

designed to study lateral gene transfer may provide more realistic insights into

the complexities of language evolution.

Keywords:.borrowing; language evolution; lateral transfer; network approaches;

prokaryotic evolution

: Additional supporting information may be found in the online version of this

article at the publisher’s web-site.

Introduction

For a long time, both biologists and
linguists have been using family trees to
model how species and languages

evolve. But in contrast to biology –
where the tree model is generally
accepted to be the most realistic way to
model how eukaryotic species (species
with nucleated cells, such as animals and

plants) evolve – linguists have always
treated language trees with a certain
suspicion. They have emphasized that –
given the important role that horizontal
transmission plays in language history –
such trees can only capture vertical
aspects of language evolution, while
horizontal aspects (which linguists
traditionally model as “waves” that
spread out in circles around a center
in geographic space) are ignored.

In the last decade, language trees
have experienced a strong revival, espe-
cially in the public notion of linguistics as
reflected in popular scientific literature
and in articles addressed to a not
exclusively linguistic readership [1]. Ear-
lier linguistic work on phylogenetic
reconstruction was, with a few excep-
tions [2–8], qualitative in its nature. But
starting about 10 years ago, computer
methods originally designed to infer trees
frommolecular sequence datamade their
way into the analysis of large linguistic
datasets, leading to a resurgence of
language trees [9–15]. If the reconstruc-
tion of trees had only played a minor role
in historical linguistics up to that point,
it has now become a specific field of
interest, and some scholars even go so
far as proclaiming tree construction
as a priority for historical linguistic
endeavor [16].

In traditional historical linguistics,
these new approaches are met with a
certain amount of reservation, since
their results are often not in concor-
dance with those achieved by tradition-
al methods [17–20]. One important
reason for such discrepancies is the
relatively large number of individual
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and methodological errors in linguistic
datasets [19]; this is reflected by numer-
ous cases of wrong translations, wrong
homology assessments (incorrect iden-
tification of cognate words), and
undetected cases of lateral transfer
(borrowing) [17, 18].

In this paper, we argue that the
problem of the new quantitative meth-
ods is that they focus too much on the
vertical aspects of language evolution,
thereby forcing the data into tree-
like structures. We show that network
approaches that were originally
designed to study reticulation and

lateral gene transfer in the evolution
of prokaryotic species (microbes with-
out cell nuclei, such as bacteria and
archaea) can cope with these problems,
hence providing a more realistic way to
model the complexities of language
history by combining both its tree-like
(vertical) and its wave-like (horizontal)
aspects.

Historical linguists were
always skeptical about
language trees

In 1853 the German linguist August
Schleicher (1821–1868) published two
articles [21, 22] (Fig. 1A and B) in which
he showed how branching trees can be
used to illustrate the historical develop-
ment of languages (Table 1A). It is
possible [23] that Schleicher himself
adopted the idea from a colleague,

the Czech linguist František Ladislav
Čelakovský (1759–1852), whose post-
humously published lectures contain
an early tree diagram of the Slavic
languages [24] (Fig. 1C). Schleicher was
very interested in biology, especially
botany, and in his work we find many
passages where he compares languages
with organisms, assuming that they
went through stages of birth, youth,
middle age, old age, and – finally –
death [25]. He emphasized that lan-
guage classification was quite similar
to biological classification of animals
or plants [25]. He also mentioned the
problem of distinguishing vertically
from horizontally transmitted traits,
drawing a parallel between “foreign
influence” due to language contact
in language history, and “crossbreed-
ing” in evolutionary biology [26]
(Table 1B).

In biology, the concept of evolution-
ary trees was not introduced until

Figure 1. Three early language trees in the
history of linguistics. A: August Schleicher’s
first tree of Germanic and Balto-Slavic
languages. B: Schleicher’s first tree of the
Indo-European language family. C: An early
tree of the Slavic languages by František
Ladislav Čelakovský.

J.-M. List et al. Insights & Perspectives.....
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Charles Darwin’s (1809–1882) mention-
ing of the “Great Tree of Life” in
1859 [27], but it soon became deeply
ingrained in thinking on the topic.
Notably, it was later reinforced by many
influential drawings from Ernst Haeckel
(1837–1919, see [28] for details), culmi-
nating in the inference of trees from
molecular sequences [29], and the
reconstruction of phylogenetic trees
for all organisms using ribosomal and
informational gene phylogenies [30].

In linguistics the popularity of
language trees began to fade soon after
it was first proposed [31]. In 1872
Johannes Schmidt (1843–1901) pointed
out that linguistic data contradicted
the idea of simple, tree-like differentia-
tion [32]. Instead of the family tree
theory he proposed the “wave theory”
(Wellentheorie in German), which
states that certain changes spread like
waves in concentric circles over neigh-
boring speech communities. And before
Schmidt, Hugo Schuchardt (1842–1927)
had criticized the idea of split and
independent differentiation [33], em-
phasizing that languages diverge grad-
ually while at the same time mutually
influencing each other (Table 1C). Even
today, historical linguists continue to
hold strong reservations about the tree
model. In text books on historical
linguistics, both the tree and the wave
theory are usually introduced as two
complementary models, each of which
only depicts one aspect of language
history [34, 35]. Thus, if linguists are
asked whether language evolves in a
tree-like manner, most linguists would
probably answer as Hoenigswald did in
1990: “Yes, of course it does, if we so
wish; but we had better be very
careful” [36].

Borrowing is a
constitutive part of
language history

If we take the most frequent 1,000 Latin
words and look at how they survived in
its daughter languages, we will find that
67% of all words were directly inherited
in at least one language, yet only 14%
were inherited in all Romance lan-
guages [37]. However, this drastic loss
of Latin words during Romance lan-
guage history is only part of the story:
Since Latin never ceased to serve as a
cultural adstrate language (a language
that co-exists in some form in parallel
with another language with which it is
in contact), with a particularly great
impact on written vernaculars, only
33% of all 1,000 words were completely
lost, and about 50% survive as borrow-
ings from the ancestor language in the
daughter languages [37]. Moreover,
lexical transfer during the history of
the Romance languages was not re-
stricted to the influence of Latin alone,
and contact among the Romance lan-
guages and other neighboring Indo-
European languages was very frequent
and vivid. According to a recent survey
of 2,137 common words in Roma-
nian [38], for example, 894 (41.8%)
were classified as loanwords from other
languages. The majority of these bor-
rowed words were transferred from
Slavic donor languages (about 14%).
Only a small number of words were
borrowed from Latin (about 3%).

On the “borrowability scale” [39],
which ranks the ease with which
different elements of language are
assimilated by recipient languages,
borrowing of words ranks highest.

Lexical borrowing can affect only small
parts of the vocabulary of a given
language (such as specific terms for
religious concepts, cultural items, or
artifacts), or result in a situation where
large parts of the language’s original
lexicon are replaced. This can even
result in complete relexification, as in
Creole languages. In the World Loan-
word Database [40] the frequency of
direct borrowing events documented for
41 languages varies greatly, ranging
from 1% for Mandarin Chinese to 62%
for Selice Romani, with an average
of 25% and a standard deviation of
13% [41].

Borrowing cannot be
ignored in quantitative
approaches

With few exceptions [42–44], the major-
ity of the new biological methods for
tree construction makes use of lexical
language data. This is due to the fact
that it is much easier to compile lexical
datasets for large numbers of lan-
guages: in many cases – especially for
less-well studied language families –
wordlists are the only things available
for study. However, analysis of lexical
items also reflects the basic practice of
the traditional method for linguistic
reconstruction, which starts with the
comparison of words and mor-
phemes [35, 45, 46]. Similarly to earlier
quantitative approaches in historical
linguistics [8], the biological methods
require that borrowings be filtered out
of the data before the analysis is
applied. Since reliable automatic meth-
ods are lacking, cognate and borrowing

Table 1. Early quotes on language history from August Schleicher and Hugo Schuchardt

(A) August Schleicher [26]
We know both the Old Latin and the Romance languages which
demonstrably descended from the former via differentiation
and – you would call it crossbreeding – foreign influence

Wir kennen sowohl das Altlateinische, als auch die durch
Differenzierung und durch fremden Einfluss – Ihr w€urdet sagen
durch Kreuzung – nachweislich aus ihm hervorgegangenen
romanischen Sprachen

(B) August Schleicher [22]
These assumptions which logically follow from the previous
research can be best illustrated with the help of a branching
tree

Diese Annahmen, logisch folgend aus den Ergebnissen der
bisherigen Forschung, lassen sich am besten unter dem Bilde
eines sich ver€astelnden Baumes anschaulich machen

(C) Hugo Schuchardt [32]
We connect the branches and twigs of the family tree with
countless horizontal lines and it ceases to be a tree

Wir verbinden die €Aste und Zweige des Stammbaums durch
zahllose horizontale Linien, und er h€ort auf ein Stammbaum zu
sein

.....Insights & Perspectives J.-M. List et al.

143Bioessays 36: 141–150,� 2013 The Authors. BioEssays Published by WILEY Periodicals, Inc.

T
h
in
k
a
g
a
in

2 Of Trees and Webs: Phylogenies and Networks in Historical Linguistics

14



assignments are usually carried out
manually. In order to make this pains-
taking process easier, scholars revived
an old idea proposed in the 1950s [4, 5,
47], and restrict the lexical comparison
to words that belong to the realm of the
so-called “basic vocabulary” [12]. Basic
vocabulary is merely a technical term
that refers to a list of about 100–200
basic concepts (such as “hand”, “foot”,
“stone”) that are translated into the
languages under investigation. These
lists are usually called Swadesh lists, in
acknowledgement of Morris Swadesh
(1909–1967), who popularized their use
in linguistics. The basic assumption
regarding Swadesh lists is that (a) every
language has words that express the
concepts, (b) the words evolve slowly
(enabling us to recognize similarities
across languages), and (c) the words are
rather resistant to borrowing [16]. Un-
fortunately, the last assumption, in
particular, is highly problematic. Al-
though the use of Swadesh lists may
decrease the number of borrowings to a
certain degree, it cannot exclude all of
them. In a recent survey of 1,504
common words in English, for example,
616 (41%) were judged to be loan-
words [48], yet in the traditional English
Swadesh list there are still 32 borrow-
ings out of 200 (16.5%), mostly from Old
Norse and Old French [18]; and in a
recent revision of the Albanian Swadesh
list, 34 out of 107 words (31.8%) were
identified as possible borrowings [49].

Manual detection of borrowings can
range between trivial and impossible,
depending on the case in point. Some
borrowing processes are very transpar-
ent. Neither a linguist nor a German
speaker has problems in identifying the
word Job “job” as a recent borrowing
from English, since the initial sound of
the word is not yet “integrated” into the
German sound system. But the situation
is not always that simple. Thus, while
no German native speaker would hesi-
tate to assume that Fett “grease” is a
“normal” German word, the word has in
fact been borrowed from Low German
dialects [50], as can be proven from its
irregular correspondence with English
fat: If the words were truly cognate, we
would expect the German word to end
with an [s] (spelled as ß in German)
instead of a [t], as in German heiß “hot,”
which is truly cognate with English
hot [50]. Identifying borrowings with

help of these techniques requires expert
knowledge of the languages under
investigation, and the deeper one goes
back in time, the harder it becomes even
for the experts, since the available
phonological information may be lost.

Recent tests on simulated data have
shown how crucial it is to screen
the linguistic data carefully before
applying quantitative analyses [51].
How difficult it is to prepare the data
and to filter out all borrowings correctly
is reflected by the fact that the most
frequently used datasets, the Compara-
tive Indo-European Database ([52],
http://www.wordgumbo.com/ie/cmp/),
and the Austronesian Basic Vocabulary
Database ([53], http://language.psy.
auckland.ac.nz/austronesian/), contain
many undetected borrowings and vari-
ous levels of erroneous cognate judg-
ments [17–19, 49]. But “scrubbing” the
data of false cognate assignments does
not seem to be feasible for large data-
sets. Quantitative studies that are based
on the Indo-European Lexical Cognacy
Database (IELex, http://ielex.mpi.nl/),
whose goal was to significantly enhance
the notoriously flawed database com-
posed by [52], still yield subgroupings
that contradict traditional genetic clas-
sification (compare, for example, the
strange grouping of Polish in [13]
and [54]). One reason for these problems
is that the database still contains many
undetected borrowings and other
errors. The other reason is that the
exclusion of borrowings necessarily
yields a loss of information that can
have large impacts on the results [49]. It
seems that the a priori exclusion of
suspected borrowings from the data is
not enough, especially in cases where
the history of a language family is not
yet well understood. Instead of making
tree reconstruction the key objective of
historical linguistics, we need quantita-
tive methods that can deal with borrow-
ings and – ideally – handle both vertical
and lateral transmission.

Language history bears a
close resemblance to
prokaryote evolution

If historical linguists want to profit from
biological expertise in large-scale anal-
yses of big datasets, they need to make

up their mind regarding the methods
they need in linguistics, and the meth-
ods that biology can provide. That
evolutionary biology has developed
some sophisticated tools to reconstruct
phylogenetic trees, and that these tools
can be easily applied to linguistic
datasets, has been demonstrated fre-
quently during the last decade. Yet is
this really all that biology has to offer?

In several fundamental aspects, the
genomes of eukaryotic species – such as
animals and plants – and prokaryotic
species – such as bacteria and archaea –
evolve in very different ways, and lateral
gene transfer is generally at the root
of those differences. Gene families are
one example. Gene families are sets of
homologous (cognate) genes that were
formed by duplication of an ancestral
gene, quite similar to the reflexes of
the root of a word in the same or
different language. In eukaryotes, gene
families arise through duplication: a
resident gene duplicates, perhaps sev-
eral times, and the resulting gene family
consists of members that are closely
related at the outset and undergo
divergence and functional specializa-
tion [55]. In prokaryotes, gene families
arise via the acquisition of related
sequences through lateral gene
transfer, not through duplication [56].
As another example, in eukaryotes,
meiosis ensures that only members of
the same species exchange genes, and
recombination is reciprocal. In prokar-
yotes, there arewell-studiedmechanisms
that mediate gene transfer, both within
and across species boundaries [57].

Furthermore, if we sequence 61
human genomes, we will find – to all
intents and purposes – the same
collection of about 30,000 genes in
each individual, with allelic variants at
many loci, and the 46 chromosomes will
almost always be colinear: the genes
appearing at similar positions. If we
sequence 61 genomes of Escherichia
coli, a bacterium usually found in the
intestines of warm-blooded species, we
will find about 4,500 genes in each
individual genome, but only about
1,000 genes that are present in all
genomes. Summing up the different
genes we find in all individuals, there
are about 18,000 different genes dis-
tributed among them, and this count
will further increase if we add more
individual genomes to this calculation,
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hence yielding an ever growing pange-
nome of Escherichia coli [58]. These
examples underscore fundamental dif-
ferences in the nature of the processes of
evolutionary divergence in prokaryotic
and eukaryotic populations: Eukaryotic
populations generate tree-like struc-
tures of divergence over time [59], while
genome evolution in prokaryotes gen-
erates both tree-like and net-like com-
ponents of relatedness over time [60].

Recalling the scores on shared
inherited words and borrowings we
reported for the Romance languages
earlier, it seems obvious that language
history shows a much closer resem-
blance to prokaryotic evolution than to
eukaryotic evolution. Thus, if one says
that language history and genome
evolution have a lot in common, it
seems much more appropriate to em-
phasize that language evolution may
resemble prokaryotic evolution much
more than it resembles eukaryotic
evolution. We do not claim to make a
binary distinction here: As the amount
of contact-induced change differs from
language to language, so do the under-
lying evolutionary processes, and it is
rather a continuumbetween strictly tree-
like and strictly network-like evolution
that we are dealing with. Nevertheless, if
wewant to employ quantitativemethods
from biology to supplement our research
in historical linguistics, it could bemuch
more fruitful to get away from focusing
exclusively on those methods that yield
simple family trees, and instead look for
methods that were designed to handle
lateral transfer.

Network approaches offer
new possibilities for
quantitative analyses in
language evolution

Despite the dissatisfaction of many
historical linguists with both the tree
and the wave model, there are – to our
knowledge – only a few attempts to
combine both approaches within a new
framework [35, 61, 62]; furthermore,
unfortunately most of these proposals
remain a mere visualization of the
scholars’ intuitions regarding the data,
from which no further insights can be
drawn. If one wants to include both the
vertical and the horizontal aspects, it

seems natural to turn to networks as a
format to represent language history.

In evolutionary biology, different
network approaches have been devel-
oped in order to study reticulation in
biological datasets (see the overviews
in [63] and [64]). Among the most
popular of these methods are those that
produce unrooted networks (splits
graphs) such as split decomposition [65]
or NeighborNet [66]. These methods
enjoy some popularity in recent quanti-
tative studies in historical linguistics,
and have been applied to quite a few
different datasets [67–71]. In contrast to
the popular quantitative methods for
tree construction, such as Neighbor-
Joining [72], or Bayesian inference [73],
they are unbiased with respect to “tree-
likeness”, and provide a direct visuali-
zation of the degree of conflict in a given
dataset [74]. They have proven to be a
very useful tool for data exploration,
and have even been used to measure
reticulation directly from lexical dis-
tance matrices across the world’s lan-
guage families [75]. The drawback of
these methods is that they are distance-
based, hence aggregating lexical infor-
mation on the taxonomic level. The
information on shared cognates in the
underlying datasets is converted to
distance scores, and the result is an
unrooted network that only indicates
whether there are conflicting signals in
the data, but does not directly point to
the cognate sets that are responsible for
these conflicts.

A more realistic modeling of lan-
guage history could be achieved by
methods that automatically infer hid-
den borrowings in the data. While quite
common in evolutionary biology [76,
77], these methods are still in their
infancy in historical linguistics. Two
early approaches [70, 78] are distance-
based, and therefore do not allow the
direct identification of the characters
that conflict in the reference trees. The
first character-based approach to this
problem [79] uses maximum parsimony
to determine the characters that conflict
with an inferred family tree. Unfortu-
nately, the method has only been
tested on a very small dataset, and no
further applications are known to us.
An alternative proposal expands the
notion of perfect phylogenetic trees [10]
to the notion of perfect phylogenetic
networks [80]. The method yields direct

statements as to which characters have
been inferred as being borrowed in a
given dataset. Unfortunately, the algo-
rithm is very time-consuming, and it is
thus not feasible to apply it to larger
datasets [81].

Ancestral genome sizes
reveal the minimum
amount of lateral transfer
in microbial evolution

A more recent method for lateral gene
transfer detection in prokaryotic genomes
is the so-called minimal lateral network
approach (MLN, [82]). This method
applies the technique of gain-loss map-
ping [83–85] to presence-absence pat-
terns of gene families in order to infer
patterns that are suggestive of lateral
transfer. Gain-loss mapping starts from a
given reference tree that should reflect the
vertical component of evolution as closely
as possible. With help of the reference
tree, specific gain-loss scenarios for all
gene families in the dataset are inferred. A
gain-loss scenario provides an explana-
tion of how a given character could have
evolved along the reference tree when
character evolution is modeled as a
simple process of gain and loss events.
In order to confirm the assumption that a
given character evolves in an exclusively
vertical manner, the inferred gain-loss
scenario should contain only one gain
event. If more than one gain event is
inferred, the character is judged to be
suggestive of lateral transfer (see Fig. 2 for
an example applied to linguistic data).

The crucial point of the MLNmethod
is to select the best gain-loss scenarios
out of the multitude of possible ones.
The key argument in biology is the
notion of ancestral genome size distri-
butions [84]: If, for example, all gene
families are assumed to originate only
once along the reference tree, this may
result in ancestral genomes that contain
much more genes than are observed
in the contemporary genomes. If, on
the other hand, one assumes that all
gene families are explained by lateral
gene transfer only, then the vertical
component of genome evolution dis-
appears, and ancestral genome sizes
become too tiny to support life. Between
those extremes there are amounts of
vertical and lateral inheritance that will
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Figure 2. Illustration of the MLN method. A: Two cognate sets for “to count” in three Germanic and three Romance languages. The
English word is a known borrowing from Old French. The original reflex of Proto-Germanic �tal- is still preserved in English “to tell,”
but its original meaning has shifted under the influence of the borrowing from Old French, and it is thus not listed in this sample. B: The
loss-only scenario assumes that the cognate set with reflexes of Latin originated in the root and was then lost independently in both
German and Danish. C: The two-gain scenario infers two separate origins of the cognate sets. The pattern is thus suggestive of lateral
transfer, and one lateral transfer event is inferred. This is marked by the link drawn between the two nodes where the characters first
originate. D: Combination of scenarios for both cognate sets based on the loss-only scenario in B. Note that this scenario forces us to
assume that the ancestor of the Germanic languages had two words expressing the concept “to count.” While this is not improbable per
se, cases of inferred overwhelming amounts of synonymy are suspicious in language history. E: Combination of scenarios for both
cognate sets based on the two-gain scenario in C. This scenario is preferred by the MLN method, since the number of synonyms in the
ancestral languages is in balance with the modern languages. Note that the inference does not tell us which language is the real donor
(which is Old French). According to our model, it could be any of the three Romance languages. For this reason, the edge is drawn
between the ancestor off all languages.
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bring the distribution of inferred ances-
tral genome sizes into agreement with
the attested distribution of contempo-
rary genome sizes. Those distributions
can be tested statistically, and the gain-
loss scenarios with the amount of lateral
gene transfer that best fits the data can
be determined. Having selected the best
scenarios, a rooted phylogenetic net-
work can be reconstructed. Here, multi-
ple origins of the same gene family on
different branches of the reference tree
are connected by lateral links; edges
connecting the same two nodes for
different gene families are joined to
form weighted edges [82].

How minimal lateral
networks can be applied
to linguistic data

Technically, the application of the MLN
approach to language data can be
carried out in a rather straightforward
way, by investigating presence-absence
patterns of cognate sets instead of
presence-absence patterns in gene fam-

ilies. Theoretically, however, the appli-
cation of the approach requires some
caveats: while genomes are physical
entities whose size can be directly
determined, the linguistic data consist
of samples based on meaning lists. We
can restate the genome size criterion for
scenario selection in such a way that we
prefer those scenarios in which the
number of words used to express
specific meanings does not differ much
between ancestral and contemporary
languages. However, we need to keep in
mind that new words can also shift into
the meaning slots from outside the
sample. Although parallel semantic
shift involving cognate words in differ-
ent branches of a language family is
surely much rarer than borrowing, this
has to be considered when applying the
method to linguistic data.

The MLN approach was first applied
to the well-known Comparative Indo-
European Database [52], and revealed a
rather high degree of non-tree-like
signal: 61% of all 2,346 cognate sets
in the data were found to be suggestive
of borrowing [86]. Since the study
employed a very simple top-down algo-
rithm for gain-loss mapping [84], the
inferred amount of cognate sets contra-
dicting the reference tree is surely too
high. In order to test whether more
refined techniques of gain-loss mapping
can yield more realistic results, we
applied a refined variant of the MLN
approach to a subset of 40 Indo-
European languages taken from the
IELex (dump from May 2013 kindly
provided by M. Dunn). The modified
MLN approach is implemented as part

of a freely available Python library for
quantitative tasks in historical linguis-
tics [87]. It employs weighted parsimony
for the task of gain-loss mapping [83]
and also allows for a certain proportion
of parallel evolution. A Python script
along with the data to run all analyses
can be downloaded from: https://gist.
github.com/LinguList/7475830. The ad-
vantage of the IELex is that known
borrowings are not only marked as
such, but that they are also assigned
to the cognate sets to which they would
belong, if they were not borrowings.
Thus, English mountain is clustered
with the reflexes of Vulgar Latin
�montanea (derived from Latin mōns)
in the Romance languages, such as,
among others, French montagne, Italian
montagna, and Spanish montaña. This
gives us the possibility to test the
usefulness of the refined MLN approach.
We corrected some obvious errors in the
data, especially in some of the Slavic
languages (the whole dataset is provided
in Supplementary Material I). Excluding
1,864 words that could not be shown to
be cognate to any other word in the data,
this yielded a total of 1,190 cognate sets.
As a reference tree, we chose the one
provided by Ethnologue [88]. The choice
of this tree is for practical reasons,
since it was proposed independently of
quantitative methods, and reflects an
openly available “quasi-standard”. This
does not mean that we are unaware of
the many problems that this tree con-
tains, especially in the classification of
the subgroups.

Figure 3 shows the rooted phylo-
genetic network that the refined MLN

Figure 3. Minimal Lateral Network of 40
Indo-European languages. The size of the
nodes reflects the number of cognate sets in
each language as inferred by the MLN
approach. The links reflect the minimal
amount of lateral transfer events that is
needed to bring the distributions of synonyms
in the contemporary languages (leaves of the
tree) and the ancestral languages (internal
nodes of the tree) as closely together as
possible.
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approach reconstructed from the data.
As can be seen, the method nicely
recovers some well-known cases of
contact relations among the languages
in the sample. English, for example
shows two heavily weighted edges, one
with the ancestor of the Scandinavian
languages, and one with the ancestor of
the Romance languages, nicely reflect-
ing two of its major donors: Scandina-
vian words made their way into the
English lexicon as a result of Danish and
northern Scandinavian invasions start-
ing in the 8th–9th century [89], and Old
Norman (a northern French dialect)
came to England as a result of the
Norman conquest in 1066. Old Norman
even developed into a distinct variety
called Anglo-Normanwhichwas spoken
in England by the higher social strata
from 12th to 15th century. The ensuing
intensive language contact results in a
boom of “French” loans, which eventu-
ally became a formative element of the
English lexicon [89]. Albanian shows
also strong connections with the ances-
tor of the Romance languages, reflecting
the large number of Latin loanwords in
the language [49].

Of the 105 cognate sets in the data
that contain known hidden borrowings,
the method identifies 76 correctly (see
the specific results in Supplementary
Material I). In total, the method iden-
tifies 369 out of 1,190 cognate sets (31%)
that do not correspond to the reference
tree. If the number of known borrowings
reflected the true amount of borrowings
in the data, and the reference tree
displayed the true vertical history of
the languages, this would mean that the
method largely overstates the amount of
lateral transfer. However, given the
uncertainty regarding the subgrouping
of the Indo-European languages that is
also reflected in the reference tree, and
the uncertainty of the cognate judg-
ments in the data, we are confident that
the results provide a good starting point
for further research that may reveal
further hidden borrowings and errone-
ous cognate judgments.

This can be exemplified by an
inspection of the specific results that
the method yields for English: Of the 32
borrowings into English [18], eight are
singletons and five have reflexes in
almost all Germanic languages in the
sample and can thus technically not be
identified by the MLN approach. Of

the remaining 19 words, 17 (89%) are
correctly identified. 17 further words are
found to be not compatible with the
reference tree, but three of these words
are known borrowings in other lan-
guages. Of the remaining 14 words, four
words (belly, narrow, dull, smoke), are
obviously erroneously coded, since they
are linked with words outside the
Germanic branch, although their deeper
etymology or the etymology of their
presumed cognates is unclear; and four
words (at, leaf, small, know) seem to be
real cases of parallel semantic develop-
ment (be it retention or innovation) with
other languages (see Supplementary
Material II). The remaining six words
(back, few, many, snake, tree, with) are
exclusively shared with the Scandina-
vian languages inside the Germanic
branch. Whether this pattern results
from innovations on the West Germanic
mainland, by which the reflexes of the
words in Frisian, German, and Dutch
were replaced, or from hitherto unno-
ticed Scandinavian influence requires
further investigation. A full list of all
words with further comments is sup-
plied in Supplementary Material II.

The modified MLN approach is
surely not perfect. It heavily relies on
the underlying data, and especially the
selection of the reference tree can have a
strong influence on the results. Further-
more, it can only recover those cases of
borrowing that occur inside a given
language family. External influences
cannot be recovered. Further research
is required in order to assess to which
degree it overestimates borrowing rates
because of its incapacity of handling
independent parallel developments.
However, it is a first step en route to
more realistic quantitative models of
language evolution, and could prove
useful for scholars working on quanti-
tative applications in historical linguis-
tics, since it not only tests the tree-
likeness of datasets but also provides
direct hints as to the characters that
cause reticulation. It can help us to
improve the quality of our datasets by
identifying possible hidden borrowings
and erroneous cognate assignments.

Conclusion and outlook

Different metaphors and models have,
over the past century or two, been

developed to describe the evolution of
languages, but realistic quantitative
models that can explain horizontal
evolutionary processes in addition to
genealogical relationships were lacking.
Since similar evolutionary processes
shaped both genomes and languages
into contemporary forms, it is possible
to apply methods that are developed to
study genome evolution to study lan-
guage evolution. Since lateral transfer
in language evolution constitutes a real
form of natural variation, phylogenetic
network approaches provide a better
means to model language evolution
than strictly bifurcating phylogenetic
trees. We strongly support the recent
attempts to strengthen the quantitative
basis of historical linguistics by building
large databases and adapting computa-
tionalmethods from biology. Great work
has been done in the past 10 years, and
we know that errors are unavoidable
when building large databases that
accumulate historical linguistic knowl-
edge. However, since errors are not only
unavoidable, but – in the case of
undetected borrowings – also reflect
one vivid aspect of language history, we
think it is time to rethink claims about
the major processes underlying lan-
guage evolution. Applying network
approaches in historical linguistics
can provide new insights into both the
vertical and the lateral components of
language history, and help to bring
traditional and more quantitative re-
search closer together.
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Abstract

The idea that language history is best visualized by a branching tree has been contro-
versially discussed in the linguistic world andmany alternative theories have been pro-
posed. The reluctance of many scholars to accept the tree as the natural metaphor for
language history was due to conflicting signals in linguistic data: many resemblances
would simply not point to a unique tree. Despite these observations, the majority of
automatic approaches applied to language data has been based on the tree model,
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while network approaches have rarely been applied. Due to the specific sociolinguistic
situation in China, where very divergent varieties have been developing under the
roof of a common culture and writing system, the history of the Chinese dialects is
complex and intertwined. They are therefore a good test case for methods which no
longer take the family tree as their primary model. Here we use a network approach
to study the lexical history of 40 Chinese dialects. In contrast to previous approaches,
our method is character-based and captures both vertical and horizontal aspects of
language history. According to our results, themajority of characters in our data (about
54%) cannot be readily explained with the help of a given tree model. The borrowing
events inferred by our method do not only reflect general uncertainties of Chinese
dialect classification, they also reveal the strong influence of the standard language on
Chinese dialect history.

Keywords

Chinese languages – Chinese linguistics – treemodel – phylogenetic networks – lexical
borrowing

1 Introduction

1.1 Languages and Dialects
What exactly is a language, and what is a dialect? One tends to say that the
people from Shànghǎi, Běijīng, and Měixiàn all speak ‘Chinese,’ while people
from Scandinavia speak ‘Norwegian,’ ‘Swedish,’ or ‘Danish.’ Looking at the pho-
netic transcriptions of the first sentence of Aesop’s fable ‘The Northwind and
the Sun’ in the three Chinese ‘dialects’ and the three Scandinavian ‘languages’
given in Table 1, the clear-cut distinction suggested by the different ways we
name the varieties starts to become blurred. As the transcriptions show, the
Chinese varieties differ from each other to a similar or even greater degree than
the Scandinavian ones.

The reason for the fuzziness of the terms ‘dialect’ and ‘language’ can be
found in the daily use of the terms in non-linguistic contexts. What is called
a language and what a dialect does not necessarily depend on pure linguistic
criteria, but often also on culture and politics (Barbour and Stevenson, 1998:
8). The problem of culture and politics, however, is that they have an impact
on both languages and dialects. Although it certainly makes sense to state that
Chinese dialects differ as much as the Scandinavian languages, it does not tell
the whole truth about the sociolinguistic situation in China, where a large part

2.1 Phylogenetic Networks

23



224 list et al.

Language Dynamics and Change 4 (2014) 222–252

table 1 The first sentence of Aesop’s fable ‘The Northwind and the Sun’ in different speech
varieties. The words are semantically aligned, i.e. all translational equivalents are
placed in the same column. Words shaded in gray are etymologically related

Běijīng Chinese iou21 i55 xuei35 pei21fəŋ55 kən55 thai51iaŋ11 t͡ʂəŋ55 tsai53
Měixiàn Chinese iu33 it55 pai33a11 pet33fuŋ33 thuŋ11 ɲit11theu11 hɔk33
Shànghǎu Chinese ɦi22 thã55 tsɿ21 poʔ3foŋ44 taʔ5 tha33ɦiã44 tsəŋ33 hɔ44

Běijīng Chinese (cont.) naɚ51 t͡ʂəŋ55luən51
Měixiàn Chinese e53 au55
Shànghǎu Chinese ləʔ1lə23tsa53

Norwegian nuːɾɑʋinˑn̩ ɔ suːln̩ kɾɑŋlət ɔm
Swedish nuːɖanvɪndən ɔ suːlən tv̥ɪstadə ən gɔŋ ɔm
Danish noʌ̯ʌnvenʔn̩ ʌ soːlʔ̩n khʌm eŋg̊ɑŋ i sd̥ʁiðʔ ʌmʔ

of the population is bilingual, using a common language for writing and—if
necessary—also for verbal communication. In order to describe such complex
heterogeneous structures as modern languages, sociolinguists have proposed
the diasystemmodel (Branner, 2006: 209). According to this model, a language
is a complex aggregate of different linguistic systems coexisting and mutually
influencing each other (Coseriu, 1973: 40). Usually, a diasystem is determined
by a Dachsprache (roof language), a linguistic variety that serves as a standard
for interdialectal communication (Goossens, 1973: 11).

In the case of the Chinese diasystem, the Dachsprache is the modern stan-
dard language (henceforth called Standard Chinese), which was originally de-
rived from the dialect of Běijīng, but—being used as second language through-
out China—has long started to live a life of its own. Its influence can be noticed
in almost all dialects. Lexically, it often appears in terms of multiple words
for a single concept, with one representing the word originally used in the
dialect, and one being borrowed from Standard Chinese. In the example given
in Table 1, for example, Shànghǎi [tʰa³³ɦiã⁴⁴] ‘sun’ has been borrowed from
Standard Chinese 太阳 tàiyáng [tʰai⁵¹iaŋ¹¹] ‘sun.’ This can be seen from the
fact that there is another word for ‘sun’ in Shànghǎi: [ȵjɪʔ¹¹dɤ²³]. This word
is much older than the former and is cognate with Měixiàn [ɲit¹¹tʰeu¹¹] ‘sun.’
Cases where dialects borrow from the Dachsprache are very frequent in almost
all Chinese dialects, while cases of borrowing between neighboring dialects are
probably even more frequent.
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1.2 Trees, Waves, and Networks
Ever since August Schleicher first proposed the idea that the evolution of lan-
guages is best visualizedby abranching tree (‘demBilde eines sich verästelnden
Baumes’; Schleicher, 1853: 787), this view has been controversially discussed in
the linguistic world, leading to various opposing theories ranging from wave-
like evolutionary scenarios (Schmidt, 1872) to early network proposals (Bon-
fante, 1931). Since most alternative approaches remained static, disregarding
the time dimension in favor of the spatial dimension, the tree was never com-
pletely abandoned, andboth the family tree (Stammbaum) and thewave theory
(Wellentheorie) became standard models of language change that were used
interchangeably, depending on the respective questions that scholars wanted
to elaborate. Although, during the history of linguistics, the idea of combining
both models into a single framework was often discussed (Schuchardt, 1900;
Southworth, 1964), linguists failed to propose a formal model for phylogenetic
networks that would have allowed both vertical and horizontal language rela-
tions to be captured. As historical linguistics took a quantitative turn at the
beginning of the third millennium, many methods that had originally been
designed to model and infer biological evolution were repeatedly applied to
linguistic problems. While most of these approaches continued with the tree
model, comparing languages with species (Gray and Atkinson, 2003; McMa-
hon andMcMahon, 2005; Atkinson andGray, 2006), recent research has shown
(Nelson-Sathi et al., 2011, List et al., 2014) that network approaches originally
used tomodelmicrobial evolution (Dagan andMartin, 2007; Dagan et al., 2008)
might be even more apt for modeling language history. Network approaches
not only offer a formal way tomodel vertical and horizontal language relations,
but also provide different methods for inferring these relations from linguistic
data. So far, however, phylogenetic network approaches are still in their infancy,
both with respect to the methods that have been proposed and with respect to
their applications.

The Chinese dialects seem to be a good test case for these new approaches.
Given their complex history, their ‘close proximity to one another for two
millennia and the pervasive influence of various quasi-standards and koinés
on all Chinese dialects over a very long period’ (Norman, 2003: 76), it is obvious
that they are ‘not entirely amenable to a Stammbaum formulation’ (ibid.).
Here we apply a network approach to model the history of 40 Chinese dialect
varieties. In contrast to previous network analyses of Chinese dialects that
were based on split distances and only measured the uncertainty of trees (Ben
Hamed and Wang, 2006), our approach is character-based: it automatically
infers hidden borrowings in the data and thus captures both the vertical and
horizontal aspects of language history.

2.1 Phylogenetic Networks

25



226 list et al.

Language Dynamics and Change 4 (2014) 222–252

2 Materials

2.1 Data
The data that we used for our analysis is taken from the Hànyǔ Fāngyán Yīnkù
(Hóu, 2004), a cd-rom that offers different resources for Chinese dialects
including phonological descriptions, phonetic transcriptions, and sound re-
cordings for 40 different dialect varieties. From the cd-rom we extracted a
lexical subset, consisting of 180 glosses (‘concepts’) translated into the respec-
tive varieties. Chinese dialects often have multiple synonyms for one concept;
therefore the resulting dataset comprises 10,201 words. Since the word lists
were compiled for dialect studies where the selection of lexical items is usually
based on phonetic criteria, only 48 of the 180 glosses (26%) belong to the basic
vocabulary in the strict sense of Swadesh (1952 and 1955). The source material
was obtained in a format not suitable for computational analyses, requiring
the extraction procedure to be carried out semi-automatically, with additional
manual cleaning by the researchers/present authors. All entries were double-
checked by comparing the phonetic transcription for each word with its corre-
sponding sound recording. The data was further enriched by looking up the
geographic coordinates of the central cities where the varieties are spoken,
translating the glosses into English, adapting the phonetic transcriptions to
standard ipa, and applying a rough procedure for automatic cognate detection
that is described in detail in the following section. Table 2 shows an excerpt of
the data in its current format.

table 2 The basic format of the input data1

id Variety Concept St. Chinese ipa Char. Cogn. Set

1 Shànghǎi ‘sun’ tàiyáng太阳 tʰa³⁴⁻³³ɦiã¹³⁻⁴⁴ 太阳 2
2 Shànghǎi ‘sun’ tàiyáng太阳 ȵjɪʔ¹⁻¹¹dɤ¹³–²³ 日头 1
3 Sūzhou ‘sun’ tàiyáng太阳 ȵiəʔ³dʏ¹³⁻²¹ 热头 3
4 Sūzhou ‘sun’ tàiyáng太阳 tʰɑ⁵¹³⁻⁵⁵ɦiã¹³⁻²¹ 太阳 2
5 Hángzhōu ‘sun’ tàiyáng太阳 tʰᴇ⁴⁴⁵ɦiɑŋ²¹³⁻³¹ 太阳 2
6 Wēnzhōu ‘sun’ tàiyáng太阳 tʰa⁴²⁻²²ji 太阳 2
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2.2 Cognate Judgments
Along with the recent quantitative turn in historical linguistics, one can also
observe a shift from the interest in proto-forms to an interest in cognates. This
likewise holds for our approach, which requires sets of cognate words as input
data. Cognates are usually defined as words or morphemes that are derived
from a common ancestor form via vertical inheritance (Trask, 2000: 62). Our
input requirements are less strict, however: the method only requires that
the words are etymologically related, or homolog in the biological sense, i.e.
that they share a common ancestry, no matter whether this is due to vertical
transfer or borrowing (Koonin, 2005: 311). In Chinese dialectology, it is common
to specify not only the pronunciation of a given dialect word, but also give an
assessment regarding its homology. Homology assessments are usually coded
by providing the Chinese characters corresponding to a given word.2 Since
for most Chinese characters the Middle Chinese readings (spoken around
the 6th century ce) can be reconstructed from old rime books, a character
is somewhat similar to a proto-form. Thus, Táoyuán [ŋit²²tʰeu¹¹] and Hǎikǒu
[zit³hau³¹] ‘sun’ are both written as 日头, and the proto-form would have
been pronounced as *ȵit⁴duw¹ in Middle Chinese times (if the compound
was already present during that time).3 Note that the character assignments
in Chinese dialectology are homologs in the strict sense, since no distinction is
drawn between borrowing and vertical inheritance.

While the postulation of a proto-form for a given set of words is—ideally—a
full statement regarding their phonetic and phylogenetic history, being a short-
cut formulation for known, regular sound change processes, the postulation of
cognate relations between words is much simpler, being merely a statement
that there is a history relating them. It is usually emphasized that the nature
of this history should only involve vertical transmission. The details of verti-
cal transmission are usually ignored, and no further distinction between the

1 Note that the character assignment correctly claims that Sūzhou [ȵiəʔ³dʏ¹³⁻²¹] and Shànghǎi
[ȵjɪʔ¹⁻¹¹dɤ¹³⁻²³] are not cognate, with the initial syllable of the former going back to Middle
Chinese *ȵet 'hot' and the initial syllable of the latter going back to Middle Chinese *ȵit
'sun'. The words are, however, closely related, since it is not impossible that the original
form in Sūzhou was a reflex of Middle Chinese *ȵit 'sun', but was later reinterpreted as
Middle Chinese *ȵet ‘hot’. However, this does not influence our strict criterion for cognacy
assignments.

2 The procedure for choosing the characters is not always clear-cut. See Kurpaska (2010: 118–
120) for details.

3 Middle Chinese character readings follow an ipa adaptation of the system of Baxter (1992).
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different types is drawn.Thus, in lexicostatistical databases, suchas theTowerof
Babel Database (http://starling.rinet.ru) or the Indo-European Lexical Cognacy
Database (http://ielex.mpi.nl/), the Italian and Frenchwords for ‘give,’ dare and
donner respectively, are usually placed in the same cognate set, although they
go back to two different Latin words (dare ‘give’ and dōnare ‘give as a present’).
The reason for this cognate assignment is that the Latin forms themselves
go back to a common Indo-European root, with dare being a reflex of Proto-
Indo-European *deh₃- ‘give’ and dōnare being a reflex of its nominalized form
*deh₃-no- ‘what is given’ (cf.Meiser, 1998). Trask (2000: 234f.) proposes the term
oblique cognates to address these specific cases of indirect cognate relations,
but the term is rarely used in the literature, and direct and indirect cognacy are
usually treated identically in practice.

Another problem of cognate assignment that is ignored in most quantita-
tive approaches is the problem of partial cognacy. Is it justified to say that
compoundwords such as Spanish porque and Russian potomu čto ‘because’ are
cognate, since certain parts of them (-que and čto) can be traced back to Proto-
Indo-European *kwi- ‘what’? And, if so,what is their relationwhenaddingmore
words to the comparison, such as Danish fordi ‘because,’ which is partially cog-
nate with the Spanish word ( for- ≈ por-) but not the Russian? Inmost datasets,
this problem is solved by assigning compound words to multiple cognate sets,
one for eachmorpheme. Such an approach, however, can become problematic
when dealing with languages where compounding is frequent. In Table 3, the
words denoting ‘moon’ in seven Chinese dialects are contrasted in such a way
that all cognate morphemes are aligned, with the characters in the first row
representing the cognate set. As can be seen from this Table, the assignment
of all morphemes to a specific cognate set yields as many cognate sets as there
are dialects. Given that quantitative approaches to phylogenetic reconstruc-
tion usually assume the development of all cognate sets to be independent,
an assignment of all cognate morphemes to a single cognate set would there-
fore not only drastically increase the amount of cognate sets, but would also
be entirely unrealistic, since these cognate morphemes surely did not evolve
independently from each other.

In order to cope with the problems of indirect and partial cognacy, we
decided to apply a very strict procedure of cognate assignment, grouping only
those terms into cognate sets that correspond to identical sequences ofChinese
characters. Since the data contained 244 entries for which no corresponding
Chinese character was identified (and therefore no cognate assignment could
bemade), we excluded these entries. The remaining 9,957 words were grouped
into 3,061 cognate sets. The cognate sets were then converted into a binary
presence-absence matrix, where the columns represented the taxa, and the
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table 3 Problem of partial cognacy in the Chinese dialects. The table shows cognate
morphemes of translations of the concept ‘moon’ in seven Chinese dialects. As can be
seen from the table, no two words are completely cognate, although all words share
at least one cognate morpheme.

Cognate Sets
Dialect 月 亮 光 呢 奶 明 爷

Shànghǎi ɦyɪʔ¹⁻¹¹ liã¹³⁻²³
Wēnzhōu ȵy²¹³⁻²¹ kuɔ³³
Xiàmén geʔ⁵⁻²¹
Jiàn'ōu ŋyɛ⁴² ni⁴⁴ nai³³
Tàiyuán yəʔ²⁻⁵⁴ mi⁴⁵
Píngyáo yʌʔ⁵³ mi¹³⁻⁵³ iᴇ¹³⁻³¹
Zhèngzhōu yɛ²⁴ nai⁵³nai⁵³⁻²⁴

rows corresponded to distinct presence-absence patterns for a given cognate
set, with 1 indicating the presence of a reflex and 0 indicating its absence.
Since our method requires that a given cognate set has reflexes in at least two
taxa, we excluded 2,005 cognate sets that were reflected only in one taxon. Our
presence-absencematrix was thus reduced to a total of 1,056 presence-absence
patterns.

2.3 Reference Trees
Our method estimates the extent to which the evolution of a set of characters
(cognate sets reflected in the presence-absence patterns) can be explained by
an evolutionary scenario that allows for only the vertical inheritance of char-
acters. This scenario has to be definedwith the help of a reference tree that cap-
tures the history of the language varieties under investigation. Given the spe-
cific sociolinguistic situation in China, the classification of the Chinese dialects
is extremely difficult, and the opinions of scholars differ to a great extent (see
Karlgren, 1954; Lǐ, 2005; Norman, 2003; Wáng, 2009, and the overview in Kur-
paska, 2010: 36–62). The most common grouping distinguishes seven major
dialect groups, namely (1) Mandarin (Guānhuà), (2) Xiāng, (3) Gàn, (4) Wú,
(5) Hakka (Kèjiā), (6) Cantonese (Yuè), and (7) Mǐn (Norman, 1988: 181). How-
ever, alternative approaches that subdivide these varieties further are also quite
popular, and at least three additional groups, namely Jìn (otherwise assigned to
Mandarin), Huī (otherwise assigned to either Wú or Mandarin), and Pínghùa
(otherwise assigned to Cantonese), are often proposed and discussed in the lit-
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table 4 The dialect groups in our sample

Group Chinese Altern. Grouping # Dialects

Mandarin (Guānhuà) 管话 17
Jìn 晋 Mandarin 3
Xiāng 湘 2
Gàn 赣 1
Huī 徽 Wú, Mandarin 2
Wú 吴 4
Hakka (Kèjiā) 客家 2
Cantonese (Yuè) 粤 2
Pínghuà 平话 Cantonese (Yuè) 1
Mǐn 闽 6

erature (Kurpaska, 2010: 64–73). The ten major dialect groups are summarized
in Table 4, along with alternative classifications and the number of varieties in
our sample that belong to each group.

Most classifications group the Chinese dialects by comparing their devia-
tion from the phonological system of Middle Chinese. One of the most salient
features is the series of voiced plosives (*b, *d, *g, etc.) inMiddle Chinese (Kur-
paska, 2010: 35). These plosives show varying reflexes in the Chinese dialects.
Sometimes they are retained completely (> b, d, g), sometimes all of them are
devoiced (> p, t, k), sometimes the devoicing is accompanied by aspiration (>
pʰ, tʰ, kʰ), and sometimes the reflexes are split into a voiceless unaspirated and
a voiceless aspirated series (> p/pʰ, t/tʰ, k/kʰ). As Lǐ (2005) demonstrates, these
reflexes are sufficient to distinguish six of the seven standard dialect groups,
with Gàn and Hakka being merged into a single group.4 However, the prob-
lem of this criterion (and most other classification criteria) is that they are
merely used to distinguish certain dialect groups, while they do not explain
how they developed. Althoughmost classifications proposed thus far are based
on historical criteria, few of them explicitly try to account for the genealogical
development of the Chinese dialects.

4 Lǐ (2005) distinguishes different contexts in which the split of voiced to voiceless unaspirated
and voiceless aspirated plosives occurred in order to distinguish Mǐn, Cantonese, and Man-
darin.

2 Of Trees and Webs: Phylogenies and Networks in Historical Linguistics

30



using phylogenetic networks to model chinese dialect history 231

Language Dynamics and Change 4 (2014) 222–252

Different theories have been proposed regarding the history of the major
dialect groups. Among the most popular is Karlgren’s (1954: 212) theory that
almost all of today’s Chinese dialects (except from theMǐn dialects) go back to
a koiné that was very widespread during the 6th century. He further states that
this language was identical to Middle Chinese, the language whose phonolog-
ical characteristics are recorded in the rime books that were compiled during
that time. Norman (1988 and 2003) proposes a different theory, according to
which Hakka, Cantonese, and Mǐn can be traced back to a common ancestor
which split from the remaining dialects before the Middle Chinese period.

Based on these two different theories, we created two reference trees, one
reflecting Norman’s Southern Chinese hypothesis, and one reflecting Karlgren’s
Common Chinese hypothesis. In order to increase the distance between the
trees, and since we could not determine the exact subgrouping of all major
dialect groups from the literature alone, we added further differences to the
subgroupings. Thus, in the Southern Chinese tree we grouped Wú and Huī
dialects together, while in the Common Chinese tree we placed Huī closest to
the Mandarin-Jìn group. In a similar way, we merged Hakka and Gàn in the
Common Chinese tree following a reasonably popular proposal (see Sagart,
2002: 129–132), while assigning them to separate groups in the Southern Chi-
nese tree. We also classified the Jìn dialects as a Northern Mandarin group in
the Southern Chinese tree, while classifying them as first outgroup of Man-
darin in the Common Chinese tree. For the internal subgrouping of the major
dialect groups in both hypotheses, we generally employed the groupings pro-
posed in the Language Atlas of China (Wurm and Liú, 1987). In cases where
these groupings were too shallow and additional information was available,
this internal subgrouping was further modified. Here, the internal classifica-
tion of theMǐn dialects was changed according to the classification in Norman
(1991), and the eight groups of Mandarin dialects were further subdivided fol-
lowing Norman (1988).5 Both reference trees for the major groups are given
in Fig. 1. In order to test for possible differences between these ‘traditional’
reference trees and reference trees calculated from automatic approaches,
we reconstructed two additional reference trees automatically. We applied
the upgma algorithm (Sokal and Michener, 1958) and the Neighbor-joining

5 Wearewell aware of the fact that neither of the two trees can really claim to represent the true
history of the Chinese dialects. However, as long as there are no detailed proposals regarding
the genealogical classification of the Chinese dialects, we think it is more fruitful to accept
uncertainties and possible mistakes resulting from the given trees than to abstain from the
analysis in general.
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figure 1 Reference trees of the major groups for the Southern Chinese (a) and the Common
Chinese (b) hypotheses. The reference trees are broadly based on the classifications
of Norman (1988 and 2003) and Karlgren (1954), respectively, with the topologies
expanded and adapted to accommodate the present sample (see text).

algorithm (Saitou and Nei, 1987) to distance matrices derived from shared
cognate percentages between all dialect pairs. The complete reference trees for
all four analyses are given in Supplementary Material i.

3 Methods

Building on the minimal lateral network (mln) approach by Nelson-Sathi et
al. (2011), our methods are based on an improved framework for the recon-
struction of rooted phylogenetic networks (List et al., 2014). In contrast to the
original approach, we introduce a refined method for gain-loss mapping. This
method offers more flexible models with varying numbers of gain and loss
events, captures multifurcation in reference trees, and also handles a certain
amount of parallel evolution. Furthermore, we present a new method that
derives spatial networks from rooted phylogenetic networks by plotting the
results of the mln approach to geographic maps. The new method is imple-
mented as part of LingPy, an open source Python library for automatic tasks in
historical linguistics (List and Moran, 2013, Version 2.2).

3.1 Gain-LossMapping
As pointed out before, anymodel of language evolutionmust take into account
vertical as well as horizontal relations—i.e., borrowing. Borrowing processes
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can be incredibly complex. Nevertheless, they usually leave observable traces,
so that the borrowedword is oftenphonetically quite similar to the donorword.
Furthermore, since the process of borrowing itself is not tree-like, borrowings
that are mistaken for cognates can show up in form of presence-absence pat-
terns that cannot be readily explained by the branching patterns of a family
tree alone. As an example, compare themost widespread words for ‘mountain’
in the Germanic languages (German Berg, Dutch, Swedish berg, Danish bjerg)
with the English word mountain. Assuming that English is a Germanic lan-
guage, we see an astonishing difference to supposedly related languages. How-
ever, there is a striking similarity with words meaning ‘mountain’ in Romance
languages such as Italian montagna, Spanish montaña, Portuguese montanha,
and French montagne. If we had further evidence regarding the history of the
languages and their branching patterns, there are two possible scenarios which
could account for this coincidence: (1) English mountain is truly cognate with
the Romance words, and reflexes of the word came to be lost in all other
Germanic languages, or (2) English mountain was borrowed from one of the
Romance languages, thereby replacing Old English beorg, the regular English
reflex of Proto-Germanic *bergan ‘mountain.’ Given the branching pattern of
theGermanic languages, it ismuchmoreplausible to assume the latter scenario
(and indeed, historical evidence shows that English ‘mountain’ was borrowed
from Old French montaigne). Thus, if languages show patterns of shared cog-
nates that are in conflict with a given family tree, these patterns may be taken
as a heuristic device for the detection of hitherto unrecognized borrowings.

As the example of English mountain shows, it is possible to gain some basic
insights into language history by simply investigating the dynamics of gain and
loss events. In evolutionary biology, the analysis of gain-loss scenarios (also
called presence-absence patterns or phyletic patterns) is a common heuristic
to identify possible instances of lateral gene transfer, and different methods
for analyzing such patterns have been proposed in the recent past (see the
overview in Cohen et al., 2010).

The basic idea of all these approaches is to create gain-loss scenarios for a
given set of characters. A gain-loss scenario explains how a particular phyletic
pattern could have evolved along a given reference tree. For a given pattern,
each node of the tree is assigned to one of two possible states indicating
the presence (1) or the absence (0) of the character in the pattern. Events
are changes in the states from ancestral nodes to their direct descendants. A
gain event (also called origin) is defined as the change from state 0 to state
1, and a loss event is defined as the change from state 1 to state 0. If the
most appropriate analysis of a given phyletic pattern supports multiple gains
(origins) of a character, this is usually taken as evidence for possible events of
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table 5 Phyletic patterns of the cognate sets for ‘mountain’

Language Spanish Portuguese French English German Swedish

‘mountain’ montaña montanha montagne mountain Berg berg
Pattern m 1 1 1 1 0 0
Pattern b 0 0 0 0 1 1

figure 2 Comparing alternative gain-loss scenarios. White nodes indicate the presence of a
character, black nodes its absence. Large nodes indicate the respective event (gain or
loss). In a, no scenario is inferred, b assumes one gain and two loss events, and c
assumes two gain events and no loss event.

lateral transfer (borrowing) that occurred during the evolution of the character.
Table 5 illustrates how phyletic patterns are derived from the translation of
‘mountain’ into six Indo-European languages. For this group of languages, there
are two different phyletic patterns, labeled m and b for convenience. Given the
history of the six languages, Patternb is unproblematic, supporting only a single
origin hypothesis, with a loss of the character in English, and the gain of the
character in the root. Pattern m (see Fig. 2a), however, can be mapped in two
different ways: using a two-loss scenario as illustrated in Fig. 2b (scenario (1)
above), or a two-gain scenario (scenario (2)), as illustrated in Fig. 2c. While the
two-loss scenario infers that the character originated only once (in the root),
the two-gain scenario infers two distinct origins for the character. Therefore,
a lateral link between the two origins can be drawn, illustrated by the dotted
line in Fig. 2c. This link is basically undirected, since it is not clear in which
direction the borrowing event occurred. With this inference procedure, it is
also not possible to determine when the link occurred, which explains why the
link is drawn between the nodes in the tree where the characters originate.

Gain-loss scenarios can be inferred in different ways. Nelson-Sathi et al.
(2011) follow Dagan and Martin (2007) in employing a binary-branching top-
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down approach with different basic models, allowing for varying amounts of
gains in a given phyletic pattern. The drawback of this approach is that the
number of origins per phyletic pattern can only be an exponentiation of the
base 2 (1, 2, 4, 8, 16, etc.), which results in a drastic restriction of the number
of origins allowed by each model. A further drawback of this approach is that
it can only be applied to bifurcating reference trees. This requirement is less
problematic in biological applications since bifurcating reference trees are usu-
ally reconstructed automatically from the data. In linguistics, however, scholars
are very cautious to propose detailed phylogenies, andmultifurcating language
trees (soft polytomies in the terms of Nunn, 2011: 22) are often used to reflect
their uncertainty.

In order to overcome these shortcomings, we developed a parsimony-based
bottom-up approach that allows for varying numbers of gains, depending on
the phyletic pattern under investigation. In comparison with the top-down
approach, our approach offers an increased number of models that can be
tested on a given dataset. It also no longer restricts themaximal number of gain
events that can be inferred by a given model, and—since the method is based
on an exhaustive search of all possible scenarios—its application to multifur-
cating reference trees does not result in theoretical or practical problems.

Our approach is quite simple: given a phyletic pattern (a cognate set), there
can be different gain-loss scenarios that could explain the evolution of the
pattern. In order to find a consistent way of selecting the most parsimonious
scenario, we test different models that assign different penalties for the sce-
narios, depending on the number of gain and loss events proposed by them. A
model is defined as the ratio between penalties for gain and loss events. The
model 2–1, for example, penalizes gain events with 2 and loss events with 1.
Themost parsimonious scenario for a givenmodel is the one whichminimizes
the overall penalty. In order to compute all possible gain-loss scenarios, we use
a bottom-up approach that starts from the leaves and climbs up to the root,
thereby storing all different possibilities of character evolution. Basically, our
approach is brute-force.

The search space can, however, be efficiently restricted. Firstly, when climb-
ing up the reference tree in order to calculate the possible scenarios, we can
exclude those which exceed the maximum number of gain events allowed on
each path from the root of the tree to its leaves. If this number is set to 1 (as it is
by default in our approach), thismeans that, on a given path, characters cannot
be gained, lost, and gained again. This is a simplifying requirement, since it is
possible that characters on a given lineage are lost and afterwards reintroduced
as borrowings—an example being English ‘flower,’ which was borrowed from
Old French flour which goes back in turn to Latin flōre(m). The Latin word is
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cognate with English blossom and German Blume ‘flower,’ all being reflexes of
Proto-Indo-European *bʰleh₃- ‘blossom’ (de Vaan, 2008: 227). A strictmodeling
of the complicatedhistory of thesewordswithhelpof gain-loss scenarioswould
require us to assume that the character was lost and gained again in English.
However, given that these cases are very rare, allowing for themwould not only
bloat our search space, but also affect the results in a way that is difficult to
control.

Secondly, having determined the scenarios that donot exceed ourmaximum
gain criterion, we can filter them further by storing only those scenarios with
minimalweight. Here, it is important to keep inmind that a scenariowithmini-
malweight on a given subtree is not necessarily a scenariowithminimalweight
in general. Since,when climbing the reference tree, one cannot tell whether the
character state of the temporary root node is an event (a change of the char-
acter state) or not, it is possible that a given scenario seems to be cheap at a
certain point in the calculation but later turns out to bemuchmore expensive.
In order to prevent the model frommissing good scenarios, we carry out a sep-
arate filtering of those scenarios in which the character in the temporary root
node is present and those in which it is absent. Since unpredictable costs of
subtree scenarios depend only on the state of the temporary root character, this
guarantees that our approach always finds the most parsimonious scenario. It
is possible that there is more than one scenario that minimizes the penalty. In
such a casewe first select the scenariowith theminimal amount of gain events,
and if there is still more than one scenario, we follow the proposal by Mirkin
et al. (2003) and select the scenario in which the gain events are closest to the
leaves of the reference tree.

As an example, compare the two-loss scenario in Fig. 2b with the two-gain
scenario in Fig. 2c. For the two-loss scenario, the 2–1 model yields a total score
of 4 (1×2+2×1), since there are two losses and one gain.6 The two-gain scenario
in Fig. 2c also yields a score of 4 (2×2+0×1). In this case, we choose the model
which infers the minimal amount of gains, and the two-loss model is chosen
as the most parsimonious one. Changing the model to 1–1 yields penalties of 3
(1×1+2×1) for the two-loss scenario and 2 (2×1+0×1) for the two-gain scenario.
In this case, the two-gain scenario is the most parsimonious.

6 We followMirkin et al. (2003) in counting the presence of a character in the root as a normal
gain event.
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3.2 Finding Optimal Gain-LossModels
Gain-loss mapping is useful for testing possible scenarios of character evolu-
tion. However, as long as there is no direct criterion that helps to choose the
best of many solutions, the method hardly gives us any new insights. Here, we
follow Nelson-Sathi et al. (2011) in using the distribution of ancestral vocabu-
lary sizes as a criterion to determine the best model for a given dataset. The
basic idea behind this criterion formodel selection is that the number of words
that ancestral languages use to express a given set of concepts should not dif-
fer greatly from the number of words used by the contemporary languages.
When assuming that Englishmountain is not a borrowing but a retention (two-
loss scenario), this would force us to trace the word back to Proto-Germanic.
However, since the counterparts of ‘mountain’ in the rest of the Germanic lan-
guages also point to a common origin, this would necessitate the assumption
that therewere twowords denoting the concept ‘mountain’ in Proto-Germanic.
Although multiple synonyms for a given concept are not impossible, they are
rather unlikely to occur frequently; and since our approach is applied to large
datasets and not to single items, it seems reasonable to assume that a model
explaining the given data adequately should be preferred to amodel that yields
much larger amounts of synonyms in the ancestral languages than are attested
in the contemporary ones. In the case of mountain, this means that the 1–1
model should be preferred to the 2–1 model, since the latter favors the two-loss
scenario and thus entails the assumption of more synonyms in the ancestral
languages.

One could argue that the growing amounts of synonyms in ancestral lan-
guages can be explained by assuming the words had different meanings in
those languages. English mountain, for example, could be derived from Proto-
Indo-European *mon-ti ‘protrusion, height,’ which is the presumed ancestor of
Latin mōns (de Vaan, 2008: 388). Such a scenario, however, is rather unlikely,
since it presupposes that the same semantic shift from ‘height’ to ‘mountain’
occurred in the Romance languages and in English. While parallel semantic
shift is not improbable per se, it is rather unlikely when involving the same
source forms in independent branches of a language family. Furthermore, even
if it was frequent, it would not disfavor vocabulary size distributions as a cri-
terion for model selection. It would merely change what gain-loss mapping
techniques can infer.

In order to compare howwell a givenmodel accounts for the vocabulary size
criterion, we compute the number of characters present in the ancestral nodes
of the reference tree by tracing all origins inferred by the model back to the
respective nodes.We then use theWilcoxon rank-sum test (see the description
in Kruskal, 1957) to test the hypothesis that the ancestral and the contemporary
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table 6 Patchy cognate sets for ‘mountain.’ In contrast to the cognate set in Table 5, pattern
m is now split into two distinct patterns: m₁ and m₂.

Language Spanish Portuguese French English German Swedish

‘mountain’ montaña montanha montagne mountain Berg berg
Pattern m₁ 1 1 1 0 0 0
Pattern m₂ 0 0 0 1 0 0
Pattern b 0 0 0 0 1 1

vocabulary distributions are likely to be drawn from the same sample. Since
we cannot exclude the possibility that parallel evolution influences our results,
we modified our method in such a way that it allows for a certain amount of
parallel evolution. This can be done in a very straightforward way by using a
scaling factor to decrease the ancestral vocabulary sizes before the Wilcoxon
rank-sum test is applied. As a default, this scaling factor is set to 5%. Thus,
we allow ancestral vocabulary size distributions to grow up to 5% larger than
contemporary ones.

Having determined a model that explains the phyletic patterns of a given
dataset in such a way that the distribution of ancestral and contemporary
vocabulary sizes does not differ significantly, the results of the analysis can
then be displayed by splitting all cognate sets for which more than one origin
was inferred into secondary subsets, as illustrated in Table 6. These patchy
cognate sets (pcs) can then be further analyzed in different ways. One could,
for example, compare the correctness of the original cognate assignments by
checking the sound correspondences between the distinct subsets for irregular
patterns. In the case of Englishmountain, there is an irregular correspondence
between the English [t] and the [t] in the Romance languages, where wewould
expect a [d] if it were a regular correspondence (compare English tooth [tuːθ]
vs. French dent [dɑ̃] ‘tooth’).

3.3 Minimal Lateral Network
Another way to analyze the results further is to reconstruct a minimal lateral
network (mln) from the inferred gain-loss scenarios (Dagan et al., 2008; Nelson-
Sathi et al., 2011). The mln is a weighted network that displays patterns of
vertical and lateral inheritance. The reference tree is used to represent patterns
of vertical inheritance between the contemporary and the ancestral languages.
Additional edges drawn between the nodes of the reference tree represent pos-
sible borrowing events. Borrowing events are assumed for all patterns forwhich
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figure 3 Minimal lateral network reconstruction. If more than one origin is inferred for a
given phyletic pattern, the nodes where the characters originate are connected by
lateral edges (a–c). In the mln (d), the edges inferred for all patterns are combined,
with edge weights (visualized as differences in line width) reflecting the number of
occurrences.

more than one origin was inferred by a given gain-loss model, and links are
drawn between the nodes in which the characters originate. The weights of
these lateral edges reflect the number of patterns that support a given link. Fig-
ure 3 illustrates this procedure. In Figs 3a–c, three different links are drawn
between nodes from which different characters originate more than once on
the reference tree. If the number of patterns supporting these scenarios in a
given dataset differs, with Fig. 3a occurring twice, Fig. 3b four times, and Fig. 3c
once, we arrive at aweighted network for thewhole dataset as shown in Fig. 3d.

Drawing lateral links between characters that originate from two different
nodes is easy, since there is only one link that can be drawn to connect them.
However, if a gain-loss scenario yields more than two separate origins for a
given character, there are as many as (n2–n)/2 possible edges which can be
drawn to connect n nodes. While drawing all possible edges would surely
cover all possibilities, it is obviously unrealistic: since borrowing is a directed
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figure 4 Removing redundant lateral edges in the minimal lateral network. a shows the initial
stage. b shows the intermediate stage after edge weights have been inferred for all
lateral edges. c shows the resulting minimum spanning tree.

process that involves a donor and a recipient language, such a scenario would
indicate that all languages are both donors and recipients. In order to solve
this problem, the complete graph representing all hypothetical connections
has to be reduced to a graph consisting of n–1 edges that connects all nodes
(a spanning tree). Given that, according to Cayley’s (1889) formula, a complete
graph of n edges has as many as nn-2 spanning trees, it is important to apply a
consistent criterion to select one of these trees. The most straightforward way
to do so is to select a minimum spanning tree, that is, a tree that minimizes
the sum of the edge weights.7 For gain-loss scenarios involving more than two
origins,wedetermine the edgeweights for all nodepairsni andnjby calculating
the number of shared multiple origins of ni and nj in all phyletic patterns of
the data. We then convert these weights to distances and use Kruskal’s (1956)
algorithm to calculate the minimum spanning tree between the nodes. This
procedure is illustrated in Fig. 4. This is equivalent to assuming that potential
donor lineageswith a high frequency of occurrence in the sample have a higher
probability of donating than low-frequency potential donor lineages.

3.4 Minimal Spatial Network
A minimal lateral network is useful to evaluate the degree to which the evo-
lution of a set of characters follows the presumed branching pattern of a set
of languages. However, since languages are not only spoken at a specific time,
but also in a specific place, it seems useful to plot the inferred lateral connec-
tions onto a geographicmap. Thismaybehelpful both for evaluating the results
of a given analysis and getting an impression of major diffusion areas. When

7 In our case it would be more appropriate to call it a ‘maximum spanning tree,’ since the edge
weights in the mln do not represent distances but similarities between nodes.
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reconstructing a minimal spatial network (msn) from a given mln, only the
leaves can be plotted because the ancestral nodes have few geographical con-
straints, so their inclusion in the graphwould add toomuch cluttering informa-
tion. Therefore the internal nodes of the mln (the ancestral taxa) are removed
and, as a result, internal edges (edges between contemporary and ancestral
taxa, and edges between ancestral taxa) are lost. In order to retain informa-
tion that is connected within them when constructing the spatial network, we
project information from internal nodes onto leaves. As a selection criterion to
link information from internal to external nodes, we use a simplified approach
based on geographic distance. If an edge originally connects an internal node
ni and an external node ne, we first determine all descendant nodes of ni on our
geographic map. We then draw a convex hull around all descendant nodes of
of ni and connect the descendant node of ni that is (a) on the hull and (b) geo-
graphically closest to our external node ne. For two internal nodes, we proceed
in a similar way, the difference being that two convex hulls are drawn around
the descendants of the two internal nodes, and the two geographically closest
nodes which appear on the hulls are connected. The central idea behind this
approach is that ancestral languages can be represented by the area covered by
their descendants.

4 Results

4.1 Gain-LossModels for Southern and Common Chinese
We applied our analysis to the Southern Chinese, the Common Chinese, and
the two automatically reconstructed reference trees, using five different gain-
loss models with varying penalties for gains and losses: 3–1, 5–2, 2–1, 3–2, and
1–1. We then compared the resulting distributions of ancestral and contempo-
rary vocabulary sizes in order to determine which of the models would fit the
data best. For all reference trees, there are two gain-loss models (5–2 and 2–1)
in which the vocabulary size distributions do not differ significantly (α = 0.05).
In all cases, the 2–1 model is the one with the highest probability (p = 0.73 for
Southern Chinese, p = 0.76 for Common Chinese, p = 0.84 for upgma, and p =
0.55 for Neighbor-joining).8

As far as the gain-loss models are concerned, the differences between the
four trees do not seem to alter gain-loss mapping analyses greatly. Basically,

8 A comparison of the vocabulary size distributions inferred for all analyses is provided in
Supplementary Material ii.

2.1 Phylogenetic Networks

41



242 list et al.

Language Dynamics and Change 4 (2014) 222–252

table 7 Basic results of the analyses

Southern Common
Comparandum Chinese Chinese Neighbor-joining upgma

Best model 2–1 2–1 2–1 2–1
p-value 0.73 0.76 0.55 0.84
Patchy cognates 567 (54%) 557 (53%) 510 (48%) 585 (55%)
Average n. of origins 1.97 1.81 1.81 2.00
Maximal n. of origins 9 9 8 8

this also holds for some further general characteristics of the models, such
as the average number of origins, the number of patchy cognate sets, and
the maximum number of origins, all of which are displayed in Table 7.9 The
Neighbor-joining reference tree outperforms the other trees by yielding the
lowest percentage of patchy cognate sets. However, since the Neighbor-joining
tree itself is in conflict with traditional dialect classification, this merely shows
that the Neighbor-joining method is good in maximizing the tree-like signal
in the data. It does not mean that the results are necessarily more realistic.
Comparing these results with those of List et al. (2014) for Indo-European
languages, it is interesting to note that the percentage of patchy cognate sets is
quite different (48–55% for the Chinese analyses, but 31% for Indo-European).
Given the complex history of the Chinese dialects, this is not surprising but,
rather, in agreement with our expectations.

4.2 mln andmsn
Having determined a gain-loss model that brings ancestral and contemporary
vocabulary sizedistributions closely together,we canuse this scenario to recon-
struct aminimal lateral network. Figure 5 shows themln reconstructed for the
Southern Chinese reference tree. Interestingly, the heaviest edges occur inside
the Mandarin and the Jìn dialects. Here, the Zhèngzhōu dialect plays a central
role, having a remarkablenumber of connectionsnot only to the ancestral node

9 Note that in Table 7 and throughout this paper, the term ‘origins’ refers to events that
distribute a given cognate across dialects and geographical ranges. Thus, inferring 8 or 9
origins in Table 7 does not suggest 8 or 9 independent origins, it simply means that 8 or 9
events are inferred, under our minimizing premises, to underlie its current geographical and
dialectic distribution.
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figure 5 The minimal lateral network of the Southern Chinese reference tree. The node size
reflects the inferred number of cognate sets in each language variety. The links reflect
the minimal number of lateral transfer events that is required to minimize the
differences between the ancestral and the contemporary vocabulary size distribution.

of the Northern Mandarin dialects (19 shared patchy cognate sets, pcss), but
also to LányínMandarin (11 pcss with Yínchuān), and Jìn (11 links with Hohhot,
9 links with the ancestral node of Jìn). The fact that Zhèngzhōu is not grouped
with theZhōngyuánMandarindialects in both automatic analyses (see Supple-
mentary Material i) further reflects the uncertain status of this dialect. Apart
from the central role that Zhèngzhōu plays in the Southern Chinesemln, there
is a remarkable number of inferred connections between the Jìn dialects and
theNorthern andNorthwesternMandarin dialects. Both the role of Zhèngzhōu
and themultitude of links between Jìn dialects andNorthern andNorthwestern
Mandarin can also be reported for the Common Chinese analysis (see Supple-
mentary Material iii). The status of the Jìn dialects as a group separate from
Mandarin is highly disputed in Chinese dialectology (Kurpaska, 2010: 74f.). If
their separation is justified, our method shows that they are highly influenced
by neighboring varieties.

The heavy links between Northern and Northwestern Mandarin and Jìn
dialects can be more easily recognized in the minimal spatial network shown
in Fig. 6. Apart from the high and also quite unexpected diversity in the north,
one can find interesting connections in the south-east,where the greatest num-
ber of generally recognized distinct dialect groups is found. Thus, Xiāngtán and
Chángshā, the two Xiāng dialects in our sample, show their strongest connec-
tions to neighboring Mandarin dialects. That the Xiāng dialects have under-
gone a strong influence fromMandarin dialects has been noticed in the litera-
ture for a long time (Norman, 1988: 207f.). Even more interesting is the strong
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figure 6 The minimal spatial network of the Southern Chinese reference tree. The links reflect
the external and the internal edges between all contemporary language varieties as
inferred in the minimal lateral network.

link between the Wú dialect Wēnzhōu and its neighboring Mǐn dialects.10
This link is surprising, since in Chinese dialectology it is usually assumed
that the border between the Mǐn and the Wú dialects is rather strict (ibid.:
189). However, a closer inspection of the words in Wēnzhōu that are patchily
distributed shows that it is indeed very likely that they have been borrowed
from the Mǐn dialects, since they are not found in the other Wú dialects, but
are quite representative of the Mǐn varieties. Thus, among others, we find
that the Wēnzhōu word for ‘chopsticks’ is [ʣei²²] with the corresponding
character 箸. This is a very archaic expression for ‘chopsticks’ that is almost
exclusively reflected in the Mǐn dialect area. Most other dialects (including
all other Wú dialects in our sample) have replaced it with cognate forms of
Common Chinese kuàizi筷子 (see Norman, 1988: 76 for details regarding the
origin of kuàizi). Similar examples where Wēnzhōu has a form that is not
reflected in the other Wú dialects, but common in the Mǐn dialects include:

10 In the msn, the link is drawn between Wēnzhōu and Jiàn’ōu. This is, however, an artifact
of the spatial representation. In the underlying mln, the link is between Wēnzhōu and
several ancestral nodes of the Mǐn dialects.
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Wēnzhōu [dɤu³¹]头 ‘classifier (for cows and pigs)’ (compare Shànghǎi [ʦaʔ⁵]
只), Wēnzhōu [ʨaŋ³³ko³³]金瓜 ‘pumpkin’ (compare Shànghǎi [ve²²ko⁴⁴]南
瓜), and Wēnzhōu [liɛ³⁵bu¹³] 龙雹 ‘hail’ (compare Shànghǎi [piŋ⁵⁵bɔ²¹] 冰
雹).11

Above we have seen that differences in the reference trees did not affect the
gain-loss models. This was also observed in Nelson-Sathi et al.’s (2011) analysis
of the Indo-European languages and is indicative of a high level of patchiness
in the cognate distribution—for datawith a comparatively large component of
non-treelike structure, the influence of the reference tree becomes less crucial.
What was also noted in the study of Nelson-Sathi et al. (2011), however, is that
changes in the reference tree may have an impact on the concrete predictions
of a given model, indicating in turn that there are detectable vertical compo-
nents in the data. For our two reference trees in the present Chinese dataset,
we can report similar findings. Although the agreement between the Southern
and the Common Chinese analyses regarding the detection of patchy cognate
sets is rather high, with 966 out of 1056 cognate sets (91%) being identically
identified as either patchy or non-patchy cognate sets, many differences in the
specific individual scenarios are still observable. Table 8 gives unweighted and
weighted degrees for the five most connective nodes in the mlns for South-
ern Chinese and CommonChinese.12 Although four of the fivemost connected
nodes appear in both analyses, they differ greatly regarding their unweighted
and their weighted degrees. Since we do not know which of the two scenarios
reflects the historical process more closely, we are currently limited to noting
the differences. In future studies, it could be of interest to identify independent
criteria bywhich to compare the probabilities of different weighted degrees for
given (sets of) nodes, and to use these criteria to evaluate the attributes of dif-
ferent reference trees.

4.3 Influence of Standard Chinese
One point we have not addressed so far is the role of the Dachsprache in our
data. Given that Standard Chinese derived from the dialect of Běijīng, it is
surprising that this dialect only plays a minor role in the networks shown in
Figs 5 and 6. Běijīng does not appear among the top five nodes with the highest

11 A full account of all the inferred patchy cognates for the SouthernChinese analysis is given
in Supplementary Material iv.

12 The degree is the number of edges connecting to a given node in a graph. The weighted
degree is calculated by summing up the weights for all edges of a given node (cf. Newman,
2004).
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table 8 Comparing the nodes with the highest degrees for the Southern Chinese (a) and the
Common Chinese analysis (b)

Taxon Degree Taxon Degree
Unweighted Weighted Unweighted Weighted

Nánjīng 29 81 Shèxiàn 27 58
Zhèngzhōu 29 105 Chéngdū 26 69
Yínchuān 27 114 Yínchuān 26 93
Chéngdū 26 72 Jìnán 24 58
Jìnán 26 70 Nánjīng 24 70
a b

degrees (either unweightedorweighted), nor is it involved in anyof theheaviest
edges. The fact that Běijīng and Standard Chinese played a less pronounced
role than expected might be due to a certain shortcoming in our method.
Gain-loss mapping requires that borrowing events are still detectable due to
patterns that cannot be explained by a reference tree. Borrowing, however, can
become so frequent that patchy distributions are no longer detectable.13 If a
word is borrowed (or is actively introduced) by all taxa of a given branch so that
the existence of its predecessors is masked, the gain-loss mapping approach
assumes that these words are all inherited from a common ancestor language
and so no patchy distributions are detected. If, however, the ancestral words
have not died out and still exist in refugia that can be detected through more
thorough geographical sampling, these effects should be detectable and, in
principle, quantifiable.

Although the networks themselves do not give us a hint, the influence
of Standard Chinese on Chinese dialect history can still be identified when
comparing how many of the cognate sets in each dialect are actually patchy.
In Table 9, the five dialects that show the largest frequencies of patchy cognate
sets per number of words are listed. In this list, the Běijīng dialect as the closest
representative of Standard Chinese occupies the first position, showing the
highest ratio of patchy cognate sets per word in both the Southern Chinese

13 In genetics, there is the term ‘selfish dna’ to describe genes that can rapidly increase their
frequency through spread, because they are readily able to spread (transposons). There is
also the concept of positive selection, which can lead to the very rapid spread and fixation
of new alleles in a population.
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table 9 Comparing the average number of patchy cognates per dialect in the Southern
Chinese (a) and the Common Chinese analysis (b)

Taxon #Words pcs Ø Taxon #Words pcs Ø

Běijīng 236 95 0.40 Běijīng 236 99 0.42
Zhèngzhōu 278 108 0.39 Chéngdū 320 127 0.40
Tiānjīn 253 97 0.38 Zhèngzhōu 278 110 0.40
Jìnán 315 120 0.38 Tiānjīn 253 100 0.40
Chéngdū 320 121 0.38 Nánjīng 276 107 0.39
a b

and the Common Chinese analysis. This shows that Běijīng and Standard
Chinese play a definite role in our network, although this role is currently not
quantifiable in terms of degree and heavily weighted edges, but only in the
patchy cognate sets themselves.

5 Discussion

In evolutionary biology andhistorical linguistics, the term phylogenetic network
is often used in a very broad sense, referring to ‘any graph used to represent
evolutionary relationships (either abstractly or explicitly) between a set of taxa
that labels some of its nodes (usually the leaves)’ (Huson et al., 2010: 69). Given
the fuzziness of this definition, Morrison (2011: 42) suggests drawing a further
distinction between two types of phylogenetic networks: data-display networks
and evolutionary networks. Data-display networks are merely a data summary,
while evolutionary networks represent a direct phylogenetic hypothesis which
‘should display evolutionary relationships between ancestors anddescendants’
(ibid.: 43). According to this definition, the popular split networks (Huson et
al., 2010: 71 f.), which were also applied to Chinese dialect data (Ben Hamed
and Wang, 2006), are data-display networks; the networks we reconstructed
with our method come close to evolutionary networks, since they display both
patterns of vertical and lateral inheritance. Nevertheless, while our method
appears to be pointing in the right direction with regard to uncovering verti-
cally and horizontally shared components in phylogenetic analyses, it is clear
that there are still many problems that need to be addressed in future studies.

Our method relies heavily on the accuracy of proposed assessments of ety-
mological relatedness. If the data is incorrectly coded, the results will be off
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the mark, but that is true of any analytic method, not just networks. The fact
that differences regarding homology judgments can have a great impact on the
results reported for gene distributions across genomes was shown in a study
by Dagan and Martin (2007: 873), where varying sizes of gene families had a
deeper impact on gain-loss models and estimated rates of lateral gene transfer
than differences in reference trees. Our current approach to conducting cog-
nate judgments is very strict. Even the slightest morphological variation that
might result from regular processes of affixation will force us to separate words
into different cognate sets. Although we think that the requirement of direct
cognacy as opposed to partial or oblique cognacy is a necessary and reasonable
requirement for our method, we recognize that the borders can overlap. Fur-
thermore, it is highly likely that we missed many cases of valid, direct cognacy
by conducting cognate judgments on the basis of the identity of the Chinese
character sequences. This is a parameter that can be varied in future analyses.

The fact that our networks alone did not uncover the influence of Standard
Chinese, and that its influence could only be shown when comparing the
number of patchy cognate sets per number of words in a given variety, points
to a general problem of the current method for network reconstruction. At the
moment, our method simply connects those nodes on the reference tree for
which a patchy cognate set has been inferred by a given gain-loss model. In
this sense, our approach is greedy. The specific borrowing process, however,
cannot be inferred with the method, since it neither points to a direction of
the process, nor does it point to a concrete source, since in many cases the
gain-loss model infers that characters originate on internal (ancestor) rather
than external (contemporary) nodes. Although ourmethod is an improvement
over data-displaynetworks, it is still an effort to translate its results into inferred
historical processes.

Despite these drawbacks, we are confident that it is worthwhile to pursue
this road further. Borrowing is an integral component of language history and
the networks can accommodate this mechanism in a way that no bifurcating
tree can. Ourmethod clearly shows that the treemodel also fails to explain the
majority of the lexical data of the Chinese dialects in our sample. Not only does
it confirm general uncertainties of Chinese dialect classification that have been
long discussed, it also reveals the strong influence of the standard language on
the diatopic varieties of Chinese, uncovering a small sketch of the complexity
of Chinese dialect history.
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Supplementary Material and Software

The Supplementary Material accompanying this study contains figures of all
reference trees that were used for this study (Supplementary Material i), the
vocabulary size distributions inferred for all analyses (Supplementary Mate-
rial ii), the mln and msn for the Common Chinese analysis (Supplementary
Material iii), and a full account of all patchy cognate sets inferred for the South-
ern Chinese analysis (SupplementaryMaterial iv). Thematerials can be down-
loaded from:

http://www.molevol.de/resources/index.html?id=011list2014/
APython script that replicates the analyses uponwhich this studywas based

along with the input data is available under:
https://gist.github.com/LinguList/7481097.
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2.2 Ancestral State Reconstruction
The two previous studies on phylogenetic networks both make use of a rather simple and straightforward
two-step procedure. First, an algorithm is used to plot individual word histories in a given reference
three. Second, individual word histories are systematically compared and analyzed by inferring major
lateral connections and visualizing the results in form of phylogenetic networks or networks plotted in
geographic space. The first step in the procedure, which was called character mapping in the two previous
studies, is also known as ancestral state reconstruction in evolutionary biology, and beyond doubt the
more important of the two steps.
The two studies by List et al. (2014a) and List et al. (2014b) make exclusive use of weighted parsimony

techniques for binary-state characters in reconstructing the ancestral states. Given that parsimony is
considered problematic among scholars in evolutionary biology and computational historical linguistics,
it is therefore important to improve the techniques for ancestral state reconstruction further. First attempts
in this direction are presented in the following two studies.
The first study, titled “Beyond cognacy: historical relations between words and their implication for

phylogenetic reconstruction” (List 2016), takes the notion of cognacy in historical linguistics as a starting
point to explain how a more realistic modeling of lexical evolution might be achieved. By comparing
cognacy with the notion of homology in evolutionary biology, a more fine-grained model of lexical evo-
lution is developed that allows to distinguish more processes than merely gain and loss of words. In order
to handle more complex processes, involving specifically derivation and compounding, in computational
analyses for ancestral state reconstruction, the study proposes the use of multi-state models for character
evolution which allow for evolutionary processes with a strong directional tendency by employing asym-
metric step matrices in a parsimony framework of ancestral state reconstruction. The results show that
these improved models have a much higher success rate in reconstructing the lexical evolution scenarios
of a gold standard test set of Chinese dialects where ancestral states are known from historical records.
Given the well-known disadvantages of parsimony-based techniques for ancestral state reconstruction,

the second study, titled “Using ancestral state reconstruction methods for onomasiological reconstruction
in multilingual word lists” (Jäger and List 2018), systematically compares recent approaches for ancestral
state reconstruction as they are common in evolutionary biology, testing binary and multi-state models of
character evolution in weighted parsimony frameworks, the weighted parsimony techniques underlying
the minimal lateral network approach discussed before (List et al. 2014a, List et al. 2014b), as well as
ancestral state reconstruction based on maximum likelihood. The results show that maximum likelihood
approaches clearly outperform all other approaches. However, a detailed qualitative comparison of the
computational results with the known scenarios of lexical evolution in the Indo-European and the Sinitic
sample of the data also showed that the test data themselves, which was based on judgments not provided
by the authors of the study of Jäger and List (2018), had several errors.
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Abstract

This article investigates the terminology and the processes underlying the fundamental historical rela-

tions between words in linguistics (cognacy) and genes in biology (homology). The comparison

between linguistics and biology shows that there are major inconsistencies in the analogies drawn be-

tween the two research fields and the models applied in phylogenetic reconstruction in linguistics.

Cognacy between words is treated as a binary relation which is either present or not. Words, however,

can exhibit different degrees of cognacy which go beyond the distinction between orthologous and

paralogous genes in biology. The complex nature of cognacy has strong implications for the models

used for phylogenetic reconstruction. Instead of modeling lexical evolution as a process of cognate

gain and cognate loss, we need to go beyond the cognate relation and develop models which take the

degrees of cognacy into account. This opts for the use of evolutionary models which handle multistate

characters and allow to define potentially asymmetrical transition tendencies among the character

states instead of time-reversible binary state models in phylogenetic approaches. The benefit of multi-

state models with asymmetric transition tendencies is demonstrated by testing how well different

models of lexical change perform in semantic reconstruction on a lexicostatistical dataset of 23

Chinese dialects in a parsimony framework. The results show that the improved models largely out-

perform the popular gain–loss models. This suggests that improved models of lexical change may

have strong consequences for phylogenetic approaches in linguistics.

1. Introduction

Evolutionary biology and historical linguistics both deal

with the evolution of objects. Evolutionary biology in-

vestigates the evolution of species, morphological char-

acters, and genes, and historical linguistics investigates

the evolution of language varieties, grammatical fea-

tures, and words. In both disciplines, historical relations

are an important way to describe the consequences of

evolutionary processes. Historical relations are defined

for evolving objects which share a common history. The

most general historical relation is the relation of com-

mon descent. This relation can hold both for lineages

and for their characteristics. If the relation concerns the

latter, biologists call it homology. In linguistics, this re-

lation is often compared with the relation of cognacy. In

contrast to historical relations, we can define various

VC The Author 2016. Published by Oxford University Press. All rights reserved. for permissions, please e-mail: journals.permissions@oup.com
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nonhistorical relations between evolving objects. We

can compare species for phenotypic similarity and lan-

guage varieties for typological similarity. We can com-

pare species for the similarity of their habitat, and

language varieties for their geographic closeness.

Although these similarities can give us hints regarding

deeper historical relations, they are neither a necessary

nor a sufficient condition for them.

Evolutionary biology has a rich terminological

framework describing fundamental historical relations

between genes and morphological characters.

Discussions regarding the epistemological and onto-

logical aspects of these relations are frequent and fruitful

(Jensen 2001; Koonin 2001; Petsko 2001; Sonnhammer

and Koonin 2002; Morrison 2015). In historical linguis-

tics, terminological questions regarding historical rela-

tions have occasionally been raised in the past (Kati�ci�c

1966; Arapov and Xerc 1974), and recent discussions

about the cognacy of grammatical features in historical

syntax have emerged (Campbell and Harris 2002;

Barðdal and Eyth�orsson 2012; Walkden 2013). In

quantitative applications, however, the fundamental

historical relations between words, morphemes, or

grammatical features are usually assumed to be self-evi-

dent, not deserving specific attention. As a result, our

traditional terminology dealing with relatedness, inherit-

ance, and descent is often used imprecisely, frequently

leading to confusion in quantitative applications.

Computational approaches in historical linguistics are

often based on software originally designed for bioinfor-

matics. Scholars justify the use of bioinformatics soft-

ware in linguistics by drawing analogies between

historical relations in the two disciplines. Unfortunately,

these analogies often ignore the peculiarities of biolo-

gical evolution and language history. Instead, they offer

a simplified mapping between terms in both disciplines

and disregard the underlying processes.

In the following, I will try to illustrate the problems

in phylogenetic reconstruction in more detail. I will try

to show that the models which are currently used to

infer phylogenies from linguistic data suffer from a loss

of valid information arising from the superficial analogy

between homology and cognacy and a simplification of

the processes underlying lexical change. Since termino-

logical misunderstandings are the core of the problem, I

will first carry out a brief comparison of biological and

linguistic terminology on historical relations, pointing to

similarities and differences in the two fields (Section 2).

By discussing the complexities of lexical change, I will

point to further pitfalls that should be avoided when

modeling lexical change with biological software

(Section 3). I will then propose improvements to the

models currently used in computational historical lin-

guistics (Section 4), and illustrate for a small lexical

dataset of Chinese dialects how complex historical rela-

tions between words can be modeled in computational

approaches to phylogenetic reconstruction (Section 5).

2. Terminology for historical relations in
biology and linguistics

Scholars have often compared biological and linguistic ter-

minology (Gray 2005; Croft 2008; Pagel 2009; Geisler

and List 2013). The analogies that have been made are,

however, not necessarily very precise. This becomes espe-

cially evident in the analogies drawn between the terms

which are used to describe historical relations between

evolving objects in both fields. The most popular analogy

in this context is that between homology in biology and

cognacy in linguistics (Pagel 2009). In the following, I will

carry out a detailed comparison between the terminology

used in both fields, thereby showing that the analogy be-

tween homology and cognacy is essentially misleading.

2.1 Homology

Homology is a fundamental concept in evolutionary

biology, designating a ‘relationship of common descent

between any entities, without further specification of the

evolutionary scenario’ (Koonin 2005: 311). The term

was first defined by Richard Owen (1804–92), who dis-

tinguished ‘homologues’, as ‘the same organ in different

animals under every variety of form and function’

(Owen 1843: 379), from ‘analogues’ as an ‘organ in one

animal which has the same function as another part or

organ in a different animal’ (Owen 1843: 374).

Homology is a very general historical relation between

evolving objects. It does not specify the process from

which the relation originated. Geneticists distinguish

three subtypes of homology based on processes underly-

ing the homology of genes in molecular evolution:

orthology, paralogy, and xenology. Orthology refers to

‘genes related via speciation’ (Koonin 2005: 311), paral-

ogy refers to ‘genes related via duplication’ (Koonin

2005: 311), and xenology refers to genes ‘whose history,

since their common ancestor, involves an interspecies

(horizontal) transfer of the genetic material for at least

one of those characters’ (Fitch 2000: 229).

In a paper from 1970, Fitch suggested to distinguish

two kinds of homology in molecular evolution: hom-

ology as the ‘result of speciation so that the history of

the gene reflects the history of the species’ should be

called ‘orthology’, and homology as the ‘result of gene

duplication so that both copies have descended side by
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side during the history of an organism’ should be called

‘paralogy’ (Fitch 1970: 113). First evidence that genome

evolution does not only involve the mutation of individ-

ual genes but also the duplication of genes as a whole

was reported in the 1930s (Zhang 2003; Taylor and

Raes 2004).

In 1983, Gray suggested to use the term xenology as

a third subtype of homology in order to distinguish

those cases in which genes are homologous, but neither

orthologous nor paralogous, since ‘cells and organisms

have acquired foreign genes in the past’ (Gray and Fitch

1983: 64). It is now a well-established fact that prokary-

otes (bacteria) may acquire genetic material from ‘their

neighborhood or [. . .] environment and incorporate it

into their genomes’ (Nelson-Sathi et al. 2013: 166).

Lateral gene transfer processes were first detected and

described in the 1950s (Freeman 1951). Only 30 years

later, however, scholars began to emphasize the import-

ance of lateral gene transfer for microbial evolution

(Syvanen 1985). Figure 1 contrasts the three basic proc-

esses of speciation, duplication, and lateral transfer with

the resulting historical relations in evolutionary biology.

2.2 Cognacy

In historical linguistics, the only relation which is expli-

citly defined is cognacy (also called cognation). Cognacy

usually refers to words related via ‘descent from a com-

mon ancestor’ (Trask 2000: 63) and it is strictly distin-

guished from descent involving lateral transfer

(borrowing). The term cognacy itself, however, covers

both direct and indirect descent. Hence, German Zahn

‘tooth’ is cognate with English tooth, as is German Kopf

‘head’ with English cup, and German Getr€ank ‘drink’

with English drink, although the historical processes

that shaped the present appearance of these three word

pairs are quite different: apart from the sound shape,

Zahn and tooth have regularly developed from Proto-

Germanic *tan Þ (Kroonen 2013: 509f); Kopf and cup

both go back to Proto-Germanic *kuppa- ‘vessel’

(Pfeifer 1993; Kluge and Seebold 2002),1 but the mean-

ing of the German word has changed greatly; Getr€ank

and drink go ultimately back to Proto-Germanic *drin-

kan ‘to drink’ (Kroonen 2013: 100f), but the German

noun was built as a collective (with prefix Ge-) from the

nominalized form of the verb (Pfeifer 1993), while

the English noun was directly built from the verb. The

nominalized form, Proto-Germanic *dranka- is still re-

flected in German Trank ‘potion’. Thus, of the three ex-

amples of cognate words, only the first would qualify as

having evolved by direct inheritance. Starostin (2013:

140) suggests to distinguish ‘etymological cognacy’ from

‘lexicostatistical cognacy’, the former denoting words

whose ‘forms go back to the same protoform’, and the

latter denoting words whose ‘meanings go back to the

same meaning in the proto-language as well’. Trask

(2000: 234) suggests the term oblique cognacy to label

cases in which ‘two or more words in related languages

[. . .] continue alternant forms of a single root in the an-

cestral language’, but this term is rarely used and most

of the time linguists simply use the term cognacy with-

out further specifying what they actually mean.

2.3 Beyond homology and cognacy

In an earlier paper (List 2014: 38–46) I abstracted from

the processes underlying the historical relations between

genes to contrast the biological and the linguistic termin-

ology. In this comparison, I took common descent as the

most basic relation, with homology as a direct counter-

part. The term ‘common descent’ may be a bit mislead-

ing, but what I had in mind by then were all forms of

historical relations, including those resulting from lat-

eral transfer. Common descent was further subdivided

into direct common descent (corresponding to orthol-

ogy), indirect common descent (corresponding to paral-

ogy), and common descent involving lateral transfer

(corresponding to xenology). I then contrasted the ab-

stract relations and the biological terminology with the

terminology currently found in linguistics, thereby

pointing to missing slots in the linguistic terminology,

for which new terms are proposed. Table 1 illustrates

this comparison by contrasting the abstract basic

Figure 1. Subtypes of homology in molecular biology. Three

processes, speciation, duplication, and lateral transfer underly

the three basic types of homology in molecular evolution. The

processes are illustrated in (A), the resulting relations are illus-

trated in (B).

1 Most likely the word is an early borrowing from Latin

which happened before the split of English and German

(see Pfeifer 1993).
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relations with the terminology in biology and linguistics.

Relations for which proper terms are missing in linguis-

tics and for which I proposed new terms are colored in

red (List 2014: 44). As one can easily see from the table,

historical linguistics does not offer direct counterparts

for the abstract relations underlying homology, orthol-

ogy, and xenology in evolutionary biology. Cognacy in

historical linguistics is often deemed to be identical with

homology in evolutionary biology (Gray 2005; Pagel

2009), but if we follow the comparison, this is only true

if one ignores common descent involving lateral transfer,

since borrowings are explicitly excluded from the clas-

sical definition of cognacy in historical linguistics (Trask

2000: 63).

As we can see from the table, linguistics lacks a

proper term for a historical relation between words re-

gardless of whether they are inherited or borrowed

(homology in biology, etymological relation according

to Table 1). There is also no term denoting the relation

between words of which one has been borrowed during

its history (xenology in biology). This does not mean, of

course, that the relations do not occur in the linguistic

domain. Lateral transfer, the process underlying the re-

lation of xenology in molecular biology is also common

in language history.2 In contrast to a relation between

two words which involves lateral transfer, the term bor-

rowing refers to distinct processes involving a donor and

a recipient. As an example for such a relation, consider

the words German kurz ‘short’ and English short (List

2014: 40). These words are not cognate. German kurz is

a borrowing from Latin curtus ‘mutilated’ (Pfeifer

1993), but English short probably goes back to Proto-

Indo-European *(s)sker- ‘cut off’ (Rix et al. 2001), and

so does Latin curtus (Vaan, 2008). The specific history

behind these relations is illustrated in Fig. 2. Since

German kurz was borrowed early from Latin, we cannot

say that kurz has been borrowed from French court, but

we also cannot say that both words are cognate. Yet

since both words share a common history, it would be

likewise wrong to label them as unrelated, in lack of a

proper terminology.

3. Modeling lexical change

In the previous section, I have introduced the basic ter-

minology which biologists and linguists use to denote

specific relations between evolving objects. I have then

presented an earlier approach of mine (List 2014), where

I used the distinctions made in the biological domain in

order to introduce new terms for specific historical rela-

tions between words. On the first look, the approach

seems justified, and the proposed analogies between bio-

logical and linguistic relations seem to be fruitful. When

looking into the details, however, it becomes clear that

important questions are left unanswered. While it is ob-

vious that cognacy in linguistics is not the same as hom-

ology in biology, it is less clear how we should

understand the idea of direct and indirect cognacy.

Figure 2. Complex historical relations between reflexes of

Proto-Indo-European *(s)ker- ‘cut off’.

Table 1. Comparing biological and linguistic terminology

for historical relatedness (with modifications taken from

List 2014). Terms in red are suggested to make up for miss-

ing terminology in historical linguistics

Historical relations
Terminology

Biology Linguistics

C
om

m
on

 d
es

ce
nt Direct

H
om

ol
og

y

Orthology
E

ty
m

ol
og

ic
al

 re
la

tio
n

C
og

na
cy Direct cognacy

Indirect Paralogy Indirect cognacy

Involving
lateral transfer

Xenology Indirect etymological
relation

2 We should, of course, be careful with analogies, and it

is clear that the specific processes of lexical borrowing

are completely different from the processes of lateral

gene transfer in biology. On an abstract level, however,

the analogy between lateral gene transfer and lexical

borrowing holds, in so far as both processes involve

the direct transfer of material between evolving

objects.

122 Journal of Language Evolution, 2016, Vol. 1, No. 2

2.2 Ancestral State Reconstruction

57



What exactly is meant to be indirect here? Is it the fact

that words differ in meaning, thus being akin to words

which are root-cognate but not lexicostatistically cog-

nate, following the distinction of Starostin (2013: 140),

or should we instead concentrate on morphological dif-

ferences, thus following the notion of oblique cognacy

proposed by Trask (2000: 234)? And how does the idea

of ‘indirect descent’ relate to paralogy and the process of

gene duplication in biology? In the following, I will try

to show that we need to go beyond my earlier proposal

in order to develop a satisfying model of lexical change

that can be used for phylogenetic reconstruction.

3.1 Degrees of cognacy

Morrison (2015: 50) points to the relative character of

homology in evolutionary biology in emphasizing that

evolving objects can exhibit homology at different levels,

which may even be independent of each other:

The classic example is the comparison of bird wings and

bat wings. These are homologous as forelimbs (structures),

which are general throughout the tetrapods, but they are

not homologous as wings (functions), because they repre-

sent independent modifications of those forelimbs in the

ancestors of birds and bats. (Morrison 2015: 50)

We can find similar situations in linguistics: if we

consider words for ‘to give’ in the four Romance lan-

guages Portuguese, Spanish, Provencal, and French, we

can state that both Portuguese dar and Spanish dar are

homologous, as are Provencal douna and French donner.

The former go back to the Latin word dare ‘to give’, the

latter go back to the Latin word d�on�are ‘to gift (give as a

present)’. In times when Latin was spoken, both dare

and d�on�are were clearly separated words denoting

clearly separated concepts and being used in clearly sep-

arated contexts. The verb d�on�are itself was derived from

Latin d�onum ‘present, gift’. Similar to English where

nouns can be easily used as verbs, Latin allowed for spe-

cific morphological processes to turn nouns into verbs.

What the ancient Romans were not aware of is that

Latin d�onum ‘gift’ and Latin dare ‘to give’ themselve go

back to a common word form. This was no longer evi-

dent in Latin, but it was in Proto-Indo-European, the an-

cestor of the Latin language. Thus, Latin dare goes back

to Proto-Indo-European *deh3- ‘to give’, and Latin

d�onum goes back to Proto-Indo-European * deh3 - no-

‘that what is given (the gift)’ (Meiser 1998). The word

form *deh3 - no- is a regular derivation from *deh3-, so

on the Indo-European level, both forms are homologous,

since one is derived from the other. This means in turn,

that Latin dare and d�onum are also homologues, since

they are the residual forms of the two homologous

words in Proto-Indo-European. And since Latin d�on�are

is a regular derivation of d�onum, it means, again, that

Latin dare and d�on�are are also homologous, as are the

words in the four descendant languages, Portuguese dar,

Spanish dar, Provencal douna, and French donner.

Depending on the time depth we apply, we will arrive at

different homology decisions. The history of the words

is depicted in Fig. 3A.

An even more complex example are words like

Italian sole, French soleil, Swedish sol, and German

Sonne, all meaning ‘sun’. Indo-European scholars as-

sume that the Proto-Indo-European word for sun had a

complex, stem-alternating paradigm with two different

base forms, one for nominative and accusative case

*séh2u8 el-, and one for the oblique cases, *sh2én-

(Wodtko et al. 2008: 606). Proto-Germanic inherited

this paradigm completely (*s�oel- versus *sunn�on,

Kroonen 2013: 463f), but it was simplified via the pro-

cess known as analogy in historical linguistics, and the

nominative stem was taken as the base form in Latin s�ol

(Meyer-Lüebke 1911: §8059). In Swedish and German,

the complex base form was also simplified, but in differ-

ent directions, with the Swedish form taking the nom-

inative stem as the basis of analogy, and the German

form taking the oblique stem. While Italian sole is the

regular reflex of Latin s�ol, French soleil goes directly

back to Latin s�oliculus ‘small sun’, a Latin diminutive of

sol (Meyer-Lüebke 1911: §8067). From this perspective,

Italian sole is more closely related to Swedish sol than to

French soleil, although French and Italian are, of course,

much closer genetically related than are Swedish and

Italian. The history of the reflexes of the Indo-European

word for ‘sun’ is depicted in Fig. 3B.

Figure 3. Degrees of cognacy in Indo-European language his-

tory: the development of words meaning ‘to give’ from

Proto-Indo-European via Latin to Italian and French (A), and the

development of words meaning ‘sun’ in from Proto-Indo-

European to Italian, French, Swedish, and German (B).
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3.2 Dimensions of lexical change

In a very simple language model, the lexicon of a lan-

guage can be seen as a bag of words. A word is further

defined by two aspects: its form and its meaning. Thus,

the French word arbre can be defined by its written

form arbre or its phonetic form [A�b�#], and its meaning

‘tree’. This is reflected in the famous sign model of

Ferdinand de Saussure (1857–1913, Saussure 1916),

which I have reproduced in Fig. 4A. In order to empha-

size the importance of the two aspects, linguists often

say that form and meaning of a word are like two sides

of the same coin, but we should not forget that a word is

only a word if it belongs to a certain language. From the

perspective of the German or the English language, for

example, the sound chain [A�b�#] is just meaningless. So

instead of two major aspects of a word, we may better

talk of three major aspects: form, meaning, and lan-

guage (Ternes 1987: 22f; List 2014: 15–18). As a result,

our bilateral sign model becomes a trilateral one, as

illustrated in Fig. 4B.

Gévaudan (2007) distinguishes three dimensions of

lexical change: The morphological dimension, the se-

mantic dimension, and the stratic dimension. The mor-

phological dimension points to changes in the form of

words which are not due to regular sound change. As an

example, consider German Getr€ank ‘drink’ and its an-

cestral form Old High German tranc ‘drink’. While the

meaning of the word is the same, the German word

Getr€ank is a collective derivation of the Old High

German source form (Pfeifer 1993). The derivation pro-

cess involved prefix Ge-, and the modification of the

main vowel. The semantic dimension is illustrated by

changes like the one from Proto-Germanic *kuppa- ‘ves-

sel’ to German ‘Kopf’. The stratic dimension refers to

changes which involve lexical material outside the his-

torical continuum of a given language (Gévaudan 2007:

141f). In the terminology of Gévaudan (2007: 141f),

stratum refers to languages as historical continua, and

should not be confused with the way the term is used in

sociolinguistics, where it refers to language varieties

used in certain layers of a linguistic society (Coseriu

1973; Oesterreicher 2001), but rather in opposition to

the term adstratum in historical and areal linguistics

(Gévaudan 2007: 141). Usually, changes along the

stratic dimension belong to the class of borrowing proc-

esses. (Gévaudan 2007: 141–63) argues, however, that

processes like onomatopoeia, antonomasy, and folk ety-

mology can also be characterized as processes which in-

volve the stratic dimension of lexical change, since they

are based on material which does not stem from the his-

torical continuum of a given language. An example for a

simple type of stratic change is English mountain which

was borrowed from Old French montaigne ‘mountain’.

An example for a more complex type of stratic change is

German Maus ‘mouse (for a computer)’ which was not

directly transferred from English but rather received a

broadened semantic function under the influence of the

English word (compare Weinreich (1974: 47–62) and

Gévaudan (2007: 143–51) for more details on different

types of lexical interference).

Note that these three dimensions of lexical change

correspond directly to the three major aspects constitut-

ing the linguistic sign: the morphological dimension

changes the form of a word, the semantic dimension its

meaning, and the stratic dimension its language. Thus,

the three dimensions of lexical change, as proposed by

Gevaudan find their direct reflection in the major di-

mensions along which words can vary.

3.3 27 Shades of cognacy

When looking at the different historical relations from

the perspective of the three dimensions of lexical change,

it becomes clear that the new terms I proposed earlier

(List 2014) do not necessarily solve our problem of re-

flecting the different aspects of lexical change and lexical

variation adequately. Although it seems justified to

point to the difference between cognacy in linguistics

and homology in biology, it proposes a problematic ana-

logy between paralogy and indirect cognacy without fur-

ther specifying how indirect cognacy should be defined

in the end. When investigating the different uses of the

Figure 4. The different dimensions of the linguistic sign: (A) Shows the classical model after Saussure (1916). (B) Shows an ex-

tended sign model in which the language, the system in which a sign is used was added as a third component.
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term ‘cognacy’, for example, it becomes obvious that the

differences result from controlling for one or more of

the three dimensions of lexical change proposed by

Gévaudan (2007).3 The notion of cognacy of a classical

Indo-Europeanist, for example, controls the stratic di-

mension by requiring stratic continuity (no borrowing),

but at the same time it is indifferent regarding the other

two dimensions. This is what Starostin (2013: 140)

called ‘etymological cognacy’. Cognacy �a la Swadesh

(especially Swadesh 1952,1955), as we know it from

lexicostatistics (Swadesh 1952, 1955) and its modern

derivations (Gray and Atkinson 2003), is indifferent re-

garding morphological continuity, but controls the se-

mantic and the stratic dimensions by only considering

words that have the same meaning and have not been

borrowed. This is what Starostin, (2013: 140) called

‘lexicostatistical cognacy’.

‘Traditional cognacy’ and ‘cognacy �a la Swadesh’, how-

ever, are but two ways to control for the three dimensions

of lexical variation, and one can easily think of more per-

spectives on historical relations between words, including

the terminology that is used in evolutionary biology. In

Table 2, I have attempted to illustrate in which way the dif-

ferent terms, including the biological terms of homology,

orthology, and xenology, cover processes by controlling

each for one or more of the three dimensions of

lexical change (withþ indicating that continuity is

required, � indicating that change is required, and þ/�
indicating indifference). Note that paralogy was not

included in the comparison, since the process of gene dupli-

cation is a very specific event that probably has no fruitful

analogy in historical linguistics. Contrasting the different

dimensions of lexical change with the terminology used to

refer to different relations between words shows the arbi-

trariness of the traditional linguistic terminology. Why do

we only cover two out of 3 � 3 � 3 ¼ 27 different possible

types? Why do we only control by requiring continuity,

not change? It also shows the fundamental difference be-

tween change processes in linguistics and biology.

4. Models of lexical change in phylogenetic
reconstruction

In the previous sections, I have tried to show that not only

the terminology that we use to denote historical relations be-

tween evolving entities in linguistics and biology shows some

important differences, but also that the processes underlying

lexical change in language history are very particular, involv-

ing three major dimensions of lexical variation which them-

selves can be further subdivided into a multitude of minor

process types.4 In the following, I will try to illustrate how

our models can be modified in order to account for more

complex historical relations between words.

4.1 Gain loss models and morphological
variation

The majority of automatic methods for phylogenetic re-

construction in historical linguistics employ lexical data

to infer language phylogenies. When employing these

Table 2. 27 shades of cognacy: the table shows exemplarily

how cognacy can be modeled according to the three di-

mensions of lexical change, highlighting potential analo-

gies in biology.

3 Note that, in this context, ‘controlling’ for a dimension

means to consider only those historically related words

in which no variation along that very dimension

occurred during their history since separation. If we

compare French soleil ‘sun’ with Italian sole ‘sun’, for

example, we would need to state that the French word

changed its meaning from small sun to sun, and al-

though both forms are identical regarding their syn-

chronic meaning, their history involves variation along

the semantic dimension (see Starostin 2013 for more

examples on cases of unilateral independent semantic

development). In practice, when linguists prepare lexi-

costatistical databases, however, controlling for mean-

ing is usually reduced to checking for identity along a

given dimension. It is clear that this can be problematic.

In the absence of counterevidence the majority of lin-

guists would probably assume that meaning identity in

cognate word forms is good evidence that no semantic

change happened since the separation of the forms,

but it is obvious that semantic identity is only a neces-

sary for semantic continuity since separation.

4 Already a brief overview of some classical work on the

complexities of semantic change (Wilkins 1996), mor-

phological change (Koch 1996), and stratic change

(Weinreich 1974) shows that the three-dimensional

model of lexical change only touches the tip of the

huge iceberg of lexical change.
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methods, it is important to specify a model of lexical

change that the algorithms can use to infer the trees or

the networks that fit the data best. Most datasets em-

ploy a lexicostatistical scheme of data-coding (Dyen

et al. 1992; Ringe et al. 2002; Greenhill et al. 2008;

Bouckaert et al. 2012; Greenhill 2015). This means, that

they are based on concept lists of 100 and more items

which are translated into the languages under investiga-

tion. By comparing all translations in each concept slot

with each other, linguists then annotate which words

are cognate. The notion of cognacy that is underlying

these databases is usually the notion of ‘cognacy �a la

Swadesh’ in Table 2, that is, annotators try to filter out

borrowings, consider only semantically identical items,

and do not necessarily regard morphological variation.

The methods which are then used to analyze the data,

be they based on probabilistic approaches (Felsenstein

1981; Huelsenbeck et al. 2001), or parsimony (Fitch 1971;

Sankoff 1975), are almost exclusively based on gain–loss

models of lexical change (Pagel 2009). They reduce the

change of phylogenetic characters to processes of gain and

loss and essentially assume that during evolution a lan-

guage can either gain a new word or loose an existing one.

In these models, each phylogenetic character has only two

states, presence, or absence, and presence–absence matrices

of cognate sets are fed to the algorithms in order to infer

language phylogenies. Presence–absence matrices are

retrieved from the original data by breaking up the seman-

tic slots into sets of cognate words, and listing for each

language whether it has a word belonging to the respective

cognate set or not (Atkinson and Gray 2006). This way of

data preparation and encoding is further illustrated in

Table 3.

The binary coding practice has strong consequences,

since it is vulnerable to historical word relations with

variation along the semantic and the morphological di-

mension. First, the general procedure by which lexicos-

tatistical data is binary encoded and concepts are split

into several independent characters creates dependencies

which cannot be observed by the algorithms. It deprives

the analysis of the essential criterion for gain and loss,

since presence and absence are defined with respect to

meaning identity. Gain and loss need to be essentially in-

terpreted as gain and loss with respect to a certain con-

cept slot, not with respect to the entire language. The

loss of a word means that the word is no longer used to

express a certain meaning, and the gain of a word

implies that a new word is used to express a certain

meaning. Yet since meaning is discarded by the binarisa-

tion procedure (see Table 3), the models are given no

clue to handle instances of parallel semantic shift. A

more realistic gain–loss analysis should include a larger

sample of words and annotate cognates regardless of dif-

ferences in meaning (Michael et al. 2015).

Second, the lexicostatistical coding practice is vulner-

able with respect to morphological change, since morpho-

logical variation is deliberately ignored when assigning

words to cognate sets. This was not the case in the early

days of lexicostatistics. Hattori (1961), for example, distin-

guished clearly between true ‘orthologues’ and morpho-

logically derived words. Recalling the example of Italian

dare and French donner given in Fig. 3, it is clear that we

can annotate the words quite differently, depending not

only on the “shade” of cognacy we choose, but also on the

desired depth of analysis. In current practice, words like

dare and donner are usually assigned to the same cognate

set, and their morphological differences are ignored.5

When annotating the words, however, we should ask our-

selves which kind of annotation would be the best for the

underlying model that we use. From this perspective, we

would do best in coding Italian dare and French donner as

being not cognate, since by the time that donner replaced

earlier dare in the ancestor of French, the word dare was

lost with respect to the meaning ‘to give’, and the word

donner was gained.

Table 3. Lexicostatistical scheme of data-encoding and the

creation of presence-absence matrices. The table shows

how lexicostatistical word lists are produced, how cog-

nates are assigned to words by using numerical identifiers,

and how the data are then converted into binary presence

absence matrices for the purpose of phylogenetic compari-

son. Note that the proto-form which is given for each cog-

nate set in the table below is not necessarily included in

lexicostatistical datasets, but it, nevertheless, is implicitly

assumed.

5 Compare the coding in the Indo-European Lexical

Cognacy Database at http://ielex.mpi.nl/cognate/405/,

version accessed on 2016-04-08 available at WebCite:

http://www.webcitation.org/6dGAxAG9r.
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The problem of morphological variation in lexicos-

tatistical datasets becomes even more evident when

looking at more specific processes of morphological

change like compounding. While compounding is less

characteristic for the Indo-European language familiy

(at least as far as the stable parts of the lexicon are con-

cerned), it plays an important role in the Sino-Tibetan

language family (Matisoff 2000: 341f; Chung et al.

2014; List 2015: 56–58). In the Chinese dialects, for ex-

ample, the majority of words is only indirectly related,

as illustrated in Table 4 where the words for ‘moon’ in

four Chinese dialects share the same base morpheme,

but differ regarding the further parts of their com-

pounds. When investigating these patterns, we can im-

mediately infer processes of lexical change that link

these patterns. F�uzh�ou [˛uo?5] , for example, reflects

the oldest stage in which Chinese was still predomin-

antly monosyllabic. M�eixi�an [˛iat5 kuo˛44] re-

flects a younger stage in which bisyllabic structures

were gaining ground, and W�enzh�ou [Jjy21kuO35vai13]

reflects an even later stage, since it builds on the

form in M�eixi�an, adding a suffix that marks nomin-

alization (compare W�enzh�ou [Jji21dYu35vai13]

‘sun’).6 In the ‘classical’ lexicostatistical view of cognacy

and the ‘classical’ models of word gain and word loss,

these processes are all ignored, although they may bear

important phylogenetic information. One would either

label all four words as cognate, since they share the

same base morpheme (Satterthwaite-Phillips 2011: 95–

103), or label them all as not being cognate, since their

parts to not match completely (Ben Hamed and Wang

2006; Gates 2012: 51). If we want to model the evolu-

tion of the four words for ‘moon’ in the four dialects

realistically, neither of the two encoding practices will

be of use. In both cases, all phylogenetic signal will be

lost and the analysis cannot tell us how the words really

developed (see Fig. 5A and B).

4.2 From binary to multistate models

In principle, phylogenetic methods can handle semantic

and morphological variation sufficiently. All we need to

Figure 5. From gain–loss models to weighted directed character-state transitions: (A) Shows a strict approach in which four par-

tially related compound words (as show at the bottom of D) are modeled as four different characters. (B) Shows the consequences

of a lumping approach when partially cognate words are treated as fully cognate in binary presence–absence models. (C) Shows

weighted directed character–state transitions, based on known transition tendencies displayed at the top of (D), with arrows indi-

cating directions and edge width indicating the relative strength of transition tendencies.

Table 4. Complex etymological structure in word compounds. The table shows partial etymological relations of words for

‘moon’ in four Chinese dialects. Dialect data H�ou (2004), Middle Chinese (MC) readings follow Baxter (1992) with

modifications.

Variety Form Character Etymological structure

MC *˛iot MC *kwa˛ MC *bjut MC *lja˛œ

F�uzh�ou ˛uo?5 ˛ u o ?
5

M�eixi�an ˛iat5 kuo˛44 ˛ i a t 5 k u o ˛ 44

W�enzh�ou Jy21 kuO35 vai13
J - y - 21 k u O - 35 v a i 13

B�eijı̄ng yE51 liA˛1 � y E - 51 l i A ˛ 1

6 Note that in this case, as in general when dealing with

lexical change in a classical lexicostatistical frame-

work, sound change is ignored as a factor of change,

since regular sound change involves the sound system

and not individual phonetic material (Gévaudan, 2007:

14).
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do is to switch from binary gain–loss models to

multistate models. In a binary state model each charac-

ter can only be present or absent in a given language,

like the cognate set 1 in Table 3, for example, which is

present in German and English but absent in Italian and

Spanish. In a multistate model, a character cannot only

be present or absent, but it can also vary among lan-

guages and occur in different shapes. Instead of labeling

French donner and Italian dar either as exclusively cog-

nate or as exlusively noncognate, we could assign both

words to the same character but assign them different

states. In this way, we could handle both variation along

the semantic and the morphological dimension of lexical

change. If we can further determine how likely it is for

the character to switch from one particular state to an-

other, we can force our algorithms to prefer certain tran-

sitions and to ignore others. In the case of the Chinese

words for ‘moon’ in Table 4, for example, we already

saw that M�eixi�an [˛iat5 kuo˛44] is particularly

close to W�enzh�ou [Jjy21kuO35vai13] , since the

latter was only extended by one suffix. When comparing

the W�enzh�ou form with the form [˛uo?5] in F�uzh�ou,

we can further easily say that the transition from the

F�uzh�ou form to the M�eixi�an form should be easier to ac-

complish than the direct transition to the W�enzh�ou

form. If we further know that the process we are dealing

with has strong unidirectional tendencies, as it is the

case for many processes of sound change and grammati-

calization (Haspelmath 2004), but also in inflectional

morphology (Wurzel 1985), and potentially even in ana-

logy (Jacques 2016), we can model this by using irre-

versible models in our analyses (Huelsenbeck et al.

2002; Bohl and Lancaster 2003).

In a parsimony framework of phylogenetic recon-

struction (Fitch 1971; Sankoff 1975), the difficulty of

switching between the different states of a character is

handled by defining specific weights for character state

transitions. If we further know that the process we are

dealing with has strong unidirectional tendencies, we

can model this by assigning asymmetric weights for the

transition preferences between the states of a character.

The differences between gain–loss models and multistate

models allowing for asymmetric transition preferences

in a parsimony framework are exemplified in Fig. 5, but

multistates and asymmetric transition tendencies can es-

sentially also be handled in probabilistic frameworks.

5. Using improved models to study
Chinese dialect history

In order to illustrate the benefits of improved models for

lexical change, I have prepared a small experiment on

Chinese dialect history. In this experiment, I test how

well different models of lexical change with varying de-

grees of complexity perform on the task of semantic re-

construction. In classical historical linguistics, semantic

reconstruction seeks to infer the original meaning of a

set of cognate words (Fox 1995: 115–6). The experi-

ment I designed follows lexicostatistical approaches in

which semantic reconstruction seeks to identify the

word form which was used to express a certain concept

in an ancestral language (Kassian et al. 2015: 304–6). In

this context, semantic reconstruction can be treated as a

specific type of ancestral state reconstruction (Pagel

1999) applied to lexicostatistical data. The starting

point is a lexicostatistical wordlist, consisting of a list of

concepts which are translated into a set of language vari-

eties. Concepts comprise phylogenetic characters, and

the counterparts of the concepts in the respective lan-

guage varieties reflect different states of the characters.

Semantic reconstruction starts from a reference phyl-

ogeny (a phylogenetic tree) and tries to infer which char-

acter state was present at the root. Chinese is attested

through its contemporary dialects, whose diversity is at

least comparable to that of the Romance languages

(Wang 1997), but also in ancient texts predating the di-

versification of the modern dialect varieties by several

hundred years.7 Therefore, in the majority of cases,

there is independent evidence regarding the words which

were originally used to express a given concept. For this

reason, Chinese is an ideal candidate to test the perform-

ance of different models of lexical change.

7 There is some disagreement among Chinese linguists

regarding the exact dating of the ancestor of all

Chinese dialects. Some scholars assume that the mod-

ern dialects developed from a koine spoken in the early

T�ang dynasty (618–907 AD) around 600 AD (Karlgren

1954; Pulleyblank 1984). Other scholars propose an ear-

lier diversification. Assuming that the very conservative

Mîn dialect group had much earlier split off from the

rest of Chinese (Norman and Coblin 1995; Handel 2010),

they place their common ancestor in the late H�an

dynasty (206 BC–220 AD) some time around 200 AD.

Nevertheless, with ancient Chinese texts dating back to

1000 BC and earlier, with rich collections of classical

texts being available from the sixth century BC on-

wards, Ancient Chinese is clearly ancestral to all

Chinese dialects, as is also reflected in its sound sys-

tem (Baxter and Sagart 2014).
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5.1 Materials

The data for the experiment were originally compiled

for the study of Ben Hamed and Wang (2006). It com-

prises 200 concepts translated into 23 Chinese dialect

varieties. The concept list is largely identical with the list

of 200 items proposed by Swadesh (1952).8 In the data,

partial cognate relations are annotated by listing the

‘etymological character’ for each morpheme of a word

(b�enz�ı , Branner 2000: 35). This information is re-

garded as problematic by some Chinese dialectologists

(Branner 2000), since it is not necessarily clear how con-

sistently the morphemes in dialect words are identified.

Datasets like the one by Ben Hamed and Wang (2006)

are, nevertheless, a useful starting point for experiments

on morphological processes in lexical evolution, espe-

cially since other collections which list information on

partial cognacy in such great detail are not available.

For most of the cases, however, we can assume that the

assignments are correct. In an earlier study (List 2015),

I used the data by Ben Hamed and Wang (2006) and

converted it into a machine-readable text format, which

I used for this experiment. All data were thoroughly

checked and refined, since the partial cognate assign-

ments were not the primary target of my earlier study

and therefore only inconsistently converted into text

format.

Ben Hamed and Wang (2006) also give the ancestral

forms for the concepts in Old Chinese. Since Old

Chinese is supposed to be the ancestor of all dialect vari-

eties in the sample, the data can be used as a ‘gold stand-

ard’ to test the accuracy of ancestral state reconstruction

methods. Since processes of lexical evolution are quite

different for nouns and verbs, with compounding and

partial cognacy occurring almost exclusively on nouns,

only nouns were considered for this study. Of the 85

concepts denoting nouns in the sample, 28 were

excluded. Either the reflexes were all different from the

Old Chinese forms and it would be impossible to recon-

struct them, or the reflexes were all identical with the

Old Chinese form, and reconstruction would be no chal-

lenge at all. The 57 forms considered for the experiment

are listed in Table 5 along with the supposed ancestral

forms in Old Chinese.

Ancestral state reconstruction requires a reference

phylogeny as input. Here I build on an earlier approach

(List 2015) where I compared reference phylogenies for

three independent hypotheses on Chinese dialect history,

namely Laurent Sagart’s Arbre des Dialectes Chinois

(Sagart 2011), the H�anyu� F�angy�an Sh�ux�ıngt�u

(‘Tree chart of Chinese dialects’) by

Y�ou Ru�jié (Y�ou 1992: 91–106), and Jerry

Norman’s Southern Chinese Hypothesis (Norman 1988:

210–4). These reference phylogenies differ regarding the

subgrouping of the seven major dialect groups of

Chinese and are based on competing criteria for sub-

grouping (see List 2015: 36f for details).

5.2 Methods

The experiment employs a parsimony framework for

character transitions (Nunn 2011: 59–63). Parsimony

was used for reasons of simplicity and data sparseness.

Parsimony applications can be easily implemented from

scratch, while there are no available ready-to-use imple-

mentations of probabilistic approaches which handle

asymmetric transitions between multiple character

states. Given the sparseness of the data available for test-

ing, it is also not clear whether probabilistic applications

would converge. Four different models of varying com-

plexity were defined for the experiment:

a. BINARY: Character states which are not completely

identical in their compound structure are split into

sets of binary characters following the classical pro-

cedure described in Atkinson and Gray (2006).

Table 5. The concepts selected for the study

1. ash / 2. back / 3. belly / 4. bird / 5. bone / 6. claw /

7. cloud / 8. day / 9. dog / 10. ear / 11. earth / 12. eat /

13. egg / 14. eye / 15. fire / 16. flesh / 17. flower / 18. fog /

19. fruit / 20. guts / 21. hand / 22. heart / 23. horn / 24. ice /

25. knee / 26. lake / 27. leaf / 28. leg / 29. liver / 30. louse /

31. man / 32. moon / 33. mouth / 34. name / 35. neck / 36. night /

37. nose / 38. path / 39. person / 40. river / 41. rope / , 42. sand /

43. seed / 44. skin / 45. sky / 46. smoke / 47. snake / 48. star /

49. stone / 50. sun / 51. tail / 52. tongue / 53. tooth / 54. water /

55. wing / 56. woman / 57. worm /

8 The list is included into the Concepticon resource

(http://concepticon.clld.org, see List et al. 2016).
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Character transitions are modeled as a gain–loss

process.

b. FITCH (multistate): Lexical evolution is modeled as

a process of character transitions with equal weights,

following the classical model by Fitch (1971).

c. SANKOFF (multistate, weighted): Lexical evolution

is modeled as a process of character transitions with

unequal weights, following the classical model by

Sankoff (1975).

d. DWST (‘directed weighted state-transitions’,

multistate, weighted, directed): Lexical evolution is

modeled as a process of character transitions with

unequal weights and in dependence of the direction

of the transition.

The BINARY and the FITCH model are straightfor-

ward in their implementation. The BINARY model only

handles gains and losses with losses being favored over

gains. The parsimony weight for gain events was set to

2, and the penalty for loss events was set to 1, since these

penalties yielded the most plausible scenarios in earlier

experiments on the data (List 2015). The FITCH model

gives equal weights to transitions between all states. In

the case of SANKOFF and DWST, transitions are

weighted differently depending on the character states.

Since we lack exhaustive linguistic accounts on processes

of compounding in the Chinese dialects, a very simple

approach for the computation of the weights was em-

ployed. In a first step, the morpheme representation of

two words, which is given in Chinese character readings,

with identical characters representing cognate mor-

phemes, was aligned using the Needleman–Wunsch

algorithm (Needleman and Wunsch 1970). In a second

step, it was counted in how many positions the aligned

sequences differ. This distance, commonly known as the

Hamming distance (Hamming 1950), was further

refined by counting substitutions (those instances where

two different morphemes are aligned) twice, and inser-

tions and deletions (those instances where a morpheme

was aligned with a gap symbol or vice versa) only once.

Figure 6. Comparing multistate models for lexical change. The figure shows how the evolution of the four words for ‘moon’ is

inferred within a parsimony framework. On top, the etymological structure of the words is displayed, and unique colors are as-

signed to refer to the morpheme structure in the remainder of the figure (A). On the left, the penalties for character transitions (step

matrices) are shown for the FITCH (B), the SANKOFF (C), and the DWST model (D). For SANKOFF and DWST, example calculations

for transition penalties are displayed on the right (see also the main text). For each model, all trees with optimal weight are dis-

played. Dashed edges in the trees indicate a transition involving a change. Numbers on dashed lines denote the weight, as derived

from the corresponding matrix of transition penalties on the left.
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In contrast to the SANKOFF model, the computation of

weights for the DWST model only reduces the weights

for insertions (a gap aligned with a morpheme), but not

for deletions. This transition schema accounts for the

tendency of disyllabification in the history of Chinese,

during which most of the monosyllabic words in the

Chinese dialects were replaced by bisyllabic compounds.

Figure 6 gives examples for the differences in the transi-

tion penalties of the multistate-models (FITCH,

SANKOFF, and DWST) and the calculation of the tran-

sition penalties for the SANKOFF and the DWST model.

It is beyond doubt that the models could be further

refined, and potentially also trained. For the purpose of

the experiment, however, it is advisable to keep the

models as abstract as possible. This guarantees that we

do not overly fit the models to the data, and it also

makes it easier to determine the major factors that deter-

mine differences in their performances.

The models and the code to optimize the parsimony

score were implemented in Python. The code requires

the LingPy software package for quantitative tasks in

historical linguistics (List and Moran 2013) to calculate

the alignments between the characters states and the

transition probabilites. The source code along with the

data, the results, and further instructions on how to rep-

licate all analyses presented in this article are provided

as supplementary data.

5.3 Results

With four different models and three different reference

phylogenies, 12 different tests needed to be carried out.

In order to evaluate the quality of semantic reconstruc-

tion, a simple approach was used. In this approach, one

counts the amount of hits and fails. For each concept, all

ancestral forms proposed by a given test were considered

and compared with the known forms in the ‘gold

standard’. If only one form was proposed, this form can

either be a hit or a fail, that is, it can either be identical

with the form in the gold standard, or not. If multiple

forms are proposed by an algorithm, the score is divided

among hits and fails, following the proportion of cor-

rectly and incorrectly proposed ancestral forms. If, for

example, two forms are proposed of which only one is

correct, this would be scored as a 50% hit and a 50%

fail. The results were evaluated separately for each

meaning slot and then averaged across all 57 concepts in

the sample.

Table 6 shows the detailed results for all 12 different

analyses, including the overall parsimony scores ob-

tained. The DWST model performs best in all respects,

regardless of the reference phylogeny. The SANKOFF

model outperforms the remaining two models, but only

when applied to the Arbre reference phylogeny, it comes

close to the high scores of the DWST model. Whether

the BINARY or the FITCH model performs better is

hard to say, given that the differences are minimal on

average, and both models seem to rely heavily on the ref-

erence phylogeny. What is remarkable is that the

DWST model does not only show the highest scores, but

also a high resistency regarding the underlying refer-

ence phylogeny. According to the analysis by List

(2015), the Arbre gives a more realistic picture of

Chinese dialect history. This is reflected by the highly

improved scores of all models (except from DWST) for

the Arbre phylogeny as opposed to Sh�ux�ıngt�u and

Southern Chinese.

Parsimony approaches may yield multiple solutions

which are all optimal with respect to the transition pen-

alties defined in a model. Depending on the character

and tree topology, the amount of optimal scenarios may

vary greatly. In the FITCH analyses, for example, the

number of possible scenarios for all characters ranges

from 1 (for ‘ash’) to 4 797 (for ‘night’). As expected, the

Table 6. Comparing the results for the four analyses and the three reference trees. The first number in the hits and the fails

column indicates the proportion, the second number indicates the absolute values. As mentioned in the text, hits and fails

are computed by comparing for all proposed forms reconstructed back to the root whether they are identical with the

forms in the gold standard. If they are, this counts as a hit, if not, this counts as a fail. If more than one form are proposed

for a given concept, results are averaged.

Model Arbre Sh�ux�ıngt�u Southern Chinese

Hits Fails Hits Fails Hits Fails

BINARY 0.55 / 31.04 0.45 / 24.96 0.52 / 29.04 0.48 / 26.96 0.52 / 28.95 0.48 / 27.05

FITCH 0.63 / 35.51 0.37 / 20.49 0.51 / 28.31 0.49 / 27.69 0.47 / 26.40 0.53 / 29.60

SANKOFF 0.76 / 42.83 0.24 / 13.17 0.67 / 37.50 0.33 / 18.50 0.62 / 34.50 0.38 / 21.50

DWST 0.82 / 45.70 0.18 / 10.30 0.82 / 46.00 0.18 / 10.00 0.79 / 44.50 0.21 / 11.50
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number of possible scenarios decreases when increasing

the complexity of the models. This is shown in Table 7

where the proposed proto-forms and the number of pos-

sible scenarios for the analysis of three concepts using

the three multistate models are displayed. The table

shows clearly that complex models reduce the uncer-

tainty with respect to alternative scenarios.

Figure 7 shows one of four possible scenarios for the

development of reflexes of ‘moon’ inferred by the

DWST model for the Arbre reference phylogeny. The

scenario proposes a pattern in which the word form yuè

‘moon’ was replaced by the compound yuègu�ang

‘moon-light’ in all dialects except from the Mîn

subgroup. While this may well reflect a realistic scen-

ario, we also find homoplastic (reoccurring) transitions,

especially from yuègu�ang to yuèli�ang ‘moon-

shine’ in the W�u subgroup. Homoplasy may point to lat-

eral transfer events (List et al. 2014, Dagan and Martin

2007), but our knowledge regarding lexical evolution

during the history of the Chinese dialects is still very lim-

ited. It is extremely difficult to tell with certainty

whether the common reflexes of yuèli�ang in the

B�eijı̄ng-Xi�ang and the W�u subgroup reflect independent

parallel developments or areal influence.

Figure 7. One of four optimal scenarios for the development of words for ‘moon’ along the Arbre reference phylogeny.

Table 7. Comparing the proposed proto-forms and the number of optimal scenarios based on the Arbre reference phyl-

ogeny for three exemplary concepts. Forms with an asterisk represent ‘hits’, that is, forms which are identical with the

gold standard.

Models ‘belly’ ‘ear’ ‘moon’

Forms Scen. Forms Scen. Forms Scen.

FITCH , , , * 39 *, , , , 34 *, 48

SANKOFF *, , 5 * 3 *, 8

DWST *, 2 * 1 * 4
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6. Conclusion

In this article, I have pointed to problems in the models

used for phylogenetic reconstruction in linguistics result-

ing from a superficial treatment of historical relations

between words. Cognacy is not a binary relation which

is either present or not. Instead, we can distinguish dif-

ferent subtypes of cognacy, just as biologists can identify

specific types of homology between genes. In an earlier

paper, I proposed to compare the biological subtypes of

homology (orthology, paralogy, xenology) directly with

potential subtypes of historical word relations in linguis-

tics (List 2014), but by concentrating on the major di-

mensions of lexical change proposed by Gévaudan

(2007), namely morphological, semantic, and stratic

change, I have shown that we can even go beyond the

biological terminology and set up fine-grained schemas

for historical relations in linguistics.

Which notion of cognacy we use for phylogenetic re-

construction crucially depends on the data we have at

hand and the algorithms we intend to employ. I have

shown that the inconsistencies in the treatment of histor-

ical relations between words have a direct impact on the

way cognates are coded and data are analyzed in phylo-

genetic approaches. This was illustrated in detail for his-

torical relations involving morphological change,

especially compounding. If compounding is frequent

and characteristic for a given language family, phylogen-

etic approaches which model lexical change merely as a

process of cognate gain and cognate loss are inadequate

and unrealistic. In order to take the different degrees of

cognacy into account, I proposed to employ multistate

instead of binary state models, and to further allow for

potentially asymmetric transition tendencies among

character states. The benefits of these models were dem-

onstrated in a small experiment on semantic reconstruc-

tion applied to a lexicostatistical dataset of 23 Chinese

dialect varieties. The results of this experiment strongly

suggest that multistate models with asymmetric transi-

tion tendencies are superior to binary state models.

What I have presented is, however, but a small step to-

ward improved models of lexical change. More experi-

ments including more language families need to be

carried out. Instead of ancestral state reconstruction, we

need to test the potential of multistate models for phylo-

genetic reconstruction in general. Probabilistic models,

be they based on Maximum Likelihood (Felsenstein

1981) or Bayesian inference (Huelsenbeck et al. 2001),

may prove really useful in this regard. In parsimony, we

need to provide exact models for the transition between

characters, and we always run the danger of overfitting

our step matrices on a given dataset. Probabilistic mod-

els can help to estimate transition probabilities and

could thus even provide new insights which go beyond

cognacy and help us to detect major trends in lexical

evolution, including morphological, semantic, and

stratic change. In order to allow for these improved

models of lexical change, however, we need to rethink

the way we handle cognacy in our databases and start

being more explicit in our annotations.

Supplementary data

The most recent release of the accompanying software

application can be found at https://zenodo.org/badge/

latestdoi/5137/digling/beyond-cognacy-paper. An inter-

active application showing all inferred evolutionary sce-

narios for the Arbre phylogeny by Sagart (2011) is

available at http://digling.github.io/beyond-cognacy-

paper/.
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phologischer Wandel. Zur Vorhersagbarkeit von

Sprachver€anderungen [Morphologigal Naturalness and

Morphological Change. On the Predictability of Language

Change]’, in J. Fisiak (ed.) Papers from the 6th International

Conference on Historical Linguistics, pp. 587–99.

Amsterdam: John Benjamins.

Y�ou, R. (1992) H�anyu� f�angy�anxué da�ol�un
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Abstract

Current efforts in computational historical linguistics are predominantly concerned
with phylogenetic inference. Methods for ancestral state reconstruction have only
been applied sporadically. In contrast to phylogenetic algorithms, automatic recon-
struction methods presuppose phylogenetic information in order to explain what has
evolved when and where. Here we report a pilot study exploring how well automatic
methods for ancestral state reconstruction perform in the task of onomasiological
reconstruction in multilingual word lists, where algorithms are used to infer how the
words evolved along a given phylogeny, and reconstruct which cognate classes were
used to express a given meaning in the ancestral languages. Comparing three differ-
ent methods, Maximum Parsimony, Minimal Lateral Networks, and Maximum Likeli-
hood on three different test sets (Indo-European, Austronesian, Chinese) using binary
and multi-state coding of the data as well as single and sampled phylogenies, we find
that Maximum Likelihood largely outperforms the other methods. At the same time,
however, the general performancewas disappointingly low, ranging between0.66 (Chi-
nese) and 0.79 (Austronesian) for the F-Scores. A closer linguistic evaluation of the
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reconstructions proposed by the bestmethod and the reconstructions given in the gold
standards revealed that the majority of the cases where the algorithms failed can be
attributed to problems of independent semantic shift (homoplasy), to morphological
processes in lexical change, and towrong reconstructions in the independently created
test sets that we employed.

Keywords

ancestral state reconstruction – lexical reconstruction – computational historical lin-
guistics – phylogenetic methods

1 Introduction

Phylogenetic reconstruction methods are crucial for recent quantitative ap-
proaches in historical linguistics.Whilemany scholars remain skeptical regard-
ing the potential of methods for automatic sequence comparison, phylogenetic
reconstruction, be it of networks using the popular SplitsTree software (Huson,
1998), or family trees, using distance- (Sokal andMichener, 1958; Saitou andNei,
1987) or character-based approaches (Edwards and Cavalli-Sforza, 1964; Fitch,
1971; Ronquist et al., 2012; Bouckaert et al., 2014), has entered themainstreamof
historical linguistics. This is reflected in a multitude of publications and appli-
cations ondifferent language families, fromAinu (Lee andHasegawa, 2013) and
Australian (Bowern and Atkinson, 2012) to Semitic (Kitchen et al., 2009) and
Chinese (Ben Hamed andWang, 2006). There is also a growing interest in the
implications of phylogenetic analyses for historical linguistics, as can be seen
from the heated debate about the dating of Indo-European (Gray and Atkin-
son, 2003; Atkinson and Gray, 2006; Bouckaert et al., 2014; Chang et al., 2015),
and the recent attempts to search for deep genetic signals in the languages of
the world (Pagel et al., 2013; Jäger, 2015).
Given the boom of quantitative approaches in the search for language trees

and networks, it is surprising that methods which infer the ancestral states of
linguistic characters have been rarely applied and tested so far. While meth-
ods for phylogenetic reconstruction infer how related languages evolved into
their current shape,methods forancestral state reconstruction (ASR) use a given
phylogeny to infer the previous appearance of the languages. This is illustrated
in Fig. 1 for the reconstruction of lexical conceptualization patterns (more on
this specific kind of ancestral state reconstruction below).What is modeled as
ancestral state in this context is open to the researcher’s interest, ranging from
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the original pronunciation of words (Bouchard-Côté et al., 2013), the direction
of sound change processes (Hruschka et al., 2015), the original expression of
concepts (List, 2016), or even linguistic and cultural aspects beyond the lexicon,
such as ancestral color systems (Haynie and Bowern, 2016), numeral systems
(Zhou and Bowern, 2015) or cultural patterns, e.g., matrilocality (Jordan et al.,
2009). While methods for ancestral state reconstruction are commonly used
in evolutionary biology, their application is still in its infancy in historical lin-
guistics. This is in strong contrast to classical historical linguistics, where the
quest for proto-forms andproto-meanings is often givenmore importance than
the search for family trees and sub-groupings. In the following, we will report
results of a pilot study on ancestral state reconstruction applied to lexicosta-
tistical word list data. Our goal is to infer which words were used to express a
given concept in the ancestral languages.
This task is not to be confused with semantic reconstruction, where linguists

try to infer the original meaning of a given word. Our approach, in contrast,
reflects the onomasiological perspective on the linguistic sign, aswe try to infer
the originalword that expressed a givenmeaning. Sinceno commonly accepted
name exists for this approach, we chose the term “onomasiological reconstruc-
tion.”1 Classical semantic reconstruction in historical linguistics starts from a
set of cognate words and tries to identify the original meaning of the ances-
tral word form (Wilkins, 1996). For this purpose, scholars try to take known
directional tendencies into account. These tendencies are usually based on
the author’s intuition, despite recent attempts to formalize and quantify the
evidence (Urban, 2011). Following the classical distinction between semasiol-
ogy and onomasiology in semantics, the former dealing with ‘the meaning of
individual linguistic expressions’ (Bussmann, 1996: 1050), and the latter dealing
with the question of how certain concepts are expressed (ibid.: 834), semantic
reconstruction is a semasiological approach to lexical change, as scholars start
from the meaning of several lexemes in order to identify the meaning of the
proto-form and its later development.
Instead of investigating lexical change from the semasiological perspective,

one could also ask which of several possible word forms was used to denote a
certain meaning in a given proto-language. This task is to some degree simi-
lar to proper semantic reconstruction, as it deals with the question of which
meaning was attached to a given linguistic form. The approach, however, is

1 We chose this term for lack of alternatives, not because we particularly like it, and we are
aware that it may sound confusing for readers less familiar with discussions on semantic
change and lexical replacement, but we try to explain this in more detail below.
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onomasiological, as we start from the concept and search for the “name” that
was attached to it.Onomasiological semantic reconstruction, the reconstruction
of former expressions, has been largely ignored in classical semantic recon-
struction.2This is unfortunate, since the onomasiological perspectivemayoffer
interesting insights into lexical change. Given that we are dealing with two
perspectives on the same phenomenon, the onomasiological viewpoint may
increase the evidence for semantic reconstruction.
This is partially reflected in the “topological principle in semantic [i.e. ono-

masiological, GJ and JML] reconstruction” proposed by Kassian et al. (2015).
This principle uses phylogenies to support claims about the reconstruction of
ancestral expressions in historical linguistics, trying to choose the ‘most eco-
nomic scenario’ (ibid.: 305) involving the least amount of semantic shifts. By
adhering to the onomasiological perspective and modifying our basic data,
we can model the problem of onomasiological reconstruction as an ancestral
state reconstruction task, thereby providing a more formal treatment of the
topological principle. In this task, we (1) start from a multilingual word lists in
which a set of concepts has been translated into a set of languages (a classi-
cal “Swadesh list” or lexicostatistic word list; Swadesh, 1955), (2) determine a
plausible phylogeny for the languages under investigation, and (3) use ances-
tral state reconstruction methods to determine which word forms were most
likely used to express the concepts in the ancestral languages in the tree. This
approach yields an analysis as the one shown in Fig. 1.
Althoughwe think that such an analysis hasmany advantages over theman-

ual application of the topological principle in onomasiological reconstruction
employed by Kassian et al. (2015), we should make very clear at this point that
our reformulation of the problem as an ancestral state reconstruction task also
bears certain shortcomings. First, since ancestral state reconstruction models
character by character independently from each other, our approach relies on
identical meanings only and cannot handle semantic fields with fine-grained
meaningdistinctions.This is a clear disadvantage compared toqualitative anal-
yses, but given that models always simplify reality, and that neither algorithms
nor datasets for testing and training are available for the extended task, we
think it is justified to test how close the available ancestral state reconstruc-
tion methods come to human judgments. Second, our phylogenetic approach
to onomasiological reconstruction does not answer any questions regarding
semantic change, as we can only state which words are likely to have been

2 Notable exceptions includeworkby S. Starostin and colleagues, compare, for example, Staros-
tin (2016).
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figure 1 Ancestral state reconstruction: The graphic illustrates the key idea of ancestral state
reconstruction. Given six words in genetically related languages, we inquire how
these words evolved into their current shape. Having inferred a phylogeny of the
languages as shown on the left of the figure, ancestral state reconstruction methods
use this phylogeny to find the best way to explain how the six words have evolved
along the tree, thereby proposing ancestral states of all words under investigation.
The advantage of this procedure is that we can immediately identify not only the
original nature of the characters we investigate, but also the changes they were
subject to. Ancestral state reconstruction may thus yield important insights into
historical processes, including sound change and lexical replacement.

used to express certain concepts in ancestral languages. This results clearly
from the data and our phylogenetic approach, asmentioned before, and it is an
obvious shortcoming of our approach. However, since the phylogenetic ono-
masiological reconstruction provides us with concrete hypotheses regarding
themeaning of a givenword on a given node in the tree, we can take these find-
ings as a starting point to further investigate howwords changed theirmeaning
afterwards. By providing a formal and data-driven way to apply the topolog-
ical principle, we can certainly contribute to the broader tasks of semantic
and onomasiological reconstruction in historical linguistics. As a third point,
we should not forget that our method suffers from the typical shortcomings of
all data-driven disciplines, namely the shortcomings resulting from erroneous
data assembly, especially erroneous cognate judgments, such as undetected
borrowings (Holm, 2007) and inaccurate translations of the basic concepts
(Geisler and List, 2010) which are investigated in all approaches based on lex-
icostatistical data. The risk that errors in the data have an influence on the
inferences made by the methods is obvious and clear. In order to make sure
that we evaluate the full potential of phylogenetic methods for ancestral state
reconstruction, we therefore provide an exhaustive error analysis not only for
the inferences made in our tests, but also for the data we used for testing.
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In the following, we illustrate how ancestral state reconstruction methods
can be used to approximate onomasiological reconstruction in multilingual
word lists. We test the methods on three publicly available datasets from three
different language families and compare the results against experts’ assess-
ments.

2 Materials andmethods

2.1 Materials
2.1.1 Gold standard
In order to test availablemethods for ancestral state reconstruction, we assem-
bled lexical cognacy data from three publicly available sources, offering data
on three different language families of varying size:

1. Indo-European languages, as reflected in the Indo-European lexical cog-
nacy database (IELex; Dunn, 2012, accessed on September 5, 2016),

2. Austronesian languages, as reflected in the AustronesianBasicVocabulary
Database (ABVD; Greenhill et al., 2008, accessed on December 2, 2015),
and

3. Chinese dialect varieties, as reflected in the Basic Words of Chinese Dia-
lects (BCD;Wang, 2004, provided in List, 2016).

All datasets are originally classical word lists as used in standard approaches
to phylogenetic reconstruction: They contain a certain number of concepts
which are translated into the target languages and then annotated for cognacy.
In order to be applicable as a test set for our analysis, the datasets further need
to list proto-forms of the supposed ancestral language of all languages in the
sample. All data we used for our studies is available from the supplementary
material.
The BCDdatabasewas usedbyBenHamedandWang (2006) and is no longer

accessible via its original URL, but it has been included in List (2015) and later
revised in List (2016). It comprises data on 200 basic concepts (amodified form
of the concept list by Swadesh, 1952) translated into 23 Chinese dialect vari-
eties. Additionally, Wang (2004) lists 230 translations in Old Chinese for 197 of
the 200 concepts. Since Old Chinese is the supposed ancestor of all Chinese
dialects, this data qualifies as a gold standard for our experiment on ancestral
state reconstruction. We should, however, bear in mind that the relationship
between Old Chinese, as a variety spoken some time between 800 and 200BC,
and themost recent common ancestor of all Chinese dialects, spoken between
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200 and 400CE, is a remote one. We will discuss this problem in more detail
in our linguistic evaluation of the results in section 4. Given that many lan-
guages contain multiple synonyms for the same concept, the data, including
Old Chinese, comprises 5,437 words, which can be clustered into 1,576 classes
of cognate words; 980 of these are “singletons,” that is, they comprise classes
containing only one single element. Due to the large time span between Old
Chinese and the most recent common ancestor of all Chinese dialects, not
all Old Chinese forms are technically reconstructible from the data, as they
reflect words that have been lost in all dialects. As a result, we were left with
144 reconstructible concepts for which at least one dialect retains an ancestral
form attested in Old Chinese.
For the IELex data,3 we used all languages and dialects except those marked

as “Legacy” and two creole languages (Sranan and French Creole Dominica, as
lexical change arguably underlies different patterns under creolization than it
does in normal language change). This left us with 134 languages and dialects,
including 31 ancient languages (Ancient Greek, Avestan, Classical Armenian,
Gaulish, Gothic, Hittite, Latin, Luvian, Lycian, Middle Breton, Middle Cornish,
Mycenaean Greek, Old Persian, Old Prussian, Old Church Slavonic, Old Gutnish,
Old Norse, Old Swedish, Old High German, Old English, Old Irish, Old Welsh,
Old Cornish, Old Breton, Oscan, Palaic, Pali, Tocharian A, Tocharian B, Umbrian,
Vedic Sanskrit). The data contain translations of 208 concepts into those lan-
guages and dialects (often including several synonymous expressions for the
same concept from the same language). Most entries are assigned a cognate
class label.We only used entries containing an unambiguous class label, which
left us with 26,524 entries from 4,352 cognate classes. IELex also contains 167
reconstructed entries (for 135 concepts) for Proto-Indo-European. These recon-
structions were used as gold standard to evaluate the automatically inferred
reconstructions.
ABVD contains data from a total of 697 Austronesian languages and dialects.

We selected a subset of 349 languages (all taken from the 400-language sam-
ple used in Gray et al., 2009), each having a different ISO code which is also
covered in the Glottolog database (Hammarström et al., 2015). ABVD covers 210
concepts, with a total of 44,983 entries from 7,727 cognate classes for our 349-
language sample. It also contains 170 reconstructions for Proto-Austronesian
(each denoting a different concept) including cognate-class assignments. An
overview of the data used is given in Table 1.

3 IELex is currently being thoroughly revised as part of theCognates in theBasic Lexicon (COBL)
project, but since this data has not yet been publicly released, wewere forced to use the IELex
data which we retrieved from ielex.mpi.nl.
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table 1 Datasets used for ancestral state reconstruction. “Reconstructible” states in the
column showing the number of concepts refer to the amount of concepts in which the
proto-form is reflected in at least one of the descendant languages. “Singletons” refer
to cognate sets with only one reflex, which are not informative for the purpose of
certain methods of ancestral state reconstruction, like the MLN approach, and
therefore excluded from the analysis.

Dataset Languages Concepts Cognate classes Singletons Words

IELex 134 207 (135 reconstructible) 4,352 1,434 singletons 26,524
ABVD 349 210 (170 reconstructible) 7,727 2,671 singletons 44,983
BCD 24 200 (144 reconstructible) 1,576 980 singletons 5,437

2.2 Methods
2.2.1 Reference phylogenies
All ASRmethods in our test (except the baseline) rely on phylogenetic informa-
tionwhen inferring ancestral states, albeit to a different degree. Somemethods
operate on a single tree topology only, while other methods also use branch
lengths information or require a sample of trees to take phylogenetic uncer-
tainty into account. To infer those trees, we arranged the cognacy information
for each data set into a presence-absence matrix. Such a data structure is a
table with languages as rows and cognate classes occurring within the data
set as columns. A cell for language l and cognate class cc for concept c has
entry

– 1 if cc occurs among the expressions for c in l,
– 0 if the data contain expressions for c in l, but none of them belongs to cc,
and

– undefined if l does not contain any expressions for c.

Bayesian phylogenetic inference was performed on these matrices. For each
data set, tree search was constrained by prior information derived from the
findings of traditional historical linguistics. More specifically, we used the fol-
lowing prior information:

– IELex.We used 14 topological constraints (see Fig. 2), age constraints for the
31 ancient languages, and age constraints for 11 of the 14 topological con-
straints. The age constraints for Middle Breton, Middle Cornish, Mycenaean
Greek, Old Breton, Old Cornish, Old Welsh, and Palaic are based on informa-
tion fromMultitree (The LINGUIST List, 2014, accessed onOctober 14, 2016).
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figure 2 Maximum Clade Credibility tree for IELex (schematic). Topological constraints are
indicated by red circles. Numbers at intermediate nodes indicate posterior
probabilities (only shown if < 1).

The age constraint for Pali is based on information from Encyclopaedia Bri-
tannica (2010, accessed onOctober 14, 2016). The constraints forOldGutnish
are taken from Wessen (1968) and those for Old Swedish and Old High Ger-
man from Campbell and King (2013). All other age constraints are derived
from the Supplementary Information of Bouckaert et al. (2012).

– ABVD. We only considered trees consistent with the Glottolog expert clas-
sification (Hammarström et al., 2015). This amounts to 213 topological con-
straints.

– BDC.We only considered trees consistentwith the expert classification from
Sagart (2011). This amounts to 20 topological constraints.

Analyses were carried out using the MrBayes software (Ronquist et al., 2012).
Likelihoods were computed using ascertainment bias correction for all-absent
characters and assumingGamma-distributed rates (with 4Gamma categories).
Regarding the tree prior, we assumed a relaxed molecular clock model (more
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specifically, the Independent GammaRatesmodel (cf. Lepage et al., 2007), with
an exponential distribution with rate 200 as prior distribution for the variance
of rate variation). Furthermore we assumed a birth-death model (Yang and
Rannala, 1997) and random sampling of taxa with a sampling probability of
0. 2. For all other parameters of the prior distribution, the defaults offered by
the software were used.4
For each dataset, amaximumclade credibility treewas identified as the refer-

ence tree (using the software TreeAnnotator, retrieved on September 13, 2016;
part of the software suiteBeast, cf. Bouckaert et al., 2014). Additionally, 100 trees
were sampled from the posterior distribution for each dataset and used as tree
sample for ASR.

2.2.2 Ancestral state reconstruction
For our study,we tested three different established algorithms, namely (1)Max-
imum Parsimony (MP) reconstruction using the Sankoff algorithm (Sankoff,
1975), (2) the minimal lateral network (MLN) approach (Dagan et al., 2008)
as a variant of Maximum Parsimony in which parsimony weights are selected
with the help of the vocabulary size criterion (List et al., 2014b, 2014c), and
(3) Maximum Likelihood (ML) reconstruction as implemented in the software
BayesTraits (Pagel and Meade, 2014). These algorithms are described in detail
below.
We tested two different ways to arrange cognacy information as character

matrices:

– Multistate characters. Each concept is treated as a character. The value of
a character for a given language is the cognate class label of that language’s
expression for the corresponding concept. If the data contain several non-
cognate synonymous expressions, the language is treated as polymorphic for
that character. If the data do not contain an expression for a given concept
and a given language, the corresponding character value is undefined.

– Binary characters. Each cognate class label that occurs among the docu-
mented languages of a dataset is a character. Possible values are 1 (a language
contains an expression from that cognate class), 0 (a language does not con-
tain an exponent of that cognate class, but other expressions for the corre-

4 These defaults are: uniform distribution over equilibrium state frequencies; standard expo-
nential distribution as prior for the shape parameter α of the Gamma distribution model-
ing rate variation; standard exponential distribution as prior over the tree age, measured in
expected number of mutations per character.
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sponding concept are documented) or undefined (the data do not contain
an expression for the concept from the language in question).

All three algorithms rely on a reference phylogeny to infer ancestral states. To
test the impact of phylogenetic uncertainty, we performed ASR both on the
reference tree and on the tree sample for all three algorithms. The procedures
are now presented for each algorithm in turn.

MaximumParsimony (MP). A complete scenario for a character is a phylogenetic
tree where all nodes are labeled with some character value. For illustration,
three scenarios are shown in Fig. 3. The parsimony score of a scenario is the
number of mutations, i.e., of branches where the mother node and the daugh-
ter node carry different labels. Now suppose only the labels at the leaves of the
tree are given. The parsimony score of such a partial scenario is the minimal
parsimony score of any complete scenario consistent with the given leaf labels.
In the example in Fig. 3, this value would be 2. The ASR for the root of the tree
would be the root label of the complete scenario giving rise to this minimal
parsimony score. If several complete scenarios with different root labels give
rise to the sameminimal score, all their root labels are possible ASRs. This logic
can be generalized to weighted parsimony. In this framework, each mutation
from a state at themother node to the state at the daughter node of a tree has a
certain penalty, and these penalties may differ for different types of mutations.
The overall parsimony score of a complete scenario is the sum of all penalties
for all mutations in this scenario.5

5 There is a variant of MP called Dollo parsimony (Le Quesne, 1974; Farris, 1977) which is prima
faciewell-suited for modeling cognate class evolution. Dollo parsimony rests on the assump-
tion that complex characters evolve only once, while they may be lost multiple times. If “1”
represents presence and “0” absence of such a complex character, the weight of a mutation
1 → 0 should be infinitesimally small in comparison to the weight of 0 → 1. Performing
ASR under this assumption amounts to projecting each character back to the latest common
ancestor of all its documented occurrences. While this seems initially plausible since each
cognate class can, by definition, emerge only once, recent empirical studies have uncovered
that multiple mutations 0 → 1 can easily occur with cognate-class characters. A typical sce-
nario is parallel semantic shifts. Chang et al. (2015), among others, point out that descendent
words of Proto-Indo-European *pod- ‘foot’ independently shifted their meaning to ‘leg’ both
in Modern Greek and in Modern Indic and Iranian languages. So the Modern Greek πόδι and
the Marathi pāy, both meaning ‘leg,’ are cognate according to IELex, but the latest common
ancestor language of Greek and Marathi (Nuclear Proto-Indo-European or a close descen-
dant of it) probably used a non-cognate word to express ‘leg.’ Other scenarios leading to the
parallel emergence of cognate classes are loans and incomplete lineage sorting; see the discus-
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figure 3 Complete character scenarios. Mutations are indicated by yellow stars.

The Sankoff algorithm is an efficient method to compute the parsimony score
and the root ASR for a partial scenario. It works as follows. Let states be the
ordered set of possible states of the character in question, and let n be the car-
dinality of this set. For eachpair of states i, j,w(i, j) is the penalty for amutation
from statesi to statesj.

– Initialization. Each leaf l of the tree is initialized with a vector wp(l) of
length n, with wp(l)i = 0 if l’s label is statesi, and ∞ else. (If l is polymor-
phic, all labels occuring at l have the score 0.)

– Recursion. Loop through the non-leaf nodes of the tree bottom-up, i.e., visit
all daughter nodes before you visit the mother node. Each non-terminal
node mother with the set daughters as daughter nodes is annotated with a
vectorwp(mother) according to the rule

wp(mother)i = ∑
d∈daughters

min
1≤j≤n

(w(i, j) + wp(d)j) (1)
– Termination. The parsimony score ismin1≤i≤n wp(root)i and the root ASR is

argmin1≤i≤n wp(root)i.
If MP-ASR is performed on a sample of trees, the Sankoff algorithm is applied
to each tree in the sample, and the vectors at the roots are summed up. The
root ASR is then the state with the minimal total score. For our experiments,
we used the followingweight matrices:

– For multistate characters, we used uniform weights, i.e., w(i, i) = 0 and
w(i, j) = 1 iff i ≠ j.

sion in Section 4. Bouckaert et al. (2012) test a probabilistic version of the Dollo approach and
conclude that a time-reversible model provides a better fit of cognate-class character data.
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– For binary presence-absence characters, we assumed that the penalty of a
gain is twice as high as the penalty for a loss: w(i, i) = 0, w(1, 0) = 1, and
w(0, 1) = 2.6

For a given tree and a given character, the Sankoff algorithm produces a par-
simony score for each character state. If the cognacy data are organized as
multi-state characters, each state is a cognate class. The reconstructed states are
those achieving the minimal value among these scores. If a tree sample, rather
than a single tree, is considered, the parsimony scores are averaged over the
results for all trees in the sample. The reconstructed states are those achiev-
ing the minimal average score. If the cognacy data are organized as presence-
absence characters, we consider the parsimony scores of state “1” for all cognate
classes expressing a certain concept. The reconstructed cognate classes are
those achieving the minimal score for state “1.” If a tree sample is considered,
scores are averaged over trees.

Minimal Lateral Networks (MLN). The MLN approach was originally developed
for the detection of lateral gene transfer events in evolutionary biology (Dagan
et al., 2008). In this form, it was also applied to linguistic data (Nelson-Sathi
et al., 2011), and later substantially modified (List et al., 2014b, 2014c). While
the original approachwas based on very simple gain-loss-mapping techniques,
the improved version uses weighted parsimony on presence-absence data of
cognate set distributions. In each analysis, several parameters (ratio of weights
for gains and losses) are tested, and the best method is then selected, using
the criterion of vocabulary size distributions, which essentially states that the
amount of synonyms per concept in the descendant languages should not dif-
fer much from the amount of synonyms reconstructed for ancestral languages.
Thus, of several competing scenarios for the development of characters along
the reference phylogeny, the scenario that comes closest to the distribution of
words in the descendant languages is selected. This is illustrated in Fig. 4. Note
that this criterion may make sense intuitively, if one considers that a language
with excessive synonymywouldmake it more difficult for the speakers to com-
municate. Empirically, however, no accounts on average synonym frequencies

6 The ratio between gains and losses follows from the experience with the MLN approach,
which is presented inmore detail below andwhich essentially tests different gain-loss scenar-
ios for their suitability to explain a given dataset. In all published studies in which the MLN
approach was tested (List et al., 2014b, 2014c; List, 2015), the best gain-loss ratio reported was
2:1.

2 Of Trees and Webs: Phylogenies and Networks in Historical Linguistics

84



onomasiological reconstruction in multilingual wordlists 35

Language Dynamics and Change 8 (2018) 22–54

figure 4 Vocabulary size distributions as a criterion for parameter selection in the MLN
approach. A shows an analysis which proposes far too many words in the ancestral
languages, B proposes far to few words, and C reflects an optimal scenario.

across languages are available, and as a result, this assumption remains to be
proven in future studies.
While the improved versions were primarily used to infer borrowing events

in linguistic datasets, List (2015) showed that the MLN approach can also be
used for the purpose of ancestral state reconstruction, given that it is based on
a variant of weighted parsimony. Describing the method in all its detail would
go beyond the scope of this paper. For this reason, we refer the reader to the
original publications introducing and explaining the algorithm, as well as the
actual source code published along with the LingPy software package (List and
Forkel, 2016). To contrast MLN with the variant of Sankoff parsimony we used,
it is, however, important to note that the MLN method does not handle single-
tons in the data, that is, words which are not cognate with any other words.7
It should also be kept in mind that the MLN method in its currently available
implementation only allows for the use of binary characters states: multi-state
characters are not supported and can therefore not be included in our test.

MaximumLikelihood (ML).While theMaximumParsimonyprinciple is concep-
tually simple and appealing, it has several shortcomings. As it only uses topo-
logical information and disregards branch lengths, it equally penalizes muta-
tions on short and on long branches. However, mutations on long branches are
intuitively more likely than those on short branches if we assume that branch
length corresponds to historical time. Also, MP entirely disregards the possibil-
ity of multiple mutations on a single branch. It would go beyond the scope of
this article to fully spell out the ML method in detail; the interested reader is

7 The technical question of parsimony implementations is here whether one should penalize
the origin of a character in the root or not. The parsimony employed byMLN penalizes all ori-
gins. As a result, words that are not cognate with any other word can never be reconstructed
to a node higher in the tree. For a discussion of the advantages and disadvantages of this
treatment, see Mirkin et al. (2003).
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referred to the standard literature on phylogenetic inference (such as Ewans
and Grant, 2005, Section 15.7) for details. In the following we will confine our-
selves to presenting the basic ideas.
The fundamental assumption underlying ML is that character evolution is

aMarkov process. This means that mutations are non-deterministic, stochastic
events, and their probability of occurrence only depends on the current state of
the language. For simplicity’s sake, let us consider only the casewhere there are
two possible character states, 1 (for presence of a trait) and 0 (absence). Then
there is a probability p01 that a language gains the trait within one unit of time,
and p10 that it loses it.
The probability that a language switches from state i to state jwithin a time

interval t is then given by the transition probability P(t)ij:8
α = p01

p01 + p10
(2)

β = p10
p01 + p10

(3)
λ = − log(1 − p01 − p10) (4)

P(t) = ( β + α ⋅ (−λt) α − α ⋅ (−λt)
β − β ⋅ (−λt) α + β ⋅ (−λt) ) (5)

α and β are the equilibrium probabilities of states 1 and 0 respectively, and λ is
themutation rate. If t is large in comparison to the minimal time step (such as
the time span of a single generation), we can consider t to be a continuous vari-
able and the entire process a continuous timeMarkov process. This is illustrated
in Fig. 5 for α = 0. 2, β = 0. 8, and λ = 1.
If a language is in state 0 at time 0, its probability to be in state 1 after time t

is indicated by the solid line. This probability continuously increases and con-
verges to α. This is the gross probability to start in state 0 and end in state
1; it includes the possibility of multiple mutations, as long as the number of
mutations is odd. The dotted line shows the probability of ending up in state
1 after time t when a language starts in state 1. This quantity is initally close to
100%, but it also converges towards α over time. In other words, the absence of
mutations (or a sequence of mutations that re-established the initial state) is
predicted to be unlikely over long periods of time. In a complete scenario, i.e., a
phylogenetic tree with labeled non-terminal nodes, the likelihood of a branch

8 We assume that the rows and columns of P(t) are indexed with 0, 1.
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figure 5 Gain and loss probabilities under a continuous-timeMarkov process

is the probability of ending in the state of the daughter node if one starts in the
state of the mother node after a time interval given by the branch length.
The overall likelihood of a complete scenario is the product of all branch

likelihoods, multiplied with the equilibrium probability of its root state. The
likelihood of a partial scenario, where only the states of the leaves are known,
is the sum of the likelihoods of all complete scenarios consistent with it. It can
efficiently be computed in a way akin to the Sankoff algorithm. (ℒ(x) is the
likelihood vector of node x, and πi is the equilibrium probability of state i.)

– Initialization. Each leaf l of the tree is initialized with a vector ℒ(l) of
length n, withℒ(l)i = 1 if l’s label is statesi, and 0 else. (If l is polymorphic,
all labels occuring at t have the same likelihood, and these likelihoods sum
up to 1.)

– Recursion. Loop through the non-leaf nodes of the tree bottom-up, i.e., visit
all daughter nodes before you visit the mother node. Each non-terminal
node mother with the set daughters as daughter nodes is annotated with a
vectorℒ(mother) according to the rule

ℒ(mother)i = ∏
d∈daughters

∑
1≤j≤n

(P(t)i,jℒ(d)j), (6)
where t is the length of the branch connecting d to its mother node.
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– Termination. The likelihood of the scenario is ∑1≤i≤n ℒ(root)i. The ASR
likelihood of state i is proportional to πiℒ(root)i.9

The likelihood of the scenario calculated this way is the sum of the likelihoods
of all scenarios compatible with the information at the leaves. The overall like-
lihood of a tree for a character matrix is the product of the likelihoods for the
individual characters. (This captures the simplifying assumption that charac-
ters are mutually stochastically independent.)
As the model parameters (λ and the equilibrium probabilities) are not

known a priori, they are estimated from the data. This is done by choosing
values that maximize the overall likelihood of the tree for the given character
matrix, within certain constraints. In our experiments we used the following
constraints:

– For multistate characters, we assumed a uniform equilibrium distribution
for all characters, and identical rates for all character transitions.

– For binary characters, we assumed equilibrium probabilities to be identical
for all characters. Those equilibrium probabilities were estimated from the
data as the empirical frequencies.We assumed gamma-distributed rates, i.e.,
rates were allowed to vary to a certain degree between characters.

Once themodel parameters are fixed, the algorithmproduces a probability dis-
tribution over possible states for each character. The reconstructed states are
identified in a similarway as for Sankoff parsimony. First these probabilities are
averaged over all trees if more than one tree is considered. For multistate char-
acters, the state(s) achieving the highest probability are selected. For binary
presence-absence characters, those cognate classes for a given concept are
selected that achieve the highest average probability for state 1.

2.3 Evaluation
For all three datasets considered, the gold standard contains cognate class
assignments for a common ancestor language. For the Chinese data, these
are documented data for Old Chinese. For the other two datasets, these are
reconstructed forms of the supposed latest common ancestor (LCA), Proto-
Indo-European and Proto-Austronesian respectively. The Old Chinese variety

9 Note that this approach can only be used to compute themarginal likelihood of states at the
root of the tree. To perform ASR at interior nodes or joint ASR at several nodes simultaneously,
a more complex approach is needed. These issues go beyond the scope of this article.
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is not identical with the latest common ancestor of all Chinese dialects, but
predates it by several hundred years. Due to the rather stable character of
the written languages as opposed to the vernaculars throughout the history of
Chinese, it is difficult to assess with certainty which exact words were used
to denote certain basic concepts, and Old Chinese as reflected in classical
sources is a compromise solution as it allows us to consider written evidence
rather than reconstructed forms (see Section 4 for a more detailed discus-
sion).
For the evaluation, we only consider those concepts for which (a) the LCA

data identify a cognate class and (b) this cognate class is also present in one
or more of the descendant languages considered in the experiment. The gold
standard defines a set of cognate classes that were present in the LCA language.
Let us call this set LCA. Each ASR algorithm considered defines a set of cognate
classes that are reconstructed for the LCA.We denote this set as ASR. In the fol-
lowing we will deploy evaluation metrics established in machine learning to
assess how well these two sets coincide:

precision ≐ |LCA ∩ ASR||ASR| (7)
recall ≐ |LCA ∩ ASR||LCA| (8)

F-score ≐ 2 × precision × recall
precision + recall (9)

The precision expresses the proportion of correct reconstructions among all
reconstructions. The recall gives the proportion of ancestral cognate classes
that are correctly reconstructed. The F-score is the harmonic mean between
precision and recall.
Results for the various ASR algorithms are compared against a frequency

baseline. According to the baseline, a cognate class cc for a given concept c
is reconstructed if and only if cc occurs at least as frequently among the lan-
guages considered (excluding the LCA language) as any other cognate class for
c. This baseline comes very close to the current practice in classical histori-
cal linguistics, as presented in Starostin (2016), although it is clear that trained
linguists practicing onomasiological reconstruction may take many additional
factors into account. For IELex, we also considered a second baseline, dubbed
the sub-family baseline. A cognate class cc is deemed reconstructed if and only
if it occurs in at least two different sub-families, where sub-families are Alba-
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nian, Anatolian, Armenian, Balto-Slavic, Celtic, Germanic, Greek, Indo-Iranian,
Italic, and Tocharian.

3 Results

The individual results for all datasets and algorithm variants are given in Ta-
bles 2, 3 and 4. Note that MLN does not offer a multi-state variant, so for MLN,
only results for binary states are reported. The effects of the various design
choices—coding characters as multi-state or binary; using a single reference
tree or a sample of trees—aswell as the differences between the three ASR algo-
rithms considered here are summarized in Fig. 6. The bars represent the aver-
age difference in F-score to the frequency baseline, averaged over all instances
of the corresponding category across datasets.
It is evident that there aremajor differences in the performance of the three

algorithms considered. While the F-score for MLN-ASR remains, on average,
below the baseline, Sankoff-ASR and ML-ASR clearly outperform the baseline.
Furthermore, ML-ASR clearly outperforms Sankoff-ASR. Given that both MLN-
ASR and Sankoff-ASR deal with Maximum Parsimony, the rather poor perfor-
mance of theMLN approach shows that the basic vocabulary size criterionmay
not be the best criterion for penalty selection in parsimony approaches. It may
also be related to further individual choices introduced in the MLN algorithm
or our version of Sankoff parsimony. Given that the MLN approachwas not pri-
marily created for the purpose of ancestral state reconstruction, our findings
do not necessarily invalidate the approach per se, yet they show that it might
be worthwhile to further improve on its application to ancestral state recon-
struction.
The impact of the other choices is less pronounced. Binary character cod-

ing provides slightly better results on average thanmultistate character coding,
but the effect is minor. Likewise, capturing information about phylogenetic
uncertainty by using a sample of trees leads, on average, to a slight increase
in F-scores, but this effect is rather small as well.
To understand why ML is superior to the two parsimony-based algorithms

tested here, it is important to consider the conceptual differences between
parsimony-based and likelihood-based ASR. Parsimony-based approaches op-
erate on the tree topology only, disregarding branch lengths. Furthermore,
the numerical parameters being used, i.e. the mutation penalties, are fixed by
the researcher based on intuition and heuristics. ML, in contrast, uses branch
length information, and it is based on an explicit probabilistic model of char-
acter evolution.
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table 2 Evaluation results for Chinese

Algorithm Characters Tree Precision Recall F-score

frequency baseline multi – 0.599 0.590 0.594
MLN bin single 0.568 0.729 0.638
MLN bin sample 0.568 0.729 0.638
Sankoff multi single 0.484 0.743 0.586
Sankoff multi sample 0.510 0.722 0.598
Sankoff bin single 0.596 0.688 0.639
Sankoff bin sample 0.651 0.660 0.655
ML multi single 0.669 0.660 0.664
ML multi sample 0.669 0.660 0.664
ML bin single 0.634 0.625 0.629
ML bin sample 0.641 0.632 0.636

table 3 Evaluation results for IELex

Algorithm Characters Tree Precision Recall F-score

frequency baseline multi – 0.607 0.497 0.547
sub-family baseline bin – 0.402 0.885 0.553
MLN bin single 0.781 0.303 0.437
MLN bin sample 0.781 0.303 0.437
Sankoff multi single 0.367 0.739 0.491
Sankoff multi sample 0.566 0.594 0.580
Sankoff bin single 0.542 0.630 0.583
Sankoff bin sample 0.597 0.503 0.546
ML multi single 0.741 0.606 0.667
ML multi sample 0.763 0.624 0.687
ML bin single 0.778 0.636 0.700
ML bin sample 0.785 0.642 0.707

This point is illustrated in Fig. 7, which schematically displays ASR for the
concept eat for the Chinese dialect data. The left panel visualizes Sankoff ASR
and the right panel shows Maximum-Likelihood ASR. The guide tree identi-
fies two sub-clades, shown as the upper and lower daughter of the root node.
The dialects in the upper part of the tree represent the large group of North-
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table 4 Evaluation results for ABVD

Algorithm Characters Tree Precision Recall F-score

frequency baseline multi – 0.618 0.618 0.618
MLN bin single 0.843 0.412 0.553
MLN bin sample 0.882 0.394 0.545
Sankoff multi single 0.688 0.849 0.760
Sankoff multi sample 0.726 0.816 0.768
Sankoff bin single 0.723 0.771 0.746
Sankoff bin sample 0.757 0.749 0.753
ML multi single 0.788 0.788 0.788
ML multi sample 0.788 0.788 0.788
ML bin single 0.776 0.776 0.776
ML bin sample 0.771 0.771 0.771

ern and Central dialects, including the dialect of Beijing, which comes close to
standard Mandarin Chinese. The dialects in the lower part of the tree repre-
sent the diverse Southern group, including the archaic Mǐn闽 dialects spoken
at the South-Eastern coast as well as Hakka and Yuè 粤 (also referred to as
Cantonese), the prevalent variety spoken in Hong Kong. All Southern dialects
use the same cognate class (eat.Shi.1327, Mandarin Chinese shí 食, nowadays
only reflected in compounds) and all Northern and Central dialects use a dif-
ferent cognate class (eat.Chi.243, Mandarin Chinese chī 吃, regular word for
‘eat’ in most Northern varieties). Not surprisingly, both algorithms reconstruct
eat.Shi.1327 for the ancestor of the Southern dialects and eat.Chi.243 for the
ancestor of the Northern and Central dialects. Sankoff ASR only uses the tree
topology to reconstruct the root state. Since the situation is entirely symmetric
regarding the two daughters of the root, the two cognate classes are tied with
exactly the sameparsimony score at the root.Maximum-LikelihoodASR, on the
other hand, takes branch lengths into account. Since the latest common ances-
tor of the Southern dialects is closer to the root than the latest common ances-
tor of the Northern and Central dialects, the likelihood of amutation along the
lower branch descending from the root is smaller than along the upper branch.
Therefore the lower branch has more weight when assigning probabilities to
the root state. Consequently, eat.Shi.1327 comes out as the most likely state at
the root—which is in accordancewith the gold standard. Our findings indicate
that the more fine-grained, parameter-rich Maximum-Likelihood approach is
generally superior to the simpler parsimony-based approaches.
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figure 6 Average differences in F-score to frequency baseline

The parameters of the Maximum-Likelihood model, as well as the branch
lengths, are estimated from the data. Our findings underscore the advantages
of an empirical, stochastic and data-driven approach to quantitative historical
linguistics as compared to more heuristic methods with few parameters.

4 Linguistic evaluation of the results

The evaluation of the results against a gold standard can help us to understand
the general performance of a given algorithm. Only a careful linguistic evalu-
ation, however, helps us to understand the specific difficulties and obstacles
that the algorithms have to face when being used to analyze linguistic data.We
therefore carried out detailed linguistic evaluations of the results proposed for
IELex and BCD: we compared the results of the best methods for each of the
datasets (Binary ML Sample for IELex, and Multi ML for BCD) with the respec-
tive gold standards, searching for potential reasons for the differences between
automatic method and gold standard. The results are provided in Appendix B.
In each of the two evaluations, we compared those forms which were recon-
structed back to the root in the gold standard but missed by the algorithm, and
those forms proposed by the algorithm but not by the gold standard. By con-
sulting additional literature and databases, we could first determine whether
the error was due to the algorithm or due to a problem in the gold standard.
In a next step, we tried to identify the most common sources of errors, which
we assigned to different error classes. Due to the differences in the histories
and the time depths, the error classes we identified differ slightly, and while a
rather common error in IELex consisted in erroneous cognate judgments in the
gold standard,10 we find many problematic meanings that are rarely expressed

10 See Appendix B1 for details.
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figure 8 Detailed error analysis of the algorithmic performance on IELex and BCD. If a
certain error class is followed by an asterisk, this means that we attribute the error to
the gold standard rather than to the algorithm. For a detailed discussion of the
different error classes mentioned in this context, please see the detailed analysis in
the supplementary material.

overtly in Chinese dialects in BCD.11 Apart from errors which were hard to clas-
sify and thus not assigned to any error class, problems resulting from themisin-
terpretation of branch-specific cognate sets as well as problems resulting from
parallel semantic shift (homoplasy) were among the most frequent problems
in both datasets.
Figure 8 gives detailed charts of the error analyses for missed and erro-

neously proposed items in the two datasets. The data is listed in such a way
that mismatches between gold standard and algorithms can be distinguished.
When inspecting the findings for IELex,we can thus see that themajority of the
59 cognates missed by the algorithm can be attributed to cognate sets that are
only reflected in one branch in the Indo-European languages and therefore do

11 Examples includemeanings for ‘if,’ ‘because,’ etc., whichmay be expressed butmay aswell
be omitted in normal speech, see Appendix B2 for details.
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not qualify as good candidates to be reconstructed back to the proto-language.
As an example, consider the form *pneu̯- (cognate class breathe:P), which
is listed as onomasiological reconstruction for the concept ‘to breathe’ in the
gold standard. As it only occurs in Ancient Greek and has no reflexes in any
other language family, this root is highly problematic, as is also confirmed by
the Lexicon of Indo-European Verbs, where the root is flagged as questionable
(Rix et al., 2001: 489). Second, the error statistics for Indo-European contain
cognate sets whose onomasiological reconstruction is not confirmed by plausi-
ble semantic reconstructions in the gold standard. As an example for this error
class, consider the form *dhōg̑h-e/os- (cognate class day:B) proposed for the
meaning slot ‘day.’ While Kroonen (2013: 86f.) confirms the reconstruction of
the root, as it occurs in Proto-Germanic and Indo-Iranian, the meaning ‘day’ is
by nomeans clear, as the PIE root *die̯u̯- ‘heavenly deity, day’ is a more broadly
reflected candidate for the ‘day’ in PIE (Meier-Brügger, 2002: 187f.).
Of the 29 cognatesmissed, themajority cannot be readily classified, as these

comprise cases where a reconstruction back to the proto-language in the given
meaning slot seems to be highly plausible. Thus, the form *kr̥-m-i- (cognate
class worm:A) is not listed in the gold standard, but proposed by the Binary
ML approach. The root is reflected in both Indo-Iranian and in Slavic (Derk-
sen, 2008: 93f.) and generally considered a valid Indo-European root with the
meaning ‘worm, insect’ (Mallory and Adams, 2006: 149). Given that ‘worm’ and
‘insect’ are frequently expressed by one polysemous concept in the languages
of the world (see the CLICS database of cross-linguistic polysemies, List et al.,
2014a), we see no reasonwhy the form is not listed in the gold standard. Second
in frequency of the items proposed by the algorithm are cases of clear homo-
plasy that were interpreted as inheritance by the ML approach. As an example,
consider the form *serp- (cognate class snake:E), which the algorithm pro-
poses as a candidate for the meaning ‘snake.’ While the cognate set contains
the Latin word serpens, as well as reflexes in Indo-Iranian and Albanian, it may
seem like a good candidate. According to Vaan (2008: 558), however, the verbal
root originally meant ‘to crawl,’ which would motivate the parallel denotation
in Latin and Albanian. Instead of assuming that the noun already denoted
‘snake’ in PIE times, it is therefore much more likely that we are dealing with
independent semantic shift.
Turning to our linguistic evaluation of the results on the Chinese data, we

also find branch-specific words as one of the major reasons for the 49 forms
which were proposed in the gold standard but not recognized by the best algo-
rithm (Multi ML). However, here we cannot attribute these to questionable
decisions in the gold standard, but rather to the fact that many Old Chinese
words are often reflected only in some of the varieties in the sample. As an
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example for a challenging case, consider the form口 kǒu ‘mouth’ (cognate class
mouth-Kou-222, #31). The regular word for ‘mouth’ in most dialects today
is嘴 zuǐ, but the Mǐn dialects, the most archaic group and the first to branch
off the Sinitic family, have 喙 huì as an innovation, which originally meant
‘beak, snout.’ While kǒu survives in many dialects and also in Mandarin Chi-
nese in restricted usage (compare住口 zhùkǒu ‘close’ + ‘mouth’ = ‘shut up’) or
as part of compounds (口水 kǒushuǐ ‘mouth’ + ‘water’ = ‘saliva’), it is only in
the Yuè dialect Guǎngzhōu that it appears with the original meaning in the
BCD. Whether kǒu, however, is a true retention in Guǎngzhōu is quite difficult
to say, and comparing the data in the BCD with the more recent dataset by Liú
et al. (2007), we can see that zuǐ, in the latter, is given for Guǎngzhōu instead
of kǒu. The differences in the data are difficult to explain, and we see two pos-
sible ways to account for them: (1) If kǒu was the regular term for ‘mouth’ in
Guǎngzhōu in the data by Wang (2004), and if this term is not attested in any
other dialect, we are dealing with a retention in the Yuè dialects, and with a
later diffusion of the term zuǐ across many other dialect areas apart from the
Mǐn dialects, which all shifted the meaning of huì. (2) If kǒu is just a variant in
Guǎngzhōu as it is inMandarin Chinese, we are dealing with amethodological
problem of basic word translation and should assume that kǒu is completely
lost in its original meaning. In both cases, however, the history of ‘mouth’ is a
typical case of inherited variation in language history.Multiple termswith simi-
lar reference potential were already present in the last common ancestor of the
Chinese dialects. They were later individually resolved, yielding patterns that
remind of incomplete lineage sorting in evolutionary biology (see List et al., 2016
for a closer discussion of this analogy).
The problem of inherited variation becomes even more evident when we

consider the largest class of errors in both the items missed and the items
proposed by the algorithm: the class of errors due to compounding. Compound-
ing is a very productive morphological process in the Chinese dialects, heavily
favored by the shift from a predominantly monosyllabic to a bisyllabic word
structure in the history of Chinese (see Sampson, 2015 and replies to the arti-
cle in the same volume for a more thorough discussion on potential reasons
for this development). This development led to a drastic increase of bisyllabic
words, which is reflected in almost all dialects, affecting all parts of the lex-
icon. Thus, while the regular words for ‘sun’ and ‘moon’ in Ancient Chinese
texts were日 rì and月 yuè, the majority of dialects nowadays uses日頭 rìtóu
(lit. ‘sun-head’) and月光 yuèguāng (lit. ‘moon-shine’). Thesewords have devel-
oped further in some dialect areas and yield a complex picture of patterns of
lexical expression that are extremely difficult to resolve historically. Given that
we find the words even in the most archaic dialects, but not in ancient texts
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of the late Hàn time and later (around 200 and 300CE), the time when the
supposed LCA of themajority of the Chinese dialects was spoken, it is quite dif-
ficult to explain the data in a straightforwardway.We could either propose that
the LCA of Chinese dialects already had created or was in the stage of creating
these ancient compound words, and that written evidence was too conserva-
tive to reflect it; or we could propose that thewordswere created later and then
diffused across the Chinese dialects. Both explanations seem plausible, as we
know that spoken and written language often differed quite drastically in the
history of Chinese. Comparing modern Chinese dialect data, as provided by
Liú et al. (2007), with dialect surveys of the late 1950s, as given in Běijīng Dàxué
(1964), we can observe how quicklyMandarin Chinese words have been diffus-
ing recently: while we find only rìtóu12 as a form for ‘sun’ in Guǎngzhōu, Liú et
al. only list the Mandarin form太陽 tàiyáng, and Hóu (2004), presenting data
collected in the 1990s, lists both variants.We can see from these examples that
the complex interaction between morphological processes like compounding
and intimate language contact confronts us with challenging problems and
may explain why the automatic methods perform worst on Chinese, despite
the shallow time depths of the language family.

5 Conclusion

What can we learn from these experiments? One important point is surely the
striking superiority of Maximum Likelihood, outperforming both parsimony
approaches. Maximum Likelihood is not only more flexible, as parameters are
estimated from the data, but in some sense, it is also more realistic, as we have
seen in the reconstruction of the scenario for ‘eat’ (see Fig. 7) in the Chinese
dataset, where the branch lengths, which contribute to the results of ML anal-
yses, allow the algorithm to find the right answer. Another important point
is the weakness of all automatic approaches and what we can learn from the
detailed linguistic evaluation. Here, we can see that further research is needed
to address those aspects of lexical change which are poorly handled by the
algorithms. These issues include first and foremost the problem of indepen-
dent semantic shift, but also the effects of morphological change, especially in
the Chinese data. List (2016) uses weighted parsimony with polarized (direc-
tional) transition penalties for multi-state characters for ancestral state recon-

12 In the Yuè dialects, this form has been reinterpreted as ‘hot-head’熱頭 rètóu instead of
‘sun-head.’
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struction of Chinese nouns and reports an increased performance compared
to unweighted parsimony. However, since morphological change and lexical
replacement are clearly two distinct processes, we think it is more promising
to work on the development of stochastic models, which are capable of han-
dling two or more distinct processes and may estimate transition tendencies
from the data. Another major problem that needs to be addressed in future
approaches is the impact of language contact on lexical change processes, as
well as the possibility of language-internal variation, which may obscur tree-
like divergence even if the data evolved in a perfectly tree-like manner. These
instances of incomplete lineage sorting (List et al., 2016) became quite evident
in our qualitative analysis of the Chinese and Indo-European data. Given their
pervasiveness, it is likely that they also have a major impact on classical phy-
logenetic studies, which only try to infer phylogenies from the data. As a last
point, we should mention the need for increasing the quality of our test data
in historical linguistics. Given the multiple questionable reconstructions we
found in the test sets during our qualitative evaluation, we think it might be
fruitful, both in classical and computational historical linguistics, to intensify
the efforts towards semantic and onomasiological reconstruction.

Supplementary materials

All data used for this study, alongwith the code that we used and the results we
produced, are available at https://dx.doi.org/10.5281/zenodo.1173120.
The appendices contain a list of all age constraints for Indo-European that

were used in our phylogenetic reconstruction study (Appendix A) as well as a
detailed, qualitative analysis of all differences between the automatic and the
gold standard assessments in IElex (Appendix B1) andBCD (Appendix B2).They
are available as supplementary materials and can be accessed through the fol-
lowing link: http://doi.org/10.6084/m9.figshare.6580382.v1.

References

Atkinson, Quentin D. and Russell D. Gray. 2006. How old is the Indo-European lan-
guage family? Illumination or more moths to the flame? In Peter Forster and Colin
Renfrew (eds.) Phylogenetic Methods and the Prehistory of Languages, 91–109. Cam-
bridge/Oxford/Oakville: McDonald Institute for Archaeological Research.

Ben Hamed, Mahe and FengWang. 2006. Stuck in the forest: Trees, networks and Chi-
nese dialects. Diachronica 23: 29–60.

2.2 Ancestral State Reconstruction

99



50 jäger and list

Language Dynamics and Change 8 (2018) 22–54

Bouchard-Côté, Alexandre, David Hall, Thomas L. Griffiths, and Dan Klein. 2013. Auto-
mated reconstruction of ancient languages using probabilistic models of sound
change. Proceedings of the National Academy of Sciences of the U.S.A. 110(11): 4224–
4229.

Bouckaert, Remco, Joseph Heled, Denise Kühnert, Tim Vaughan, Chieh-Hsi Wu, Dong
Xie, Marc A. Suchard, Andrew Rambaut, and Alexei J. Drummond. 2014. BEAST 2: A
software platform for Bayesian evolutionary analysis. PLoS Computational Biology
10(4): e1003,537. 10.1371/journal.pcbi.1003537. Accessible at http://beast2.org
(accessed February 4, 2018).

Bouckaert, Remco, Philippe Lemey, Michael Dunn, Simon J. Greenhill, Alexander
V. Alekseyenko, Alexei J. Drummond, Russell D. Gray, Marc A. Suchard, and Quentin
D. Atkinson. 2012. Mapping the origins and expansion of the Indo-European lan-
guage family. Science 337(6097): 957–960.

Bowern, Claire and Quentin D. Atkinson. 2012. Computational phylogenetics of the
internal structure of Pama-Nyungan. Language 88: 817–845.

Bussmann, Hadumod (ed.). 1996. Routledge Dictionary of Language and Linguistics.
London/New York: Routledge.

Běijīng Dàxué 北京大学. 1964. Hànyǔ fāngyán cíhuì 汉语方言词汇 [Chinese dialect
vocabularies]. Běijīng北京: Wénzì Gǎigé.

Campbell, George L. and Gareth King. 2013. Compendium of the World’s Languages,
vol. 1. London/New York: Routledge.

Chang, Will, Chundra Cathcart, David Hall, and Andrew Garret. 2015. Ancestry-con-
strained phylogenetic analysis support the Indo-European steppe hypothesis. Lan-
guage 91(1): 194–244.

Dagan, Tal, Yael Artzy-Randrup, and William Martin. 2008. Modular networks and
cumulative impact of lateral transfer in prokaryote genome evolution. Proceedings
of the National Academy of Sciences of the U.S.A. 105(29): 10,039–10,044.

Derksen, Rick. 2008. Etymological Dictionary of the Slavic Inherited Lexicon. Leiden/
Boston: Brill.

Dunn, Michael. 2012. Indo-European lexical cognacy database (IELex). Accessible at
http://ielex.mpi.nl/ (accessed September 5, 2016).

Edwards, Anthony W.F. and Luigi Luca Cavalli-Sforza. 1964. Reconstruction of evolu-
tionary trees. In Vernon H. Heywood and John McNeill (eds.) Phenetic and Phyloge-
netic Classification, 67–76. London: Systematics Association Publisher.

EncyclopaediaBritannica, Inc. 2010. EncyclopaediaBritannica. Edinburgh: Encyclopae-
dia Britannica, Inc. https://www.britannica.com.

Ewans,Warren andGregoryGrant. 2005. StatisticalMethods inBioinformatics: An Intro-
duction. New York: Springer.

Farris, James S. 1977. Phylogenetic analysis under Dollo’s law. Systematic Biology 26(1):
77–88.

2 Of Trees and Webs: Phylogenies and Networks in Historical Linguistics

100



onomasiological reconstruction in multilingual wordlists 51

Language Dynamics and Change 8 (2018) 22–54

Fitch, Walter M. 1971. Toward defining the course of evolution: Minimum change for a
specific tree topology. Systematic Zoology 20(4): 406–416.

Geisler, Hans and Johann-Mattis List. 2010. Beautiful trees on unstable ground. Notes
on the data problem in lexicostatistics. In Heinrich Hettrich (ed.) Die Ausbreitung
des Indogermanischen.Thesenaus Sprachwissenschaft, Archäologie undGenetik [The
spread of Indo-European. Theses from linguistics, archaeology, and genetics]. Wies-
baden: Reichert. Downloadable at https://hal.archives‑ouvertes.fr/hal‑01298493/
document (accessed February 4, 2018). Document has been submitted in 2010 and
is still waiting for publication.

Gray, Russell D. and Quentin D. Atkinson. 2003. Language-tree divergence times sup-
port the Anatolian theory of Indo-European origin. Nature 426(6965): 435–439.

Gray, Russell D., Alexei J. Drummond, and S.J. Greenhill. 2009. Language phylogenies
reveal expansion pulses and pauses in pacific settlement. Science 323(5913): 479–
483.

Greenhill, Simon J., Robert Blust, and Russell D. Gray. 2008. The Austronesian Basic
Vocabulary Database: From bioinformatics to lexomics. Evolutionary Bioinformatics
4: 271–283. Accessible at http://language.psy.auckland.ac.nz/austronesian/
(accessed February 4, 2018).

Hammarström, Harald, Robert Forkel, Martin Haspelmath, and Sebastian Bank. 2015.
Glottolog. Accessible at http://glottolog.org (accessed February 4, 2018).

Haynie, Hanna J. and Claire Bowern. 2016. Phylogenetic approach to the evolution of
color term systems. Proceedings of the National Academy of Sciences of the U.S.A.
113(48): 13,666–13,671.

Holm, Hans J. 2007. The new arboretum of Indo-European “trees”. Journal of Quantita-
tive Linguistics 14(2–3): 167–214.

Hóu, Jīngyī (ed.). 2004. Xiàndài Hànyǔ fāngyán yīnkù现代汉语方言音库 [Phonological
database of Chinese dialects]. Shànghǎi上海: Shànghǎi Jiàoyù上海教育.

Hruschka, Daniel J., Simon Branford, Eric D. Smith, JonWilkins, AndrewMeade, Mark
Pagel, and Tanmoy Bhattacharya. 2015. Detecting regular sound changes in linguis-
tics as events of concerted evolution. Current Biology 25(1): 1–9.

Huson, Daniel H. 1998. Splitstree: Analyzing and visualizing evolutionary data. Bioin-
formatics 14(1): 68–73.

Jordan, Fiona M., Russell D. Gray, Simon J. Greenhill, and Ruth Mace. 2009. Matrilocal
residence is ancestral in Austronesian societies. Proceedings of the Royal Society B
276: 1957–1964.

Jäger, Gerhard. 2015. Support for linguistic macrofamilies from weighted alignment.
Proceedings of the National Academy of Sciences of the U.S.A. 112(41): 12,752–12,757.

Kassian, Alexei, Mikhail Zhivlov, and George S. Starostin. 2015. Proto-Indo-European-
Uralic comparison fromtheprobabilistic point of view.The Journal of Indo-European
Studies 43(3–4): 301–347.

2.2 Ancestral State Reconstruction

101



52 jäger and list

Language Dynamics and Change 8 (2018) 22–54

Kitchen, Andrew, Christopher Ehret, Shiferaw Assefa, and Connie J. Mulligan. 2009.
Bayesian phylogenetic analysis of Semitic languages identifies an Early Bronze Age
origin of Semitic in the Near East. Proceedings of the Royal Society B 276(1668): 2703–
2710.

Kroonen, Guus. 2013. Etymological Dictionary of Proto-Germanic. Leiden/Boston: Brill.
Le Quesne, Walter J. 1974. The uniquely evolved character concept and its cladistic
application. Systematic Biology 23(4): 513–517.

Lee, Sean and Toshikazu Hasegawa. 2013. Evolution of the Ainu language in space and
time. PLoS ONE 8(4): e62,243.

Lepage, Thomas, David Bryant, Hervé Philippe, and Nicolas Lartillot. 2007. A general
comparison of relaxed molecular clock models. Molecular Biology and Evolution
24(12): 2669–2680.

List, Johann-Mattis. 2015. Network perspectives on Chinese dialect history. Bulletin of
Chinese Linguistics 8: 42–67.

List, Johann-Mattis. 2016. Beyond cognacy: Historical relations between words and
their implication for phylogenetic reconstruction. Journal of Language Evolution
1(2): 119–136. 10.1093/jole/lzw006.

List, Johann-Mattis and Robert Forkel. 2016. LingPy. A Python library for historical lin-
guistics. https://zenodo.org/badge/latestdoi/5137/lingpy/lingpy. Accessible at
http://lingpy.org (accessed February 4, 2018).

List, Johann-Mattis, T.Mayer, A. Terhalle, andM.Urban. 2014a. Clics: Database of Cross-
Linguistic Colexifications. Accessible at http://clics.lingpy.org (accessed February 4,
2018).

List, Johann-Mattis, Shijulal Nelson-Sathi, Hans Geisler, and William Martin. 2014b.
Networks of lexical borrowing and lateral gene transfer in language and genome
evolution. Bioessays 36(2): 141–150.

List, Johann-Mattis, Shijulal Nelson-Sathi, William Martin, and Hans Geisler. 2014c.
Using phylogenetic networks to model Chinese dialect history. Language Dynam-
ics and Change 4(2): 222–252.

List, Johann-Mattis, Jananan Sylvestre Pathmanathan, Philippe Lopez, and Eric Baptes-
te. 2016. Unity and disunity in evolutionary sciences: Process-based analogies open
common research avenues for biology and linguistics. Biology Direct 11(39): 1–17.

Liú Lìlǐ 刘俐李, Wáng Hóngzhōng 王洪钟, and Bǎi Yíng 柏莹. 2007. Xiàndài Hànyǔ
fāngyán héxīncí, tèzhēng cíjí 现代汉语方言核心词·特征词集 [Collection of basic vo-
cabulary words and characteristic dialect words inmodern Chinese dialects]. Nánjīng
南京: Fènghuáng凤凰.

Mallory, James P. and Douglas Q. Adams. 2006. The Oxford Introduction to Proto-Indo-
European and the Proto-Indo-EuropeanWorld. Oxford: Oxford University Press.

Meier-Brügger, Michael. 2002. Indogermanische Sprachwissenschaft [Indo-European
linguistics]. Berlin/New York: de Gruyter, 8th ed.

2 Of Trees and Webs: Phylogenies and Networks in Historical Linguistics

102



onomasiological reconstruction in multilingual wordlists 53

Language Dynamics and Change 8 (2018) 22–54

Mirkin, Boris G., Trevor I. Fenner, Michael Y. Galperin, and Eugene V. Koonin. 2003.
Algorithms for computing parsimonious evolutionary scenarios for genome evolu-
tion, the last universal commonancestor anddominance of horizontal gene transfer
in the evolution of prokaryotes. BMC Evolutionary Biology 3: 2.

Nelson-Sathi, Shijulal, Johann-Mattis List, Hans Geisler, Heiner Fangerau, Russell D.
Gray,WilliamMartin, andTal Dagan. 2011. Networks uncover hidden lexical borrow-
ing in Indo-European language evolution. Proceedings of the Royal Society of London
B: Biological Sciences 278(1713): 1794–1803.

Pagel, Mark, Quentin D. Atkinson, Andreea S. Calude, and AndrewMeade. 2013. Ultra-
conserved words point to deep language ancestry across Eurasia. Proceedings of the
National Academy of Sciences of the U.S.A. 110(21): 8471–8476.

Pagel, Mark and Andrew Meade. 2014. BayesTraits 2.0. Software distributed by the
authors. Downloadable at http://www.evolution.rdg.ac.uk/BayesTraitsV2.html (ac-
cessed September 5, 2016)

Rix, Helmut, Martin Kümmel, Thomas Zehnder, Reiner Lipp, and Brigitte Schirmer.
2001. LIV. Lexikonder IndogermanischenVerben. DieWurzeln und ihre Primärstamm-
bildungen [Lexicon of Indo-EuropeanVerbs. The roots and their primary stems].Wies-
baden: Reichert.

Ronquist, Fredrik, Maxim Teslenko, Paul van der Mark, Daniel L. Ayres, Aaron Darling,
Sebastian Höhna, Bret Larget, Liang Liu, Marc A. Suchard, and John P. Huelsen-
beck. 2012.MrBayes 3.2: Efficient Bayesian phylogenetic inference andmodel choice
across a large model space. Systematic Biology 61(3): 539–542.

Sagart, Laurent. 2011. Classifying chinese dialects/sinitic languages on shared innova-
tions. Paper presented at the Séminaire Sino-Tibétain duCRLAO (2011-03-28).Down-
loadable at https://www.academia.edu/19534510 (accessed February 4, 2018).

Saitou, Naruya and Masatoshi Nei. 1987. The neighbor-joining method: A new method
for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406–
425.

Sampson,Geoffrey. 2015. AChinesephonological enigma. Journal of ChineseLinguistics
43(2): 679–691.

Sankoff, David. 1975. Minimal mutation trees of sequences. SIAM Journal on Applied
Mathematics 28(1): 35–42.

Sokal, Robert R. and Charles D. Michener. 1958. A statistical method for evaluating sys-
tematic relationships. University of Kansas Scientific Bulletin 28: 1409–1438.

Starostin, George S. 2016. Fromwordlists to proto-wordlists: Reconstruction as ‘optimal
selection’. Faits de langues 47(1): 177–200. 10.3726/432492177.

Swadesh, Morris. 1952. Lexico-statistic dating of prehistoric ethnic contacts. Proceed-
ings of the American Philosophical Society 96(4): 452–463.

Swadesh, Morris. 1955. Towards greater accuracy in lexicostatistic dating. International
Journal of American Linguistics 21(2): 121–137.

2.2 Ancestral State Reconstruction

103



54 jäger and list

Language Dynamics and Change 8 (2018) 22–54

The LINGUIST List. 2014. Multitree: A digital library of language relationships. Accessi-
ble at http://multitree.org (accessed February 4, 2018).

Urban, Matthias. 2011. Asymmetries in overt marking and directionality in semantic
change. Journal of Historical Linguistics 1(1): 3–47.

Vaan, Michiel. 2008. Etymological Dictionary of Latin and the Other Italic Languages.
Leiden and Boston: Brill.

Wang, Feng. 2004. BCD: Basic-words of Chinese dialects. Formerly available at http://
chinese.pku.edu.cn/wangf/wangf.htm.

Wessen, Elias. 1968.Die nordischen Sprachen [TheNordic languages]. Berlin: deGruyter.
Wilkins, David P. 1996. Natural tendencies of semantic change and the search for cog-
nates. In Mark Durie and Malcom Ross (eds.) The Comparative Method Reviewed.
Regularity and Irregularity in Language Change, 264–304. New York: Oxford Univer-
sity Press.

Yang, Ziheng and Bruce Rannala. 1997. Bayesian phylogenetic inference using DNA
sequences: A Markov Chain Monte Carlo method. Molecular Biology and Evolution
14(7): 717–724.

Zhou, Kevin and Claire Bowern. 2015. Quantifying uncertainty in the phylogenetics of
Australian numeral systems. Proceedings of the Royal Society B 282(1815): 20151,278.

2 Of Trees and Webs: Phylogenies and Networks in Historical Linguistics

104



3 Data Formats and Annotation
Frameworks

3.1 Cross-Linguistic Data Formats
In order to make it possible to integrate quantitative and qualitative methods, it is of great importance
that data are available in computer- and human-readable form at the same time. While it is often straight-
forward to make computer-readable data human-readable, the opposite is much harder to achieve, specif-
ically when data have been originally only collected for the purpose of being accessible to humans alone.
A classical example for this lack of formalization can be found in etymological dictionaries in historical
linguistics, which present complex etymological relations between words in form of scientific prose. Al-
though etymological dictionaries often have a certain degree of formality and scholars aim at presenting
the data in a formal way, the majority of etymological dictionaries is produced with help of word editors
alone, and no additional software to store the underlying data in a machine-readable database system
are being made. As a result, it may at times be possible to reverse-engineer the intended relations in a
given etymological dictionary, and to store them in a database, but in many cases, this turns out to be
impossible, also because scholars barely check to which degree they always conform to the style rules
they intend to use.
In order to arrive at a level of formalization of data in historical linguistics that allows us to parse

them by a computer while at the same time to inspect them ourselves, we need to first establish rigorous
standards that allow for a general cross-linguistic comparability of linguistic data. In order to make
sure that data are comparable across datasets and resources, general properties of linguistic data, such
as common language names, common identifiers for concepts used in the elicitation of wordlists, or
common symbols to represent speech sounds, need to be established in form of reference catalogs, such
as Glottolog (Hammarström et al. 2020) as a reference catalog for languages, or Concepticon (List et al.
2020) as a reference for concepts (List et al. 2016a).
In the following two studies, first attempts to data standardization are being discussed. The first study,

titled “Cross-Linguistic Data Formats, advancing data sharing and re-use in comparative linguistics”
(Forkel et al. 2018) presents the Cross-Linguistic Data Formats initiative (CLDF), which proposes gen-
eral formats for typical linguistic data types, such as wordlists, structural datasets, dictionaries, or parallel
texts. A major strategy of the CLDF formats is to propagate the use of reference catalogs when prepar-
ing new datasets. That means that instead of providing only a table with language names, scholars are
encouraged to also add the Glottocodes for each language, in order to make sure that confusion, result-
ing from idiosyncratic or ambiguous language names can be avoided. Similarly, the CLDF initiative
recommends to add Concepticon Concept Set identifiers when dealing with wordlist data in addition
to elicitation glosses, in order to avoid confusion with respect to the concepts that were elicited in a
collection of wordlists.
To further enhance the CLDF data formats, the second study, titled “A cross-linguistic database of

phonetic transcription systems” (Anderson et al. 2018), proposes a new reference catalog, called Cross-
Linguistic Transcription Systems (CLTS). This reference catalog provides identifiers for speech sounds
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and links them to grapheme representations across different transcription systems, such as the Interna-
tional Phonetic Alphabet (IPA 1999) or the North-American Phonetic Alphabet (Pullum and Ladusaw
1996), and additionally also to various transcription datasets, such as Phoible (Moran et al. 2014) or
LAPSyD (Maddieson et al. 2013). The data collection is accompanied by a software package that can
be used to explore the data, or to convert between the different transcription systems.
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Introduction
The last two decades have witnessed a dramatic increase in language data, not only in form of
monolingual resources1 for the world’s biggest languages, but also in form of cross-linguistic datasets
which try to cover as many of the world’s languages as possible. Creating datasets in linguistics is
currently en vogue, and apart from traditional ways of linguistic data collection in form of etymological
dictionaries, user dictionaries, and grammatical surveys, data are now being published in form of online
databases (the most complete list of such databases is curated at http://languagegoldmine.com/) and
online appendices or supplements to published papers, addressing topics as diverse as cross-linguistic
lexical associations (cf. http://clics.lingpy.org and http://clics.clld.org), etymologically annotated word lists
for large language families like Austronesian (cf. https://abvd.shh.mpg.de2 and http://www.trussel2.com/
acd/) and Indo-European (cf. http://ielex.mpi.nl), inventories of speech sounds (cf. http://phoible.org), or
grammatical features compared across a large sample of the world’s languages (cf. http://wals.info). Along
with the increase in the amount of data, there is also an increased interest in linguistic questions, with
scholars from both linguistic and non-linguistic disciplines (e.g. archaeology, anthropology, biology,
economics, and psychology) now trying to use linguistic data to answer a wide variety of questions of
interest to their disciplines. For example, large-scale cross-linguistic studies have recently been conducted
to test how robustly languages are transmitted3 and which forces drive change4,5. Cross-linguistic data
have proven useful to detect semantic structures which are universal across human populations6, and
how semantic systems like color terminology have evolved7,8. Another group of studies have analysed
cross-linguistic data using quantitative phylogenetic methods to investigate when particular language
families started to diverge9–12. Cross-linguistic studies have even explored proposed non-linguistic factors
shaping languages from climate13,14, to population size15–17, to genes18,19, and how these factors may or
may not shape human social behavior at a society level20. (All URLS mentioned in this paragraph were
accessed July 26, 2018).

Despite this gold rush in the creation of linguistic databases and their application reflected in a large
number of scholarly publications and an increased interest in the media, linguistic data are still far away
from being “FAIR” in the sense of Wilkinson et al.21: Findable, Accessible, Interoperable, and Reusable. It
is still very difficult to find particular datasets, since linguistic journals often do not have a policy on
supplementary data and may lack resources for hosting data on their servers. It is also often difficult to
access data, and many papers which are based on original data are still being published without the data1

and having to request the data from the authors is sometimes a more serious obstacle than it should
be22,23. Due to idiosyncratic formats, linguistic datasets also often lack interoperability and are therefore
not reusable.

Despite the large diversity of human languages, often linguistic data can be represented by very simple
data types which are easy to store and manipulate. Word lists and grammatical surveys, for example, can
usually be represented by triples of language, feature, and value. The simplicity, however, is deceptive, as
there are too many degrees of freedom which render most of the data that have been produced hard to
compare. Due to the apparently simple structure, scholars rarely bother with proper serialization,
assuming that their data will be easy to re-use. Although there are recent and long-standing
standardization efforts, like the establishment of the International Phonetic Alphabet (IPA) as a unified
alphabet for phonetic transcription24, which goes back to the end of the 19th century25, or the more
recent publication of reference catalogues for languages26 and word meanings27, linguists often forgo
these standards when compiling their datasets and use less strictly specified documentation traditions.

While certain standards, such as the usage of unified transcription systems, are generally agreed upon
but often not applied (or mis-applied) in practice, other types of linguistic data come along with a
multitude of different standards which make data interoperability extremely difficult (see Fig. 1 for
examples on different practices of cognate coding in wordlists in historical linguistics).

At the same time, funding agencies such as the German Academic Research Council emphasize that
‘the use of open or openly documented formats [to enable] free public access to data deriving from
research should be the norm’28, mirroring the European Research Council’s guidelines for Open Access to
Research Data in the Horizon 2020 programme29. Since the importance of cross-linguistic data
is constantly increasing, it is time to re-evaluate and improve the state of standardization of linguistic
data30.

While we have to ask ourselves whether adding another standard might worsen the situation31, it is
also clear that the current problems of “data-FAIR-ness” in comparative and typological linguistics persist
and that standardization is the only way to tackle them. What may set our attempt apart from previous
trials is a focus on data re-use scenarios as motivating use cases.

Previously, the focus of standardization attempts was often on comprehensiveness (cf. the GOLD
ontology http://linguistics-ontology.org/, accessed July 27, 2018) which led to problems with adoption.
Our proposal is more modest, targeting mainly the specific case of tool-based re-use (i.e. analysis,
visualization, publication, etc.) of linguistic data. While this may seem overly specific, it is central to the
scientific method and reproducible research32. This approach may also be particularly successful, because
it puts the burden of early adoption on a sample of the linguistics community which may be best
equipped to deal with it: the computationalists. The line between computational and non-computational
linguists is diffuse enough for the former to act as catalysts for adoption, in particular because tools which
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can be built on standardized cross-linguistic data include web applications to make data publicly
accessible to speaker communities and the general public (cf. http://clld.org, accessed July 27, 2018).

Results
To address the above-mentioned obstacles of sharing and re-use of cross-linguistic datasets, the Cross-
Linguistic Data Formats initiative (CLDF) offers modular specifications for common data types in
language typology and historical linguistics, which are based on a shared data model and a formal
ontology.

Data Model
The data model underlying the CLDF specification is simple, yet expressive enough to cover a range of
data types commonly collected in language typology and historical linguistics. The core concepts of this
model have been derived from the data model which was originally developed for the Cross-Linguistic
Linked Data project (cf. http://clld.org, accessed July 27, 2018), which aimed at developing and curating
interoperable data publication structures using linked data principles as the integration mechanism for
distributed resources. The CLLD project resulted in a large number of online datasets which provide
linguists with a uniform “look-and-feel” despite their diverse content (see Table 1).

The main entities in this model are: (a) Languages - or more generally languoids (cf. http://glottolog.
org, accessed July 27, 2018), which represent the objects under investigation; (b) Parameters, the
comparative concepts33, which can be measured and compared across languages; and (c) Values, the
“measurements” for each pairing of a language with a parameter. In addition, each triple should have at
least one (d) Source, as cross-linguistic data are typically aggregated from primary sources which
themselves are the result of language documentation based on linguistic fieldwork. This reflects the
observation of Good and Cysouw34 that cross-linguistic data deal with doculects, i.e. languages as they are
documented in a specific primary source - rather than languages as they are spoken directly by the
speakers.

In this model, each Value is related to one Parameter and one Language and can be based on multiple
Sources. The many-to-many relation between Value and Source is realized via References which can carry

When a certain complexity of analysis is reached, multiple 
tables become inevitable in linguistic datasets. 
Unfortunately, the need of multiple tables may not be 
readily anticipated, and datasets do not transparently
state how to link across tables.Formats for cognate coding 
show great variation in this regard, ranging from multiple 
sheets in spreadsheet software that were manually created 
up to customized formats in which additional information is 
encoded in form of markup, such as colored cells or text in 
italic or bold font. All these attempts are very error prone 
and lead to data-loss, especially if only certain parts of the
data are shared. To avoid these problems, CLDF specifies to 
turn to multiple tables whenever this is needed, but to make 
it explicit in the metadata, how tables should be linked.

Figure 1. Basic rules of data coding, taking cognate coding in wordlists as an example. (a) Illustrates why

long tables53 should be favored throughout all applications. (b) Underlines the importance of anticipating

multiple tables along with metadata indicating how they should be linked44.
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an additional Context attribute, which is typically represented by page numbers when dealing with
printed sources.

The CLDF Specification
CLDF is a package format, describing various types of cross-linguistic data; in other words, a CLDF
dataset is made up by a set of data files (i.e. files holding tabular data, or tables) and a descriptive file,
wrapping this set and defining relations between tables. Each linguistic data type is modeled via a CLDF
module, with additional, orthogonal aspects of the data modeled as CLDF components. “Orthogonal” here
refers to aspects of the data which recur across different data types, e.g. references to sources, or glossed
examples. This approach mirrors the way Dublin Core metadata terms (a common way of describing
metadata, cf. http://dublincore.org, accessed July 27, 2018) are packaged into meaningful sets using
Application Profiles (cf. http://dublincore.org/documents/2009/05/18/profile-guidelines/, accessed July 27,
2018): a well known technique to support custom, modular - yet interoperable - metadata specifications
devised by the Dublin Core Metadata Initiative. CLDF modules are profiles of cross-linguistic data types,
consisting of CLDF components and terms from the CLDF ontology.

CLDF Ontology. The CLDF specification recognizes certain objects and properties with well-known
semantics in comparative linguistics. These are listed in a “vocabulary” or “ontology” (cf. https://www.w3.
org/standards/semanticweb/ontology for a description of vocabularies in the context of the Semantic
Web) - the CLDF Ontology - thereby making them available for reference by URI - the key mechanism of
the Semantic Web (that is, the “Web of Data”, cf. https://www.w3.org/standards/semanticweb/data).
Wherever possible, this ontology builds on existing ontologies like the General Ontology for Linguistic
Description (cf. http://linguistics-ontology.org/, accessed July 27, 2018). In particular, the CLDF Ontology
makes it easy to link entities in a CLDF dataset to a reference catalogue by providing corresponding
reference properties.

Basic Modules in CLDF. Currently, CLDF defines two modules which handle the most basic types of
data which are frequently being used, collected, and shared in historical linguistics and typology (cf.
http://clld.org/datasets.html). The Wordlist module handles lexical data which are usually based on a
concept list that has been translated into a certain number of different languages, wich are often further
analysed by adding information on cognate judgments or by further aligning the cognate words35. The
StructureDataset module handles grammatical features in a very broad sense, which are usually collected
to compare languages typologically.
Two more modules are in an early stage of standardisation: The ParallelText module can be used to encode

texts which were translated into different languages and are split into functional units (like similar sentences or
paragraphs) to render them comparable. The Dictionary module makes it possible to encode the lexicon of
individual languages.
While these modules are usable in this stage as well, they also serve as examples of the extensibility of the

standard: CLDF is intended as iterative, evolving standard, providing a short feedback loop between
standardization, implementation and non-standard extensions - thus allowing new data types to be integrated
easily.
Each of the modules defines additional components which define relations among the values across

languages, inside a language, or value-internally.

Components. CLDF modules can include components. Components are pre-defined tables or custom,
that is non-standardized, tables. While components can have different interpretations, depending on the
module they are combined with, in the Wordlist module they are typically interpreted as concepts and in
the StructureDataset module they most often interpreted as categorical variables.

Package Format of CLDF. CLDF is built on the World Wide Web Consortium (W3C) recommenda-
tions Model for Tabular Data and Metadata on the Web (cf. https://www.w3.org/TR/tabular-data-model/,
accessed July 27, 2018) and Metadata Vocabulary for Tabular Data (cf. https://www.w3.org/TR/tabular-
metadata/, accessed July 27, 2018, henceforth referred to as CSVW for “CSV on the Web”), which provide a

Name URL Description

World Atlas of Language
Structures

wals.info Grammatical survey of more than 2000 languages world-wide.

Comparative Siouan
Dictionary

csd.clld.org Etymological dictionary of Siouan languages.

Phoible phoible.org Cross-linguistic survey of sound inventories for more than 2000 languages world-wide.

Glottolog glottolog.org Reference catalogue of language names, geographic locations, and affiliations.

Concepticon concepticon.clld.org Reference catalogue of word meanings and concepts used in cross-linguistic surveys and psycholinguistic
studies.

Table 1. Examples of popular databases produced within the CLLD framework.
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package format allowing us to tie together multiple files containing tabular data (see Fig. 2). Thus, each
CLDF dataset is described by a JSON (Javascript Object Notation, see http://json.org/) metadata file
according to CSVW tabular metadata specification.
This means that there are standard ways of including metadata: Common properties on table or table group

descriptions can be used to add (a) bibliographic metadata using terms from the Dublin Core namespace (cf.
http://purl.org/dc/terms/), (b) provenance information using terms from the PROV namespace (cf. https://
www.w3.org/ns/prov), (c) catalogue information using terms from Data Catalog Vocabulary (cf. http://www.
w3.org/ns/dcat#). Thus, by providing a way to specify such metadata in a machine-readable way, CLDF
complements the efforts of the RDA Linguistics Interest Group (cf. http://site.uit.no/linguisticsdatacitation/
austinprinciples, accessed July 27, 2018).

Extensibility of CLDF. The CLDF specification is designed for extensibility. A CLDF dataset can
comprise any number of additional tables (by simply adding corresponding table definitions in the
metadata file), or by adding additional columns to specified tables. Thus, we expect to see further
standardization by converging usage, much like Flickr machine tags evolved (cf. https://www.flickr.com/
groups/api/discuss/72157594497877875, accessed July 27, 2018). A dataset may, for example, specify
scales for its parameters to guide appropriate visualization. If more and more users employ this new
specification, it will become a candidate for standardization within the CLDF specification.
As an example for future enhancement, CLDF could build on extensive metadata schemes like the COREQ

standards for qualitative social science research36 to allow for an explicit annotation of basic attributes related
to language informants when handling original fieldwork data (such as age, gender, multilingualism, etc.). In a
similar way, existing semantic web ontologies could be further integrated into the CLDF specification, provided
adapters of CLDF find them useful and important.

Figure 2. Using CSVW metadata to describe the files making up a CLDF dataset.
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This extension mechanism (and backwards compatible, frequent releases) allows us to start out small and
focused on a handful of use cases and data types for which there is already tool support.

Reference Catalogues
Creating a lean format like CLDF has been made easier by using reference catalogues to specify entities
like languages or concepts. This, in turn, is made possible by employing the linking mechanism built into
the W3C model and by leveraging JSON-LD, a JSON serialization of the RDF model underlying the
Linked Data principles (cf. https://www.w3.org/TR/json-ld/, accessed July 26, 2018).

Linking to the corresponding properties in the CLDF Ontology allow for unambiguous references to
standard catalogues like Glottolog and ISO 639-326 for languoids and Concepticon for lexical concepts.
While Glottolog is now well-established among linguists concentrating on cross-linguistic language
comparison, Concepticon is a rather young attempt to standardize the reference to lexical concepts as
they can be encountered in numerous questionnaires that scholars use in fieldwork and comparative
studies. Similar to Glottolog, Concepticon offers unique identifiers for currently 3144 lexical concepts,
along with definitions and additional metadata. The lexical concepts defined by Concepticon, however,
are not meant to reflect concepts that are expressed by the words in any specific language, but instead link
to various resources (so-called concept-lists) in which these concepts were elicited. Similar to language
names, which show many different variants in the linguistic literature, the glosses which scholars use to
elicit a certain concept in cross-linguistic studies may also drastically vary. Linking these elicitation
glosses to the Concepticon thus allows for a rapid aggregation of highly diverse datasets. As an example,
consider the recently published new version of the CLICS database (cf. http://clics.clld.org), providing
information on recurring polysemies for more than 1500 concepts, in which currently 15 different
datasets have been aggregated with help of Glottolog and Concepticon. We are currently working on
additional reference catalogues for phonetic transcriptions (Cross-Linguistic Transcription Systems, cf.
https://github.com/cldf/clts, accessed July 27, 2018) and grammatical features (working title
Grammaticon,37) and hope to make them available to CLDF data descriptions by providing
corresponding reference properties in future versions of the CLDF Ontology.

However, while including reference properties for certain catalogues facilitates data aggregation and
re-use, the CLDF specification does not require the use of any or all reference catalogues. Instead, users
should decide what is most applicable to the dataset itself.

Interacting with CLDF Datasets
The main goal of CLDF is connecting cross-linguistic data and tools. The constituent file formats of
CLDF - CSV, JSON and BibTeX -- enjoy ample support for reading and writing on many platforms and
in many computing environments. Thus, reading and writing CLDF dataset should be easily achieved in
any environment. A sufficiently standardized data format like CLDF means that general data editing tools
(e.g. https://visidata.org/) can be used for working with CLDF data (see https://csvconf.com for more
information about CSV in science, accessed July 26, 2018). A standardized format allows the community
to move from ad-hoc tools programmed by a proficient minority for their particular use case, towards
more and better applications, making their functionality available also to researchers without
programming skills.

A few such tools already exist. LingPy (cf. http://lingpy.org, accessed July 27, 2018), a suite of open
source Python modules, provides state-of-the-art algorithms and visualizations for quantitative historical
linguistics; BEASTLing38, a Python package, translates human-readable descriptions of phylogenetic
inference into the complex driver files for the popular BEAST software; EDICTOR39, a graphical
JavaScript application, allows scholars to edit etymological dictionary data in a machine- and human-
readable way. While the development on these examples began before the CLDF standard, all three of
them were originally using CSV dialects for easy data exchange and are now in the process of adding
support for CLDF data, thus showing the value of interoperability.

Further, CLDF is standardised such that scripts can easily become shareable and reusable tools for
other researchers, rather than one-use scripts. To collect and publish such tools, we initiated a GitHub
repository called the CLDF Cookbook (cf. https://github.com/cldf/cookbook). Currently, the cookbook
contains recipes for visualization of CLDF datasets, for reading and writing data in CLDF-format from
within the LingPy library, and for accessing CLDF data from R.

A Python API: pycldf
In many research disciplines the Python programming language has become the de-facto standard
for data manipulation (often including analyses40,). Thus, providing tools for programmatic access to
CLDF data from Python programs increases the usefulness of a format specification like CLDF. We
implemented a Python package pycldf (cf. https://github.com/cldf/pycldf, accessed July 27, 2018), serving
as reference implementation of the CLDF standard, and in particular supporting reading, writing and
validating CLDF datasets (cf. https://github.com/cldf/pycldf/tree/master/examples, accessed July
26, 2018).

By making use of the table descriptions in a CLDF metadata file, pycldf can do a lot more. For
example, based on the datatype descriptors and foreign key relations specified in table schemas, pycldf
can provide a generic conversion of a CLDF dataset into an SQLite database; thereby allowing analysis of
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CLDF datasets using SQL - one of the work horses of data science. Another example for the usefulness of
programmatic access to CLDF data is validation. Having a Python library available for CLDF means
validation can be built into LibreOffice’s spreadsheet application or easily run via continuous integration
services like Travis on datasets hosted in public repositories (see, for example, https://github.com/
lexibank/birchallchapacuran, accessed July 26, 2018).

Discussion
At the beginning of the CLDF initiative we developed a list of practitioner requirements for cross-
linguistic data, based on the experiences of linguists who have worked and are regularly working with
cross-linguistic datasets. These practical principles are summarized in Table 241, and when comparing
them with our first version of CLDF, it can be seen that CLDF still conforms to all of them. Furthermore,
when comparing our initial requirements with the criteria for file formats and standards put forward in
guidelines for research data management such as the ones proposed by the WissGrid project42, one can
also see that the perspectives are largely compatible, thus corroborating our hope that while being
sufficiently specific to be of use for linguists, CLDF will also be generic enough to blend in with current
best practices for research data management across disciplines.

Following a similar line of reasoning as Gorgolewski et al.43 lay out in their proposal of a unified data
structure for brain imaging data, and building on recommendations from the “Good Practices of
Scientific Computing” by Wilson et al.,44 we decided to base CLDF on well-known and well-supported
serialization formats, namely CSV and JSON, with their specific shortcomings being outbalanced by
building on CSVW, including its concept of CSV dialects, which allows us to support more variation in
tabular data files and help with adaptation of the format. CSVW and its support for foreign keys between
tables also allows us to seamlessly implement the recommendation to “anticipate the need to use multiple
tables, and use a unique identifier for every record”43.

Since CSVW is specified as a JSON-LD dialect (i.e. grounded in the Resource Description Framework
RDF, cf. https://www.w3.org/TR/rdf11-primer/, accessed July 27, 2018), it can be combined with an RDF
Vocabulary or Ontology to provide (a) the syntax of a relational serialization format via CSVW, as well as
(b) the semantics of the entities in the data model via the ontology. Thus, the CLDF Ontology provides
answers to the two questions of “Which things do exist?” and “Which things are based on others?”, which
are considered crucial to assess the identification needs for data collections42.

Being able to build on Linked Data technologies to attach custom semantics to CSV data is the main
advantage for us of CSVW over the similar Data Package Standard (cf. https://frictionlessdata.io/specs/
data-package/), with its pure JSON package descriptions. It should also be noted that the overlap between
these two data packaging specifications is so big and the specifications so similar, that the authors of the
Data Package standard “imagine increasing crossover in tool and specification support”45.

When adopting CSVW as the basis of the specification, it may seem counter-intuitive to model source
information via BibTeX - rather than as just another CSV table, linked to with foreign keys. But given
that (a) Glottolog - the most extensive bibliography of language descriptions - disseminates BibTeX and
(b) the many-to-many relation between values and sources would have required an additional association
table, (c) BibTeX is a standard format readable and usable by most citation software programs, BibTeX
seemed to be the right choice when maximizing maintainability of datasets.

Another design decision taken with CLDF was to not specify a single-file format. Instead of forcing
users to provide their data in database formats, like SQLite (cf. https://sqlite.org/appfileformat.html,
accessed July 27, 2018), or in pure text formats with extensible markup, like the NEXUS format in
biology46, we opted for specifying a multi-file format - and deliberately chose to not define any packaging.
Instead, we regard packaging of usually rather small sets of small text files as a problem for which
multiple solutions with particular use cases have already been proposed (e.g. zip for compression, bagit
for archiving, etc., cf. https://tools.ietf.org/html/draft-kunze-bagit-14, accessed July 27, 2018). We do not

Abbr. Requirement Note

P PEP 20 “Simple things should be simple, complex things should be possible” (cf. https://www.python.org/dev/peps/pep-0020/,
accessed July 27, 2018): Datasets can be one simple CSV file, encoding language-parameter-value-triples.

R Referencing If entities and parameters can be linked to reference catalogues such as Glottolog or Concepticon, this should be
preferred to duplicating information.

A Aggregability Data should be simple to concatenate, merge, and aggregate in order to guarantee their reusability.

H Human- and machine-readability Data should be both editable by hand and amenable to reading and writing by software (preferable software which
typical linguists can be expected to use).

T Text Data should be encoded as UTF-8 text files or in formats that provide full support for UTF-8.

I Identifiers Identifiers should be resolvable HTTP-URLs, where possible, if not, this should be documented in the metadata.

C Compatibility Compatibility with existing tools, standards, and practices should always be kept in mind and never easily given up.

E Explicitness One row should only store one data point, and each cell should only have one type of data, unless specified in the
metadata.

Table 2. Practical demands regarding cross-linguistic data formats.
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even have to specify a particular directory layout for the multiple files forming a CLDF dataset, because
the description file references data files using URIs, thereby turning CLDF into a multi-file format almost
as flexible as HTML. While this decision goes against the idea of “self-describing data” - underlying
formats like XML - it works well with databases with established curation workflows, because it provides
an inobtrusive way to enhance the existing dataset: For example the “traditional” WALS Online tab-
separated format (e.g. http://wals.info/feature/1A.tab) can be turned into a CLDF dataset (by anyone) by
providing a separate description file, just referencing the tab-separated file as data file.

Since CLDF has been developed in close collaboration with researchers working on different ends of
data-driven research in historical linguistics and language typology, CLDF is already being used by large
linguistic projects (cf. http://clics.clld.org/ and http://www.model-ling.eu/lexirumah/, both accessed
July 27, 2018) and as the data format for publishing supporting information11,47. CLDF is the native
format for the forthcoming global language databases Grambank, Lexibank and Parabank (cf. http://
glottobank.org/) being developed by a consortium of research centers and universities. Further, CLDF is
by now already supported by a larger number of software packages and applications, ranging from
libraries for automatic sequence comparison in historical linguistics (LingPy), via packages for
phylogenetic analyses (BEASTLing38), up to interfaces for data inspection and curation (EDICTOR39).

Since the CLDF initiative was born out of the Cross-Linguistic Linked Data (CLLD) project, it is
readily integrated into the CLLD framework and will allow users to publish their data without efforts on
the web, making their data findable by exposing data and metadata to the major search engines, and
increasing thus their interoperability. An important part of enabling data re-use is making data
discoverable. In today’s digital environment this means largely being “present” on the web. Basing CLDF
on the recommendations of W3C’s Tabular Data on the Web working group is a partial answer to this
requirement.

Making it simple to publish CLDF datasets as CLLD applications goes a step further, because CLLD
applications improve the visibility of datasets by exposing data and metadata to the major search engines,
but also to field-specific aggregators such as OLAC, the Open Language Archives Community. More
specifically, since CLLD applications implement the data provider part of the OAI-PMH protocol (cf.
http://www.openarchives.org/OAI/openarchivesprotocol.html, accessed July 27, 2018) a CLDF dataset
served by a CLLD application will be discoverable from OLAC and other portals.

It is important to note that CLDF is not limited to linguistic data alone. By embracing reference
catalogues like Glottolog which provide geographical coordinates and are themselves referenced in large-
scale surveys of cultural data, such as D-PLACE48, CLDF may drastically facilitate the testing of questions
regarding the interaction between linguistic, cultural, and environmental factors in linguistic and cultural
evolution.

Methods
Efforts to standardize cross-linguistic data, in particular typological datasets and with the aim of
comparability across datasets, have been undertaken since at least 2001, when Dimitriadis presented his
Typological Database System49 (cf. http://languagelink.let.uu.nl/tds/index.html, accessed July 27, 2018).
One initial step was to introduce general database principles to database design in linguistic typology50.

Rather than standardizing data formats, the CLLD project largely tried to standardize the software
stack for cross-linguistic databases. Still, the core data model which could be extracted from these
database software implementations served as one of the inspirations when standard data formats were
discussed at the workshop Language Comparison with Linguistic Databases, held 2014 at the Max Planck
Institute for Psycholinguistics in Nijmegen.

The followup workshop Language Comparison with Linguistic Databases 2 - held in 2015 at the Max
Planck Institute for Evolutionary Anthropology in Leipzig - saw concrete proposals towards what now is
CLDF41; and later this year, the workshop Capturing Phylogenetic Algorithms for Linguistics - held at the
Lorentz Center in Leiden - brought together people interested in analysis of cross-linguistic data, thus
providing a test bed for the proposals.

Apart from these larger meetings where scholars discussed ideas of standardization, the CLDF-
initiative profited from the numerous Glottobank meetings organized by the Department of Linguistic
and Cultural Evolution at the Max Planck Institute for the Science of Human History (Jena), in which
big-picture ideas of standards for linguistic data were discussed in more concrete terms by smaller teams
which came forward to work on specific aspects of the specification, including reference catalogues like
Concepticon, the handling of etymological data, and linking to external projects like D-PLACE.

These events formed a group representing the main institutions in the small field of large-scale
comparison of cross-linguistic data, which contributed to the CLDF specification.

When a Linguistics Data Interest Group was endorsed by Research Data Alliance (RDA) in 2017,
echoing RDA’s call to ‘develop and apply common standards across institutions and domains to ensure
greater interoperability across datasets’ in Linguistics, this coincided nicely with the progress of CLDF 1.0.

Code Availability
The CLDF specification is curated using a GitHub repository (cf. https://github.com/cldf/cldf). Released
versions are published and archived via Zenodo under the Apache 2.0 license. The current version of the
specification is CLDF 1.0.151.
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The pycldf package is maintained in a GitHub repository (cf. https://github.com/cldf/cldf). Released
versions are available from the Python Package Index (cf. https://pypi.python.org/pypi/pycldf) and
archived with Zenodo52 under the Apache 2.0 license.
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Abstract 
Contrary to what non-practitioners might expect, the systems of phonetic notation used 

by linguists are highly idiosyncratic. Not only do various linguistic subfields disagree on 

the specific symbols they use to denote the speech sounds of languages, but also in large 

databases of sound inventories considerable variation can be found. Inspired by recent 

efforts to link cross-linguistic data with help of reference catalogues (Glottolog, Concep-

ticon) across different resources, we present initial efforts to link different phonetic nota-

tion systems to a catalogue of speech sounds. This is achieved with the help of a data-

base accompanied by a software framework that uses a limited but easily extendable set 

of non-binary feature values to allow for quick and convenient registration of different 

transcription systems, while at the same time linking to additional datasets with restrict-

ed inventories. Linking different transcription systems enables us to conveniently trans-

late between different phonetic transcription systems, while linking sounds to databases 

allows users quick access to various kinds of metadata, including feature values, statis-

tics on phoneme inventories, and information on prosody and sound classes. In order to 

prove the feasibility of this enterprise, we supplement an initial version of our cross-

linguistic database of phonetic transcription systems (CLTS), which currently registers 

five transcription systems and links to fifteen datasets, as well as a web application, 

which permits users to conveniently test the power of the automatic translation across 

transcription systems. 

Keywords: phonetic transcription; phoneme inventory databases; cross-linguistically 

linked data; reference catalog; dataset. 

1. Introduction 

 

Phonetic transcription has a long tradition in historical linguistics. Efforts to de-

sign a unified transcription system capable of representing and distinguishing all 
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the sounds of the languages of the world go back to the late 19th century. Early 
endeavours included Bell’s Visible Speech (1867) and the Romic transcription 
system of Henry Sweet (1877). In 1886, Paul Passy (1859–1940) founded the 
Fonètik Tîtcerz’ Asóciécon (Phonetic Teachers’ Association), which later be-
came the International Phonetic Association (see Kalusky 2017: 7f). In contrast 
to writing systems targeted at encoding the speech of a single language variety 
in a visual medium, phonetic transcription aims at representing different kinds 
of speech in a unified system, which ideally would enable those trained in the 
system to reproduce foreign speech directly. 

Apart from the primary role which phonetic transcription plays in teaching 
foreign languages, it is also indispensable for the purposes of language compari-
son, both typological and historical. In this sense, the symbols that scholars use 
to transcribe speech sounds, that is, the graphemes, which we understand as se-
quences of one or more glyphs, serve as comparative concepts, in the sense of 
Haspelmath (2010). While the usefulness of phonetic transcription may be evi-
dent to typologists interested in the diversity of speech sounds (although see cri-
tiques of this approach to phonological typology, i.a. Simpson 1999), the role of 
unified transcription systems like the International Phonetic Alphabet (IPA) is 
often regarded as less important in historical linguistics, where scholars often 
follow the algebraic tradition of Saussure (1916, already implicit in Saussure 
1878). This emphasises the systematic aspect of historical language comparison, 
in which the distinctiveness of sound units within a system is more important 
than how they compare in substance across a sample of genetically related lan-
guages. If we leave the language-specific level of historical language compari-
son, however, and investigate general patterns of sound change in the languages 
of the world, it is obvious that this can only be done with help of comparable 
transcription systems serving as comparative concepts.  

Here, we believe that use can be made of cross-linguistic reference cata-
logues, such as Glottolog (http://glottolog.org, Hammarström et al. 2017), a ref-
erence catalogue for language varieties, and Concepticon (http://concepticon. 
clld.org, List et al. 2016), a reference catalogue for lexical glosses taken from 
various questionnaires. Both projects serve as standards by linking metadata to 
the objects they define. In the case of Glottolog, geo-coordinates and reference 
grammars are linked to language varieties (languoids in the terminology of 
Glottolog), in the case of Concepticon, lexical glosses taken from questionnaires 
are linked to concept sets, and both languoids and concept sets are represented 
by unique identifiers to which scholars can link when creating new cross-
linguistic resources. We think that it is time that linguists strive to provide simi-
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lar resources for speech sounds, in order to increase the comparability of pho-
netic transcription data in historical linguistics and language typology. 

2. Phonetic transcription and transcription data 

 
When dealing with phonetic transcriptions, it is useful to distinguish transcrip-
tion systems from transcription data. The former describe a set of symbols and 
rules for symbol combinations which can be used to represent speech in the me-
dium of writing, while the latter result from the application of a given transcrip-
tion system and aim to display linguistic diversity in terms of sound inventories 
or lexical datasets. While transcription systems are generative in that they can 
be used to encode sounds by combining the basic material, transcription data are 
static and fixed in size (at least for a given version published at a certain point 
in time). Transcription data have become increasingly important, with recent ef-
forts to provide cross-linguistic accounts of sound inventories (Moran et al. 
2014; Maddieson et al. 2013), but we can say that every dictionary or word list 
that aims at representing the pronunciation of a language can be considered as 
transcription data in a broad sense.  

In the following, we give a brief overview of various transcription traditions 
that have commonly been used to document the languages of the world, and 
then introduce some notable representatives of cross-linguistic transcription da-
ta. Based on this review, we then illustrate how we try to reference the different 
practices to render phonetic transcriptions comparable across transcription sys-
tems and transcription datasets. 

 

2.1. Phonetic transcription systems 

When talking about transcription systems, we are less concerned with actual or-
thographies, which are designed to establish a writing tradition for a given lan-
guage, but more with scientific descriptions of languages as we find them in 
grammars, word lists, and dictionaries and which are created for the purpose of 
language documentation. Despite the long-standing efforts of the International 
Phonetic Association to establish a standard reference for phonetic transcription, 
only a small proportion of current linguistic research actually follows IPA 
guidelines consistently.  
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2.1.1. The International Phonetic Alphabet 

The International Phonetic Alphabet (IPA 1999, IPA 2015), devised by the In-
ternational Phonetic Association, is the most common system of phonetic nota-
tion. As an alphabetic system, it is primarily based on the Latin alphabet, fol-
lowing conventions that were oriented towards 20th century mechanical typeset-
ting practices; it consists of letters (indicating “basic” sounds), diacritics (add-
ing details to basic sounds), and suprasegmental markers (representing features 
such as stress, duration, or tone). The IPA’s goal is to serve as a system capable 
of transcribing all languages and speech realisations, eventually extended with 
additional systems related to speech in a broader sense, such as singing, acting, 
or speech pathologies. The IPA has been revised multiples times, with the last 
major update in 1993 and the last minor changes published in 2005. 
 

2.1.2. Transcription systems in the Americas 

In the Americas, although IPA has become more prevalent of late, there is only a 
minimum level of standardisation in the writing systems used for the transcrip-
tion of local languages. While in North America most of the transcription sys-
tems of the twentieth century generally comprised different versions of what is 
generally known as the North American Phonetic Alphabet (NAPA, Pullum and 
Laduslaw 1996[1986]), in South America the picture is murkier. Although 
Americanist linguists have occasionally tried to harmonise the transcription sys-
tems in use (Herzog et al. 1934), we find a plethora of local traditions that have 
been greatly influenced by varying objectives, ranging from the goal of devel-
oping practical orthographies (often with an intended closeness to official na-
tional language orthographies), via the desire to represent phonemic generalisa-
tions in transcriptions, up to practical concerns of text production with type-
writing machines (Smalley1964).1 As a result, it is extremely difficult to identify 
a common Americanist tradition of phonetic transcription. 

 
 

                                                                        
1 Other kinds of adaptations involved modification of standard symbols such as the use of “stroke” 
in some letters representing stops in order to create a grapheme for a fricative sound lacking in the 
Latin based typography (e.g., ‹p› for voiceless bilabial fricative [ɸ], ‹d› for dental voiced fricative).  
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2.1.3. Transcription systems in African linguistics 

Attempts to standardise the transcription of previously unwritten African lan-
guages with Latin-based writing systems date back to the middle of the 19th 
century (Lepsius 1854). In 1928, a group of linguists led by Diedrich Wester-
mann (1875–1956) developed what came later to be known as the African Al-
phabet, an early attempt to enable both practical writing and scientific docu-
mentation of African languages with a minimal number of diacritic characters 
(International Institute 1930). In subsequent years, the system gained popularity 
among linguists and eventually served as the basis for the African Reference Al-
phabet (ARA, UNESCO 1978; Mann and Dalby 1987). Despite their relative 
success, most transcription systems and practical orthographies in use today are 
mixed systems, which inherit different parts from the IPA and the ARA, as well 
as alphabets of former colonial languages, alongside idiosyncratic elements. 
Although some areas developed regional conventions, languages with similar 
phoneme inventories may still be transcribed with widely diverging systems.2 
 

2.1.4 Transcription systems in the Pacific 

Among Oceanic languages, transcription conventions are extremely varied and 
are frequently based on regional orthographic conventions or the preferences of 
the respective linguists. In West Oceania, there is an increasing use of IPA in re-
cent linguistic descriptions, however most existing descriptions are highly in-
consistent, particularly when it comes to features that are typologically rare.3 
While Polynesian languages arguably maintain more straightforward phonolog-
ical systems than their westerly cousins, they have been described with equal 
ambiguity. The various transcriptions include outdated conventions, regional or-
thographic conventions, and individual linguists’ inventions. These have result-
                                                                        
2 For instance, while most “Khoisan” (cf. Güldemann 2014) and Bantu languages of Southern Af-
rica follow the African Reference Alphabet in transcribing clicks with Latin letters, linguistic 
treatments tend to use the IPA (following suggestions by Köhler et al. 1988). For example, the pal-
atal click is indicated by ‹tc› in the first case and by ‹ǂ› in the second. 
3 For example, the linguo-labial stop of some Vanuatu languages has been described using an 
apostrophe following the labial ‹p’› (Lynch 2016), by using a subscript seagull diacritic under the 
labial ‹◌̼› (Dodd 2014), and by using a subscript turned-bridge diacritic under the labial ‹◌̺› (Crow-
ley 2006a); the doubly articulated labio-velar stop in Vurës (Banks Islands) has been described as 
‹͡pʷ› (Malau 2016), whereas in the Avava language of Malekula, it has been transcribed with a tilde 
over the labial ‹͡p̃› (Crowley 2006b). 
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ed in highly ambiguous representations that easily lead to incorrect interpreta-
tions of the data, especially when being used by comparative linguists who are 
not familiar with the traditions.4 
 

2.1.5 Transcription systems in South-East Asian languages 

South-East Asian languages have a number of features that lend themselves to 
idiosyncratic phonetic transcription. A prominent example is tone, for which 
most scholars tend to prefer superscript or subscript numbers (e.g., ‹³⁵›)  instead 
of the iconic IPA tone letters (‹›) originally designed by Chao (1930). Since 

scholars also use superscript numbers to indicate phonological tone (ignoring 

actual tone values) tone assignment can be easily confused. In addition to the 

transcription of tone, many language varieties have some peculiar sounds, 

which are not easy to be rendered in IPA and are therefore often transcribed with 

specific symbols common only in SEA linguistics.
5
 Although especially young-

er field workers tend to transcribe their data consistently in IPA, we find many 

datasets and textbooks employing older versions of the IPA.
6
 

 

2.1.6 Summary of transcription systems 

Designing and applying phonetic transcription systems is not an easy enterprise, 

especially in cases where the goal is to provide a global standard. When com-

                                                                        

4 Examples include, among others: (1) characters associated with a given sound being used to rep-

resent an entirely different sound (‹h› used for the glottal stop, Tregear 1899; ‹y› used for [ð], 

Salisbury 2002); (2) one character being used to represent various sound qualities (‹g› used for the 

velar nasal in Tregear 1899, and the voiced uvular stop in Charpentier and François 2015); (3) dia-

critics on vowels ambiguously used to indicate duration (Stimson and Marshall 1964) or glottal 
stops (Kieviet 2017). 
5 Among these are the symbols ‹ɿ› and ‹ʅ›, which are commonly used to denote vowels pronounced 

with friction. They could be transcribed as syllabic sibilant fricatives [z̩] and [ʐ̩], respectively, but 

given the problems of readability with these symbols, as well as the relative frequency of these 

sounds across Chinese dialects and in other Sino-Tibetan languages, scholars continue to use the 

symbols ‹ɿ› and ‹ʅ›. 
6 The most prominent difference is the usage of ‹’› as an aspiration marker [ʰ], which can be found 

in many sources (Beijing Daxue 1964), reflecting an older IPA standard which is also still in use in 

Americanist transcription systems and occasionally still taught in recent textbooks on Chinese lin-

guistics (see, for example, Huáng and Liào 2002). Contrast this with the frequent use of the same 

symbol to represent ejectives in other traditions. 
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paring the particular problems of transcription systems and transcription prac-

tice in different parts of the world, one can identify many similar obstacles that 

linguists face when trying to preserve speech in writing. The most prominent 

ones include (a) the influence of the orthography of the dominant language (in 

many parts of the world the colonial language of the oppressors), (b) a tendency 

to favour tradition over innovation (which results in many practices that were 

once considered standard now having been abandoned), (c) specific challenges 

in transcribing local language varieties with the material provided by the stand-

ard, (d) systemic (phonological) considerations which would entice linguists to 

favor symbols which reflect the phonology of the language varieties under ques-

tion more properly, and (e) technical considerations (as transcription systems 

devised up until the mid-20th century were forced to consider the limitations of 
mechanical typesetting).7 While these technical considerations should have now 
become largely obsolete with the introduction of the Unicode standard, this is 
not always the case. Judging from practical experience it is obvious that 
Unicode has made many things a lot easier, but since the majority of linguists 
are less acquainted with questions of computation and coding, the problem of 
typesetting is still an important factor in linguistic transcription practice.  
 

2.2. Transcription data 

In addition to transcription systems as they are used by scholars and teachers, a 
number of datasets offer transcription data. Usually these datasets represent ty-
pological surveys of phoneme inventories (Maddieson et al. 1984; Maddieson et 
al. 2013; Moran et al. 2014; Ruhlen 2008). Originally they are taken from 
grammatical descriptions of the languages of the world and also tend to contain 
an introduction into the typical sound systems of the languages under investiga-
tion. Another type of frequently available transcription data (in the sense of 
fixed sets of sounds which are provided in the form of transcriptions) are feature 
descriptions of individual collections of speech sounds which can range from 
single-language descriptions (Chomsky and Halle 1968), up to large collections 
directed towards cross-linguistic, computer-assisted applications (Mortensen 
2017).  
                                                                        
7 This includes the IPA itself, which has many glyphs that are rotated versions of letters, e.g. IPA 
(1912). Further, restrictions in the early days of computing led to limited by encoding schemes 
such as ASCII (which led to the development of ASCII representations of IPA, such as X-
SAMPA). 
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In a broader sense, all data collections that provide metadata for a given set 
of sounds can be qualified as transcription data. When applying this extended 
definition of transcription data, we can think of many further examples, includ-
ing diachronic datasets of sound change (Kümmel 2008, Index Diachronica), in-
teractive illustrations of speech sounds (Multimedia IPA chart, Wikipedia), or 
lexical datasets that offer phonetic transcriptions (List and Prokić 2014). 
 

2.3. Comparability of transcription systems and data 

When dealing with transcription systems and transcription data, linguists face 
several problems. Some of these are problems of a practical nature, which we 
explore further below, while others are of a theoretical nature, and touch upon 
long-standing issues in phonology and phonetics, and the relationship between 
the two. Among these theoretical problems, are those of commensurability, of 
context, and of resolution.  

In spite of frequent attempts to compare phonemic inventories in phonolog-
ical typology (Dryer and Haspelmath 2011; Maddieson 1984) these efforts are 
beset by serious difficulties. The classical structuralist treatment of the phoneme 
considers it to be a relational entity (Trubetzkoy 1939), the value of which is 
dependent on its place with respect to other phonemes within a system. In this 
understanding, the phonemes of one language are not commensurate to those of 
another language: it is only as a member of a system that a phoneme finds its 
value. This critique is taken up by Simpson (1999) who argues that the allo-
phone replaces the phoneme in large databases, thereby reducing “the phonemic 
system of a language to a small, arbitrary selection of its phonetics”. Although 
this problem cannot really be resolved, we note that different phonological data-
bases have attempted to address it in different ways. In LAPSyD (Maddieson et 
al. 2013), the symbols chosen for the phonemes are often frequently occurring 
ones, abstracting away from too much phonetic detail. In PHOIBLE (Moran et 
al. 2014), on the other hand, phonemes are often transcribed with great phonetic 
detail, with numerous diacritics. While at first glance the latter approach might 
appear preferable, as it gives more information, it runs into serious difficulties, 
given Simpson’s critique above. 

The crux of this problem is that the realisation of a given phoneme depends 
considerably on context. For example, the German stops typically transcribed 
/b/, /d/, and /g/ are pronounced voiceless when in final position, whereas be-
tween vowels they are pronounced with voice. In European Spanish, while the 
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voiced stops /b/, /d/ and /g/ occur with the phonetic values [b], [d], and [g] in in-

itial position, elsewhere they are more often pronounced as fricatives [β], [ð], 

and [ɣ]. It is not clear, in such cases, which set of symbols should be used, and 
even if a principled decision could be made (e.g. based on frequency, Bybee 
2001), a great loss of information is involved in choosing one symbol over the 
other – it is equally misleading to characterise Spanish as a language without 
voiced stops or as a language without voiced fricatives. Such difficulties are not 
only of relevance in phonological typology, but can have serious repercussions 
in historical linguistics as well. To take an example, linguists typically tran-
scribe two series of stops in Scottish Gaelic – aspirated /pʰ/, /tʰ/, and /kʰ/ and 
unaspirated /p/, /t/, and /k/. In Modern Irish, on the other hand, the convention is 
to transcribe rather voiceless /p/, /t/, and /k/ and voiced /b/, /d/, and /g/. In reali-
ty, however, the voiceless stops of Irish are also aspirated, and the voiced ones 
are only passively voiced, i.e. it is an “aspirating” language in the parlance of 
laryngeal typology (Honeybone 2005). The difference between these two very 
closely related languages lies solely in the fact that in Irish there is perhaps a 
greater tendency to passively voice the second series. To a naïve historical lin-
guist, however (or indeed, to an even more naïve algorithm), this minor differ-
ence would seem a highly significant one, and would require the postulation of 
entirely spurious sound changes (“deaspiration” and “voicing” of the two Irish 
series, for example) to account for the difference. 

This last example leads to a further difficulty: the level of resolution of the 
different transcription datasets available varies widely. Sapir (1930) gives an ex-
tremely detailed account of the phonological system of Southern Paiute, very 
rich in phonetic detail. However, in our only description of the closely related 
language Chemehuevi (Press 1980) there is a comparative paucity of discussion 
of phonetic particulars. This is not to criticise her grammar (indeed one could 
make exactly the opposite statement about the quality of the syntactic descrip-
tion in her grammar and Sapir’s),8 but rather to recognise that these two sets of 
transcription data have a very different level of resolution. Obviously, there are 
great difficulties inherent in comparing datasets of differing levels of resolution: 
absence of evidence (e.g. in some phonetic particular of Chemehuevi) does not 
equate to evidence of absence. Our degree of knowledge about the phonetics 

                                                                        
8 One might suggest that one of the reasons for which Press did not go into great detail on the pho-
netics of this language was because Sapir had already provided an extremely in-depth account of a 
very closely-related idiom, and thus comparatively less was known about the syntax than the pho-
netics of this language cluster. 
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and phonology of the languages of the world varies greatly, from practically 

nothing to voluminous descriptions detailing small sociolectal, dialectal, and  

idiolectal divergences. 

One might ask then, given these difficulties we recognise, what the value of 

this enterprise is. We believe that notwithstanding these theoretical difficulties, 

some practical progress can still be made. Given that transcription systems are 

rarely standardised in a rigid manner, and allow for a certain amount of freedom 

of choice, scholars have come up with many ad-hoc solutions, which are re-

flected in specific traditions that have developed in different sub-fields of com-

parative linguistics. As we have seen in Section 2.1, in different linguistic tradi-
tions there are various particularities in the representation of sounds in a written 
medium. Scholars are usually aware of these differences in their field of exper-
tise, but when it comes to global accounts of phonetic and phonological diversi-
ty, the particularities of the different traditions may easily introduce errors into 
our analyses. A great number of the practical difficulties encountered in com-
parative studies arise not from the broader theoretical problems outlined above, 
but from exactly these idiosyncrasies of tradition or personal taste. In some cas-
es, different linguists represent sounds that are fundamentally the same in dif-
ferent ways (see, for instance, the examples from Pacific languages in Section 
2.1.4). Convenience also plays a role here: as it is inconvenient to write a super-
script ‹h› to mark aspiration of a stop, scholars often just use the normal ‹h› in-
stead, assuming that their colleagues will understand, when reading the intro-
duction to their field work notes or grammars.9 An ‹h› following a stop, howev-
er, does not necessarily point to aspiration in all linguistic traditions. In Austral-
ian linguistics, for example, it often denotes a laminal stop (Dench 2002).  

Further problems that scholars who work in a qualitative framework may 
not even realise arise from the nature of Unicode, which offers different encod-
ings for characters that look the same (Moran and Cysouw 2017: 54). While 
scholars working qualitatively will have no problems to see that ‹ə› (Unicode 
0259, Latin Small Letter Schwa) and ‹ə› (Unicode 01DD, Latin Small Letter 
Turned E) are identical, the two symbols are different for a computer, as they 
are represented internally by different code points. As a result, an automatic ag-
gregation of data will treat these symbols as different sounds when comparing 
languages automatically, or when aggregating information on the sound inven-
tories of the languages in the world.  

                                                                        
9 We recognise however, that in some cases it may be more principled to write e.g. /ph/ rather than 
/pʰ/. An example is Khmer, where there is good evidence that these aspirated stops are actually 
clusters, as the /p/ and the /h/ can be separated by an infix (Jakob 1963). 
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Judging from the above-mentioned examples, we can identify three major 

problems which make it hard for us to compare phonetic transcriptions cross-

linguistically: (a) errors introduced due to the wrong application of the Unicode 

standard; (b) general incomparability due to the use of different transcription 
systems; and (c) ambiguities introduced by scholars due to individual transcrip-
tion preferences. In order to render our transcription systems and datasets cross-
linguistically comparable, both for humans and for machines, it therefore seems 
indispensable to work on a system that normalises transcriptions across different 
transcription systems and transcription data by linking existing transcription 
systems and datasets to a unified standard. Such a system should ideally (a) ease 
the process of writing phonetic transcriptions (e.g. by providing tools that au-
tomatically check and normalise transcriptions while scholars are creating 
them), (b) ease the comparison of existing transcriptions (e.g. by providing an 
internal reference point for a given speech sound which links to different graph-
eme representations in different transcription systems and datasets), and (c) pro-
vide a standard against which scholars can test existing data. While such an ap-
proach cannot solve the theoretical issues of comparability discussed above, it 
can nonetheless be of considerable practical benefit. 

3. The Framework of Cross-Linguistic Transcription Systems 

 
In the spirit of reference catalogues for cross-linguistically linked data (Glot-
tolog and Concepticon, see Section 1), we have established a preliminary ver-
sion of a reference catalogue for phonetic transcription systems and datasets, 
called Cross-Linguistic Transcription Systems (CLTS). The goal of the CLTS 
framework is to systematically increase the comparability of linguistic transcrip-
tions by linking graphemes generated by transcription systems and graphemes 
documented in transcription datasets to unique feature bundles drawn from a 
simple but efficient feature system. With due respect to all obstacles which the 
documentation of speech through transcription may face in theory and practice, 
the CLTS system can be seen as a first step towards identifying graphemes 
across transcription systems and transcription datasets with unique speech 
sounds. In this sense, CLTS also aids the translation between transcription sys-
tems and datasets, and can further serve as a standard for transcription in prac-
tice. Figure 1 illustrates this integrative role of CLTS. 

In the following, we will briefly introduce the basic techniques by which we 
try to render linguistic transcription data comparable. Apart from the data itself  
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Figure 1. Basic idea behind the CLTS reference catalogue. 

 

 

(discussed in Section 3.1), which we assemble and annotate in our reference 

catalogue, we also introduce a couple of different techniques which help to 

check the consistency of our annotations and ease the creation of new data to 

which we can link (Section 3.2). 

 

3.1. Materials 

3.1.1 Sound classes in CLTS 

In order to link graphemes in transcription systems and transcription datasets to 

feature bundles, it is useful to distinguish rudimentary classes of sounds.
10

 We 

distinguish three basic sound classes (consonants, vowels, and tones), a specific 

class of markers (to indicate syllable or morpheme breaks or word boundaries) 

and two derived classes (consonant clusters and diphthongs). As of the moment, 

we do not allow for triphthongs and clusters of more than two consonants (alt-

hough they could be added at a later stage), in order to keep the system manage-

able. Clicks are represented as a specific type of consonant that has click or na-

sal-click as its manner. The representation of tones as a sound class of itself is 

necessitated by the fact that many phonetic descriptions of tone languages (es-

pecially in South-East-Asian languages) represent tone separately. It is further 

justified by phonological theory, given that tones in many languages may 

change independently, often correlated with factors that cannot be tied to a seg-

                                                                        

10
 We know that the distinction between basic sound types like vowels and consonants is often dis-

puted in discussions on phonology and phonetics. For the purpose of linking speech sounds across 

datasets, however, it is useful to maintain the distinction for practical reasons, as both transcription 

systems and transcription datasets often maintain these distinctions. 
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mental context. In addition, we allow tones to be represented with diacritics on 
vowels (e.g., ‹á› in IPA would be described as an unrounded open front vowel 
with high tone), but we do not encourage scholars to represent their data in this 
form, as it has many disadvantages when it comes historical language compari-
son in practice and does not account well for the largely suprasegmental nature 
of tones. 

Complex sound classes in CLTS are not explicitly defined, but instead au-
tomatically derived by identifying the basic graphemes of which they consist. 
Diphthongs are thus defined by two vowels, and the grapheme ‹oe›, for exam-
ple, is treated as a diphthong consisting of a rounded close-mid back and an un-
rounded close-mid front vowel. In a similar way, we allow complex consonant 
clusters to be defined in order to transcribe, for example, doubly articulated 
consonants or clicks containing a pulmonic release (see Table 1 for examples).11  
 

 
Table 1. Examples for the basic classes of sounds represented in CLTS. 

 

Class Grapheme Features 

consonant kʷʰ labialised aspirated velar stop 

vowel ṵ creaky rounded close back 

cluster kp from voiceless velar stop to voiceless bilabial stop 

diphthong au̯ from unrounded open front to non-syllabic rounded 
 close back 

tone ²¹⁴ contour from-mid-low via-low to-mid-high 

marker + marker for morpheme boundaries 

 
 

3.1.2. Features bundles as comparative concepts 

In order to ensure that we can compare sounds across different transcription sys-
tems and datasets, a feature system that can be used to model sounds as feature 
bundles, serving as comparative concepts in the sense of Haspelmath (2010) is 

                                                                        
11 For clusters involving clicks, we follow Traill (1993), Güldemann (2001), and Nakagawa (2006), 
who identify two segments for these sounds, a lingual influx (consonant-onset), and a pulmonic ef-
flux (consonant-offset). For example, [ǀχ] is analyzed as a cluster consisting of a dental click [ǀ] as 
C-onset, and a uvular fricative [χ] as C-offset. 
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indispensable. We therefore propose specific feature systems for each of our 

three sound classes (consonant, vowel, tone), which allow us to identify a large 

number of different sounds across transcription systems and transcription da-

tasets. The features themselves can be roughly divided into obligatory features 

(like manner, place, and phonation in consonants, and roundedness, height, and 

centrality in vowels), and optional features (usually binary, i.e., present or ab-

sent, such as duration, nasalisation, aspiration). Our current feature system 

contains 25 consonant features,
12 21 vowel features,13 and 4 tonal features14 

(Appendix A gives a table with all features and their possible values).  
Our choice of features derives from the graphemic representation of sounds 

in the system of the IPA. It is practically oriented and does not claim to repre-
sent any deeper truth about distinctive features in phonology. Instead we focus 
on being able to align the features as easily as possible with a given graphemic 
representation of a particular sound in a transcription system. As a result, some 
features may appear awkward and even naïve from a phonological perspective. 
For example, instead of distinguishing ejectives from plain consonants by man-
ner only (contrasting “ejective stops” and “plain stops”), we code ejectivity as 
an additional feature with a binary value (present or absent). In a similar way, 
we do not distinguish between different kinds of phonation (voiced, breathy-
voiced, creaky-voiced, etc.) but code separately for breathiness, creakiness, and 
phonation (voiced or voiceless). The advantage of this coding practice is that we 
can easily infer sounds that we have not yet listed in our database based on the 
combination of base graphemes and diacritics. In addition, we can also avoid 
discussions in those cases where linguists often disagree. If we explicitly treated 
the diacritic ‹ʱ› in the IPA transcription system as indicating breathiness and im-
plying voiced phonation, we would have a problem in distinguishing the admit-
tedly rare instances where scholars explicitly transcribe voiceless stops with 
breathy release using a voiceless stop in combination with the diacritic for 
breathy voice (‹pʱ›, ‹tʱ›, ‹kʱ›, etc.) in order to indicate a voiceless initial with 

                                                                        
12 The features are: articulation, aspiration, breathiness, creakiness, duration, ejection, glottalisa-
tion, labialisation, laminality, laterality, *manner, nasalisation, palatalisation, pharyngealisation, 
*phonation, *place, preceding, raising, relative articulation, release, sibilancy, stress, syllabicity, 
velarisation, and voicing (features with an asterisk are obligatory). 
13 These are: articulation, breathiness, *centrality, creakiness, duration, frication, glottalisation, 
*height, nasalisation, pharyngealisation, raising, relative articulation, rhotacisation, *roundedness, 
rounding, stress, syllabicity, tone, tongue root, velarisation, voicing  (features with an asterisk are 
obligatory). 
14 Tonal features are: contour, end, middle, and start (all obligatory). 
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(breathy) voiced aspiration (Starostin 2017). We could of course argue that these 
pronunciations are impossible physiologically and impose a system that auto-
matically normalises these graphemes by either treating them as breathy-voiced 
stops or by treating them as plain-aspirated stops. We prefer, however, to leave 
the system as inclusive as possible for the time being, following the general 
principle that it is easier to reduce a given system at a later point for a specific 
purpose (while preserving the more complex version) than to impose re-
strictions too early. Given the flexibility of our system (which is presented in 
more detail in Section 3.2), it would be straightforward to create a strict feature 
representation that normalises those segments articulatory phoneticians consider 
impossible. However, if we erroneously reduce the data now, based on assump-
tions about phonetics that may well be disputed among experts, we run the risk 
of making regrettable decisions that are difficult to reverse. For this reason, we 
describe the grapheme ‹pʱ› as a breathy voiceless bilabial stop consonant, 
knowing well that scholars might object to the existence of this sound. 
 

3.1.3. Transcription systems 

A transcription system is understood as a generative entity in CLTS, being ca-
pable of creating sounds that were not produced explicitly before (although the 
ultimate productivity of a transcription system is, of course, limited). Transcrip-
tion systems are defined by providing graphemes for the basic sound classes 
(consonants, vowels, tones), which are explicitly defined and linked to our fea-
ture system. Additionally, diacritics can be defined and may precede or follow 
the base graphemes, adding one additional feature per symbol to the base graph-
eme, depending on their position and the sound class of the base grapheme. In 
the IPA system, for example, the diacritic ‹ʰ› can only be attached to consonants, 
but it will evoke different feature values when preceding ‹ʰt› (pre-aspirated 
voiceless alveolar stop consonant) or following ‹tʰ› (aspirated voiceless alveo-
lar stop consonant) the base grapheme ‹t›. 

Transcription systems can furthermore specify aliases, both for base graph-
emes and for diacritics. The IPA, for example, allows one to indicate breathi-
ness by two diacritics, the ‹dʱ› which we mentioned above, and the ‹◌̤›, which is 
placed under the base grapheme. In the CLTS framework, both glyphs can be 
parsed, and both ‹dʱ› and ‹d̤› would be interpreted as a breathy voiced alveolar 
stop, but ‹dʱ› would be treated as the regular grapheme representation and ‹d̤› as 
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its alias.
15 Other important examples of aliases are affricates such as the voice-

less alveolar affricate, which can be rendered as either a single symbol ‹ʦ› 
(Unicode 02A6) or two symbols ‹ts› (Unicode points 0074 and 0073, the pre-
ferred version in CLTS).16 In these and many other cases, the CLTS framework 
correctly recognises the sounds denoted by the graphemes, while at the same 
time proposing a default representation of ambiguous graphemes in a given 
transcription system. 

CLTS currently offers five different transcription systems, namely a broad 
version of the IPA (called BIPA), a preliminary version of the transcription sys-
tem underlying the Global Lexicostatistical Database (GLD, http://starling. 
rinet.ru/new100/main.htm, Starostin and Krylov 2011), the transcription system 
employed by the Automatic Similarity Judgment Project (ASJPCODE, 
http://asjp.clld.org, Wichmann et al. 2016), an initial version of the North Amer-
ican Phonetic Alphabet (NAPA, Pullum and Ladusaw 1996), and an initial ver-
sion of the Uralic Phonetic Alphabet (UPA, Setälä 1901). Most of our initial ef-
forts went into the creation of the B(road)IPA system. This choice is justified, as 
most transcription datasets also follow the supposed IPA standards to a large de-
gree. In the future, however, we hope that we can further expand the data by ex-
panding both the generative power and the accuracy of the remaining transcrip-
tion systems, and by adding new transcription systems. 

 

3.1.4. Transcription data 

CLTS currently links 15 different transcription datasets, summarised in Table 2. 
The datasets were selected for different reasons. We tried to assemble as many 
of the cross-linguistic sound inventory datasets as possible (Nikolaev 2015; 
Maddieson et al. 2013; Mielke 2008; Moran et al. 2014; Ruhlen 2008), since 

apart from the comparison of Phoible with Ruhlen’s database by Dediu and 

Moisik (2016), these existing datasets have not yet been thoroughly compared. 

Linking them to CLTS should thus immediately illustrate the usefulness of our  

                                                                        

15
 The decision of what we define as an alias and what we define as the regular symbol is mostly 

based on practical considerations regarding visibility. Since the glyph ‹◌̤› will be difficult if not 

impossible to spot when placed under certain consonants, we decided to define ‹ʱ› as the base dia-

critic to indicate breathiness for consonants, but kept ‹◌̤› for vowels. 
16

 We know well that no single decision will ever satisfy all users, but given the flexibility of the 

system, users can always easily define their sub-standard while at the same time maintaining com-

parability via our feature system. 
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Table 2. Basic coverage statistics for transcription datasets  

linked by the CLTS framework. 

 

ID Name Source Graph. CLTS Cov. 

APiCS Atlas of Pidgin and Creole 

Language Structures 

Online 

Michaelis et al. 2013 177 177 100 

BDPA Benchmark database of 

phonetic alignments 

List and Prokić 2014 1466 1329 91 

BJDX Chinese Dialect  

Vocabularies 

Beijing Daxue 1964 124 124 100 

Chomsky Sound Pattern of English Chomsky and Halle 

1968 
45 45 100 

Diachronica Index Diachronica Anonymous 2014,  
D. 2017 

652 552 85 

Eurasian Database of Eurasian 
Phonological  
Inventories 

Nikolaev 2015 1562 1366 87 

LAPSyD Lyon-Albuquerque  
Phonological Systems 
Database 

Maddieson et al. 
2013 

795 712 90 

Multimedia Multimedia IPA Charts Department of  
Linguistics 2017 

138 134 97 

Nidaba Lexicon Analysis and 
Comparison 

Eden 2018 1936 1872 97 

PanPhon PanPhon Project Mortensen 2017 6334 6220 98 

PBase PBase Project Mielke 2008 1068 859 80 

Phoible Phonetics Information 
Base and Lexicon 

Moran et al. 2014 1843 1589 86 

PoWoCo Potential of Word  
Comparison 

List et al. 2017 378 370 98 

Ruhlen Global Linguistic  
Database 

Ruhlen 2008 701 437 62 

Wiki Wikipedia IPA  
Descriptions 

Wikipedia  
contributors 2017 

184 168 91 

 
 
framework (see Section 4.3 for details). Furthermore, given the large number of 
sound segments which one can find in these datasets (most of them representing 
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a supposedly strict version of IPA), they provide a useful way to test how well 

our framework recognises sounds written in IPA which were not explicitly de-

fined. Additional datasets were chosen to illustrate links to feature systems 

(Chomsky and Halle 1968), for illustrative purposes (Department of Linguistics 
2017; Wikipedia contributors 2018), or to test our system by providing either 

large collections of graphemes (Eden 2018; Mortensen 2017; List and Prokić 

2014; List et al. 2017), or for reasons of general interest and curiosity (Michae-

lis et al. 2013; Anonymous 2014). 

 

 
Table 3. Small excerpt of Unicode confusables normalised in CLTS. 

 

Source Code Target  Code Sound Name 

λ 03BB ʎ 028E palatalised alveolar lateral approximant consonant 

ǝ 01DD ə 0259 unrounded mid central vowel 

ɂ 0242 ʔ 0294 voiceless glottal stop consonant 

ε 03B5 ɛ 025B unrounded open-mid front 

 

 

3.2. Methods 

3.2.1. Parsing and generating sounds 

CLTS employs a sophisticated algorithm for the parsing and generation of 

graphemes for a given transcription system. The parsing algorithm employs a 

three-step procedure, consisting of (A) normalisation, (B) direct lookup, and (C) 

generation of graphemes. 

In (A), all sounds are generally normalised, following Unicode’s NFD nor-

malisation in which diacritics and base graphemes are maximally dissolved 

(Moran and Cysouw 2017: 16). In addition, the algorithm uses system-specific 

normalisation tables of homoglyphs, which can be easily confused. The normal-

isation applies to single glyphs only and employs a simple lookup table in which 

source and target glyph are defined. In this way, one can easily prevent users 

from using the wrong character to represent, for example, the schwa-sound [ə], 

since the data is normalised beforehand. Table 3 gives a small list of examples 

for base graphemes normalised in CLTS. 
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In (B), the algorithm searches for direct matches of the grapheme with the 

base graphemes provided along with the transcription system. If a grapheme can 

be matched directly, the algorithm checks whether it is flagged as an alias and 

provides the corrected grapheme.  

If the grapheme could not be resolved in (A), the algorithm tries to generate 

it in (C), by first using a regular expression to identify whether the unknown 

grapheme contains a known base grapheme. If this is the case, the algorithm 

searches to the left and the right of the base grapheme for known diacritics, 

looks up the features from the table of diacritic features, and then combines the 

features of the base grapheme with the new features supplied by the diacritics to 

a generated sound. The algorithm returns an unknown sound if either no base 

grapheme can be identified or if one of the diacritics cannot be interpreted cor-

rectly.
17

 

The algorithm can be used in a reverse fashion by supplying a feature bun-

dle from which the algorithm will then try to infer the underlying grapheme in a 

given transcription system. Here again, we can distinguish between sounds that 

were already defined as base graphemes of the transcription system, and sounds 

that are generated by identifying a base sound and then converting the remain-

ing features to diacritic symbols. Since the order of features serving as diacritics 

is defined directly, the algorithm explicitly normalises phonetic transcriptions in 

those cases in which features are supplied in the wrong order. For example, if a 

transcription system provides the labialised aspirated voiceless velar stop con-
sonant as ‹kʰʷ› (as, for example, APiCS), the algorithm will normalise the order 

of diacritics to ‹kʷʰ› and flag the grapheme as an alias. 

 

3.2.2. Python API and online database 

CLTS comes with a Python API which can be used from the command line or 

within Python scripts and offers a convenient way to test the framework both on 

large datasets and on an ad-hoc basis. It also comes along with a brief tutorial 

introducing the main aspects of the code as well as a “cookbook” containing a 

series of coding recipes to address specific tasks. The data is further presented 

                                                                        

17
 The generation procedure is strictly accumulative, and no features of the base grapheme can be 

changed post-hoc. This explains most peculiarities of our feature system and reflects a deliberate 

design choice. Given the large number of speech sounds that we could identify in the different 

transcription datasets, we had to make sure to keep the complexity of the algorithm on a level that 

can still be easily understood. 
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online at https://clts.clld.org in the form of a database in the well-known Cross-
Linguistically Linked Data framework (http://clld.org, Haspelmath and Forkel 

2015), which provides interested users with the common look and feel of popu-

lar CLLD datasets such as Glottolog or WALS. There is also a web application, 

available at http://calc.digling.org/clts/, that allows users to quickly check if 

their data conforms to the standards defined in our database. More information 

on the Python API can be found in Appendices B. The full source code is avail-

able online at https://zenodo.org/record/1623511. 

4. Examples 

4.1. Normalisation and parsing of sounds 

In order to illustrate how the parsing algorithm underlying CLTS works, let us 

consider the grapheme ‹ʷtˢ:ʰ› as a fictitious example which we want to parse 

with the B(road)IPA system of CLTS. In a first step, the algorithm normalises 

the grapheme, thereby replacing the normal colon ‹:› by its correct IPA equiva-

lent ‹ː›. The colon is often confused with the correct IPA counterpart, and often 

we find both the colon and the correct glyph in the same dataset (e.g., in 

APiCS). The remaining sequence ‹ʷtˢːʰ› is now tested for direct matches with the 

table of pre-defined base graphemes of BIPA. Since the algorithm does not find 

the sequence, it will apply a regular expression to check against potential base 

grapheme candidates and select the longest grapheme. In our case, this is the se-

quence ‹tˢ› which itself is flagged as an alias whose correct version is ‹ts›. In 

terms of features, this sound is defined as a voiceless alveolar sibilant affricate 
consonant. Two subsequences are remaining, the ‹ʷ› to the left, and ‹ːʰ› to the 

right. The first can be directly mapped to the feature value pre-labialised, the 

second subsequence maps to long and aspirated, respectively. The algorithm 

now assembles all features to a feature bundle and sorts them according to the 

pre-defined order of features when writing a grapheme. The resulting sound is 

now described as a pre-labialised aspirated long voiceless alveolar sibilant af-
fricate consonant and the grapheme representation in BIPA is given as ‹ʷtsʰː›. 

The sound will be labeled as both normalised and aliased, accounting for the 

correction of the homoglyph ‹:›, the alias ‹tˢ›, and the order of the original 

grapheme.  
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Table 4: Parsing examples for the CLTS algorithm. 

 

Input Norm. Alias Base BIPA Name 

a: : → ː – – aː long unrounded open front vowel 

t:s : → ː tːs → tsː – tsː long voiceless alveolar sibilant affricate consonant 

kʰʷ – – k kʷʰ labialised aspirated voiceless velar stop consonant 

tʰʸ ʸ → ʲ  t tʲʰ palatalised aspirated voiceless alveolar stop consonant 

tːˢʰ – – t ? unknown sound (‹ˢ› is not defined as a diacritic) 

 

 

Table 4 gives more illustrations of the algorithm by showing the different stages 

of normalisation, alias lookup, identification of the base grapheme, and genera-

tion of the target sound. The last sound in the table cannot be parsed with the 

current transcription system, since the diacritic ‹ˢ› in the grapheme ‹tːˢʰ› is not 

defined as a valid diacritic (as its interpretation would be ambiguous, since in 

many transcription systems it is only used in combination with alveolars and 

dentals to indicate an affricate). 

 

4.2. Looking at transcription datasets through CLTS 

Table 2 above provides some general statistics regarding the number of graph-

emes which we find in the original transcription data, the number of items we 

could link to CLTS, and the number of unique sounds which we identify. The 

general statistics reveal a rather disappointing situation: instead of providing 

largely similar collections of graphemes for the speech sounds collected in the 

different transcription datasets, we find that only a small proportion effectively 

overlaps, blowing the number of supposedly unique sounds up to as many as 

8754. While this might point to errors in our system, we are confident that it in-

stead displays the general nature of linguistic transcription data, given that the 

17403 graphemes of all transcription datasets themselves amount to 12384 
unique graphemes without CLTS. We further checked the majority of the graph-
emes manually, finding that it is not the failure of the framework to merge 
sounds for which spelling variants exist, but rather the fact that many datasets 
list large numbers of sounds one might judge to be unlikely to be produced in 
any language and which are of low frequency in their respective datasets. These 
might  well reflect idiosyncrasies of interpretation rather than real variation. 
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A further factor contributing to the large number of sounds in CLTS are 

transcription datasets like Nidaba and PanPhon which were at least in part au-

tomatically created in order to allow one to recognise and provide features for 

sounds which were not yet accounted for in the data. Since the CLTS framework 

has a strong generative component, linking these datasets to our framework is 

useful for two reasons. First, it allows us to generate a large number of potential 

sounds that might have already been used in some datasets we have not yet in-

cluded and will help scholars in linking their data to CLTS. Second, it offers a 

test for the generative strength of our system. Since CLTS so far creates many 

more potential sounds, which can be uniquely identified, this is an important 

proof of concept that our system is already capable of integrating many different 

transcription datasets in an almost completely automated manner. 

What we can also learn from linking transcription data to CLTS are obvious 

errors in the original datasets. Many datasets, for example, provide different 

graphemes for what CLTS assigns to the same sound. Examples are ‹ts› vs. ‹tˢ› 

for the voiceless alveolar sibilant affricate consonant in the Eurasian dataset, 

since ‹tˢ› only occurs one time in the data, and is assigned to Danish, where it 

reflects phonological convention rather than real pronunciation. Many datasets 

also confuse the order of diacritics, thus listing ‹kʰʷ› and ‹kʷʰ› as two separate 

sounds (Phoible, LAPSyD, Diachronica). Other datasets distinguish ‹ʈʂ› from 

‹tʂ› (Eurasian, PoWoCo, PBase), of which the latter is defined as alias in the 

B(road)IPA of CLTS and thus described as voiceless retroflex sibilant affricate 
consonant. Since CLTS normalises the order of diacritics, and provides a large 

alias system for the BIPA transcription system, these errors can be easily detect-

ed and help to improve future versions of the respective datasets.  

 

5. Outlook 

 

Given the theoretical difficulties inherent in phonetic transcription (elaborated 

in Section 2.3), readers may ask themselves whether linguistics really needs a 

reference catalogue such as the one we present here. Apart from the immediate 

benefit of increasing the comparability of large transcription datasets, which we 

have illustrated above, we see many interesting use-cases for our framework. 

Given the various methods for normalisation that CLTS offers, the framework 

can help scholars working with transcriptions to improve their data considera-

bly. This does not only apply to the large phoneme inventory datasets, which 
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can directly profit from the problems which were identified when linking them 

to CLTS, but also to the increasing numbers of digitally available lexical da-

tasets resulting from retro-digitisation of older sources or recent field work. 

With a growing interest in computer-assisted applications in historical linguis-

tics and lexical typology, especially in automated methods for the identification 

of cognate words (List et al. 2017; Jäger et al. 2017), there is also an increased 

need for high-quality transcriptions that can be easily parsed by algorithms. 

With its inbuilt feature system and the feature systems supplied as metadata 

with the transcription datasets, providing coverage for a large number of sounds, 

advanced methods for cognate detection and linguistic reconstruction can be 

easily designed and tested. Last but not least, CLTS also has an educational 

component, since it rigorously exposes variation across transcription datasets, 

bringing the need for consistency and adherence to standards to our attention. 
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Appendix 

 
Current feature system underlying the CLTS framework. 
 

Sound type Feature Value 

vowel relative_articulation centralized 

vowel relative_articulation mid-centralized 

vowel relative_articulation advanced 

vowel relative_articulation retracted 

vowel centrality back 

vowel centrality central 

vowel centrality front 

vowel centrality near-back 

vowel centrality near-front 
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Sound type Feature Value 

vowel creakiness creaky 

vowel rounding less-rounded 

vowel rounding more-rounded 

vowel stress primary-stress 

vowel stress secondary-stress 

vowel pharyngealization pharyngealized 

vowel rhotacization rhotacized 

vowel voicing devoiced 

vowel nasalization nasalized 

vowel syllabicity non-syllabic 

vowel raising lowered 

vowel raising raised 

vowel height close 

vowel height close-mid 

vowel height mid 

vowel height near-close 

vowel height near-open 

vowel height open 

vowel height open-mid 

vowel frication with-frication 

vowel roundedness rounded 

vowel roundedness unrounded 

vowel duration long 

vowel duration mid-long 

vowel duration ultra-long 

vowel duration ultra-short 
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Sound type Feature Value 

vowel velarization velarized 

vowel tongue_root advanced-tongue-root 

vowel tongue_root retracted-tongue-root 

vowel tone with_downstep 

vowel tone with_extra-high_tone 

vowel tone with_extra-low_tone 

vowel tone with_falling_tone 

vowel tone with_global_fall 

vowel tone with_global_rise 

vowel tone with_high_tone 

vowel tone with_low_tone 

vowel tone with_mid_tone 

vowel tone with_rising_tone 

vowel tone with_upstep 

vowel articulation strong 

vowel breathiness breathy 

vowel glottalization glottalized 

consonant aspiration aspirated 

consonant sibilancy sibilant 

consonant creakiness creaky 

consonant release unreleased 

consonant release with-lateral-release 

consonant release 
with-mid-central-vowel-

release 

consonant release with-nasal-release 

consonant ejection ejective 

consonant place alveolar 
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Sound type Feature Value 

consonant place alveolo-palatal 

consonant place bilabial 

consonant place dental 

consonant place epiglottal 

consonant place glottal 

consonant place labial 

consonant place linguolabial 

consonant place labio-palatal 

consonant place labio-velar 

consonant place labio-dental 

consonant place palatal 

consonant place palatal-velar 

consonant place pharyngeal 

consonant place post-alveolar 

consonant place retroflex 

consonant place uvular 

consonant place velar 

consonant pharyngealization pharyngealized 

consonant voicing devoiced 

consonant voicing revoiced 

consonant nasalization nasalized 

consonant preceding pre-aspirated 

consonant preceding pre-glottalized 

consonant preceding pre-labialized 

consonant preceding pre-nasalized 

consonant preceding pre-palatalized 
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Sound type Feature Value 

consonant labialization labialized 

consonant syllabicity syllabic 

consonant palatalization labio-palatalized 

consonant palatalization palatalized 

consonant phonation voiced 

consonant phonation voiceless 

consonant duration long 

consonant duration mid-long 

consonant stress primary-stress 

consonant stress primary-stress 

consonant stress primary-stress 

consonant stress primary-stress 

consonant stress secondary-stress 

consonant laterality lateral 

consonant velarization velarized 

consonant manner affricate 

consonant manner approximant 

consonant manner click 

consonant manner fricative 

consonant manner implosive 

consonant manner nasal 

consonant manner nasal-click 

consonant manner stop 

consonant manner tap 

consonant manner trill 

consonant laminality apical 
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Sound type Feature Value 

consonant laminality laminal 

consonant articulation strong 

consonant breathiness breathy 

consonant glottalization glottalized 

consonant raising lowered 

consonant raising raised 

consonant relative_articulation centralized 

consonant relative_articulation mid-centralized 

consonant relative_articulation advanced 

consonant relative_articulation retracted 

tone middle via-high 

tone middle via-low 

tone middle via-mid 

tone middle via-mid-high 

tone middle via-mid-low 

tone start from-high 

tone start from-low 

tone start from-mid 

tone start from-mid-high 

tone start from-mid-low 

tone start neutral 

tone contour contour 

tone contour falling 

tone contour flat 

tone contour rising 

tone contour short 
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Sound type Feature Value 

tone end to-high 

tone end to-low 

tone end to-mid 

tone end to-mid-high 

tone end to-mid-low 
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3.2 Annotation in Historical Linguistics
In addition to data standardization, data annotation is of crucial importance for the framework of computer-
assisted language comparison. The major idea is that annotation is carried out with help of software
tools that make it easier for linguists to manually process the data by correcting errors introduced by
automated approaches, or by annotating data from scratch. Apart from making the manual annotation
work of linguists a lot easier, annotation tools play another important role in computer-assisted language
comparison, in so far as they make it possible to check the input from linguists upon submission, which
allows to avoid various kinds of errors, resulting from wrong spellings or other inconsistencies.
The following two studies present a new framework for the annotation of etymological data in his-

torical linguistics. It is based on web-based applications that make it possible to use the tools across all
major platforms and employs general ideas for the annotation of historical linguistic data that have been
developed in previous studies (List 2016). The first study, titled “A Web-Based Interactive Tool for Cre-
ating, Inspecting, Editing, and Publishing Etymological Datasets” (List 2017), presents the EDICTOR
tool (https://digling.org/edictor), a web-based tool for the annotation of etymological
datasets. The second study, titled “Challenges of annotation and analysis in computer-assisted language
comparison: A case study on Burmish languages” (Hill and List 2017), concentrates on some major
issues related to the annotation of partial cognates, as they often result from compounding processes in
South-East Asian languages. In addition to explaining how these relations can be annotated with help
of the web-based EDICTOR application, it also introduces some novel ways of analysing the data, once
annotation has been sufficiently carried out.
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Abstract

The paper presents the Etymological DIC-
tionary ediTOR (EDICTOR), a free, in-
teractive, web-based tool designed to aid
historical linguists in creating, editing,
analysing, and publishing etymological
datasets. The EDICTOR offers interac-
tive solutions for important tasks in histor-
ical linguistics, including facilitated input
and segmentation of phonetic transcrip-
tions, quantitative and qualitative analyses
of phonetic and morphological data, en-
hanced interfaces for cognate class assign-
ment and multiple word alignment, and
automated evaluation of regular sound cor-
respondences. As a web-based tool writ-
ten in JavaScript, the EDICTOR can be
used in standard web browsers across all
major platforms.

1 Introduction

The amount of large digitally available datasets for
various language families is constantly increasing.
In order to analyse these data, linguists turn more
and more to automatic approaches. Phylogenetic
methods from biology are now regularly used
to create evolutionary trees of language families
(Gray and Atkinson, 2003). Methods for the com-
parison of biological sequences have been adapted
and allow to automatically search for cognate
words in multilingual word lists (List, 2014) and
to automatically align them (List, 2014). Complex
workflows are used to search for deep genealogi-
cal signals between established language families
(Jäger, 2015).

In contrast to the large arsenal of software for
automatic analyses, the number of tools help-
ing to manually prepare, edit, and correct lexical
datasets in historical linguistics is extremely rare.

This is surprising, since automatic approaches still
lag behind expert analyses (List et al., 2017).
Tools for data preparation and evaluation would
allow experts to directly interact with computa-
tional approaches by manually checking and cor-
recting their automatically produced results. Fur-
thermore, since the majority of phylogenetic ap-
proaches makes use of manually submitted expert
judgments (Gray and Atkinson, 2003), it seems in-
dispensable to have tools which ease these tasks.

2 The EDICTOR Tool

The Etymological DICtionary ediTOR (EDIC-
TOR) is a free, interactive, web-based tool that
was specifically designed to serve as an inter-
face between quantitative and qualitative tasks in
historical linguistics. Inspired by powerful fea-
tures of STARLING (Starostin, 2000) and RefLex
(Segerer and Flavier, 2015), expanded by inno-
vative new features, and based on a very simple
data model that allows for a direct integration with
quantitative software packages like LingPy (List
and Forkel, 2016), the EDICTOR is a lightweight
but powerful toolkit for computer-assisted appli-
cations in historical linguistics.

2.1 File Formats and Data Structure

The EDICTOR was designed as a lightweight file-
based tool that takes a text file as input, allowing
to modify and save it. The input format is a plain
tab-separated value (TSV) file, with a header indi-
cating the value of the columns. This format is es-
sentially identical with the format used in LingPy.
Although the EDICTOR accepts all regular TSV
files as input, its primary target are multi-lingual
word lists, that is, datasets in which a given num-
ber of concepts has been translated into a certain
range of target languages.
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Word
List

Cognate
Sets

Align-
ments Phono-

logy

Morpho-
logy

/əu/ -th-a- {one} ID: 1

ID: 1

Partial
Cognates

ID: 1

th o x t ə rd  o: - t a -

{one}

Corres-
pondences

Transcription

Phonetic Segmentation

Morphological Segmentation

Cognate Assignment

Phonetic Alignment

/əu/
-th-a-
{one}
ID: 1
th o x t ə rd  o: - t a -

DATA EDITING

PANEL INTERACTION

Activation
Editing

Filtering

   D T
   E

EDICTOR

Frequency Analysis

Structural Analysis

DATA ANALYSIS

Figure 1: Basic panel structure of the EDICTOR.

ID DOCULECT CONCEPT ...
1 German Woldemort valdəmar ...
2 English Woldemort wɔldəmɔrt ...
3 Chinese Woldemort fu⁵¹ti⁵¹mɔ³⁵ ...
4 Russian Woldemort vladimir ...
... ... ... ... ...
10 German Harry haralt ...
11 English Harry hæri ...
12 Russian Harry gali ...
... ... ... ... ...

TRANSCRIPTION

Figure 2: Basic file format in the EDICTOR

2.2 User Interface

The EDICTOR is divided into different panels
which allow to edit or analyse the data in diffe-
rent ways. The core module is the Word List panel
which displays the data in its original form and
can be edited and analysed as one knows it from
spreadsheet applications. For more complex tasks
of data editing and analysis, such as cognate as-
signment or phonological analysis, additional pan-
els are provided. Specific modes of interaction be-
tween the different panels allow for a flexible in-
teraction between different tasks. Using drag-and-
drop, users can arrange the panels individually or
hide them completely. Figure 1 illustrates how the
major panels of the EDICTOR interact with each
other.

2.3 Technical Aspects

The EDICTOR application is written in plain
JavaScript and was tested in Google Chrome, Fire-
fox, and Safari across different operating systems
(Windows, MacOS, Linux). For the purpose of
offline usage, users can download the source code.

For direct online usage, the tool can be accessed
via its project website.

3 Data Editing in the EDICTOR

3.1 Editing Word List Data

Editing data in the Word List panel of the EDIC-
TOR is straightforward by inserting values in text-
fields which appear when clicking on a given field
or when browsing the data using the arrow keys of
the keyboard. Additional keyboard shortcuts allow
for quick browsing. For specific data types, auto-
matic operations are available which facilitate the
input or test what the user inserts. Transcription,
for example supports SAMPA-input. The segmen-
tation of phonetic entries into meaningful sound
units is also carried out automatically. Sound seg-
ments are highlighted with specific background
colors based on their underlying sound class and
sounds which are not recognized as valid IPA sym-
bols are highlighted in warning colors (see the il-
lustration in Figure 3). The users can decide them-
selves in which fields they wish to receive auto-
matic support, and even Chinese input using an
automatic Pīnyīn converter is provided.

ID DOCULECT CONCEPT SEGMENTS

22 Chinese Woldemort f u ⁵¹ d i ⁵¹ m ɔ ³⁵

4 English Woldemort wOld@mO:Rt

3 German Woldemort v a l t ə r

21 Russian Woldemort В л а д и м и р

wOld@mO:Rt

       Conversion and Segmentation

Highlighting of Unrecognized 
Phonetic Symbols

wOld@mO:Rt

wɔldəmɔːʁt

w ɔ l d ə m ɔː ʁ t

Figure 3: Editing word lists in the EDICTOR
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3.2 Cognate Assessment

Defining which words in multilingual word lists
are cognate is still a notoriously difficult task for
machines (List, 2014). Given that the majority
of datasets are based on manually edited cognate
judgments, it is important to have tools which fa-
cilitate this task while at the same time control-
ling for typical errors. The EDICTOR offers two
ways to edit cognate information, the first assum-
ing complete cognacy of the words in their en-
tirety, and the second allowing to assign only spe-
cific parts of words to the same cognate set. In
order to carry out partial cognate assignment, the
data needs to be morphologically segmented in a
first stage, for example with help of the Morpho-
logy panel of the EDICTOR (see Section 4.2). For
both tasks, simple and intuitive interfaces are of-
fered which allow to browse through the data and
to assign words to the same cognate set.

German
English
Russian
Chinese

IGNORE

Figure 4: Aligning words in the EDICTOR

3.3 Phonetic Alignment

Since historical-comparative linguistics is essen-
tially based on sequence comparison (List, 2014),
alignment analyses, in which words are arranged
in a matrix in such a way that corresponding
sounds are placed in the same column, are un-
derlying all cognate sets. Unfortunately they are
rarely made explicit in classical etymological dic-
tionaries. In order to increase explicitness, the
EDICTOR offers an alignment panel. The align-
ment panel is essentially realized as a pop-up win-
dow showing the sounds of all sequences which
belong to the same cognate set. Users can edit the
alignments by moving sound segments with the
mouse. Columns of the alignment which contain
unalignable parts (like suffixes or prefixes) can be
explicitly marked as such. In addition to manual
alignments, the EDICTOR offers a simple align-
ment algorithm which can be used to pre-analyse
the alignments. Figure 4 shows an example for
the alignment of four fictive cognates in the EDIC-
TOR.

4 Data Analysis in the EDICTOR

4.1 Analysing Phonetic Data
Errors are inevitable in large datasets, and this
holds also and especially for phonetic transcrip-
tions. Many errors, however, can be easily spot-
ted by applying simple sanity checks to the data.
A straightforward way to check the consistency
of the phonetic transcriptions in a given dataset is
provided in the Phonology panel of the EDICTOR.
Here all sound segments which occur in the seg-
mented transcriptions of one language are counted
and automatically compared with an internal set
of IPA segments. Counting the frequency of seg-
ments is very helpful to spot simple typing er-
rors, since segments which occur only one time
in the whole data are very likely to be errors. The
internal segment inventory adds a structural per-
spective: If segments are found in the internal in-
ventory, additional phonetic information (manner,
place, etc.) is shown, if segments are missing, this
is highlighted. The results can be viewed in tabu-
lar form and in form of a classical IPA chart.

4.2 Analysing Morphological Data
The majority of words in all languages consist
of more than one morpheme. If historically re-
lated words differ regarding their morpheme struc-
ture, this poses great problems for automatic ap-
proaches to sequence comparison, since the al-
gorithms usually compare words in their entirety.
German Großvater ‘grandfather’, for example,
is composed of two different morphemes, groß
‘large’ and Vater ‘father’. In order to analyse
multi-morphemic words historically, it is impor-
tant to carry out a morphological annotation anal-
ysis. In order to ease this task, the Morphology
panel of the EDICTOR offers a variety of straight-
forward operations by which morpheme structure
can be annotated and analysed at the same time.
The core idea behind all operations is a search
for similar words or morphemes in the same lan-
guage. These colexifications are then listed and
displayed in form of a bipartite word family net-
work in which words are linked to morphemes, as
illustrated in Figure 5. The morphology analysis
in the EDICTOR is no miracle cure for morpheme
detection, and morpheme boundaries need still to
be annotated by the user. However, the dynam-
ically produced word family networks as well as
the explicit listing of words sharing the same sub-
sequence of sounds greatly facilitates this task.
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faːtər «the father»

ʃtiːf+faːtər «the stepfather»

ʃviːɡər+faːtər «the father-in-law»

ɡroːs+faːtər «the grandfather»

ɡroːs+mʊtər «the grandmother»

MOTHER

LARGE

FATHER

FATHER-OF-SPOUSE

NON-BIOLOGICAL

Figure 5: Word family network in the EDICTOR:
The morphemes (in red) link the words around
German Großvater ‘grandfather’ (in blue).

4.3 Analysing Sound Correspondences

Once cognate sets are identified and aligned,
searching for regular sound correspondences in the
data is a straightforward task. The Correspon-
dences panel of the EDICTOR allows to analyse
sound correspondence patterns across pairs of lan-
guages. In addition to a simple frequency count,
however, conditioning context can be included in
the analysis. Context is modeled as a separate
string that provides abstract context symbols for
each sound segment of a given word. This means
essentially that context is handled as an additional
tier of a sequence. This multi-tiered represen-
tation is very flexible and also allows to model
suprasegmental context, like tone or stress. If
users do not provide their own tiers, the EDIC-
TOR employs a default context model which dis-
tinguishes consonants in syllable onsets from con-
sonants in syllable offsets.

5 Customising the EDICTOR

The EDICTOR can be configured in multiple
ways, be it while editing a dataset or before load-
ing the data. The latter is handled via URL pa-
rameters passed to the URL that loads the applica-
tion. In order to facilitate the customization proce-
dure, a specific panel for customisation allows the
users to define their default settings and creates a
URL which users can bookmark to have quick ac-
cess to their preferred settings.

The EDICTOR can be loaded in read-only
mode by specifying a “publish” parameter.
Additionally, server-side files can be directly
loaded when loading the application. This
makes it very simple and straightforward to
use the EDICTOR to publish raw etymological

datasets in a visually appealing format as can
be seen from this exemplary URL: http:
//edictor.digling.org?file=Tujia.
tsv&publish=true&preview=500.

6 Conclusion and Outlook

This paper presented a web-based tool for creat-
ing, inspecting, editing, and publishing etymologi-
cal datasets. Although many aspects of the tool are
still experimental, and many problems still need to
be solved, I am confident that – even in its current
form – the tool will be helpful for those working
with etymological datasets. In the future, I will de-
velop the tool further, both by adding more useful
features and by increasing its consistency.
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Abstract 
The use of computational methods in comparative linguistics is growing in populari-

ty. The increasing deployment of such methods draws into focus those areas in which 

they remain inadequate as well as those areas where classical approaches to language 

comparison are untransparent and inconsistent. In this paper we illustrate specific 

challenges which both computational and classical approaches encounter when 

studying South-East Asian languages. With the help of data from the Burmish lan-

guage family we point to the challenges resulting from missing annotation standards 

and insufficient methods for analysis and we illustrate how to tackle these problems 

within a computer-assisted framework in which computational approaches are used 

to pre-analyse the data while linguists attend to the detailed analyses. 

 

Keywords: historical linguistics, linguistic reconstruction, Burmish languages, anno-

tation, analysis, computer-assisted language comparison 

 

1. Introduction 

 

The quantitative turn in historical linguistics created a gap between “new and 

innovative” quantitative methods and classical approaches. Classical lin-

guists are often skeptical of the new approaches, partly because the results do 

not seem to coincide with those of classical methods (Holm 2007), partly be-

cause they only confirm well established findings (Campbell 2013: 485f). 

Computational linguists, on the other hand, complain about inconsistencies 

in the application of the classical methods (McMahon and McMahon 2005: 

26–29). 
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Both classical and computational approaches have strong and weak 

points. Steeped in philological learning, classical linguists enjoy extensive 

knowledge of, and refined intuitions about both common and language-

specific processes of language change. Basing their analyses on multiple 

types of evidence, classical linguists can work out probable solutions even in 

situations where data are sparse. Their disadvantage is that they have diffi-

culties coping with large amounts of data. The advantage of computational 

methods is their efficiency and consistency, and thus their ability to handle 

large amounts of data. The weakness of computational linguists is their ten-

dency to ignore language-specific idiosyncrasies, being accustomed to deal 

only with homogeneous evidence. For this reason, computational approaches 

function poorly with sparse data. Since most of the data in historical linguis-

tics are sparse and heterogenous (Sturtevant 1920: 11; Makaev 1977: 88), it 

is no wonder that the triumphs of computational analyses still lag behind 

those of classical approaches. 

In the following, we concentrate on two specific challenges which both 

computational and classical historical linguists encounter when working with 

South-East Asian and specifically Sino-Tibetan (Trans-Himalayan) lan-

guages.
1
 In particular, we focus on the Burmish languages, a small Sino-

Tibetan sub-branch, but the analogous challenges are encountered in South-

East Asian languages of other language families. We concentrate on process-

es of lexical change, pointing to specific challenges of annotation (Section 2) 

and analysis (Section 3). We then turn to addressing these problems in the 

Burmish Etymological Database (BED, https://dighl.github.io/burmish), 

where we use improved annotation and analysis techniques in order to create 

an etymological dictionary of the Burmish languages which is amenable to 

both qualitative and quantitative analyses. 

2. Challenges of annotation 

 

In historical linguistics we look back at a tradition of over 200 years of re-

search on language families from around the world. Given this long tradition, 

                                                                        

1
 By the term “Sino-Tibetan” we mean that language family of which Chinese, Tibetan, and 

Burmese are members. We use this term agnostically with regard to the shape of the Stamm-

baum of this family. Specifically, we see no reason to posit a branch of this family that contains 

Tibetan and Burmese but not Chinese. 
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it is surprising that our field still lacks common annotation guidelines: a gen-

eral set of best practices stating how particular findings should be presented. 

By this, we do not mean the use of certain characters, like the asterisk to in-

dicate that a word is reconstructed and not attested in written or spoken 

sources (see Koerner 1976 on the history of this practice), but rather a stand-

ardized way of how the fundamental findings, such as regular sound corre-

spondences, convincing cognate sets, or shared innovations, are not only pre-

sented to the readers in publications, but also handled as data points amena-

ble to statistical analyses. Historical linguistics has always been a data-driven 

discipline, even in pre-computer times, scholars would develop their individ-

ual practice of arranging their data with the help of index cards (see, for ex-

ample, the detailed description in Gabelentz 1891, as well as his question-

naire for foreign language documentation from 1892, which is discussed in 

detail in Kürschner 2014) or punch cards (Swadesh 1963). Unfortunately, 

scholars rarely shared or discussed their practice but instead expected neo-

phytes to learn by doing (Schwink 1994: 29). 

The lack of annotation guidelines has immediate consequences both for 

classical and computational approaches. Computational approaches suffer 

from ambiguously annotated data which may confuse the algorithms, bound 

as they are by strict assumptions about the major processes of lexical change. 

Classical approaches suffer from a lack of transparency in data annotation 

when it comes to assessing the work of colleagues, especially vis-à-vis pro-

posed regular sound correspondences and cognate sets. Since arguments on 

cognates and sound correspondences are often presented in an idiosyncratic 

way that varies not only from subfield to subfield but also among scholars 

working on the same language family, it is extremely difficult to base discus-

sions on data and conclusions alone. This may be one of the reasons why de-

bates often become personal in historical linguistics: since it is often not en-

tirely clear where two scholars exactly differ, debates drift into polemics with 

scholars accusing each other of deliberately disregarding major facts. 

In the following we quickly point to two major problems of annotation 

when analysing South-East Asian languages: cognates and sound corre-

spondences. While the former constitutes primarily a problem for computa-

tional approaches to phylogenetic reconstruction, the latter is a major draw-

back for the discussion and evaluation of proposals in classical historical lin-

guistics. 

 

Brought to you by | Max Planck Institute for the Science of Human History
Authenticated

Download Date | 9/14/17 10:45 AM

3.2 Annotation in Historical Linguistics

157



N.W. Hill and J.-M. List 50 

2.1. Partial cognate annotation 

Cognacy is not a binary relation and cannot be reduced to a simple yes-no 

question. Instead, judging whether two words are cognate is both a question 

of perspective and degree. For example, one can distinguish “root” cognates 

from “stem” cognates. An example of root cognates is French donner ‘to 

give’ compared to Italian dare ‘to give’. Both words descend from Proto-

Indo-European *deh₃- ‘to give’, the French indirectly, via a verbalized no-

stem (PIE *deh₃-no- ‘that which is given’ > Latin dōnāre ‘to give as pre-

sent’), the Italian directly (PIE *deh₃ > Latin dare ‘to give’, Meiser 1998). 

An example of stem cognates is the comparison of Italian dare and Spanish 

dar ‘to give’, which both descend directly from Latin dare. The relativity of 

perspective and degree inherent in the notion of cognancy is comparable to 

the relation of homology in evolutionary biology, which denotes a relation of 

commen descent (Koonin 2005: 311). While we can say, for example, that 

wings in birds and wings in bats are deeply homologous, in so far as both 

represent the upper limbs of tetrapods, we can also say that they are homo-

plastic (i.e., independent innovations), in so far as their specific function, al-

lowing tetrapods to fly, has evolved independently (Butler 2000, Morrison 

2015).  

Even more problematic than the vagaries of root etymology versus stem 

etymology are cases of partial cognacy (List 2015: 42; List 2016). Partial 

cognacy reflects a situation where words share cognate material only in part, 

such as French aujourd’hui, which can be seen as partially cognate with Lat-

in hodiē, itself a compound of Latin hic ‘this’ and dies ‘day’ (Vaan 2008: 

287), of which the latter is again cognate with Ancient Greek Ζεύς [dzeus] 

(Meier-Bruegger 2002: L303). While partial cognacy generally holds for all 

root cognates reflected in words with different stems, including the case of 

French donner and Italian dare, mentioned above, partial cognacy is most 

frequently met in languages in which compounding is a frequent and produc-

tive process of word formation, such as South-East Asian languages. 

As an example from the Burmish languages, consider the translational 

equivalents for ‘yesterday’ in Bola, Lashi, Rangoon Burmese, and Xiandao, 

given in Figure 1. As we have indicated with the aid of font colors, four lan-

guages have at least one morpheme in common (Bola [nɛʔ³¹], Lashi [nap³¹], 

Rangoon [ne⁵³] and Xiandao [n̩³¹] all meaning ‘day’ in isolation), but only 

Bola and Lashi share the same compound structure. If we were forced to 

make a binary cognate decision out of this example, as we must when prepar-  
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Figure 1. Annotation of cognate relations for words for ‘yesterday’ in five Burmish 

languages. Four languages share one morpheme, originally meaning ‘day’, marked in 

green in the table. But while Bola and Lashi show an identical compound structure, 

Rangoon and Xiandao show different structures, and the mono-morphemic word in 

Achang could have easily resulted from the loss of the first element of the cognate 

word in Xiandao. Coding these relationships in a strict fashion (column Strict) will 

ignore the similarity among all word forms in the morphemes they share, while cod-

ing in a loose fashion leads to an exaggeration of the similarities, rendering all words 

cognate. The same problems are further illustrated in the network on the right, where 

each edge represents one shared cognate morpheme across the five languages, based 

on the data in the table on the left. While all words form a connected component in 

this network, not all connections are equally strong. 

Language Form Strict Loose Exact

Bola a³¹ ŋji³⁵ nɛʔ³¹ 1 1 1 2 3

Lashi a³¹ ŋjei⁵⁵ nap³¹ 1 1 1 2 3

Rangoon mɑ⁵³ ne⁵³ kɑ⁵³ 2 1 0 3 0

Xiandao n̩³¹ 3 1 3 4

Achang man³⁵ 4 1 4

m̥an³⁵
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ing cognate-coded datasets for the purpose of phylogenetic reconstruction 

analyses (Atkinson and Gray 2006), we would have a hard time deciding 

where to draw the boundaries in our cognate judgments. Are only Bola [a³¹ 

ŋji³⁵ nɛʔ³¹] and Lashi [a³¹ ŋjei⁵⁵ nap³¹] truely cognate, or should we say that 

all words are cognate, given that they form a connected component in a net-

work, as illustrated in Figure 1? These decisions are reflected in what List 

(2016) calls strict and loose partial cognate coding. In strict cognate coding, 

only words which share the same compound structure and are cognate in all 

their parts are assigned to the same cognate set. In loose coding, one shared 

element is sufficient to assign two words to the same cognate set. For lexico-

statistical datasets and phylogenetic reconstruction loose cognate coding nec-

essarily masks important processes of lexical replacement: the fact that four 

of the five Burmish languages have a cognate morpheme in the word for 

‘yesterday’ does not provide any important information for subgrouping. On 

the other hand, the case of Achang [man³⁵] and Xiandao [n̩³¹ m̥an³⁵] can be 

easily explained by assuming a recent loss of the first element in Achang, 

which is further confirmed by the overall closeness of the two languages. 

These examples illustrate that we should not blindly follow a strict cognate 

coding, as we may easily loose information relevant for subgrouping. 

It seems that the best way to treat partial cognacy would be to follow an 

exact cognate coding of partial cognates, by annotating the cognacy of each 

morpheme in each word rather than for each word form. Unfortunately, 

available tools are not up to the task. Computational methods for automatic 

cognate detection, which could be used to pre-parse the data for the linguists, 

usually assume that words are morphologically simple (Steiner et al. 2011; 

List et al. 2017) and automatic partial cognate detection is still in its infancy 

(List et al. 2016).  

Manual handling of partial cognacy is extremely tedious, since we lack 

consistent standards and tools for partial cognate annotation. As a result, 

studies which make use of manually annotated cognate sets usually ignore 

the problem of partial cognacy, as can be seen when inspecting the current 

practice of cognate coding in large lexicostatistic databases such as the Aus-

tronesian Basic Vocabulary Database (ABVD, Greenhill et al. 2008) or the 

Indo-European Lexical Cognacy Database (IELex, Dunn et al. 2012). In 

classical studies, scholars usually content themselves with the extraction of 

morphemes to establish sound correspondences or etymologies (Mann 1998), 
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and often even omit the information that the data from which their examples 

were drawn originally were morphologically complex words (Nishi 1999).  

 

2.2. Sound correspondence annotation 

Processes of sound change can be incredibly complex, especially when they 

involve suprasegmental developments, such as tone change or tono-genesis, 

which is often triggered by segmental features like the phonation of syllable-

initial consonants, or the presence or absence of syllable-final plosives. For 

scholars who are unfamiliar with a particular language family, it is often im-

possible to say which sounds correspond when looking at a particular set of 

cognate words.  

But even when ignoring complex sound correspondences, it may be ex-

tremely difficult for non-experts to see where two or more cognate sets dis-

play correspondences. As an example, consider two words for the compari-

son concept ‘grease/fat’, taking from the ABVD (Greenhill et al. 2008), 

namely Central Amis simar vs. Thao lhimash. The two words are labelled as 

cognates in the databases, but for non-experts, it is difficult to see which 

sounds correspond in the word forms. While it is straightforward to assume 

non-trivial sound correspondences between Central Amis s- and Thao lh-, as 

well as -r and -sh, it is still impossible for non-experts to assess whether this 

comparison makes sense or not, as we do not know how regular these corre-

spondences are. Whether the sounds actually correspond or not, is not im-

portant for the sake of our example. What is important is the fact that we 

cannot transparently see what the people who annotated the words as being 

cognate were basing their opinion on. 

3. Challenges of analysis 

 

In the preceding section, we mentioned challenges of annotation, pointing to 

cases in South-East Asian languages where both computational and classical 

approaches have a hard time in achieving transparency. In the following, we 

show that similar problems arise in analysing the processes which pose a 

challenge for annotation. Having discussed the challenge of partial cognate 

annotation and sound correspondence annotation above, we here turn to the 
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problem of the reconstruction of compounds (Section 3.1) and the identifica-

tion of irregular cognates (Section 3.2). 

 

3.1. Reconstruction of compounds 

Compounding is a frequent and vivid process in many languages and lan-

guage families, not only in South-East Asia, but the world over. Given the 

prevalence of compounding in some Sino-Tibetan branches like Burmish or 

Sinitic, it is implausible to assume that the ancestors of the relevant lan-

guages had only monomorphemic words. Suprisingly, however, scholars 

have rarely tried to reconstruct concrete compounds in ancestral languages. 

Reconstruction systems of Proto-Burmish, for example, only give collections 

of morphemes with tentative semantic reconstructions (Burling 1967; Nishi 

1999), and even where scholars provide reconstructions for tentative com-

pounds in the proto-language (Mann 1998), they fail to provide a transparent 

account of how they arrived at these conclusions, that is, how they analysed 

the data. 

That reconstructions and etymological dictionaries neglect the lexeme 

level is a general South-East Asian problem, found in etymological analyses 

of Hmong-Mien (Ratliff 2010), for Austro-Asiatic (Jenny and Sidwell 2015), 

and Tai-Kadai (Norquest 2007). Furthermore, the problem of treating com-

pound structures consistently in etymological analysis is not unique to South-

East Asian linguistics. In 1954, Malkiel criticized the lack of typological in-

vestigations on derivation and composition in historical linguistics. What he 

said by then, namely, that “[one] finds fleeting allusions and casual hints at 

certain varieties of derivational and compositional hierarchy, but surely no 

attempt at organized typology” (Malkiel 1954: 266) still holds today. 

It is obvious that reconstruction at the lexeme level is more challenging 

than reconstruction at the morpheme level. True lexical reconstruction may at 

times even be impossible due to the incompleteness of available data and the 

complexity of compounding processes. However, scholars often do not even 

attempt to address these questions and there is little awareness of the inade-

quacies of the current “morphemes-first” approaches in South East Asian his-

torical linguistics. If we want to advance our knowledge of language change, 

we cannot stop with sound change but need to try to find regularities and 

tendencies throughout all levels of language, including processes of word 

formation. 
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3.2. Identifying irregular cognate sets 

If language contact can be excluded, sound change is a predominantly regu-

lar process that affects the whole lexicon of a language (Blevins 2004: 260–

268; Kiparsky 1988; Labov 1981). Morphological processes, like suffixation, 

compounding, or analogy, however, are predominantly sporadic. Such mor-

phological processes can mask the regularity of sound change and obstruct 

the identification of regular sound correspondences.  

While the regularity of correspondence is still the major criterion to iden-

tify cognate words in different languages, it is by no means the only criterion 

employed by scholars applying the comparative method. As an example, 

consider German fünf ‘five’ vs. French cinq ‘five’. While both words go back 

to the same Proto-Indo-European root *pénk
w
e ‘five’ (see Meier-Brügger 

2002: 265), their phonetic development is highly irregular. While *pénk
w
e 

became quinque [k
w
ink

w
e] in Latin as a result of an assimilation process re-

placing the original *p with *k
w
 (Meiser 1998), a similar process happened in 

Proto-Germanic, where the word is reconstructed as *fimfe (<*pimpe), re-

flecting a sporadic change that replaced the *k
w
 with *p, which then became 

*f in Proto-Germanic (Kroonen 2013: 140). Without forms like Classical 

Greek πέντε [pénte] ‘five’ (with t <*k
w
) and Sanskrit páñca ‘id.’ (c < *k

w
), it 

is unlikely that we could identify the French and the German forms as true 

cognates going back to the same Indo-European root. It is the cumulative ev-

idence drawn from regular sound correspondences among Greek, Sanskrit, 

Latin, and Proto-Germanic that allows us to first identify the Germanic and 

the Latin forms as irregular and then resolve this irregularity relying on our 

general knowledge of language-specific and general processes of sound 

change.  

To operationalize such language specific developments when working on 

concrete language data is difficult. Regularities, at least in shallow language 

families, can usually be reliably detected when following the general proto-

col of the comparative method. Even automatic methods for cognate detec-

tion are getting more and more reliable and yield convincing results for shal-

low language families like Germanic or Romance (List et al. 2017). With 

their help, linguists could preparse the data, and quickly identify the major 

sound correspondences after manual correction. Finding the irregularities, 

however, is a much more difficult task, since it not only requires the 

knowledge of the regularities, but also a general strategy of how to identify 

cognate material which behaves irregularly in terms of the sound corre-
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spondences. Up to today, no heuristics has been proposed for this task, nei-

ther in classical nor in computational historical linguistics. 

4. Improving annotation and analysis in the Burmish  

etymological database 

 

Our concerns with annotation and analysis in historical linguistics result from 

our own efforts in creating an etymological database of the Burmish lan-

guage family. In this Burmish Etymological Database project (BED, 

http://dighl.github.io/burmish/), we aim to establish a new type of etymologi-

cal database which provides data in both human- and machine-readable form, 

serving both for manual inspection and computational analysis. In the fol-

lowing, we briefly show how we address the aforementioned problems. Since 

the major part of our endeavour is still a work-in-progress, we are unable to 

present full-fledged solutions for all the problems mentioned, but we hope 

that our initial ideas serve future discussions in the field and may inspire new 

approaches. 

 

4.1. Materials 

4.1.1. The Burmish language family 

The Burmish languages comprise a small and neatly identifiable group of 

languages spoken in Southwest China and Northeast Burma. The major lan-

guages of the Burmish Family include Burmese, Achang, Xiandao, Maru, 

Atsi (Zaiwa), Bola, and Lashi, as indicated in the map in the top panel of 

Figure 2. As can be seen, four of the varieties were recorded in the same city 

(Máng City 芒市 in China, formerly called Lùxī 路西). When comparing the 

languages their close proximity must be borne in mind, as we should expect 

intensive language contact among them. Characteristics of the languages in 

this family include a generally isolating morphological structure, the use of 

lexical tone, and tense or creaky phonation.  

Nishi (1999: 68) distinguishes two subbranches, Maruic and Burmic, the 

latter comprising Burmese, Achang, and Xiandao. His classification rests on 

the observation that the Burmic languages lost tense phonation, replacing it 

with aspiration of the initial. However, this development does not allow the 
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Figure 2. The top panel shows the geographic location of the Burmish varieties in 

our database (Rangoon is the prestige dialect of modern Burmese), with the location 

of Old Burmese at Pagan, the capital of the first Burmese dynasty. The bottom panel 

shows a tentative phylogeny based on sound changes identified as shared innova-

tions, using multi-furcations to indicate uncertainty. 
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identification of Maruic as a sub-branch, since by keeping tense phonation 

the languages in question share a retention rather than an innovation. Thus, 

we propose the preliminary genetic classification seen in the bottom panel of 

Figure 2, with uncertainties indicated using polytomic (multifurcating) splits. 

Note that this classification deviates from the one provided in Glottolog 

(Hammarström et al. 2017), which follows the classification of Mann (1998), 

one that is not sufficiently substantiated with linguistic evidence.  

 

4.1.2. The Burmish Etymological Database 

The Burmish Etymological Database (BED) currently provides data for a 

basic word list of 240 items translated into the 8 varieties (including Ran-

goon as the modern prestige dialect of Burmese) given in Figure 2. The data 

were taken from Huáng et al. (1992) in the digital version provided by the 

Sino-Tibetan Etymological Dictionary and Thesaurus (STEDT) project 

(Matisoff 2015), to which we added Old Burmese on the basis of Okell 

(1971), Luce (1985) and Nishi (1999). The etymologies we arrived at inde-

pendently of the STEDT project, and the degree of annotation was, as will be 

further illustrated below, considerably refined. 

 

4.1.3. Availability of data, tools, and code 

All data which we used for the following illustrations along with the source 

code of the software we applied are available in the supplementary material 

accompanying this paper. In addition to our analyses, we provide explicit 

links for the languages in the data to Glottolog (Version 3.0, Hammarström et 

al. 2017), and the concepts in the data to the CLLD Concepticon (Version 

1.0, List et al. 2016). All words are further linked to the STEDT database, 

apart from those for Old Burmese which was not taken from STEDT. 

 

4.2. Methods and tools for annotation and analysis 

In order to address the problems mentioned above, several methods and tools 

were developed, which are presented in more detail below. Computationally 
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intensive methods for automatic analyses were generally written as plugins 

for LingPy, a Python software library for quantitative tasks in historical lin-

guistics (Version 2.5.1, http://lingpy.org, List and Forkel 2016), and are 

available in the supplementary material accompanying this paper. Tools for 

manual annotation and inspection were implemented as part of the Etymo-

logical Dictionary Editor (EDICTOR, http://edictor.digling.org, List 2017), a 

web-based interactive tool for creating, inspecting, and editing etymological 

datasets, and are already implemented in the most recent online version of 

the tool.  

 

4.2.1. Partial cognate annotation 

As mentioned above, the manual annotation of partial cognates is tedious. In 

order to ease the task, a partial cognate editor was included in the most recent 

version of the EDICTOR tool, which greatly facilitiates the annotation task. 

All that is required is that the data are morphologically segmented by the us-

er. Once this is done, users can load their data into the EDICTOR tool and 

indicate which morphemes in a set of pre-defined words (usually translations 

of the same comparison concept) are cognate. Since this can be done in a 

simple drag-and-drop fashion, by which the user selects and deselects the 

words which are grouped into one partial cognate set, the annotation can be 

carried out quickly and is also less prone to error than the use of spreadsheet 

software not designed for this task. 

In order to identify partial cognates in the BED projects, we first ana-

lysed the data automatically, using the algorithm recently proposed by List et 

al. (2016) for the automatic detection of partial cognates, and then manually 

corrected the errors in the automatic analysis. 

 

4.2.2. Using alignments for sound-correspondence annotation 

To detect regularly recurring sound correspondences linguists usually rely on 

alignment analyses (Prokić et al. 2009; List 2014). Alignments are a formal 
way to compare sequences. In an alignment analsyis, two or more strings of 
segments are arranged in a matrix in such a way that corresponding segments 
are placed in the same column, while placeholders (so-called gaps, usually 
represented by the symbol “-”) mark segments lacking a counterpart. In addi- 
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tion to identifying partial cognates in the Burmish language data, we also 

aligned the data, using a computer-assisted work-flow in which we first 

aligned the partial cognate sets automatically using the SCA algorithm (List 

2012) available in the LingPy software package, and then refined them man-

ually, using the alignment module of the EDICTOR tool. An example align-

ment analysis is illustrated in Figure 4 for translations of the comparison 

concept ‘the man (male human)’. 
 

 

 
Figure 4. Example for the tentative alignment of words for the comparison concept 

‘the man (male human)’ in seven of the eight Burmish languages in our sample. 

 

 

The use of alignments to annotate sound correspondences is an old technique 

that goes at least back to the early 20th century (Dixon and Kroeber 1919), 

long before automatic alignment algorithms were proposed (Covington 1996, 

Kondrak 2000). Unfortunately, alignments have only sporadically been em-

ployed so far (Haas 1969; Fox 1995: 67; Payne 1991). Scholars often consid-

er alignments as too simple to represent the complex relations they see when 

looking at cognate words. This, however, is not a convincing ground for the 

rejection of alignments. If alignments are indeed too simple to reflect sound 

correspondences in all their complexity, scholars should work on enhanced 

ways to transparently annotate their judgments. 

 

4.2.3. Compound analysis and word family detection 

List (2016) presents an initial approach to reconstructing processes of word 

compounding with the help of a reference phylogeny and ancestral state re-
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construction based on weighted parsimony. Given that our data are available 
in a similar form, we could use the same technique to analyse compound 
processes in the Burmish languages. However, since this approach requires a 
good idea of the general phylogeny of the languages, whereas the phylogeny 
of the Burmish languages remains rather unclear, we base our initial com-
pound analysis on a semi-automated approach that helps to identify the moti-

vation structure underlying the formation of specific compounds. Our core 
idea is to follow Urban (2011) in searching for partial colexifications across 
the words in our data, and to represent them as bipartite networks. Following 
François (2008), we see colexification as a term to cover cases in which a 
word form is used to denote more than one concept, without distinguishing 
between homophony or polysemy. Partial colexification therefore points to 
cases where a specific morpheme is shared across two words denoting dis-
tinct concepts. 

Given that each syllable usually corresponds to one morpheme in the 
Burmish languages, it is easy to write a computer application to search for 
these patterns in our data. In contrast to approaches that are solely interested 
in the relations between different concepts (List et al. 2013), we wish to in-
vestigate both the actual word forms in our data and the concepts which they 
denote. Bipartite networks, which are increasingly used to investigate mo-
lecular datasets in evolutionary biology (Corel et al. 2016), provide an intui-
tive and simple structure for such a computer-assisted investigation. Bipartite 
networks are networks consisting of two types of nodes. Edges in these net-
works are only allowed to be drawn from nodes of one type to nodes of an-
other type. In our case the first node type are the concepts in the concept list 
and the second node type are the word forms in a given language. We create 
our network by linking all individual morphemes in our data to the concepts 
denoted by the words in which they occur. This yields a large graph, which is 
almost completely connected, but sparse enough to allow interactive search 
for interesting structures using graph-visualization software, such as Cyto-
scape (Smoot et al. 2011), and without applying heavy algorithmic machin-
ery. In our supplementary material, we provide the full network created from 
our data along with the source code as an interactive web-application that 
works in most web browsers. 

In addition, and in order to complement this computational analysis, the 
EDICTOR tool contains a *morpheme annotation module* that allows one to 
inspect automatically created bipartite networks for individual languages and 
to annotate compounds in a meaningful way. The general idea behind this 
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compound structure analysis is to annotate compounds in a way similar to 

how linguists annotate sentences in inter-linear glossed text. For each word 

in the data, we provide a language-internal analysis that reveals the motiva-

tion of compound formation. Essentially, this yields a language-internal word 

family analysis, as it allow us to identify cognates within the same language. 

 

 

 

 

Figure 5. Compound analysis (language-internally) with the help of partial colex-
ification networks. The example shows four words in Atsi (Zaiwa), of which 
three constitute a word family. The table shows the morpheme analysis and the 
raw data, while the network below shows the bipartite graph which is automati-
cally created by the EDICTOR tool. 

 

 

As an example, consider Atsi [vui⁵¹ mo⁵⁵] ‘river’, [vui⁵¹ miŋ²¹] ‘sea’ and 

[vui⁵¹] ‘water’. When inspecting these words, it is obvious, that [vui⁵¹] ‘wa-

ter’ recurs in the words for ‘sea’ and ‘river’, and it is also easy to identify 

[mo⁵⁵] as a suffix, as it recurs in a few other words , such as [lo²¹ mo⁵⁵] ‘tiger’ 
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and [vam⁵¹ kʰui²¹ mo⁵⁵] ‘wolf’.2  The language-internal bipartite networks 
drawn from partial colexifications available in the EDICTOR drastically fa-
cilitate this task. Scholars can first automatically search for potential word 
families and then annotate them step by step, eventually distinguishing coin-
cidental cases of homophony, such as Atsi [vui⁵¹] ‘to buy’, from the reuse of 
an etymon in distinct lexemes. Figure 5 shows the user-annotated data and 
the automatically reconstructed partial colexification network for this exam-
ple. 

5. Results 

 
In the following, we present the results of the analyses described above. We 
should add that most of these results are anecdotal and not quantitative. 
There are two reasons for this: first, our general intention in the BED project 
is to pursue a computer-assisted rather than a computer-based approach to 
language comparison. This means that we use quantitative analyses to do the 
bulk of the heavy lifting while we inspect the data manually to find those pat-
terns which cannot be explained with algorithms alone. Second, our method-
ology comprises preliminary work that to our knowledge has so far not yet 
been tested on other language families. By pointing to some of our initial 
findings, we hope we can advertise the tools and approaches discussed here. 
In this way, we hope that the preliminary approaches presented in this study 
may in the future bear further fruits, be it in our own work or that of our col-
leagues working on language families that present similar difficulties.  
 

5.1. Comparison with STEDT 

As we assigned the cognate sets independently of the cognates provided by 
the STEDT project (Matisoff 2015), one can compare the differences be-
tween our analysis of the Burmish languages and the analysis provided by 
the STEDT project. The 240 concepts and 7 languages which were originally 

taken from STEDT's digitalized version of Huáng et al. (1992) consists of 

1611 distinct words and 1002 distinct morphemes. 743 (46%) of the words 

                                                                        

2
 By ‘wolf’ we understand ‘dhole’ (Cuon alpinus). The grey wolf (Canis lupus) is not endemic 

to the relevant parts of Asia. 
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are annotated in STEDT, i.e., they are given etymologies; 828 (83%) of the 

morphemes are assigned to cognate sets in STEDT. Having excluded 23 out 

of the 743 words for which we found no link between our data and the data 

in STEDT, we compared the similarity in cognate judgments for the remain-

ing 720 words, using B-Cubed Scores (Bagga and Baldwin 1998) to estimate 

the differences. These scores are usually measured in *precision*, *recall*, 

and *harmonic mean* (F-Score), by comparing the results of a cluster analy-

sis A with a cluster analysis B. Precision indicates how often clusters pro-

posed by analysis B are also found in analysis A, recall indicates how often 

clusters proposed in analysis A are also found in analysis B, and the harmon-

ic mean provides a summary of the two scores. All scores are measured in 

terms of floating points between 0 and 1, with 1 indicating complete identity 

and 0 indicating complete difference.  

The comparison of our BED analysis with the analysis provided by 

STEDT (assuming that BED is analysis A and STEDT is analysis B) yielded 

a precision of 0.88, a recall of 1.0, and an F-Score of 0.94. These results are 

remarkable, given that the analyses were carried out independently. The high 

recall means that whenever BED says that two words are cognate, STEDT 

will also do so. The low precision shows that our analysis is more conserva-

tive, having the tendency to refuse cognate judgments rather than to propose 

them, and as a result, if BED refuses cognacy, STEDT may in quite a few 

cases still tend to propose it.  

 

5.2. Proving cognacy despite irregularities 

Thanks to the alignment analyses carried out on our data, we are able to de-

termine quickly whether the sound correspondence patterns inherent in a giv-

en cognate set are regular or not. For convenience, the EDICTOR offers a 

module in which sound correspondences are automatically counted for each 

pair of languages in the data. Ideally, this should likewise be offered for the 

major patterns across all of the languages in the data, but at the moment, this 

is not feasible, as no algorithms for the detection of general correspondence 

patterns have been proposed so far. 

In order to identify potential cognates independently of regular sound 

correspondences, we can employ our bipartite partial colexification net-

works. As an example for this idea, compare the words for ‘good’ across sev-

en Burmish varieties given in Table 3. At first sight, the words all look quite 
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similar, and no linguist would immediately rule out the possibility that they 
could be cognate. Based on the sound correspondences we identified, how-
ever, the forms in Achang and Xiandao are not regular, as the correspondence 
among [tɕ] in Achang, [ɕ] in Xiandao and [k] in the other Burmish varieties 
is only attested in the words for ‘good’ and the word for ‘man’, also given in 
Table 3.  

Despite the irregularity of the sound correspondences between Achang 
and the other varieties, it is still justifiable to regard all words as cognate (ex-
cept for Rangoon Burmese [kɑ̃u⁵⁵] ‘good’ and Lashi [kɛː³¹] which has an un-
predicted long vowel). We reconstruct the word ‘man’ in Proto-Burmish as a 
compound of ‘person’ and ‘good’, supported by the fact that the first mor-
pheme of the words for ‘man’ occurs in the words for ‘who’ in Bola and 
Maru (as shown in the same table), and that – except for in Rangoon Bur-
mese – the second morpheme in the words for ‘man’ is cognate in all lan-
guages in the table (we suspect that the vowel length in Lashi is a secondary 
phenomenon, probably resulting from loss of syllable weight in compounds).  
 
 
Table 3. Irregular sound correspondences among Achang and Xiandao and five other 
Burmish languages: Achang [tɕ] and Xiandao [ɕ] in the word for ‘good’ exhibits an 
irregular correspondence with [k] in the other Burmish languages. The fact that the 
compound word ‘man’ has the word for ‘good’ as its second part in all Burmish lan-
guages apart from Rangoon, and the peculiarity of the motivation of this compound 
justify assuming cognacy despite irregularity. As a result, we label cognacy among 
the morphemes in the table by assigning the same color to cognate morphemes, leav-
ing black as the color for words we cannot relate to any other word. 
 

Language ‘man’ ‘good’ ‘who?’ 

Achang i³¹ tɕi⁵⁵ tɕi⁵⁵ xau⁵⁵ 

Atsi juʔ²¹ ke⁵¹ ke⁵¹ o⁵⁵ 

Bola jauʔ³¹ kai⁵⁵ kai⁵⁵ khak⁵⁵ jauʔ³¹ 

Lashi juʔ⁵⁵ kɛ³¹ kɛː³¹ xaŋ⁵⁵ 

Maru jauk³¹ kai³¹ kai³¹ khə³̆¹ jauk³¹ 

Rangoon (Burmese) jɑuʔ⁴ ʨɑ⁵⁵ kɑũ⁵⁵ bɛ²² tθu²² 

Xiandao juʔ³¹ ɕɛ⁵⁵ ɕɛ⁵⁵ xau⁵⁵ 

 

Brought to you by | Max Planck Institute for the Science of Human History
Authenticated

Download Date | 9/14/17 10:45 AM

3 Data Formats and Annotation Frameworks

174



Challenges of annotation and analysis 67

Since this compound is semantically and syntactically peculiar and uniquely 
occurs in the Burmish languages (we found no similar motivation in the more 
than 40 other Sino-Tibetan languages in Huáng et al. 1992), it is very likely 

that this word originated only once in the history of the Burmish languages. 

No matter what the explanation for the irregular sound correspondences in 

Achang and Xiandao will be (if it can ever be found), given the overwhelm-

ing similarity in the motivation structure of the compound for ‘man’ in the 

Burmish languages, one cannot resist the conclusion that these words are in-

deed cognate, and we mark them accordingly in Table 3. 

 

5.3. Compound structure and subgrouping 

Compound structure can provide us with initial hints regarding subgrouping. 

We must be careful, however, since it is obvious that words can easily be 

borrowed among languages, and closely related languages will also allow for 

the borrowing of full compounds, as we can see in numerous examples from 

the Chinese dialects (compare, for example, List et al. 2014). Nevertheless, 

when such cases can be excluded, compound structure may serve as a proxy 

for the identification of shared traits between languages and thus help us to 

identify potential innovations that provide us evidence for subgrouping. 

As an example, consider Table 4 which gives words for ‘mountain’, 

‘dog’, ‘thunder’, ‘wolf’, and ‘bear (n.)’ in the modern languages in our sam-

ple along with our comparative analysis of the motivation structure of these 

words, derived from the bipartite partial colexification networks. First, we 

find four different motivations for ‘wolf’ in the sample. Except for the Ran-

goon word form, all are derived from the word for ‘dog’, but the first part of 

the compound differs, and we find ‘bear’ + ‘dog’ in Atsi and Lashi, ‘thunder’ 

+ ‘dog’ in Bola and Maru, and ‘mountain’ + ‘dog’ in Achang and Xiandao. 

Achang and Xiandao further show the same motivation structure for ‘thun-

der’, which can be seen as a further argument that both varieties form a sub-

branch of the Burmic branch of Burmish.  

The situation with Lashi, Bola, and Maru is more complicated and re-

quires further explanation. We find that Maru shares the same motivation 

structure for ‘thunder’ with Lashi (‘sky’ + ‘thunderB’), while it also shares the 

motivation structure for ‘wolf’ with Bola (‘thunder’ + ‘dog’). Note that our 

analysis of Maru [mjaŋ³¹ kʰa³⁵] as ‘thunder’ + ‘dog’ is based only on the simi-

larity with Bola, as the word for ‘thunder’ in Maru does not contain [mjaŋ³¹]. 
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Table 4. Compound motivation patterns across the modern Burmish languages. Items 

with identical color in the annotation of the motivation structure are presumed to be 

cognate across and inside the four varieties. Black is reserved for items which are not 

related to any other item in the data. 

 

Language ‘mountain’ ‘dog’ ‘thunder’ ‘wolf’ ‘bear (n.)’ 

Atsi pum⁵¹ kʰui²¹ mau²¹ mjiŋ⁵¹ vam⁵¹ kʰui²¹ mo⁵⁵ vam⁵¹ 

mountain dog sky + thunder  bear + dog + m-suff. bear 

Bola pam⁵⁵ kʰui³⁵ mau³¹ mjaŋ⁵⁵ mjaŋ⁵⁵ kʰui³⁵ vɛ⁵̃⁵ 

mountain dog sky + thunder thunder + dog bear 

Lashi pɔm³¹ kʰui⁵⁵ mou³³ kɔm³³ wɔm³¹ kʰui⁵⁵ wɔm³¹ 

mountain dog sky + thunderB  bear + dog bear 

Maru pam³¹ lə³̆¹ kʰa³⁵ muk⁵⁵ kum³¹ mjaŋ³¹ kʰa³⁵ vɛ³̃¹ 

mountain ? + dog sky + thunderB thunder + dog bear 

Achang pum⁵⁵ xui³¹ mau³¹ ʐau³¹ pum⁵⁵ xui³¹ ɔm⁵⁵ 

 mountain dog sky + thunderC  mountain + dog bear 

Xiandao pum⁵⁵ fui³¹ mau³¹ cau³¹ pum⁵⁵ fui³¹ om⁵⁵ 

 mountain dog sky + thunderC  mountain + dog bear 

Rangoon tɑũ²² kʰwe⁵⁵ mo⁵⁵ tɕʰẽ⁵⁵ wũ²²pu⁵³lwe²² wũ²² 

 mountain2 dog sky + thunderD bear + ? + ? bear 

 

 

Given that the data for Maru, Lashi, Bola, and Atsi were collected in the 

same area, and close contact among the varieties is therefore expected, we 

may suspect that the divergence in compound structures results from lan-

guage contact. Given that ‘bear’ occurs in the word for ‘wolf’ in Atsi, Lashi, 

Achang, Xiandao and particularly in the otherwise untransparent Rangoon 

Burmese form , we suspect that the ‘thunder-dog’ in Maru and Bola is a later 

innovation rather than a retention. This suspicion however gives rise to a fur-

ther complication. If Maru and Bola together innovated the structure ‘thun-

der-dog’ then the Maru word for ‘thunder’ should be cognate with the form 

of the word ‘thunder’ that occurs in the Maru word for ‘wolf’, which it is not. 

To explain the Maru word for ‘thunder’ one can suggest that Maru has bor-

rowed it from Lashi. This proposal is not only confirmed by the irregular 

vowel correspondence between the two varieties, but also by alternative data 

in Clerk (1911: 163), who gives muk myang as the word for ‘thunder’ in a 

Maru variety spoken in the Myitkina area of Burma, far away from Máng 
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City, where the Maru variety we considered for our database is spoken. The 
Myitkina form appears to preserve the inherited etymon as opposed to the 
Máng City form, which is borrowed from Lashi. This explanation is yet fur-
ther buttressed by the fact that Wannemacher (2011: 37) gives /mou⁴ gøm⁴/ 
as translation for ‘thunder’ in a Lashi variety spoken in the Waimaw area of 
the Kachin State in Burma, again far away from the Lashi variety we consid-
ered in our study. The obvious cognancy of the Lashi forms from distinct re-
gions of Burma points to the fact that Lashi here retains an inheritance. In 
other words, the Lashi word is geographically stable whereas the Maru word 
is not. 

It would go beyond the scope of this paper to resolve the phylogeny of 
the Burmish languages by listing potential shared innovations or even using 
phylogenetic methods to arrive at a subgrouping of the language family. We 
think, however, that our small analysis of the words in Table 4 has shown 

that compound motivation structures bears substantial potential for linguistic 

subgrouping, provided they are analysed with care, and borrowing are thor-

oughly identified. Both the analysis of compound motivation structures and 

the identification of borrowings cannot be done automatically. Our methods 

for the reconstruction of bipartite partial colexification networks, however, 

provide great help for a detailed computer-assisted analysis. 

 

5.4. Compound structure and semantic reconstruction 

A compound motivaton structure analysis derived from bipartite partial co-

lexification networks can also serve as a starting point for semantic recon-

struction, both from a semasiological perspective, seeking the original mean-

ing of a given morpheme, and form an onomasiological perspective, seeking 

to identify how a given concept was pronounced in ancestral languages. As 

an illustration, consider the colexification newtork given in Figure 6. In this 

example, we find three major semantic complexes: the verbs ‘to shoot (ar-

row)’ and ‘to throw’, the verb ‘to hunt’, and several concepts denoting body 

parts (‘hair’, ‘tail’, ‘bone’, etc.). These semantic groups are connected by two 

form groups, the first one pointing to Proto-Burmish *pak⁴ and the second 

pointing to *ʃa² (both in the reconstructions of Mann 1998). The verb ‘to 

shoot’ is expressed by single morphemes (reflexes of *pak⁴) in Atsi, Bola, 

Maru, and Xiandao, while the verb for ‘to hunt’ is expressed by two mor-

phemes, the former colexifying with the forms for ‘to shoot’, and the latter, 
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reflexes of Mann’s *ʃa², occurring as one of the elements in the numerous 
body part terms in our third semantic cluster. Given these patterns, we find it 
straightforward to reconstruct the rough semantics of Proto-Burmish *pak⁴ as 
‘to throw/to shoot’, and the semantics of *ʃa² as ‘body/flesh’, since these 
meanings (which are admittedly not extremely precise at this stage of the 
analysis) allow best to explain why reflexes of *ʃa² occur in compounds de-
noting body parts, and as the object of verb-object compounds meaning ‘to 
hunt’ (lit. ‘shoot meat’ or ‘shoot bodies’) in the Burmish varieties.  

The pattern in Figure 6 is but a small example of a computer-assisted 
procedure, but it illustrates the main idea of computer-assisted approaches : 
the analytical work is still carried out by the linguists who interpret the data 
and draw their conclusions, but an advanced computational modeling of lin-
guistic problems helps the linguists in identifying patterns deserving explana-
tion. No doubt one could identify the pattern in Figure 6 by simply inspecting 
the data in a book. The representation as bipartite networks of partial colexi-
fications, however, drastically speeds up this process. 

6. Conclusion 

 
With more than 7000 languages currently spoken and numerous other lan-
guages now lost, existing in philological records, historical linguistics faces 
the tremendous task of charting the evolution of these languages into their 
current shape. Computational approaches offer quick solutions to analyze 
large amounts of digitally available data. However, they face specific diffi-
culties, resulting from their lack of flexibility which makes them vulnerable 
in situations of sparse data. Classical approaches handle data sparseness well, 
but they face efficiency and transparency problems. A combined framework 
can cope with the shortcomings of both disciplines while at the same time 
preserving their specific advantages.  

In this paper, we have tried to illustrate how computational and classical 
approaches can be combined, concentrating on specific challenges of annota-
tion and analysis in the Burmish language family. With the help of computa-
tional methods and interactive tools for the correction of errors, we consist-
ently annotated partial cognates and regular sound correspondences for eight 
Burmish varieties. With the help of bipartite partial colexification networks, 
we further annotated compound motivation structures for a large part of the 
words in our data. We illustrated the benefit of these new approaches to an- 
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notation and analysis, by showing how cognate words can be identified even 
when sound correspondences are irregular, how shared innovations can be 
detected by searching for similar compound structures, and how compound 
structure comparison allows us to make initial steps towards semantic recon-
struction. The proposed methods and techniques are preliminary and need to 
be further developed. We are, however, confident that they provide new in-
sights not only into the Burmish languages but also into South-East Asian 
languages in general, since they offer not only a more complete perspective 
on linguistic reconstruction, but also deliver additional evidence for sub-
grouping, hidden cognates, and semantic reconstruction. 
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on GitHub at http://github.com/digling/challenges-of-annotation-paper. The 
data is additionally shared in CLDF (http://cldf.clld.org), following the most 
recent specifications. 
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4 Advances in Automatic Sequence
Comparison

4.1 Advanced Cognate Detection
The task of automated cognate detection is of particular interest for historical linguistics, since the iden-
tification of cognates, that is, words that are assumed to have descended from a common form, serves
multiple purposes, both in traditional and computational approaches to historical language comparison.
In traditional historical linguistics, identifying cognate word forms is not only important for the initial
proof of genetic language relationship, but also for the identification of regular sound correspondences,
or – ultimately – for the compilation of etymological dictionaries in which cognate sets for a particu-
lar language family or subgroup are systematically assembled. In computational historical linguistics,
cognate sets are particularly important for the reconstruction of language phylogenies.
While initial methods for the automated identification of cognates have been discussed among linguists

already for a longer time, with proposals appearing already in the 1960s (Kay 1964), the increased avail-
ability of computers along with scripting languages with powerful third-party libraries, such as Python
and Perl, have made it much more convenient for scholars of different backgrounds to experiment with
their own approaches to the problem. Already during my dissertation, I have worked intensively on the
task of automated cognate detection and was able to propose a first algorithm that took inspiration from
sequence comparison approaches in evolutionary biology along with newly developed models for the
representation of phonetic sequences within a computational frameworks (List 2014). This algorithm,
however, still had one serious drawback, since it is only available to detect fully cognate words, while
partial cognates could not be readily handled. While working on annotation frameworks for partial cog-
nate relations (as presented in Section 3), I also started to experiment with methods for the automated
detection of partial cognates, using sequence similarity networks, an approach that has been successfully
used in biological applications as the main methodological tool. The thoughts behind this first algorithm
for partial cognate detection along with an evaluation of its performance are discussed in detail in the
first of the two following studies (List et al. 2016b).
While the cognate detection method developed as part of my dissertation could show by than to have a

rather satisfying performance in comparison with alternative methods when applying it to a gold standard
of six datasets from four language families, it was important to get a clearer impression of the performance
of the approach when applied to more datasets from additional language families. For this reason, we
conducted a follow-up study for which we created six additional gold standard datasets from 5 different
language families, which were similar in size and diversity to the gold standard datasets used in the
previous study. In addition, we tested a new approach for the flat clustering of words into cognate sets,
based on similarity networks as already applied in the previous study on partial cognate detection and
algorithms for the detection of communities in social networks. The results confirm the overall satisfying
performance of the cognate detection approaches, reaching about 89% of accuracy compared to the
annotations of cognacy done by experts, and show also that community detection algorithms applied to
similarity networks further improve the performance of the method (List et al. 2017).
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Abstract

Increasing amounts of digital data in his-
torical linguistics necessitate the develop-
ment of automatic methods for the detec-
tion of cognate words across languages.
Recently developed methods work well
on language families with moderate time
depths, but they are not capable of identi-
fying cognate morphemes in words which
are only partially related. Partial cog-
nacy, however, is a frequently recurring
phenomenon, especially in language fami-
lies with productive derivational morpho-
logy. This paper presents a pilot approach
for partial cognate detection in which net-
works are used to represent similarities be-
tween word parts and cognate morphemes
are identified with help of state-of-the-
art algorithms for network partitioning.
The approach is tested on a newly created
benchmark dataset with data from three
sub-branches of Sino-Tibetan and yields
very promising results, outperforming all
algorithms which are not sensible to par-
tial cognacy.

1 Introduction

In a very general notion, cognacy is similar to the
concept of homology in biology (Haggerty et al.
2014), denoting a relation between words which
share a common history (List 2014b). In clas-
sical linguistics, borrowings are often excluded
from this notion (Trask 2000). Quantitative ap-
proaches additionally distinguish cognates which
have retained, and cognates which have shifted
their meaning (Starostin 2013b). Further aspects
of cognacy are rarely distinguished, although they
are obvious and common. Words which go back to
the same ancestor form can for example have been

morphologically modified, such as French soleil
which does not go directly back to Latin sōl `sun'
but to sōliculus `small sun' which is itself a deriva-
tion of sōl (Meyer-Lübke 1911).

Variety Form Character Cognacy
Fúzhōu ŋuoʔ⁵ 月 1
Měixiàn ŋiat⁵ kuoŋ⁴⁴ 月光 1 2
Wēnzhōu ȵy²¹ kuɔ³⁵ vai¹³ 月光佛 1 2 3
Běijīng yɛ⁵¹ liɑŋ¹ 月亮 1 4

Table 1: Partial cognacy in Chinese dialects.

Another problem are words which have
been created from two or more morphemes via
processes of compounding. While these cases
are rather rare in the core vocabulary of Indo-
European languages, they are very frequent in
South-East Asian language families like Sino-
Tibetan or Austro-Asiatic. In 200 basic words
across 23 Chinese dialects (Ben Hamed and Wang
2006), for example, almost 50% of the nouns and
more than 30% of all words consist of two or more
morphemes (see the Sup. Material for details).

The presence of words consisting of more
than one morpheme challenges the notion that
words can either be cognate or not. It poses
problems for phylogenetic approaches which re-
quire binary presence-absence matrices as input
and model language evolution as cognate gain and
cognate loss (Atkinson and Gray 2006). This is il-
lustrated in Table 1 where words for `moon' in four
Chinese dialects (Hóu 2004) are compared, with
cognate elements being given the same color. If
we assign cognacy strictly, only matching those
words which are identical in all their elements
(Ben Hamed and Wang 2006), we would have to
label all words as being not cognate. If we assign
cognacy loosely (Satterthwaite-Phillips 2011), la-
beling all words as cognate when only they share
a common morpheme, we would have to label all
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words as cognate. No matter how we code in phy-
logenetic analyses, as long as we use binary states,
we will loose information (List 2016).

Partial cognacy is also a problem for cur-
rent cognate detection algorithms which compare
words in their entirety (List 2014b, Turchin et al.
2010). Given the frequency of compound words
in South-East Asian languages, it is not surprising
that the algorithms performmuch worse on diverse
South-East Asian language families, than they per-
form on other language families where compound-
ing is less frequent (List 2014b:197f).

This paper presents a new algorithm for cog-
nate detection which does not identify cognate
words but instead searches for cognate elements
in words. The algorithm takes multilingual word
lists as input and outputs statements regarding the
cognacy of morphemes, just as the ones shown in
the last column of Table 1, where identical numer-
ical IDs are given for all morphemes identified as
cognate.

Dataset Bai Chinese Tujia
Languages 9 18 5
Words 1028 3653 513
Concepts 110 180 109
Strict Cogn. 285 1231 247
Partial Cogn. 309 1408 348
Sounds 94 122 57
Source Wang, 2006 Běijīng

Dàxué,
1964

Starostin,
2013b

Table 2: Partial cognate detection gold standard

2 Materials

Three gold standard datasets from different
branches of Sino-Tibetan with different degrees
of diversity were prepared, including Bai dialects,
Chinese dialects, and Tujia dialects. All datasets
were taken from existing datasets with cognate
codings provided independently. To facilitate fur-
ther use of the data, all languages were linked to
Glottolog (Hammarström et al. 2015) and all con-
cepts were linked to the Concepticon (List et al.
2016a). Furthermore, phonetic transcriptions were
cleaned by segmenting phonetic entries into mean-
ingful sound units and unifying phonetic variants
representing the same pronunciation. Morpho-
logical segmentation was not required, since all
languages in our sample (and the majority of all
South-East Asian languages) have a morpheme-
syllabic structure in which each syllable denotes

one morpheme. Partial cognate judgments are
displayed with help of multiple integer IDs as-
signed to a word in the order of its morphemes,
as displayed above in Table 1. For the Chinese
dataset, partial cognate information was provided
in the source itself, for Bai and Tujia, it was
manually derived from the cognate judgments in
the sources. Detailed information regarding the
datasets is given in Table 2, and the full dataset
along with further information is given in the Sup.
Material.

3 Methods

The workflow for partial cognate detection con-
sists of three major steps. (1) In a first step, pair-
wise sequence similarities are determined between
all morphemes of all words in the same mean-
ing slot in a word list. (2) These similarities are
then used to create a similarity network in which
nodes represent morphemes and edges between
the nodes represent similarities between the mor-
phemes. (3) In a third step, an algorithm for net-
work partitioning is used to cluster the nodes of the
network into groups of cognate morphemes.

3.1 Sequence Similarity

There are various ways to determine the similar-
ity or distance between words and morphemes.
A general distinction can be made between
language-independent and language-specific ap-
proaches. The former determine the word simi-
larity independently of the languages to which the
words belong. As a result, the scores only depend
on the substantial and structural differences be-
tween words. Examples for language-independent
similarity measures are SCA distances, as pro-
duced by the Sound-Class-Based Phonetic Align-
ment algorithm (List 2012b), or PMI similarities
as produced by the Weighted String Alignment
algorithm (Jäger 2013). Language-specific ap-
proaches, on the other hand, are based on pre-
viously identified recurring correspondences be-
tween the languages from which the words are
taken (List 2014b: 48-50) and may differ across
languages.1 An example for language-specific
similarity measures is the LexStat algorithm, first
proposed in List (2012a) and later refined in List

1Comparing, for example, German Kuckuck with French
coucou and English cuckoo may yield quite different scores,
although the English and the French words are almost identi-
cal in pronunciation.
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Fúzhōu ŋuoʔ⁵

Měixiàn
ŋiat⁵ 0.44

kuoŋ⁴⁴ 0.78 0.78

Wēnzhōu
y²¹ȵ 0.30 0.35 0.67

ku ³ɔ ⁵ 0.80 0.85 0.27 0.67

vai¹³ 0.85 0.85 0.82 0.73 0.73

Běijīng y ¹ɛ⁵ 0.77 0.84 0.73 0.56 0.56 0.66

li ŋ¹ɑ 0.78 0.78 0.44 0.67 0.82 0.82 0.80

ŋiat⁵

kuoŋ⁴⁴

ŋuoʔ⁵

ȵy²¹

yɛ⁵¹

kuɔ³⁵

liɑŋ¹

vai¹³

ŋiat⁵

vai¹³

kuoŋ⁴⁴

ŋuoʔ⁵liɑŋ¹

yɛ⁵¹
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kuɔ³⁵
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ŋiat⁵

yɛ⁵¹

liɑŋ¹

ŋuoʔ⁵

kuoŋ⁴⁴

vai¹³

B C

D

A

Figure 1: Similarity networks for partial cognate detection. A shows pairwise SCA distances computed
between all morphemes of Chinese dialect words for `moon'. Values shaded in gray are excluded follow-
ing filtering rules 1 and 2 (see text). B shows the initial similarity network with all nodes connected. C
shows the network after filtering, and D shows the network after applying the partitioning algorithm.

(2014b). As a general rule, language-specific ap-
proaches outperform language-independent ones,
provided the sample size is large enough (List
2014a).

Two similarity measures are used in this pa-
per, one language-independent, and one language-
specific one. The above-mentioned SCA method
for phonetic alignments (List 2012b, 2014b) re-
duces the phonetic space of sound sequences to
28 sound classes. Based on a scoring function
which defines transition scores between the sound
classes, phonetic sequences are aligned and simi-
larity and distance scores can be determined. The
LexStat approach List (2012a, 2014b) also uses
sound classes, but instead of using a pre-defined
scoring function, transition scores between sound
classes are determined with help of a permutation
test. In this test, words drawn from a random-
ized sample are repeatedly aligned with each other
in order to create a distribution of sound transi-
tions for unrelated languages. This distribution
is then compared with the actual distribution re-
trieved from aligned words in the word list, and a
language-specific scoring function is created List
(2014b). SCA is very fast in computation, but Lex-
Stat has a much higher accuracy. Both approaches
are freely available as part of the LingPy software
package (List and Forkel 2016).

3.2 Sequence Similarity Networks
Sequence similarity networks are tools for ex-
ploratory data analysis. In evolutionary biology
they are used to study complex evolutionary pro-
cesses (Méheust et al. 2016, Corel et al. 2016).
They represent sequences as nodes and connec-

tions between nodes represent similarities which
are usually determined from similarity scores ex-
ceeding a certain threshold (Alvarez-Ponce et al.
2013). Since evolutionary processes leave specific
traces in the network topology, they can be iden-
tified by applying techniques for network analy-
sis. In linguistics, sequence similarity networks
have been rarely applied (Lopez et al. 2013), al-
though they are applicable, provided that one uses
informed measures for phonetic similarity.

For the application of sequence similarity net-
works it is essential to decide when to draw an edge
between two nodes and when not. For the new ap-
proach to partial cognate detection, three filtering
criteria are applied. (1) No edges are drawn be-
tween morphemes which occur in the same word.
(2) Nomorpheme in oneword is linked to twomor-
phemes in another word, with the preference given
to morpheme pairs with the lowest phonetic dis-
tance applying a greedy strategy. (3) Edges are
only drawn when the phonetic distance between
the morphemes is beyond a certain threshold. The
application of the filtering criteria is illustrated in
Fig. 1 for the exemplary words shown in Table 1.

3.3 Network Partitioning
Cognate morphemes in a similarity network can
be found by partitioning the network into groups.
Many algorithms are available for this purpose, as
can be seen from evolutionary biology, where ho-
mology detection is frequently approached from a
network perspective (Vlasblom andWodak 2009).
Three different algorithms were tested for this
purpose. A flat version of the UPGMA algo-
rithm for hierarchical clustering (Sokal and Mich-
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ener 1958), which terminates when a certain user-
defined threshold is reached is originally underly-
ing the LexStat algorithm and was therefore also
included in this study. Markov Clustering (van
Dongen 2000) uses techniques for matrix multi-
plication to inflate and expand the edge weights
in a given network until weak edges have disap-
peared and a few clusters of connected nodes re-
main. Markov Clustering is very popular in bi-
ology and was shown to outperform the popular
Affinity Propagation algorithm (Frey and Dueck
2007) in the task of homolog detection in biology
(Vlasblom and Wodak 2009). As a third method,
we follow List et al. (2016b) in testing Infomap
(Rosvall and Bergstrom 2008), a method that was
originally designed to detect communities in com-
plex networks. Communities are groups that share
more links with each other than outside the group
(Newman and Girvan 2004). Infomap uses ran-
dom walks to find the best partition of a network
into communities. Infomap is not a classical par-
titioning algorithm, and we do not know of any
studies which tested its suitability for the task of
homolog detection in evolutionary biology, but ac-
cording to List et al. (2016b), Infomap shows a bet-
ter performance than UPGMA in automatic cog-
nate detection.

3.4 Analyses and Evaluation
All methods, be it classical or partial cognate de-
tection, require a user-defined threshold. Since our
gold standard data was too small to split it into
training and tests sets, we carried out an exhaus-
tive comparison of all methods on different thresh-
olds varying between 0.05 and 0.95 in steps of
0.05. B-cubed scores were chosen as an evaluation
measure for cognate detection (Bagga andBaldwin
1998), since they have been shown to yield sensi-
ble results (Hauer and Kondrak 2011).

With SCA and LexStat, two classical meth-
ods for cognate detection were tested List (2014b),
and their underlying models for phonetic similar-
ity (see Sec. 3.1) were used as basis for the par-
tial cognate detection algorithm. All in all, this
yielded four different methods: LexStat, LexStat-
Partial, SCA, and SCA-Partial. Since our new
algorithms yield partial cognates, while LexStat
and SCA yield ``complete" cognates, it is not pos-
sible to compare them directly. In order to al-
low for a direct comparison, partial cognate sets
were converted into ``complete" cognate sets us-
ing the above-mentioned strict coding approach

proposed by Ben Hamed and Wang (2006): only
those words in which all morphemes are cognate
were assigned to the cognate same set. With a total
of three different clustering algorithms (UPGMA,
Markov Clustering, and Infomap), we thus carried
out twelve tests on complete cognacy (three for
each of our four approaches), and six additional
tests on pure partial cognate detection, in which
we compared the suitability of SCA and LexStat
as string similarity measures.

LexStat
Cluster-Method T P R FS
UPGMA 0.60 0.9030 0.8743 0.8878
Markov 0.50 0.9123 0.8752 0.8933
Infomap 0.50 0.9131 0.8866 0.8995

SCA
Cluster-Method T P R FS
UPGMA 0.45 0.8595 0.8707 0.8648
Markov 0.45 0.8049 0.8097 0.8031
Infomap 0.35 0.8901 0.8573 0.8734

LexStat-Partial Complete Cognacy
Cluster-Method T P R FS
UPGMA 0.90 0.9193 0.9638 0.9399
Markov 0.70 0.9275 0.9342 0.9298
Infomap 0.65 0.9453 0.9363 0.9404

SCA-Partial Complete Cognacy
Cluster-Method T P R FS
UPGMA 0.60 0.9304 0.9045 0.9172
Markov 0.95 0.8153 0.8949 0.8446
Infomap 0.55 0.9104 0.9366 0.9223

LexStat-Partial Partial Cognacy
Cluster-Method T P R FS
UPGMA 0.75 0.8920 0.8820 0.8867
Markov 0.60 0.8858 0.8724 0.8782
Infomap 0.60 0.8876 0.8844 0.8856

SCA-Partial Partial Cognacy
Cluster-Method T P R FS
UPGMA 0.50 0.8597 0.8509 0.8552
Markov 0.50 0.8074 0.7621 0.7755
Infomap 0.35 0.8676 0.8439 0.8553

Table 3: General performance of the algorithms
on all datasets. The table shows for each of the 18
different methods the threshold (T) for which the
best B-Cubed F-Score was determined, as well as
the B-Cubed precision (P), recall (R), and F-score
(FS). The best result in each block is shaded in
gray.

602

4.1 Advanced Cognate Detection

189



0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0
B

-C
u

b
e

d
 F

-S
c

o
re

Threshold Threshold Threshold
0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

Partial-LexStat-UPGMA

Partial-LexStat-Markov

Partial-LexStat-Infomap

LexStat-UPGMA

LexStat-Markov

LexStat-Infomap

Bai Chinese Tujia

Figure 2: Comparing the results for the LexStat sequences similarities

3.5 Implementation
The code was implemented in Python, as part of
the LingPy library (Version 2.5, List and Forkel
(2016), http://lingpy.org). The Igraph soft-
ware package (Csárdi and Nepusz 2006) is needed
to apply the Infomap algorithm.

4 Results

The aggregated results of the test (thresholds, pre-
cision, recall, and F-scores) are given in Table
3, specific results for the comparison of LexStat
with LexStat-Partial are given in Table 3. In
general, one can clearly see that the partial cog-
nate detection algorithms outperform their non-
partial counterparts when applying the complete
cognacy measure. The differences are very strik-
ing, with LexStat-Partial outperforming its non-
partial counterpart by up to four points, and SCA-
Partial outperforming the classical SCA variant by
almost five points.2 In contrast, we do not find
strong differences in the performance of the cluster
algorithms. Infomap outperforms the other cluster
algorithms in almost all tests (all other aspects be-
ing equal), but the differences are not high enough
to make any further conclusions at this point.

When comparing the aggregated results for
the true evaluation of partial cognate detection (the
last two blocks in Figure 2), the scores are less high
than in the complete cognate analyses. Given that
we cannot detect any striking tendency, like a dras-
tic drop of precision or recall, this suggests that
the algorithms generally loose accuracy in the task
of ``true" partial cognate detection. This is surely
not surprising, since the task of detecting exactly
which morphemes in the data are historically re-
lated is much more complex than the task of de-
tecting which words are completely cognate.
2By one point, we mean 0.01 on the B-Cube scale.

In Figure 2, detailed analyses for the LexStat
analyses with complete cognate evaluation (the
first and the third block in Table 3) are shown for
each of the datasets, and throughout all thresholds
we tested. The superior performance of the par-
tial cognate detection variants is reflected in all
datasets. That the internal diversity of the Chi-
nese languages largely exceeds Bai and Tujia can
be seen from the generally lower scores which all
algorithms achieve for the datasets.

5 Discussion

This paper has presented a pilot approach for the
detection of partial cognates in multilingual word
lists. Although the results are very promising at
this stage, we can think of many points where
improvement is needed, and further studies are
needed to fully assess the potential of the cur-
rent approach. First, it should be tested on addi-
tional datasets, and ideally also on language fami-
lies other than Sino-Tibetan. Second, since our ap-
proach is very general, it can easily be adjusted to
employ different string similarity measures or dif-
ferent partitioning algorithms, and it would be in-
teresting to see whether alternative measures can
improve upon our current version.
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Abstract

The amount of data from languages spoken all over the world is rapidly increasing. Tradi-

tional manual methods in historical linguistics need to face the challenges brought by this

influx of data. Automatic approaches to word comparison could provide invaluable help to

pre-analyze data which can be later enhanced by experts. In this way, computational

approaches can take care of the repetitive and schematic tasks leaving experts to concen-

trate on answering interesting questions. Here we test the potential of automatic methods to

detect etymologically related words (cognates) in cross-linguistic data. Using a newly com-

piled database of expert cognate judgments across five different language families, we com-

pare how well different automatic approaches distinguish related from unrelated words. Our

results show that automatic methods can identify cognates with a very high degree of accu-

racy, reaching 89% for the best-performing method Infomap. We identify the specific

strengths and weaknesses of these different methods and point to major challenges for

future approaches. Current automatic approaches for cognate detection—although not per-

fect—could become an important component of future research in historical linguistics.

Introduction

Historical linguistics is currently facing a dramatic increase in digitally available datasets [1–5].

The availability of data for more and more languages and language families challenges the

ways in which we traditionally compare them. The comparative method has been the core

method for linguistic reconstruction for the past 200 years [6], and is based on manually iden-

tifying systematic phonetic correspondences between many words in pairs of languages. How-

ever, there are too few expert historical linguists to analyse the world’s more than 7500

languages [7] and, consequently, only a small percentage of these languages have been thor-

oughly investigated leaving us in the dark about their history and relationships. This becomes

especially evident in largely understudied linguistic areas like New Guinea, parts of South

America, or the Himalayan region, and our lack of knowledge about these languages has

immediate implications for our understanding of human prehistory.

PLOSONE | DOI:10.1371/journal.pone.0170046 January 27, 2017 1 / 18

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: List J-M, Greenhill SJ, Gray RD (2017)

The Potential of Automatic Word Comparison for

Historical Linguistics. PLoS ONE 12(1): e0170046.

doi:10.1371/journal.pone.0170046

Editor: Robert C Berwick, Massachusetts Institute

of Technology, UNITED STATES

Received:October 18, 2016

Accepted:December 28, 2016

Published: January 27, 2017

Copyright: © 2017 List et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The Supplementary

Material contains additional results, as well as data

and code to replicate the analyses. You can

download it from: https://zenodo.org/badge/

latestdoi/75610836 (DOI:10.5281/zenodo.192607).

Funding: As part of the GlottoBank Project, this

work was supported by the Max Planck Institute

for the Science of Human History and the Royal

Society of New ZealandMarsden Fund grant

13¬UOA-121. This paper was further supported by
the DFG research fellowship grant 261553824

“Vertical and lateral aspects of Chinese dialect

history” (JML), and the Australian Research

4.1 Advanced Cognate Detection

193



Over the last two decades computational methods have been become more prevalent in his-

torical linguistics. Advocates of computational methods emphasize the speed and replicability

as the main advantage of computational techniques [8, 9]. However, sceptics criticise the valid-

ity and accuracy of these methods as lagging far behind those achieved by human experts. [10].

One approach in computational historical linguistics is to design fully-automated methods to

identify language relationships with no input from researchers [11, 12]. Although these meth-

ods may provide interesting insights into linguistic macroareas [13], their “black-box” charac-

ter makes it difficult to evaluate the results, as judgements about sound correspondences and

decisions of cognacy are hidden. This opacity makes it difficult to improve the algorithms.

More problematically, however, it limits the scientific value of these methods, as we do not just

want to know how languages are related, but why and which pieces of evidence support this

conclusion. As a result, there is much suspicion about these methods in historical linguistics

[14–16].

Another approach—the one we take here—is to opt for a computer-assisted framework. In

contrast to fully automated frameworks, computer-assisted frameworks seek to support and

facilitate the task of language comparison by using human expertise where available to correct

errors and improve the quality of the results. One of the core tasks of the comparative method

is the identification of cognate words in multiple languages. If two words are cognate, this

means that they are genetically related, and have descended from a common ancestor [17].

Cognate identification, along with the identification of regular sound correspondences, is the

basis for proving that two or more languages are genetically related. It is also the basis for the

reconstruction of ancestral word forms in historically unattested languages, and for the genetic

classification of language families. In practice, cognate identification is a time-consuming pro-

cess that is based on an iterative manual procedure where cognate sets are proposed, evaluated,

and either kept or rejected [18].

This process of manual cognate identification should be an ideal candidate for computer-

assisted tasks. As a possible workflow, scholars could first run an automatic cognate detection

analysis and then edit the algorithmic findings. Even an iterative workflow in which the data is

passed between computers and experts would be fruitful. An important question which arises

in this context concerns the quality of automatic methods for cognate detection: Are these

methods really good enough to provide concrete help to a highly trained expert? In order to

find an answer to this question, we tested four publicly available methods and one newly pro-

posed method for automatic cognate detection on six test sets covering five different language

families, evaluated the performance of these methods, and determined their shortcomings.

Materials and Methods

Materials

There are few datasets available for testing the potential of cognate detection methods on lan-

guage data, As such, testing algorithms run the risk of over-fitting. When developing an algo-

rithm, one usually trains it on some datasets. If those datasets are afterwards used to also test

the algorithm, the accuracy should be quite high, but we cannot tell whether the method will

work on datasets apart from the ones on which the algorithm was trained. For this reason, it is

important to split the available data into a training set and a test set. In our case, the training

set will be used to determine the best parameters for each of the algorithms we test, while the

test set will be used to carry out the actual test of cognate recovery.

For this study, we took training data from existing sources [19], while a new test dataset was

compiled from scratch. The new test set consists of six datasets from five language families.

These data were collected from different sources, including published datasets [3, 20–23],
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books [24], and ongoing research by scholars who allowed us to use parts of their data in

advance (Uralex project, [25]). All datasets were formatted to tabular format and semi-auto-

matically cleaned for various kinds of errors, like misspelled phonetic transcriptions, empty

word slots, or obviously erroneous cognate judgments. We further linked all languages to Glot-

tolog [7], and all wordlist concepts to the Concepticon [26].

Table 1 lists all datasets along with additional details, such as the number of words, con-

cepts, languages, and cognate sets in the data. The diversity index given in the last column of

the table is calculated by dividing the difference between cognate sets and meanings with the

difference between words and meanings [19]. This score, which ranges between 0 and 1, indi-

cates whether large numbers of words in a given dataset are unrelated (high index) or are cog-

nate (low index). As can be seen from the diversity indices listed in the table, our test sets have

varying degrees of diversity, ranging from 0.07 (Romance, Saenko, 2015) to 0.57 (Uralic).

As mentioned above, training data is needed for parameter estimation. The key parameter

we need to estimate is the best thresholds for cognate identification in some of the methods. As

training data we employed the collection of benchmark datasets for automatic cognate detec-

tion by List [19], which also covers six datasets from five language families. Details for this

dataset (number of words, concepts, languages, cognate sets, and the diversity index) are given

in Table 2. This dataset is available online at http://dx.doi.org/10.5281/zenodo.11877.

Methods

Automatic Cognate Detection. Many methods for automatic cognate detection have

been proposed in the past (see Table 3 below). Unfortunately, only a few of these methods

qualify as candidate methods for computer-assisted language comparison, since the majority

are either (a) not able to analyse multiple languages at once, (b) have further requirements

making their use more complicated [31, 32] e.g. require a user-specified reference phylogeny

(and therefore assume that language groupings are already known), or need extensive training

sets, or (c) are not freely available (see Table 3).

Table 1. Test data used in our study.

Dataset Words Conc. Lang. Cog. Div.

Bahnaric (Sidwell, 2015) [20] 4546 200 24 1055 0.20

Chinese (Běijīng Dàxué, 1964) [24] 3653 180 18 1231 0.30

Huon (McElhanon, 1967) [22] 1668 139 14 855 0.47

Romance (Saenko, 2015) [21] 4853 110 43 465 0.07

Tujia (Starostin, 2013) [23] 513 109 5 179 0.17

Uralic (Syrjänen et al, 2013) [25] 1401 173 7 870 0.57

TOTAL 16634 911 111 4655 0.30

doi:10.1371/journal.pone.0170046.t001

Table 2. Training data used in our study.

Dataset Words Conc. Lang. Cog. Div.

Austronesian (Greenhill et al., 2008) [1] 4358 210 20 2864 0.64

Bai (Wang, 2006) [27] 1028 110 9 285 0.19

Chinese (Hóu, 2004) [28] 2789 140 15 1189 0.40

IndoEuropean (Dunn, 2012) [2] 4393 207 20 1777 0.38

Japanese (Hattori, 1973) [29] 1986 200 10 460 0.15

ObUgrian (Zhivlov, 2011) [30] 2055 110 21 242 0.07

TOTAL 16609 977 95 6817 0.30

doi:10.1371/journal.pone.0170046.t002
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We decided to take four publicly available methods as the basis of our test study, the

Turchin Method, the Edit Distance Method, the SCAMethod, and the LexStat Method. Addi-

tionally, we tested a modified version of the LexStat method which we call Infomap. In this

modified version of LexStat we introduced an improved partitioning method based on the

Infomap algorithm for community detection [33]. All methods are presented in more detail

below.

The four publicly available methods are all implemented as part of the same software pack-

age (LingPy, http://lingpy.org, [42]), and represent different degrees of algorithmic sophistica-

tion and closeness to linguistic theory, with the Turchin Method being very simple and

computationally extremely fast, and the LexStat Method being rather complex and time-con-

suming. For the usage of the fifth method, we wrote a small LingPy plugin which builds on the

python-igraph package (http://igraph.org/python-igraph/, [43], see details below) and is pro-

vided along with our supplementary material.

Cognate Detection following Turchin et al [44]. The Turchin method (also called Conso-

nant Class Matching approach) was proposed by Turchin et al. [44]. In this method, the conso-

nants of the words are converted to one of 10 possible consonant classes. The idea of

consonant classes (also called sound classes) was proposed by Dolgopolsky [45], who stated

that certain sounds occur more frequently in correspondence relation than others and could

therefore be clustered into classes of high historical similarity. In the approach by Turchin

et al., two words are judged to be cognate, if they match in their first two consonant classes.

Cognate Detection using the Edit Distance approach. A second method provided by

LingPy, the Edit Distance approach, takes the normalized Levenshtein distance [46], between

all word pairs in the same meaning slot and clusters these words into potential cognate sets

using a flat version of the UPGMA algorithm [47] which terminates once a certain threshold

of average distances between all words is reached. This general procedure of flat clustering,

which is also employed for the two remaining cognate detection methods provided by LingPy,

is illustrated in Fig 1A and 1B.

Cognate Detection using the Sound Class Algorithm. A third method available in the

LingPy package, the SCA method, uses the same threshold-based clustering algorithm as the

Edit Distance but employs distance scores derived from the Sound-Class Based Alignment

Table 3. Recent approaches to cognate detection.A plus “+” indicates that the algorithmmeets the require-
ment, a minus “-” indicates that its failure. ML (multilingual) refers to the ability of an algorithm to identify cog-
nate words across more than two languages at the same time. RQ (requirements) refers to additional
requirements apart from the raw word list data, such as needing reference phylogenies or extensive training
data. FA (free availability) means that the method has a useable public implementation.

Cognate Detection Approach ML? RQ? FA?

Mackay and Kondrak, 2005, [34] - + -

Bergsma and Kondrak, 2007, [35] + + -

Turchin et al., 2010, [44] + + +

Berg-Kirkpatrick and Klein, 2011, [36] - + -

Hauer and Kondrak, 2011, [37] + + -

Steiner et al., 2011, [38] + + -

List, 2014, [19] + + +

Beinborn et al., 2013, [31] - - -

Bouchard-Côté, et al. 2013, [32] + - -

Rama, 2013, [39] - + -

Ciobanu and Dinu, 2014, [40] - + -

Jäger and Sofroniev 2016, [41] + - -

doi:10.1371/journal.pone.0170046.t003
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(SCA) method [19]. This method for pairwise and multiple alignment analyses uses expanded

sound class models along with detailed scoring functions as its basis. In contrast to previous

alignment algorithms [48], the SCA algorithm takes prosodic aspects of the words into account

and is also capable of aligning within morpheme boundaries, if morpheme information is

available in the input data [19].

Cognate Detection using the LexStat method. The last publicly available method we

tested, the LexStat method, is again based on flat UPGMA clustering, but in contrast to both

the Edit-Distance method and the SCAmethod, it uses language-specific scoring schemes

which are derived from a Monte-Carlo permutation of the data [19]. This permutation, by

which the wordlists of all language pairs are shuffled in such a way that words denoting differ-

ent meanings are aligned and scored, is used to derive a distribution of sound-correspondence

frequencies under the assumption that both languages are not related. The permuted distribu-

tion is then compared with the attested distribution, and converted into a language-specific

scoring scheme for all language pairs. Using this scoring scheme, the words in the data are

aligned again, and distance scores are derived which are then used as the basis for the flat clus-

ter algorithm.

Differences between algorithms. In order to illustrate the differences between these four

algorithms, we analysed the test set by Kessler [49]. This dataset is particularly interesting for

the task of cognate detection, since the sample of languages contains not only four Indo-Euro-

pean languages with different degrees of genetic affiliation, but also unrelated languages from

different language families. When running the algorithm with default thresholds as proposed

in List [19], LexStat performs best, showing the smallest amount of false positives and false

negatives, followed by SCA, Edit-Distance, and Turchin. When looking at specific results of

this analysis, like the cognate judgments for the concept ‘there’, given in Table 4, for example,

we can immediately see the shortcomings of the language-independent methods. The Turchin

method (T), for example, links Albanian [aty] and Navajo [ʔaːdi] as cognate, where these are a

Fig 1. Workflows for automatic cognate detection. In LingPy, cognate detection is treated as a hierarchical clustering task.
After distances or similarities between word pairs have been determined (A), a hierarchical clustering algorithm is applied to the
matrix and terminates when a certain threshold is reached (B). Similarity networks start from a graph-representation of the
similarity or distance matrix (C). In a first step, edges whose score exceeds a certain threshold are removed from the graph (D). In
a second step, state-of-the-art algorithms for community detection are used to partition the graph into groups of cognate words (E).

doi:10.1371/journal.pone.0170046.g001
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clear chance resemblance in the consonant class structure. Note that initial vowel is treated

identical with initial glottal stop in the Turchin method, following the original sound class pro-

posal by [45].

The Edit Distance (E) method also identifies a chance resemblance by proposing that

French [la] and Hawaian [laila] are cognate. The Edit-Distance method is especially prone to

identifying chance similarity as cognacy, and this risk increases as languages get more and

more different [15]. The threshold of the SCA method (S) is too low to identify any cognate set

for the concept ‘there’. Only the LexStat method (L) correctly identifies English [ðεr] and Ger-
man [daː] as cognates, but not due to the phonetic similarity of the words, but due to the fact

that matches of English [ð] and German [d] recur frequently in the dataset.

Similarity Networks. All the above cognate detection methods currently use a rather sim-

ple flat clustering procedure. The basis of this procedure is a clustering algorithm which termi-

nates when average distances among sequences exceed a certain threshold. In evolutionary

biology, the task of homolog detection is often approached from a network perspective. In simi-

larity networks, for example, gene or protein sequences are modeled as the nodes of a network,

and edges between the nodes are drawn with weights representing the pairwise similarities [50,

51]. Homolog detection is then modeled as a network partitioning task by which the network

is divided into subgraphs with some objective criterion being used to define the best partition

of the original network. While originally developed for the application in evolutionary biology,

sequence similarity networks are now increasingly being tested on linguistics data [52, 53] and

it was proposed that they might not only help to detect both genetically related words as well

as words which have been borrowed [54]. Many strategies for network partitioning exist. The

most common methods used in biology are Markov Clustering [55], k-means [56], and Affin-

ity Propagation [57]. k-means has the strong disadvantage that it requires that the number of

clusters into which the data shall be partitioned needs to be specified in advance. Tests in evo-

lutionary biology have further shown that Markov Clustering outperforms Affinity Propaga-

tion [58]. This finding suggests that Markov Clustering would be an ideal choice for linguistic

applications. However, when testing the approach on our training data, the results were incon-

clusive, and no real improvement compared with the default clustering algorithm used in

LingPy could be observed.

For this study, we followed List et al. [53] in testing a partitioning approach which was orig-

inally developed for the task of community detection in social network analysis [59] and has

shown to perform with a high accuracy: The Infomap algorithm [33] uses random walks to

identify the best way to assign the nodes in a network to distinct communities. In order to con-

vert the matrix of pairwise distances between words into a graph, we first define a threshold,

Table 4. Cognate detection algorithms in LingPy.Columns show the performance of cognate identification
for the given wordforms in the International Phonetic Alphabet (IPA). The algorithms are the Turchin, Edit dis-
tance, Sound Class Algorithm, and LexStat methods. Italic numbers indicate false positives (forms incorrectly
identified as cognate) and bold numbers indicate false negatives (forms incorrectly identified as not cognate)
in comparison with theGold Standard.

Language Word IPA T E S L G

Albanian aty aty 1 1 1 1 1

English there ðεr 2 2 2 2 2

French là la 3 3 3 3 3

German da daː 4 4 4 2 2

Hawaiian laila laila 5 3 5 4 4

Navajo ’áadi ʔaːdi 1 5 6 5 5

Turkish orada ora 6 6 7 6 6

doi:10.1371/journal.pone.0170046.t004
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and then add edges between all words whose pairwise distance is below the threshold. The

edge weight is the distance score converted to a similarity score by subtracting it from 1. We

use the pairwise distance matrices produced by the LexStat method, since this was shown to

outperform the other three methods implemented in LingPy [19]. How cognate detection is

modeled as a graph partitioning problem applied to similarity networks is displayed in more

detail in Fig 1C and 1D.

Evaluation. It is not necessarily an easy task to compare how well an algorithm for auto-

matic cognate detection performs in comparison with a “gold” standard. In our study, our

gold standard are the expert cognate decisions by historical linguists using the comparative

method. Scholars often use pairwise scores [32] for evaluation. In these scores, all words in a

concept slot are assembled into pairs. The pair score is then calculated by comparing how

many pairs in the gold standard are identically clustered by the algorithm, and vice versa. This

is simple and straightforward, since, for pairs, there are only two possible decisions, namely

whether they are cognate or not. We can then simply count how many pairs in the gold stan-

dard are also judged to be cognate by the algorithm, or how many pairs proposed to be cognate

by the algorithm are also cognate according to the gold standard. The advantage of this score is

that we can directly convert it into an intuitive notion of false positives and false negatives ver-

sus true positives and true negatives.

Breaking down the comparison of two different clusters into pairs is, however, problematic,

since it has a strong bias in favoring datasets containing large amounts of non-cognate words

[19]. In order to avoid these problems, we used B-Cubed scores as our primary evaluation

method [37, 60, 61]. For the calculation of B-Cubed scores, we need to determine for each of

the words the intersection of words between its cognate set in the gold standard and its cognate

set proposed by the algorithm, as well as the size of the respective cognate sets. This is illus-

trated in Table 5 for a fictive test analysis of the five words in Fig 1, which wrongly clusters the

Greek word with the English and the German word. For the B-Cubed precision we then aver-

age the size of the intersection divided by the size of the cognate set proposed by the algorithm

for each of the words in our sample:

P ¼
1
3
þ 2

3
þ 2

3
þ 2

2
þ 2

2

5
¼ 0:73 ð1Þ

For the B-Cubed recall we average the intersection size divided by the cognate set size in the

gold standard:

R ¼
1
1
þ 2

2
þ 2

2
þ 2

2
þ 2

2

5
¼ 1:0 ð2Þ

Table 5. Preliminaries for B-Cubed score calculation. Cognate clusters, cluster size and cluster intersection for a fictive test analysis of the five words from
Fig 1 compared to a gold standard.

Word Cogn. Clusters Cluster Size Intersection

Gold Test Gold Test

çeri 1 1 1 3 1

hant 2 1 2 3 2

hænd 2 1 2 3 2

ruka 3 2 2 2 2

r~εŋka 3 2 2 2 2

doi:10.1371/journal.pone.0170046.t005
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The B-Cubed F-Score is then computed as usual:

F ¼ 2� P � R

P þ R
¼ 2� 0:73 � 1

0:73 þ 1
¼ 0:846153 ð3Þ

Threshold and Parameter Selection

Apart from the Turchin method, all analyses require a threshold which ranges between 0 and

1, denoting the amount of similarity needed to judge two items as cognate. In order to find the

most suitable threshold for each of the three methods, we used the expert cognate decisions in

our training set and ran the analyses on these data with varying thresholds starting from 0.05

up to 0.95. Fig 2 shows box-plots of the training analyses for the four methods, depending on

Fig 2. Determining the best thresholds for the methods. The y-axis shows the B-Cubed F-scores averaged over all training sets, and the x -axis shows
the threshold for the 5 methods we tested. Infomap shows the best results on average, Edit Distance performs worst. Dots in the plots indicate the mean for
each sample, with triangular symbols indicating the peak.

doi:10.1371/journal.pone.0170046.g002
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the threshold. As can be seen from this figure, all methods show a definite peak where they

yield the best results for all datasets. In order to select the best threshold for each of the four

methods, we selected the threshold which showed the best average B-Cubed F-Score (i.e. the

best accuracy at recovering the known cognate sets). For the Edit Distance Method, the thresh-

old was thus set to 0.75, for the SCAMethod it was set to 0.45, for the LexStat Method, it was

set to 0.60, and for the Infomap method, it was set to 0.55. The B-Cubed scores for these analy-

ses are given in Table 6. These results indicate that the Infomap method performs best, fol-

lowed by LexStat and SCA. Of the two worst-performing methods, the Turchin method

performs worst in terms of F-Scores, but shows a much higher precision than the Edit-Dis-

tance method.

Results

We analyzed the datasets with each of the five methods described above, using the individual

thresholds for each method, setting the number of permutations to 10,000, and using the

default parameters in LingPy. For each analysis, we further calculated the B-Cubed scores to

evaluate the performance of each method on each dataset.

Table 7 shows the averaged results of our experiments. While the LexStat method shows the

highest precision, the Infomap method shows the highest recall and also the best general per-

formance. The results are generally consistent with those reported by List [19] for the perfor-

mance of Turchin, Edit Distance, SCA, and LexStat: The Turchin method is very conservative

with a low amount of false positives as reflected by the high precision, but a very large amount

of undetected cognate relations as reflected by the low recall. The Edit Distance method shows

a much higher cognate detection rate, but at the cost of a high rate of false positives. The SCA

method outperforms the Edit Distance, thus showing that refined distance scores can make a

certain difference in automatic cognate detection.

However, as the performance of LexStat and Infomap shows: Language-specific approaches

for cognate detection clearly outperform language-independent approaches. The reason for

this can be found in the specific similarity measure that is employed by the methods: the better

performing methods are not based on surface similarities, but on similarities derived from pre-

viously inferred probability scores for sound correspondences. These methods are therefore

Table 6. Results of the training analysis to identify the best thresholds. Bold numbers indicate best values.

Method Thr. Prec. Recall F-Score

Turchin - 0.8953 0.7276 0.8006

Edit Distance 0.75 0.8341 0.8101 0.8144

SCA 0.45 0.8650 0.8449 0.8529

LexStat 0.60 0.9204 0.8287 0.8700

Infomap 0.55 0.9012 0.8712 0.8830

doi:10.1371/journal.pone.0170046.t006

Table 7. General results of the test analysis.

Method Prec. Recall F-Score

Turchin 0.9108 0.7501 0.8175

Edit Distance 0.8397 0.8484 0.8396

SCA 0.8826 0.8492 0.8632

LexStat 0.9227 0.8488 0.8831

Infomap 0.9031 0.8898 0.8942

doi:10.1371/journal.pone.0170046.t007
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much closer to the traditional comparative method than methods which employ simple surface

similarities between sounds. Our experiment with the Infomap algorithm shows that a shift

from simple agglomerative clustering approaches to a network perspective may further

strengthen the results. Similarity networks have been successfully employed in evolutionary

biology for some time now and should now become a fruitful topic of research in computa-

tional historical linguistics as well.

Dataset Specific Results

There are interesting differences between method performance across language datasets, with

marked variation in cognate identification accuracy between different languages. Fig 3 shows

the performance of the methods on the individual test sets, indicating which method per-

formed best and which method performed worst. These results confirm the high accuracy of

the LexStat method and the even better accuracy of the Infomap approach. All methods apart

from the Turchin method perform the worst on the Chinese data. Since compounding is very

frequent in Chinese, it is difficult to clearly decide which words to assign to the same cognate

set. Often, words show some overlap of cognate material without being entirely cognate. This

is illustrated in Fig 4, where cognates and partial cognates for Germanic and Sinitic languages

are compared. We followed a strict procedure by which only words in which all morphemes

are cognate are labelled as cognate [62], rather than loosely placing all words sharing a single

Fig 3. Individual test results (B-Cubed F-Scores). The figure shows the individual results of all algorithms
based on B-Cubed F-Scores for each of the datasets. Results marked by a red triangle point to the worst
result for a given subset, and results marked by a yellow star point to the best result. Apart from Uralic, our
new Infomap approach always performs best, while the Turchin approach performs worst in four out of six
tests.

doi:10.1371/journal.pone.0170046.g003
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cognate morpheme in the same cognate set [63]. Since neither of the algorithms we tested is

specifically sensitive for partial cognate relations (for a recent proposal for this task, see [53]),

they all show a very low precision, because they tend to classify only partially related words as

fully cognate.

The Turchin method has three extreme outliers in which it lags far behind the other meth-

ods: Chinese, Bahnaric and Romance. There are two major reasons for this. First, the Turchin

method only compares the first two consonants and will be seriously affected by the problem

of partial cognates discussed above. These partial cognates are especially prevalent in Chinese

and Bahnaric where compounding is an important linguistic process. Second, a specific weak-

ness of the Turchin method is the lack of an alignment and words are not exhaustively com-

pared for structural similarities but simply mapped in their first two initial consonants. When

there is substantial sound change, as is evident in both Bahnaric and some branches of

Romance, this may lead to an increased amount of false negatives. Since the Turchin method

only distinguishes 10 different sound classes and only compares the first two consonant classes

in each word in the data, it is very likely to miss obvious cognates. The main problem here is

that the method does not allow for any transition probabilities between sound classes, but

treats them as discrete units. As a result, it is likely that the Turchin method often misses valid

cognate relations which are easily picked up by the other methods. This shortcoming of the

Turchin approach is illustrated in Fig 5, where the amount of true positives and negatives is

contrasted with the amount of false positives and negatives in each dataset and for each of the

five methods. This figure indicates that the Turchin method shows exceptionally high amounts

of false negatives in Bahnaric and Romance. The clear advantage of the Turchin method is its

speed, as it can be computed in linear time. Its clear disadvantage is its simplicity which may

under certain circumstances lead to a high amount of false negatives.

The Edit-Distance method also performs very poorly. While, on average, it performs better

than the Turchin approach, it performs considerably worse on the Chinese and Huon test sets.

The reason for this poor performance can be found in a high amount of false positives as

shown in Fig 5. While the Turchin method suffers from not finding valid cognates, the Edit-

Distance method suffers from the opposite problem—identifying high amounts of false cog-

nates. Since false positives are more deleterious for language comparison, as they might lead to

false conclusions about genetic relationship [15], the Edit-Distance method should be used

with very great care. Given that the SCA method performs better while being similarly fast,

there is no particular need to use the Edit-Distance method at all.

In Fig 6, we further illustrate the difference between the worst and the best approaches in

our study by comparing false positives and false negatives in Turchin and Infomap across all

language pairs in the Chinese data. As can be seen from Fig 5, the Turchin approach has about

Fig 4. Partial and non-partial cognate relations. The word for “moon” in Germanic and Sinitic languages is
mono-morphemic in Germanic languages, while it is usually compounded in Chinese dialects, with the first
element in the compoundmeaning “moon” proper, while the second often originally meant “shine” or “glance”.
The different cognate relations among the morphemes in the Chinese words make it impossible to give a
binary assessment regarding the cognacy of the four words.

doi:10.1371/journal.pone.0170046.g004
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as many false positives as false negatives. The Infomap approach shows slightly more false posi-

tives than false negatives. This general picture, however, changes when looking at the detailed

data plotted in Fig 6. Here, we can see that false positives in the Turchin approach occur in

almost all dialect pairings, while the major number of cognates is missed in the mainland dia-

lects (bottom of the y-axis). Infomap, on the other hand, shows drastically fewer false positives

and false negatives, but while false negatives can be mostly observed in the Northern dialects

(bottom of y-axis), false positives seem to center around the highly diverse Southern dialects

(top of the y-axis). This reflects the internal diversity in Northern and Southern Chinese dia-

lects, and the challenges resulting from it for automatic cognate detection. While word com-

pounding is very frequent in the North of China, where almost all words are bisyllabic and

bimorphemic, the Southern dialects often preserve monosyllabic words. While Northern dia-

lects are rather homogeneous, showing similar sound systems and a rather large consonant

inventories, Southern dialects have undergone many consonant mergers in their development,

and are highly diverse. The unique threshold for cognate word detection overestimates similar-

ities among the Southern dialects (upper triangle, left quarter), while it underestimates similar-

ities among Northern dialects compared to Southern dialects (lower triangle, left quarter).

What further contributes to this problem is also the limited size of the word lists in our sample,

which make it difficult for the language-specific algorithms to acquire enough deep signal.

Discussion

In this study we have applied four published methods and one new method for automated cog-

nate detection to a set of six different test sets from five different language families. By training

our data on an already published dataset of similar size, we identified the best thresholds to

obtain a high accuracy for detecting truly related words for four out of the five methods (Edit-

Distance: 0.75, SCA: 0.45, LexStat: 0.6, Infomap: 0.55). Using these thresholds, we tested the

Fig 5. Distribution of true and false positives and true and false negatives.

doi:10.1371/journal.pone.0170046.g005
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methods on our new gold standard, and found that most methods identified cognates with a

considerable amount of accuracy ranging from 0.82 (Tuchin) to 0.89 (Infomap). Our new

method, which builds on the LexStat method but employs the Infomap algorithm for commu-

nity detection to partition words into cognate sets, outperforms all other methods in almost all

regards, slightly followed by the LexStat approach. Given that the LexStat method and our

Infomap approach are based on language-specific language comparison, searching for similar

patterns in individual language pairs, our results confirm the superiority of cognate detection

approaches which are closer to the theoretical foundation of the classical comparative method

in historical linguistics. The Consonant Class Matching method by Turchin et al. confirmed

worst in our experiment, followed by the Edit-Distance approach, which was criticized in ear-

lier work [15]. While the major drawback of the Turchin approach is a rather large amount of

false negatives, the Edit-Distance approach shows the highest amount of false positives in our

test.

Fig 6. Comparing false positives and false negatives in the Chinese data. The figure compares the amount of false positives and false negatives, as
measured in pairwise scores for the Turchin method and our Infomap approach for all pairs of language varieties in the Chinese test set. The upper triangle of
the heatmaps shows the amount of false positives, while the lower triangle shows the amount of false negatives.

doi:10.1371/journal.pone.0170046.g006
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The method of choice may well depend on the task to which cognate detection is to be

applied. If the task is to simply identify some potential cognates for future inspection and

annotation, then a fast algorithm like the one by Turchin et al. should provide enough help to

get started. This practice, which is already applied by some scholars [64], is further justified by

the rather small amount of false positives. While the use of the Turchin method may be justi-

fied in computer-assisted workflows, the use of the Edit-Distance approach should be discour-

aged, since it lacks the speed advantages and is very prone to false positives.

When searching for deeper signals in larger datasets, however, we recommend using the

more advanced methods, like SCA, LexStat or our new Infomap approach. LexStat and Info-

map have the great advantage of taking regular sound correspondences into account. As a

result, these methods tend to refuse chance resemblances and borrowings. Their drawback is

the number of words needed to carry out the analysis. As we know from earlier tests [65], lan-

guage-specific methods require at least 200 words for moderately closely related languages.

When applied to datasets with higher diversity among the languages, the number of words

should be even higher. Thus, when searching for cognates in very short word lists, we recom-

mend using the SCA method to achieve the greatest accuracy. However, as demonstrated by

the poorer performance of all methods on the Chinese language data where compounding has

played a major role in word formation, language family specific considerations about the

methods and processes need to be taken into consideration.

Our results show that the performance of computer-assisted automatic cognate detection

methods has advanced substantially, both with respect to the applicability of the methods

and the accuracy of the results. Moreover, given that the simple change we made from

agglomerative to network-based clustering could further increase the accuracy of the

results, shows that we have still not exhausted the full potential of cognate detection meth-

ods. Future algorithms may bring us even closer to expert’s judgments, and it seems worth-

while to invest time to increase the performance of our algorithms. Essential tasks for the

future include (a) the work on parameter-free methods which do not require user-defined

thresholds and state the results as probabilities rather as binary decisions, (b) the further

development of methods for partial cognate detection [53], (c) approaches that search for

cognates not only in the same meaning slot but across different meanings [66], and (d)

approaches that integrate expert annotations to allow for a true iterative workflow for com-

puter-assisted language comparison. A key problem to solve is the performance of these

methods on larger datasets that trace language relationships to a greater depth. Most of our

test cases in this paper are shallow families or subgroups of larger families. Deeper relation-

ships between languages spoken in more complicated language situations are where the real

challenge lies.

Currently automatic cognate detection algorithms are highly accurate at detecting a sub-

stantial proportion of the cognates in a lexical dataset. Tools like LingPy are already at a stage

where they can act as a computer-assisted framework for language comparison. These tools

therefore provide a powerful way of supplementing the historical linguistics toolkit by enabling

linguists to rapidly identify the cognate sets which can then be checked, corrected, and aug-

mented as necessary by experts. In regions where there has been an absence of detailed histori-

cal comparative work, these automated cognate assignments can provide a way to pre-process

linguistic data from less well studied languages and speed up the process by which experts

apply the comparative method. Additionally, these tools can be employed for exploratory data

analysis of larger datasets, or to arrive at preliminary classifications for language families

which have not yet been studied with help of the classical methods.
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4.2 Phonetic Alignments and Sound Correspondences

4.2 Phonetic Alignments and Sound Correspondences
Although the past research has illustrated that methods for automated sequence comparison are already
in a state where they could provide real help to historical linguists, be it by helping them to speed up the
process of data annotation for the purpose of studies on phylogenetic reconstruction, or in assembling
data for etymological dictionaries, the methods are still only rarely applied. There are different reasons
for this situation. First, not all linguists are experienced in the application of software. They do not know
how to follow code examples and how to apply them on their own data. Second, scholars are often also
quite skeptical regarding the new methods and see them as potential enemies rather than useful helpers.
In order to address the first problem, I decided to write a detailed tutorial, together with colleagues

with a historical and a computational background. The major idea was to present the state-of-the-art of
computational sequence comparison approaches in historical linguistics and to provide colleagues with a
detailed tutorial presenting major caveats (data handling, parameter settings, evaluation) when applying
the new techniques. The tutorial was presented in form of an article describing the background and
providing literature and key example and in form of an accompanying online tutorial which would lead
interested users step by step through the analysis of a newly created dataset of Polynesian languages (List
2018).
In order to address the second problem, I realized that it would be important to show that automated se-

quence comparison methods could go beyond the rather straightforward identification of cognate words.
Since practitioners of historical language comparison often assume that they do not need much help in
identifying cognate sets in their data, it was important to develop an approach that could immediately
show a use-case for which there was no traditional counterpart. It turned out that this use-case was
the identification of sound correspondence patterns. Although linguists often list regular sound corre-
spondences for two and sometimes also for more languages, they barely do so in a systematic way that
would trace all positions in known cognate sets to a given pattern. The reason why this had never been
done in historical linguistics so far, seems to lie in the complexity of the problem. Scholars have been
assembling cognate sets in etymological dictionaries for a long time. This resulted in specific styles and
unspoken rules in which data are usually assembled. A detailed listing of sound correspondence patterns,
however, drastically exceeds the complexity of etymological data, requiring the use of alignments and
cross-references across multiple tables. There is no straightforward way to represent these inferences
in a book-style resource, but books have been for a long time the typical resource in which data were
assembled in historical linguistics.
When working on automated methods to infer sound correspondences from aligned cognate sets,

I realized at some point that the problem of correspondence pattern inference could be treated as a
very specific network partitioning problem. The goal was to assemble correspondence patterns from the
individual columns of aligned cognate sets and to assign those individual columns to the same pattern
which are identical or compatiblewith each other. As discussed in detail in (List 2019b), it turned out that
the partitioning problem could be modeled as the minimum clique cover problem (Bhasker and Samad
1991: 2), which is a well-known problem in graph theory and computer science, for which approximate
solutions exist. Having identified the problem, it was straightforward to show how it could be applied
to concrete linguistic datasets. However, since linguists never tried to solve the problem themselves
exhaustively on a given dataset, it was only possible to test the inferences indirectly. Here, it turned out
that the correspondence patterns, once inferred, can be easily use to predict possible cognate words, even
if they are not present in the data. By deleting words artificially from test datasets, it was possible to show
that the predictive capacity of the automatically inferred correspondence patterns is rather high, ranking
from 50% to more than 90%, depending on the age and diversity of the language family.
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Abstract

With increasing amounts of digitally available data from all over the world, manual annotation of cog-

nates in multi-lingual word lists becomes more and more time-consuming in historical linguistics.

Using available software packages to pre-process the data prior to manual analysis can drastically

speed-up the process of cognate detection. Furthermore, it allows us to get a quick overview on data

which have not yet been intensively studied by experts. LingPy is a Python library which provides a

large arsenal of routines for sequence comparison in historical linguistics. With LingPy, linguists can

not only automatically search for cognates in lexical data, but they can also align the automatically

identified words, and output them in various forms, which aim at facilitating manual inspection.

In this tutorial, we will briefly introduce the basic concepts behind the algorithms employed by LingPy

and then illustrate in concrete workflows how automatic sequence comparison can be applied to

multi-lingual word lists. The goal is to provide the readers with all information they need to (1) carry

out cognate detection and alignment analyses in LingPy, (2) select the appropriate algorithms for the

appropriate task, (3) evaluate how well automatic cognate detection algorithms perform compared to

experts, and (4) export their data into various formats useful for additional analyses or data sharing.

While basic knowledge of the Python language is useful for all analyses, our tutorial is structured in

such a way that scholars with basic knowledge of computing can follow through all steps as well.

Key words: historical linguistics; computer-assisted language comparison; Polynesian languages; cognate detection;

phonetic alignment

1. Introduction

Sequence comparison is one of the key tasks in historical

linguistics. By comparing words or morphemes across

languages, linguists can identify which words have

sprung from a common source in genetically related lan-

guages, or which words have been borrowed from one

language to another. By comparing words within a lan-

guage, linguists can identify grammatical and lexical

morphemes, cluster words into families, and shed light

on the internal history of languages. So far the majority

of this work has been carried out manually. Linguists

sift through dictionaries and fieldwork notes, trying to

identify those words which reflect a shared history

across languages. All etymological dictionaries available

today have been based on manual word comparison and

their results fill thousands of pages. Even the largest

databases which offer cognate judgments, such as

the Austronesian Basic Vocabulary Database (ABVD,
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Greenhill et al., 2008) or the Indo-European Lexical

Cognacy Database (Dunn, 2012) are based on manual

assessments of cognacy.

With the increasing amounts of digitally available data

it becomes harder for linguists to keep up. For example,

the Sino-Tibetan Etymological and Thesaurus database

(Matisoff, 2015), contains more than 500,000 words, but

only a small amount of words have been compared etymo-

logically (see Hill and List, 2017: 64f). We need to take

advantage of increasing amounts of data, refining work on

well-established languages, and fostering work on the

world’s understudied languages. To do this, however, we

will have to rethink the way we compare languages.

Historical linguists are skeptical about automating

the methods for cognate identification (see Holman

et al. (2011) and commentaries, as well as List et al.

(2017b)). First, the accuracy of automated methods is

often low, failing to reproduce the analyses of linguistic

experts. Especially, the use of the edit distance

(Levenshtein, 1965) has been criticized for being linguis-

tically too nave, conflating sound correspondences and

lexical replacement, to be useful for subgrouping or cog-

nate detection (Campbell, 2011; Greenhill, 2011).

Second, it is hard to verify many algorithms as they are

seen as black-boxes which hide the crucial decisions

leading to cognate judgments and subgroupings, making

it difficult for scholars to determine whether similarities

are due to inheritance or contact (Jäger, 2015; List et al.,

2017b). The nontransparency of automatic methods is

highly problematic for computational historical linguis-

tics: if we do not know what evidence decisions are

based on, we cannot criticize and improve them.

However, methods for automatic sequence compari-

son in historical linguistics have dramatically improved

during the last two decades. Starting with the pioneering

work on pairwise and multiple phonetic alignment

(Kondrak, 2000; Proki�c et al., 2009), new methods for

phonetic alignment and automatic cognate detection

solve both the problems of verification and accuracy

(List et al., 2017b; Jäger et al., 2017). First, these algo-

rithms are based on phonetically informed metrics on

sound similarities. Importantly, any algorithmically

identified correspondences are logged and can be

inspected by researchers. Second, in a wide-ranging test

of these methods, they have been found to be highly ac-

curate and able to correctly identify cognates in almost

90% of the cases (List et al., 2017b).

LingPy (List et al., 2017a) provides these algorithms

as part of a stable open-source software package that

works on all major platforms. Given the complexity

of the problems involving sequence comparison in his-

torical linguistics, computers will not be able to replace

human judgments any time soon, but with the recent

advancements, the methods are definitely good enough

to provide substantial help for classical historical lin-

guists to pre-analyze the data to be later corrected by

experts, or to check the consistency of human cognate

judgments. Over the long run, computational methods

can also contribute to the bigger questions of language

evolution, be it indirectly, by increasing the amount of

digitally available high-quality annotated data, or direct-

ly, by providing scholars’ access to data too large to be

processed by humans alone.

In the following, we will give a concise overview on

how automatic sequence comparison can be carried out.

After discussing general aspects of sequence comparison

(Section 2), we will introduce basic ideas on the data

needed (Section 3). We will then turn to the core tasks of

automatic sequence comparison, namely automatic

phonetic alignment (Section 4) and automatic cognate

detection (Section 5). We conclude by showing how

automatic approaches for cognate detection can be eval-

uated (Section 6), and how results can be exported to

various formats (Section 7).

This article is supplemented by a detailed interactive

tutorial in form of an IPython Notebook (Pérez and

Granger, 2007) which illustrates how all methods dis-

cussed here can be practically applied (see the

Supplementary material for more information). Having

installed the necessary software (Tutorial: 1), readers

can follow the tutorial step by step and investigate how

the algorithms work in practise. Our data is based on a

small sample of Polynesian languages taken from the

ABVD, which we substantially revised, both with re-

spect to the phonetic transcriptions and the expert cog-

nate judgments. All data needed to replicate the analyses

discussed here are supplemented. We give more informa-

tion in the interactive tutorial (Tutorial: 2.1).

2. Basic aspects of sequence comparison

The words and morphemes which constitute a language

are best modeled as sequences of sounds. Sequences

have information content not only from their elements

(segments, whether these are phonemes, graphemes, or

morphemes) but also via the order of the elements, a

consistent comparison of sequences should account for

both order and content. Alignments are a very general

way to model differences between sequences. The major

idea is to arrange two or more sequences in a matrix in

such a way that similar or identical segments which

occur in similar positions are placed in the same column

of the matrix. If segments are missing in one sequence

where no counterpart for a segment can be found, this is
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represented by a gap character, usually the dash-symbol

(List, 2014b).

Sequence alignments are crucial in biology, where

they are used to compare protein and DNA sequences

(Durbin et al., 2002). In historical linguistics, however,

they are usually only implicitly employed, and initial

attempts to arrange cognate words in a matrix go back

to the early 20th century, as one can see from an early

example based on Dixon and Kroeber (1919: 61) given

in Fig. 1. The authors themselves describe this way of

representing sequence similarities as a ‘columnar form’

with the goal to ‘bring out parallelisms that otherwise

might fail to impress without detailed analysis and dis-

cussion’ (Dixon and Kroeber, 1919: 55). The figure fur-

ther shows how the data would look if they were

rendered in contemporary alignment editors for historic-

al linguistics (List, 2017). Dixon and Kroeber’s wording

nicely expresses one of the major advantages of align-

ments: the transparency of homology assessments.

Scholars often list long lists of cognate sets in the litera-

ture, claiming that all words are somehow related to

each other, but if they do not list the alignments, it is

often impossible, even for experts in the same language

family, to understand where exactly the authors think

that certain segments are similar.

Given that the inference of historically related words

is not based on superficial word similarities but on re-

current systematic similarities, known as regular sound

correspondences (Lass, 1997: 130), all judgments

regarding the relatedness of words across languages dir-

ectly rely on previously established sequence alignments

(Fox, 1995: 67f). Alignment analyses not only increase

the transparency of cognate judgments, but they also

play a crucial role in substantiating these judgments in a

first place. As can be seen from Table 1, similarities in

cognate words in Sikaiana and Tahitian (data taken

from Greenhill et al., 2008) are not based on the identity

of sounds, but rather in the regularity of occurrence:

whenever Sikaiana has a [k] and a [l], Tahitian has a [?]

and a [r], respectively. Without alignments, we could

not identify this similarity. Alignments are also at the

core of all automatic sequence comparison approaches

in historical linguistics, as we will see throughout this

tutorial.

3. Data preparation

When searching for cognates across languages, we usu-

ally assume that our data are given in some kind of

wordlist, a list in which a number of concepts is trans-

lated into various languages. How many concepts we se-

lect depends on the research question, and various

concept lists and questionnaires, ranging from 40

(Brown et al., 2008) up to more than 1,000 concepts

(Haspelmath and Tadmor, 2009) have been proposed so

far (see the overview in List et al. (2016a)). Our data ex-

ample for this tutorial is based on the questionnaire of

the ABVD project (Greenhill et al., 2008), consisting of

210 concepts, which were translated into 31 different

Polynesian languages. For closely related languages,

such as those in the Polynesian family, this gives us

enough information to infer regular correspondences

automatically, although it is clear that for analyses of

Figure 1. Early alignment example for translational equivalents of ‘nail’ in aboriginal languages of California (based on Dixon and

Kroeber, 1919), contrasted with a ‘modern’ representation using the EDICTOR tool (List, 2017).

Table 1. Recurring similarities in Sikaiana and Tahitian.

Cognate list Alignment Correspondences

Sikaiana louse k u t u Sik. Tah. Freq.

Tahitian louse ? u t u k ? 3 x

Sikaiana dog k u 1 i+ u u 3 x

Tahitian dog ? u r i+ t t 1 x

Sikaiana skin k i 1 i r 1 2 x

Tahitian skin ? i r i i(+) i(+) 3 x
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more distant language relationship the number of words

per language may not be enough.

The basic format used by LingPy is a tab-separated

input file in which the first row serves as a header and

defines the content of the rest of the rows. The very first

column is reserved for numerical identifiers (which all

need to be unique), while the order of the other columns

is arbitrary, with specific columns being required, and

others being optional. Essential columns which always

must be provided are the language name (DOCULECT),

the comparison concept (CONCEPT), the original tran-

scription (International Phonetic Alphabet (IPA),

FORM, or VALUE), and a space-segmented form of the

transcription (TOKENS). Multiple synonyms for the

same comparison concept in the same language should

be written in separate rows and given a separate ID

each. The data in the TOKENS-column should supply

the transcriptions in space-segmented form, that is, in-

stead of transcribing the Fila word for ‘all’ as [eutSi], the

software expects [e u tS i], which is internally interpreted

as a sequence of five segments, namely [e], [u], [tS] and

[i], with [tS] representing a voiceless post-alveolar affri-

cate. If the TOKENS are not supplied to the algorithm,

it will try to segment the data automatically, provided it

can find the column IPA, which is otherwise not neces-

sarily required to appear in the data. This however, may

lead to various problems and unexpected behavior. We

therefore urge all users of LingPy to make sure that they

supply segmented data to the algorithm, making further-

more sure that they adhere to the general standards of

transcription as they are represented in the IPA

(IPA, 1999).1 The format can be created manually by

using either a text editor, or a spreadsheet program that

allows to export to tab-separated format. To a large

degree, this input format is compatible with the one

advocated by the Cross-Linguistic Data Formats

(CLDF) initiative (Forkel et al., 2017), the main differ-

ence being that LingPy requires a flat single file with tab-

stop as separators, while CLDF supports multiple files.

CLDF furthermore encourages the use of reference cata-

logs, such as Glottolog (Hammarström et al., 2017) or

Concepticon (List et al., 2018), in order to increase the

comparability of linguistic data across datasets, while

LingPy is indifferent regarding the overall comparability

as long as the data is internally consistent. As of version

2.6, LingPy offers routines to convert to and from CLDF

(see Tutorial: 6.3). Figure 2 provides a basic summary

on LingPy’s input formats. More information on the for-

mat, and how it can be loaded into LingPy can be

found in the supplemented interactive tutorial (Tutorial:

2.2-3).

Data quality and consistency plays a crucial role in

the outcome of an automatic sequence comparison. As a

general rule of thumb, we recommend all linguists who

apply LingPy or other software to carry out automatic

sequence comparison, to pay careful attention to what

we call the SANE rules for data sanity: users should pay

close attention to providing a sensible segmentation of

their data, they should aim for high coverage, there

should be no mixing of data from different sources (as

this usually leads to inconsistent transcriptions and may

also increase the number of synonyms), and synonyms

should be evaded.2 These rules are summarized in

Table 2. If the original data does not provide reliable

phonetic transcriptions, as it was the case with the

Polynesian data we use in this tutorial, orthography pro-

files (Moran and Cysouw, 2017) provide an easy way to

refine transcriptions while at the same time segmenting

Figure 2. Input format required by the LingPy package. The last two entries show how synonyms can be handled by placing differ-

ent variants of one concept in one language variety into different rows with a separate ID each.
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the data, and the EDICTOR tool (List, 2017) offers con-

venient ways to check phonological inventories of all

varieties (Tutorial: 2.4). Various coverage statistics can

be computed in LingPy (see Tutorial: 2.5). Synonym sta-

tistics can also be easily computed (see Tutorial: 2.6).

Users should always keep in mind that the quality of

automatic sequence comparison crucially depends on

the quality of the data submitted to the algorithms.

4. Automatic phonetic alignment

Alignments are crucial for historical language compari-

son to search for regular sound correspondence patterns,

layers of borrowed words, or even use them as the start-

ing point for linguistic reconstruction (Fox, 1995).

A further important advantage is that they can be easily

quantified, as we will see in Section 5. Since phonetic

alignment is heavily influenced by bioinformatics, lin-

guists using phonetic alignments should have some basic

understanding of original algorithms and terminology.

In this context, it is not necessarily important to under-

stand how the algorithms work in detail. Instead, we

think it is more important to learn (also by testing the

algorithms with different data and parameters) how the

different options from which users can choose influence

the results. In the following, we will quickly introduce

basic algorithms and concepts involving alignments in

historical linguistics, and how they relate to alignments

in bioinformatics. We will follow the traditional division

into pairwise and multiple alignments (which result

from the differences in complexity of the algorithms),

and introduce the most important concepts and parame-

ters that users should know when applying the methods.

4.1 Pairwise alignment analyses

Pairwise alignment analyses in biology and computer

science date back to the 1970s when scholars like

Needleman and Wunsch (1970), and Wagner and

Fischer (1974) proposed algorithms based on the dy-

namic programming paradigm (Eddy, 2004b) which

drastically reduced the computation time for the task of

aligning two sequences with each other. The basic idea

of the algorithms by Needleman and Wunsch and

Wager and Fischer was to split the problem of finding

one optimal alignment between two sequences into sub-

parts and building the general solution from

optimal alignments of smaller subsequences (Durbin

et al., 2002: 19).3

The major parameters of pairwise alignment algo-

rithms are the scoring function, the gap function, and

the alignment mode. The scoring function (Fig. 3A,

Tutorial: 3.1.1) determines how the matching of seg-

ments is penalized (or favored). In biology, it is well

known that amino acid mutations follow certain transi-

tion preferences. The scoring function defines transition

probabilities for each segment pair, and biologists make

use of a large number of empirically derived scoring

functions (Eddy, 2004a). In linguistics, on the other

hand, we know well that certain sounds are more likely

to occur in correspondence relations with each other

(Dolgopolsky, 1964; Brown et al., 2013), and this

knowledge can be used as a proxy when designing a

scoring function in linguistics. While biology deals with

Table 2. SANE rules for data sanity.

Segmentation matters

Consistent phonetic transcription and segmentation are of crucial importance for

automatic sequence comparison. Computers cannot guess whether multiple graphemes

represent separate or single sound segments.

NOT: Fila [eutSi] ‘all’

BUT: Fila [e u tS i] ‘all’

Aim for high coverage

Each language should have about the same number of words recorded across the

wordlist. A high mutual coverage is important to allow algorithms to find enough

information to determine the major signal.

NOT: L1 150, L2 50

BUT: L1 200, L2 200

No mixing of data from different sources

Mixing data for the same language from various sources can lead to inconsistencies in the

phonetic representation of words, even if they are all given in plain phonetic transcrip-

tions. This will weaken the evidence for regular sound correspondences.

NOT: L1¼Source1þSource2

BUT: L1¼Source1, L2¼Source2

Evade synonyms

Languages often have multiple words for a given meaning. However, these can cause

problems for sequence comparison and further downstream analyses like phylogenetic

reconstruction. Having abundant synonyms in the data (e.g. 40 words for snow) will

necessarily blur this signal.

NOT: Tahitian [tai] ‘sea’,

[moana] ‘ocean’

BUT: Tahitian ‘sea’
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small alphabets, in linguistics, the numbers of possible

sounds in the languages of the world amounts to the

thousands (Moran et al., 2014). It is not practical to de-

sign a matrix containing and confronting all sounds

with each other, and most algorithms reduce the size of

the alphabet by lumping similar sounds into a set of

predefined sound classes (Fig. 3B, Tutorial: 3.1.2), for

which transition probabilities can be efficiently defined,

and which are then given as input for the alignment al-

gorithm (List, 2012a; Holman et al., 2008).

The introduction of gaps in an alignment (Fig. 3C,

Tutorial: 3.1.3) can be seen as a special case of a scoring

function. Instead of comparing two segments, the algo-

rithm checks whether the introduction of a gap might be

preferable. While gaps were originally given the same

penalty, independent of the element with which they

were compared, later studies showed that they could

even be individually adjusted for each position in a se-

quence (Thompson et al., 1994). In linguistics, we know

that sounds in certain positions (like initial consonants)

are less likely to be lost and that new sounds tend to ap-

pear in specific contexts as well. In LingPy, position-

specific gap penalties are derived from the prosodic pro-

files of sequences (List, 2012a). Prosodic profiles essen-

tially reflect for each segment of a word whether it

occurs in weak or strong prosodic positions, and the

user-defined gap penalty is modified accordingly.

The alignment mode (Fig. 3D, Tutorial: 3.1.4) basic-

ally determines which parts of individual sequences are

compared. It is often impossible to compare two words

Figure 3. Basic parameters and concepts in pairwise alignment analyses: (A) Scoring function, (B) Sound classes, (C) Gap function

and (D) Alignment mode.
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entirely. Instead, we compare only certain parts of

which we know that they are cognate, ignoring parts of

which we know they are not. Since the same problem

occurs when comparing the genes of diverse species in

bioinformatics, biologists have long since been working

on solutions, reflected in local alignment analyses

(Smith and Waterman, 1981) in which only the most

similar parts of sequences are compared (see Fig. 3),

while the rest is ignored, or semi-global alignments

(Durbin et al., 2002: 26f).

What should users keep in mind when carrying out

pairwise alignment analyses? As a rule of thumb, we rec-

ommend caution with local alignment analyses, since

these can show unexpected behavior. We also recom-

mend care with custom changes applied to the scoring

or the gap function. Users often naively think by just

‘telling’ the computers which sound changes, this would

automatically lead to excellent alignments and at times

complain that LingPy’s standard algorithms fail to

‘detect certain obvious changes’. However, alignments

are no way to determine sound changes, they are at best

a first step for linguistic reconstruction, and none of the

algorithms which have been proposed so far models any

kind of change. What is modeled instead are corre-

spondences of sounds. It is difficult, if not impossible, to

design an algorithm that aligns sequences of all kinds of

diversity without proposing certain analyses which look

awkward to a trained linguist. But remember, automatic

sequence comparison is not there to replace the experts,

but to help them.

4.2 Multiple alignment analyses in linguistics

Pairwise alignments are crucial for most automatic cog-

nate detection methods (List, 2014b; Jäger et al., 2017).

In order to visualize cognate judgments, or to recon-

struct proto-forms, however, pairwise alignments are

not of great help, as most linguistic research applies to

at least three if not more language varieties. It may

sound counterintuitive for readers not familiar with the

major workflows for automatic cognate detection that

pairwise alignments are mainly used to detect cognates

across multiple languages, while multiple alignments are

only later computed from existing cognate sets. Why not

compute multiple alignments right from the beginning,

as for example, proposed by Wheeler and Whiteley

(2015)? The reason for this workflow is that alignments

only make sense when representing cognate words—

aligning unrelated words just leads to chance

similarities.

For reasons of algorithmic complexity, pairwise align-

ment algorithms cannot simply be rewritten to account

for an arbitrary number of sequences. In order to address

this problem, early approaches used heuristics that ap-

proximate optimal multiple alignments (Feng and

Doolittle, 1987; Thompson et al., 1994). Most of these

algorithms compute pairwise alignments in a first step

and then combine the data in a pairwise fashion until all

alignments are merged into one multiple alignment. The

easiest way to do so is with help of a guide tree, a cluster-

ing of all sequences, which determines in which order

sequences are merged with each other. This procedure is

illustrated in Fig. 4 for the alignment of four words for

‘dog’ in four Polynesian languages (Tutorial: 3.2).

Many extensions of the classical guide-tree heuristics

have been proposed in the biological literature

(Notredame et al., 2000; Morgenstern et al., 1998) and

also adapted in linguistic applications (List, 2012a;

Jäger and List, 2015; Hruschka et al., 2015). While the

fine-tuning of the algorithms may have a solid impact on

multiple alignment analyses involving large sets of lan-

guage varieties, as we often encounter in dialectology

(compare the results of Proki�c et al., 2009 with

List, 2012a), the problem of erroneous alignments is

much less pronounced when using smaller datasets and

working in workflows which start from cognate detec-

tion and compute multiple alignments in a later stage.

For these reasons, we refrain from giving more detailed

descriptions of multiple sequence alignment here, but in-

stead refer the readers to the literature that we quoted in

this section and the examples in the interactive tutorial

(Tutorial: 3.2).

5. Automatic cognate detection

As mentioned in the previous section, we can only mean-

ingfully align words if we know they are historically

related. In order to identify which words are related,

however, we still need to compare them, and most auto-

matic approaches, including the core methods available

in LingPy, make use of pairwise sequence comparison

techniques in order to find historically related words in

linguistic datasets.

The basic workflow of most automatic cognate de-

tection methods can be divided into two major steps.

In the first step, pairwise alignment is used to align all

words to retrieve distance scores for each pair of words

in the data which occur in the same concept slot. If nor-

malized, distance scores typically rank between 0 and 1,

with 0 indicating the identity of the objects under com-

parison, and 1 indicating the maximal difference that

can be encountered for the objects. In a second step,

these distances are used to partition the words into
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presumable cognate sets using tree- or network-based

partitioning algorithms. If we take five words for ‘neck’

from our Polynesian data, Ra‘ivavae [?agapo?a],

Hawaiian [?a:?i:], Mangareva [kaki], Maori [ua], and

Rapanui [˛ao], for example, we can use the normalized

edit distance (NED) to compare all four words with

each other and write the results into a matrix, as shown

in Table 5A.4

In Table 5B, we have carried out the same pairwise

comparison, but this time with a different sequence

comparison measure, following the sound-class-based

alignment method (SCA, List 2012a), in which the idea

of sound classes is combined with sequence alignment

methods. Table 5C shows the results retrieved from the

LexStat method (List, 2012b) which derives distances

from a previous search for regular sound correspond-

ences. As can be seen, when comparing only the matri-

ces, the methods generally differ in the way they handle

sequence similarities. While NED has rather high scores

which do not vary much from each other, SCA has con-

sistently smaller scores with more variation, and LexStat

has higher scores but more variation than NED.

In the second step, the matrix of word pair distances

is used to partition the words into cognate sets. For this,

partitioning algorithms are used which split the words

into cognate sets by trying to account as closely as pos-

sible for the pairwise distances of all words in a given

meaning slot. Early approaches were based on a flat ver-

sion of the well-known UPGMA algorithm (Sokal and

Michener, 1958), which is an agglomerative cluster al-

gorithm that returns the data in the form of a tree. The

flat variant of UPGMA stops merging words into bigger

subgroups once a user-defined threshold of average pair-

wise distances among the words in each cluster has been

reached (List, 2012b). In order to show how algorithms

arrive from pairwise distance scores in a matrix at cog-

nate set partitions, we provide a concrete example in

Fig. 5. First, we have marked all cells in which the dis-

tance is smaller than the recommended threshold for

each method (following List et al., 2017b).5 Second, we

added guide trees (reflecting the clustering proposed

when applying the UPGMA algorithm without stopping

it earlier) below each matrix, which show how the flat

clustering algorithm proceeds. If the algorithm stops

grouping words into a given cluster, because the average

threshold has been reached, this is indicated by a dashed

line, which indicates how the clustering would have pro-

ceeded if the algorithm had not stopped. Given that we

know that of these five words in the figure, only

Hawaiian [?a:?i:] and Mangareva [kaki] are cognate, we

can immediately see that the LexStat algorithm is pro-

posing the correct cognates in this example.

The performance of LexStat is not surprising, if we

take its more sophisticated working procedure into ac-

count. LexStat uses global and local pairwise alignments

to pre-analyze the data, computing language-specific

scoring functions (List, 2012b), in which the similarity

of the segments in a given language pair depends on the

overall number of matches that could be found in the

preprocessing stage.6 In these scoring functions, sound

segments for all languages in the data are represented as

sound-class strings in a certain prosodic environment.

This representation is useful to handle sound corre-

spondences in different contexts (word-initial, word-

final, etc.). For each language pair in the data, LexStat

creates an attested and an expected distribution of sound

correspondences. The attested distribution is computed

for words with the same meaning and whose SCA score

is beyond a user-defined threshold. The expected distri-

bution is computed by shuffling the word lists in such a

way that words with different meanings are aligned and

compared, with the users defining how often word lists

should be shuffled. This permutation test following sug-

gestions by Kessler (2001) makes sure that the sound

correspondences identified are unlikely to have arisen by

chance. The distributions resulting from this permuta-

tion test are then combined in log-odds scores (see Fig. 3

above) which can then in turn be used to realign all

words and determine their LexStat-distance.7 These

scores are then again used to create a matrix of pairwise

Figure 4. Combining words for ‘dog’ in Samoan, Hawaiian, North Marquesan, and Anuta into a multiple alignment with help of a

guide tree.
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distances as shown in Fig. 5. Our interactive tutorial

shows how input data can be quickly checked before

carrying out the (at times time-consuming) computation

(Tutorial: 4.1) and provides additional information

regarding the differences between the cognate detection

methods available in LingPy (Tutorial: 4.2) and illus-

trates in detail how each of them can be applied

(Tutorial: 4.3).

More recent approaches for cognate set partitioning

use Infomap (Rosvall and Bergstrom, 2008), a commu-

nity detection algorithm which uses random walks in a

graph representation of the data to identify those clus-

ters in which significantly more edges can be found in-

side a group than outside (Newman, 2006). In order to

model the data as a graph, words are represented as

nodes and distances between words are represented as

edges which are drawn between all nodes whose pair-

wise distance is beyond a user-defined threshold

(List et al., 2017b). Recent studies have shown that the

graph-based partitioning approaches slightly outperform

the flat agglomerative clustering procedures (List et al.,

2016b, 2017b; Jäger et al., 2017).

The advantage of LexStat and similar algorithms is

that the algorithm infers a lot of information from the

data itself. Instead of assuming language-independent

distance scores which would be the same for all lan-

guages in the world, it essentially infers potential sound

correspondences for each language pair in separation

and uses this information to determine language-specific

distance scores. The disadvantages of LexStat are the

computation time and the dependency of data with high

mutual coverage. It was designed in such a way that it

refuses to cluster words into cognate sets if sufficient in-

formation is lacking. As a rule of thumb, derived from

earlier studies (List, 2014a), we recommend applying

LexStat only if the basic concept lists of a given dataset

consists of at least 200 words, and if the mutual cover-

age of the data exceeds 150 word pairs. If the data is too

sparse, such as, for example, in the ASJP database

(Wichmann et al., 2016) which gives maximally 40 con-

cepts per language, we recommend to use either the SCA

approach, or to turn to more sophisticated machine

learning approaches (Jäger et al., 2017), which have

been designed and trained in such a way that they yield

their best scores on smaller datasets. In all cases, users

should be aware that the algorithms may fail to detect

certain cognates. The reasons range from rare sound

correspondences which can trigger problematic align-

ments, via sparseness of data (especially when dealing

with divergent languages), up to problems of morpho-

logical change which may easily confuse the algorithms

as they may yield partial cognates and produce words

that cannot be fully aligned anymore (List et al., 2017b).

In Table 3, we summarize some basic differences be-

tween the four methods mentioned so far.

Once the words have been clustered into cognate

sets, it is advisable to align all cognate words with each

other, using a multiple alignment algorithm (Tutorial:

4.4). Alignments are useful in multiple ways. First, users

can easily inspect them with web-based tools (Tutorial:

4.5). Second, they can be used to statistically investigate

the identified sound correspondence patterns in the data

(see Tutorial: 4.6). Both the manual and the automatic

check of the results provided by automatic cognate de-

tection methods are essential for a successful application

of the methods. Only in this way can users either con-

vince themselves that the results come close to their

expectations or that something weird is going on. In the

latter situation, we recommend that users thoroughly

check to which degree they have conformed to

our SANE rules for dataset sanity outlined above in

Section 3. We also recommend that users do not change

Figure 5. Contrasting distances retrieved from three different alignment approaches for Polynesian words for ‘neck’. Cells high-

lighted indicate that distances are smaller than the default threshold for the algorithms. The first column of each table indicates the

cognate decisions resulting from the matrix and the threshold. How these cognate decisions are determined is further illustrated in

the trees below each matrix. They show how a flat cluster algorithm which stops once a certain threshold is reached can be used

to partition the words into cognate sets.
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the different parameters too much, especially when

applying LingPy the first time. Instead of trying to fix

minor errors (such as obvious cognates missed or look-

alikes marked as cognates) by changing parameters, it is

often more efficient to correct errors manually.

Although Rama et al. (2018) report promising results on

fully automated workflows, we do not recommend rely-

ing entirely on automatic cognate detection when it

comes to phylogenetic reconstruction, since the algo-

rithms tend to be too conservative, often missing valid

cognates (List et al., 2017b), but we are confident

enough to recommend it for initial data exploration,

and for the preparsing of data in order to increase the ef-

ficiency of cognate annotation.

6. Evaluation

We have claimed above that automatic cognate detec-

tion had made great progress of late. We make this claim

based on tests in which the performance of automatic

cognate detection algorithms was compared with expert

cognate judgments (List et al., 2017b). There are differ-

ent ways to compare expert cognate judgments with al-

gorithmic ones. A very simple but nevertheless

important one is to compare different cognate judg-

ments manually, by eyeballing the data. Even if one

lacks expert cognate judgments for a given dataset, this

may be useful, as it helps to get a quick impression on

potential weaknesses of the algorithm used for a given

analysis. Comparing cognate judgments in concrete,

however, can be quite tedious, especially if the data are

not presented in any ordered fashion. For this reason,

LingPy offers a specific format that helps to compare

different cognate judgments in a rather convenient way.

How this comparison can be carried out is illustrated in

Table 4, where we use the numeric annotation for cog-

nate clusters as described in Fig. 6 to compare expert

cognate judgments for ‘to turn’ in eight East Polynesian

languages with those produced by edit distance, the

SCA, and the LexStat method, respectively. As can be

seen from the table, NED lumps all words into one clus-

ter, obviously being confused by the similarity of the

vowels across all words. SCA comes close to the expert

annotation, but wrongly separates Hawaiian [wili] from

the first cluster, obviously being confused by the dissimi-

larity of the sound classes. LexStat correctly identifies all

cognates, obviously thanks to its initial search for

language-specific similarities between sound classes. In

the interactive tutorial, we show how users can compute

similar overviews on differences in cognate detection

analyses and conveniently compare them (Tutorial: 5.1).

While manual inspection is important, it is also cru-

cial to have an independent and objective score that tells

us how well algorithms perform on a given dataset.

Knowing the approximate performance may, for ex-

ample, be useful when working with large datasets

which would take too long to be analyzed manually. If

we annotate part of the data and see that the automatic

methods perform well enough, we could then use the

automatic approaches to carry out our analyses and re-

port the expected accuracy in the study. Our recom-

mended evaluation measures are B-Cubed scores (Bagga

and Baldwin, 1998; Amigó et al., 2009), which Hauer

and Kondrak (2011) first introduced as a measure to as-

sess the quality of cognate detection algorithms com-

pared to expert judgments.

The details of how B-Cubed scores are computed are

explained elsewhere in detail (List et al., 2017b), and it

would go beyond the scope of this tutorial to introduce

them here again. For users interested in automatic cog-

nate detection, but reluctant in learning in depth about

evaluation measures in computational linguistics, it is

sufficient to know how the B-Cubed scores should be

interpreted. Usually the scores are given in three forms,

which all rank between 0 and 1: precision, recall, and F-

Score. Precision comes closest to the notion of true posi-

tives in historical linguistics. Recall is close to the notion

of true negatives, accordingly, and the F-Score, the har-

monic mean of precision and recall, can be seen as a

general summary of the two, derived by the formula

Table 3. Comparing different algorithms for cognate detection implemented in LingPy with respect to some fundamental

parameters of sequence comparison.

Method Scoring function Sound classes Gap function Alignment mode Partitioning

NED identity – – global flat UPGMA

SCA language-independent SCA-model prosodic profiles global flat UPGMA

LexStat language-specific SCA-model prosodic profiles semi-global flat UPGMA

LexStat-Infomap language-specific SCA-model prosodic profiles semi-global Infomap
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2 P�R
PþR, where P is the precision and R is the recall. If the

scores are high, this means the algorithms come close to

the judgment of the experts, a score of 1.0 in precision

and recall (and therefore also the F-Score) means that

the results are 100% identical.

In Table 5, we report the results achieved by four

automatic cognate detection methods on a small subset

of ten East Polynesian languages which we retrieved

from our Polynesian dataset for illustrative purposes.8

In addition to the three methods reported already in

Table 4, we added a random cognate detector which

was sampled from 100 trials, and the Infomap version

of the LexStat algorithm (LS-Infomap), in which the

cognate set partitioning is carried out with the Infomap

algorithm instead of the flat version of UPGMA (see

Section 5 above).9 NED shows a rather low precision

compared to the other nonrandom approaches, indicat-

ing that it proposes many false positives (as we could see

above in Table 4). On the other hand, its recall is very

high, indicating that it does not miss many cognate sets.

SCA obviously has a lot of problems with the data, per-

forming worse than NED in general, with a rather low

precision and recall. Both LexStat approaches largely

outperform the other approaches in general, and espe-

cially the very high precision is very comforting, since it

indicates that the algorithms do not propose too many

false positives. That the Infomap version of LexStat

Table 4. Comparing automatic cognate detection methods

with expert cognate judgments for words for ‘to turn’ in

East Polynesian languages.

Doculect Form Expert NED SCA LexStat

Ra‘ivavae ta: viGi 4580 1 1 1 1

Hawaiian wili 5835 1 1 4 1

North-Marquesan kavi?i 3575 1 1 1 1

Rapanui taviri 1838 1 1 1 1

Hawaiian huli 5834 2 1 2 2

Maori huri 936 2 1 2 2

Sikaiana tahuli 3283 2 1 2 2

Mangareva ti: rori 2101 3 1 3 3

Highlighted cells indicate where the respective algorithms fail compared to

the expert judgment.

Table 5. B-Cubed scores for different cognate detection

algorithms compared against a test set of East Polynesian

languages.

RANDOM NED SCA LexStat LS-Infomap

Precision 0.47 0.81 0.88 0.95 0.94

Recall 0.73 0.96 0.84 0.92 0.93

F-score 0.57 0.88 0.86 0.93 0.94

Highlighted cells indicate the best scores for a given measure.

Figure 6. Some basic concepts important for automatic cognate detection.
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performs better than LexStat with UPGMA is also

shown in this comparison, although the differences are

much lower than reported in List et al. (2017b). It would

be very interesting to compare the scores we achieved

with general scores of levels of agreement among human

experts. Unfortunately, no systematic study has been

carried out so far.10 The interactive tutorial gives a

detailed introduction into the computation of B-Cubed

scores with LingPy (Tutorial: 5.2).

Given the differences in the results regarding precision,

recall, and generalized F-scores, it is obvious that the

choice of the algorithm to use depends on the task at

hand. If users plan to invest much time into manual data

correction, having an algorithm with high recall that iden-

tifies most of the cognates in the data while proposing a

couple of erroneous ones is probably the best choice.

Users can achieve this by choosing a high threshold or an

algorithm such as NED, which yields a rather high recall

in form of the B-Cubed scores, at least for the Polynesian

data in our sample. In other cases, however, when user-

correction is not feasible because of the size of the dataset,

it is useful to choose low thresholds or generally conserva-

tive algorithms with high B-Cubed precision in order to

minimize the amount of false positives.

7. Data export

LingPy provides direct export of the cognate judgments to

the Nexus format (Maddison et al., 1997), allowing users

to analyze automated cognate judgments with popular

packages for phylogenetic reconstruction, such as

SplitsTree (Huson, 1998), MrBayes (Ronquist et al.,

2009), or BEAST 2 (Bouckaert et al., 2014, see Tutorial:

6.1). If phylogenetic trees are computed from distance

matrices, both matrices and trees can be written to file

and further imported in software packages for tree ma-

nipulation and visualization (Tutorial: 6.2). In addition,

data can be exported (and also be imported) to the word-

list format proposed by the CLDF initiative (Forkel et al.,

2017), which is intended to serve as a generic format for

data sharing in cross-linguistic studies (Tutorial: 6.3).

8. Concluding remarks

In this tutorial we have tried to show how automatic se-

quence comparison in LingPy can be carried out. Given

the scope of this article, it is clear that we could not

cover all aspects of alignments and cognate detection in

all due detail. We hope, however, that we could help

readers understand what they should keep in mind if

they want to carry out sequence comparison analyses on

their own. Additional questions will be answered in an

interactive tutorial supplemented with this article, and

for deeper questions going beyond the pure application

of sequence comparison algorithms—such as additional

analyses (e.g. the minimal lateral network method for

borrowing detection, List et al., 2014, or an algorithm

for the detection of partial cognates, List et al., 2016b),

routines for plotting and data visualization, or custom-

ization routines for user-defined sound-class models—

we recommend the readers to turn to the extensive

online documentation of the LingPy package (http://

lingpy.org). We have emphasized multiple times

throughout this article that the algorithms cannot and

should not be used to replace trained linguists. Instead,

they should be seen as a useful complement to the large

arsenal of methods for historical language comparison

which can help experts to derive initial hypotheses on

cognacy, speed up tedious annotation of cognate sets,

and increase their efficiency and consistency.

Supplementary data

Supplementary data is available at Journal of Language

Evolution online. Stable updates of this material with the latest

version are also available at Zenodo (https://doi.org/10.5281/

zenodo.1252230).
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Notes
1. Linguists are often skeptical when they hear that

LingPy requires explicit phonetic transcriptions, and

often, they are even reluctant to interpret their data

along the lines of the IPA. But in order to give the

algorithms a fair chance to interpret the data in the

same way in which they would be interpreted by lin-

guists, a general practice for phonetic transcriptions

is indispensable, and the IPA is the most widely

employed transcription system.

2. We know well how difficult it is to conform to the lat-

ter point. What is clear is that tossing coins to select

one out of many synonyms, as originally suggested by
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Gudschinsky (1956), will have a deleterious impact on

any analysis (List, 2018). In order to avoid synonyms in

qualitative work, we recommend to thoroughly review

the guidelines in Kassian et al. (2010).

3. It would go beyond the scope of this tutorial to ex-

plain these famous algorithms in all detail. Instead,

we refer the readers to Kondrak (2002: 20–65) as well

as to an interactive demo of the Wagner–Fischer al-

gorithm in List (2016).

4. In the normalized edit distance (NED), the edit distance

between two strings is further normalized by dividing it

by the length of the longer string. In this way, we can

control for the length of the compared sequences.

5. The threshold for the algorithms are: NED: 0.75, SCA:

0.45, LexStat: 0.6.

6. For an example, consider the matches between

Sikaiana and Tahitian shown in Table 1. Although

Sikaiana [k] is different from [?], they are similar from

a language-specific perspective, since they recur

across many aligned cognate sets between both lan-

guages. When comparing [k] in English with [?] in

German, however, they are not similar, as we will not

find a cognate set in which those two sounds

correspond.

7. As alignment algorithms yield similarity scores as a

default, the similarity scores are converted to dis-

tance scores with help of the formula proposed by

Downey et al. (2008).

8. We have not fully explored the practical limitations in

terms of number of languages or number of concepts

when comparing languages with LingPy. Jäger et al.

(2017) and Rama et al. (2017) report successful applica-

tions of LingPy’s cognate detection algorithms for as

many as 100 languages. Although we think that the

number might in fact be even higher, based on tests we

carried out ourselves on 150 and more languages, we

recommend to be careful when analyzing too many lan-

guages, as algorithmic performance may drastically

drop when investigation samples are too large

9. The threshold for LexStat-Infomap was set to 0.55, fol-

lowing List et al. (2017b). The random cognate annota-

tion algorithm was designed in such a way that it has

the tendency to lump cognates to larger clusters.

10. The only study known to us addressing these prob-

lems is Geisler and List (2010), but it has, unfortunate-

ly, not been sufficiently quantified.
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Automatic Inference of Sound
Correspondence Patterns across
Multiple Languages

Johann-Mattis List
Department of Linguistic and Cultural
Evolution, Max Planck Institute for the
Science of Human History, Jena

Sound correspondence patterns play a crucial role for linguistic reconstruction. Linguists use
them to prove language relationship, to reconstruct proto-forms, and for classical phylogenetic
reconstruction based on shared innovations. Cognate words that fail to conform with expected
patterns can further point to various kinds of exceptions in sound change, such as analogy or
assimilation of frequent words. Here I present an automatic method for the inference of sound
correspondence patterns across multiple languages based on a network approach. The core idea
is to represent all columns in aligned cognate sets as nodes in a network with edges representing
the degree of compatibility between the nodes. The task of inferring all compatible correspondence
sets can then be handled as the well-known minimum clique cover problem in graph theory,
which essentially seeks to split the graph into the smallest number of cliques in which each
node is represented by exactly one clique. The resulting partitions represent all correspondence
patterns that can be inferred for a given data set. By excluding those patterns that occur in only
a few cognate sets, the core of regularly recurring sound correspondences can be inferred. Based
on this idea, the article presents a method for automatic correspondence pattern recognition,
which is implemented as part of a Python library which supplements the article. To illustrate the
usefulness of the method, I present how the inferred patterns can be used to predict words that
have not been observed before.

1. Introduction

By comparing the languages of the world, we gain invaluable insights into human
prehistory, predating the appearance of written records by thousands of years. The clas-
sical methods for historical language comparison, a collection of different techniques
summarized under the term comparative method (Meillet 1954; Weiss 2015), date back
to the early 19th century and have since then been constantly refined and improved (see
Ross and Durie 1996 for details on the practical workflow). Thanks to the comparative
method, linguists have made groundbreaking insights into language change in general
and into the history of many specific language families (Campbell and Poser 2008)
and external evidence has often confirmed the validity of the findings (McMahon and
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McMahon 2005, pages 10–14). With increasing amounts of data, however, the methods,
which are largely manually applied, reach their practical limits. As a result, scholars
are now increasingly trying to automate different aspects of the classical comparative
methods (Kondrak 2000; Prokić, Wieling, and Nerbonne 2009; List 2014).

One of the fundamental insights of early historical linguistic research was that—
as a result of systemic changes in the sound system of languages—genetically related
languages exhibit structural similarities in those parts of their lexicon that were com-
monly inherited from their ancestral languages. These similarities surface in the form of
correspondence relations between sounds from different languages in cognate words.
English th [θ], for example, is usually reflected as d in German, as we can see from
cognate pairs like English think versus German denken, or English thorn and German
Dorn. English t, on the other hand, is usually reflected as z [ts] in German, as we can see
from pairs like English toe versus German Zeh, or English ten versus German zehn. The
identification of these regular sound correspondences plays a crucial role in historical
language comparison, serving not only as the basis for the proof of genetic relationship
(Dybo and Starostin 2008; Campbell and Poser 2008) or the reconstruction of proto-
forms (Hoenigswald 1960, pages 72–85; Anttila 1972, pages 229–263), but (indirectly)
also for classical subgrouping based on shared innovations (which would not be possi-
ble without identified correspondence patterns).

With the beginning of this millennium, historical linguistics has witnessed an
increased number of attempts to quantify specific tasks of the traditional compar-
ative method. Since then, scholars have repeatedly attempted to either directly in-
fer regular sound correspondences across genetically related languages (Kay 1964;
Brown, Holman, and Wichmann 2013; Kondrak 2003, 2009) or integrated the infer-
ence into workflows for automatic cognate detection (Guy 1994; List 2012, 2014; List,
Greenhill, and Gray 2017). What is interesting in this context, however, is that almost all
approaches dealing with regular sound correspondences, be it early formal—but clas-
sically grounded—accounts (Grimes and Agard 1959; Hoenigswald 1960) or computer-
based methods (Kondrak 2002, 2003; List 2014) only consider sound correspondences
between pairs of languages.

A rare exception can be found in the work of Antilla (1972, pages 229–263) who
presents the search for regular sound correspondences across multiple languages as
the basic technique underlying the comparative method for historical language com-
parison. Anttila’s description starts from a set of cognate word forms (or morphemes)
across the languages under investigation. These words are then arranged in such a way
that corresponding sounds in all words are placed into the same column of a matrix.
The extraction of regularly recurring sound correspondences in the languages under
investigation is then based on the identification of similar patterns recurring across
different columns within the cognate sets. The procedure is illustrated in Figure 1, where
four cognate sets in Sanskrit, Ancient Greek, Latin, and Gothic are shown, two taken
from Anttila (1972, page 246) and two added by me.

Two points are remarkable about Anttila’s approach. First, it builds heavily on the
phonetic alignment of sound sequences,1 by which the sound sequences of words are
arranged in a matrix in such a way that all corresponding sounds are placed in the
same cell (List 2014). Second, it reflects a concrete technique by which regular sound

1 This concept was only recently adapted in linguistics (Covington 1996; Kondrak 2000; List 2014), building
heavily on approaches in bioinformatics and computer science (Needleman and Wunsch 1970; Wagner
and Fischer 1974), although it was implicitly always an integral part of the methodology of historical
language comparison (compare Dixon and Kroeber 1919, Fox 1995, 67f).
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A B C D E F

Sanskrit y u g a m dh u h i (tar) s n u ṣ (ā) - r u dh (iras)

Greek z u g o n th u g a (ter-) - n u - (os) e r u th (rós)

Latin i u g u m Ø Ø Ø Ø (Ø) - n u r (us) - r u b (er)

Gothic j u k - - d au h - (tar) Ø Ø Ø Ø (Ø) Ø Ø Ø Ø (Ø)

Gloss 'yoke' 'daughter' 'daughter-in-law' 'red'

Figure 1
Regular sound correspondences across four Indo-European languages, illustrated with help of
alignments along the lines of Anttila (1972, page 246). In contrast to the original illustration, lost
sounds are displayed with help of the dash “-” as a gap symbol, while missing words (where no
reflex in Gothic or Latin could be found) are represented by the “∅” symbol.

correspondences for multiple languages can be detected and employed as a starting
point for linguistic reconstruction. If we look at the framed columns in the four exam-
ples in Figure 1, which are further labeled alphabetically, we can easily see that the
patterns A, E, and F are remarkably similar. The only difference is that we miss data for
Gothic in the patterns E and F, and, as a result, we don’t have reflex sounds (sounds in
a given alignment column as reflected in a cognate word) for the full sound correspon-
dence patterns in the respective columns. The same holds, however, for columns C, E,
and F. Since A and C differ regarding the reflex sound of Gothic (u vs. au), they cannot
be assigned to the same correspondence set at this stage, and if we want to solve the
problem of finding the regular sound correspondences for the words in the figure, we
need to decide which columns in the alignments we assign to the same correspondence
set, thereby “imputing” missing sounds where we miss a reflex. Assuming that the
“regular” pattern in our case is reflected by the group of C, E, and F, we can make
predictions about the sounds missing in Gothic in E and F, concluding that, if ever we
find the missing reflex in so far unrecognized sources of Gothic in the future, we would
expect a -au- in the words for “daughter-in-law” and “red”.2

We can easily see how patterns of sound correspondences across multiple languages
can serve as the basis for multiple tasks in historical linguistics. First, we could use
them to guess how a word that is missing in a given alignment would sound in that
language, if it could be found. Since the task of identifying cognate words across multi-
ple languages is very complex, and words may have drastically shifted their meanings,
we could use the predictions to search for missing cognate forms in those areas of the
lexicon that we have not considered before.3 Second, if two alignment columns are
identical, they must reflect the same proto-sound, if alternative processes like borrowing
can be excluded. Thus, similarly to the prediction of missing words in our cognate
sets, we could use correspondence patterns to infer proto-forms, provided that parts
of the data are already annotated.4 Third, we could use them to check linguistic claims

2 As pointed out by the anonymous reviewer, Gothic ráups is a reflex of ‘red’ (Wright 1910, page 340), but
as mentioned by Eugen Hill (personal communication), the Gothic form reflects a derivationally different
formation and was therefore correctly not listed in Anttila’s examples.

3 Consider cases of shifted meanings like English hound vs. German Hund ‘dog,’ or English -thorp as a
prefix in place names compared to German Dorf ‘village.’

4 But even if correspondence patterns are not identical, they could be assigned to the same proto-sound,
provided that one can show that the differences are conditioned by phonetic context. This is the case for
Gothic au [o] in pattern C, which has been shown to go back to u when preceding h (Meier-Brügger 2002,
page 210f). As a result, scholars usually reconstruct Proto-Indo-European *u for A, C, E, and F.
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about cognate words themselves: If it turns out that the aligned cognate sets proposed
by linguists do not pattern into recurring correspondences across the languages under
consideration, we can directly criticize both individual claims regarding word relations
and general claims about the genetic relation of languages.

While it seems trivial to identify sound correspondences across multiple languages
from the few examples provided in Figure 1, the problem can become quite complicated
if we add more cognate sets and languages to the comparative sample. Especially the
handling of missing reflexes for a given cognate set becomes a problem here, as missing
data makes it difficult for linguists to decide which alignment columns to group with
each other. This can already be seen from the examples given in Figure 1, where we have
two possibilities to group the patterns A, C, E, and F, if we base our judgments only on
these four patterns: E and F could be grouped with either A or C, and it may even
be possible that one should be grouped with A and one with C. The “true” solution
here depends on the history of the languages, but if the data that would allow us to
reconstruct this history is lost, we can never infer the historically correct grouping with
full confidence.

The goal of this article is to illustrate how a manual analysis in the spirit of Anttila
can be automated and fruitfully applied—not only in purely computational approaches
to historical linguistics, but also in computer-assisted frameworks that help linguists to
explore their data before they start carrying out painstaking qualitative comparisons
(List 2016). In order to illustrate how this problem can be solved computationally, the
article will first discuss some important general aspects of sound correspondences and
sound correspondence patterns in Section 2, introducing specific terminology that will
be needed in the remainder. In Section 3, we will see that the problem of finding sound
correspondences across multiple languages can be modeled as the well-known clique-
cover problem in an undirected network (Bhasker and Samad 1991). While this problem
is hard to solve in an exact way computationally,5 fast approximate solutions exist
(Welsh and Powell 1967) and can be easily applied. Based on these findings, the article
will introduce a fully automated method for the recognition of sound correspondence
patterns across multiple languages (Section 4). This method is implemented in the form
of a Python library and can be readily applied to multilingual wordlist data as it is
also required by software packages such as LingPy (List, Greenhill, and Forkel 2017)
or software tools such as EDICTOR (List 2017). Section 5 will then illustrate how the
method can be applied by testing how it performs in the task of predicting missing
cognate words and missing proto-forms.

2. Preliminaries on Sound Correspondence Patterns

In the introduction, it was emphasized that the traditional comparative method is
itself less concerned with regular sound correspondences attested for language pairs,
but for all languages under consideration. In the following, this claim will be further
substantiated, while at the same time introducing some major methodological consid-
erations and ideas that are important for the development of the new method for sound
correspondence pattern recognition.

5 Both the clique-cover problem and its inverse problem, the graph coloring problem, have been shown to
be np-complete (Bhasker and Samad 1991).
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Table 1
Comparing correspondence patterns for Proto-Germanic reflexes of *d-, *þ-, and *t- in German,
English, and Dutch (Germanic proto-forms follow Kroonen [2013]).

2.1 From Sound Correspondences to Sound Correspondence Patterns

Sound correspondences are most easily defined for pairs of languages. Thus, it is
straightforward to state that German [d] regularly corresponds to English [θ] (or [ð]),
that German [ts] regularly corresponds to English [t], and that German [t] corresponds
to English [d]. We can likewise expand this view to multiple languages by adding
another Germanic language, such as, for example, Dutch to our comparison, which has
[d] in the case of German [d] and English [θ], [t] in the case of German [ts] and English
[t], and [d] in the case of German [t] and English [d].

The more languages and examples we add to the sample, however, the more com-
plex the picture becomes, and while we can state three (basic) patterns for the case of
English, German, and Dutch, given in our example, we may get easily more patterns,
due to secondary sound changes in the different languages, although we would still
reconstruct only three sounds in the proto-language ([θ, t, d]). This is illustrated in
Table 1, where Proto-Germanic forms containing *p[þθ], *t, and *d in different pho-
netic environments are contrasted with their descendant forms in German, English,
and Dutch. The example shows that there is a one-to-n relationship between what
we interpret as a proto-sound of the proto-language, and the regular correspondence
patterns that we may find in our data. While we will reserve the term sound correspon-
dence for pairwise language comparison, we will use the term sound correspondence
pattern (or simply correspondence pattern) for the abstract notion of regular sound
correspondences across a set of languages that we can find in the data.

2.2 Correspondence Patterns in the Classical Literature

Scholars like Meillet (1908, page 23) have stated that the core of historical linguistics
is not linguistic reconstruction, but the inference of correspondence patterns, empha-
sizing that “reconstructions are nothing else but the signs by which one points to the
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Table 2
Sound correspondence patterns for Indo-European stops, following Clackson (2007, page 37) .

PIE Hittite Sanskrit Greek Latin Gothic ...
*p p p p p f b ...
*b b p b b b p ...
*bh b p ph/ph f b b ...
*t t t t t θ/þ d ...
*d d t d d d t ...
*dh d t dh/dh h th/th f d b d ...
... ... ... ... ... ... ...
*kw kw/ku k c k p t kw/qu hw/hw g ...
*gw kw/u g j g b d gw/gu u q ...
*gwh kw/ku gw/gu ph/ph th/th kh/kh f gw/gu u g b ...

correspondences in short form”.6 However, given the one-to-n relation between proto-
sounds and correspondence patterns, it is clear that this is not quite correct. Having
inferred regular correspondence patterns in our data, our reconstructions will add a
different level of analysis by further clustering these patterns into groups that we believe
to reflect one single sound in the ancestral language.

That there are usually more than just one correspondence pattern for a recon-
structed proto-sound is nothing new to most practitioners of linguistic reconstruction.
Unfortunately, however, linguists rarely list all possible correspondence patterns ex-
haustively when presenting their reconstructions, but instead select the most frequent
ones, leaving the explanation of weird or unexpected patterns to comments written in
prose. A first and important step of making a linguistic reconstruction system trans-
parent, however, should start from an exhaustive listing of all correspondence patterns,
including irregular patterns that occur very infrequently but would still be accepted by
the scholars as reflecting true cognate words.

What scholars do instead is provide tables that summarize the correspondence
patterns in a rough form, for example, by showing the reflexes of a given proto-
sound in the descendant languages in a table, where multiple reflexes for one and the
same language are put in the same cell. An example, taken with modifications7 from
Clackson (2007, page 37), is given in Table 2. In this table, the major reflexes of Proto-
Indo-European stops in 11 languages representing the oldest attestations and major
branches of Indo-European are listed. This table is a very typical example for the way
in which scholars discuss, propose, and present correspondence patterns in linguistic
reconstruction (Beekes 1995; Brown et al. 2011; Holton et al. 2012; Jacques 2017). The
shortcomings of this representation become immediately transparent. Neither are we
told about the frequency by which a given reflex is attested to occur in the descendant
languages, nor are we told about the specific phonetic conditions that have been
proposed to trigger the change where we have two reflexes for the same proto-sound.

6 My translation, original text: ‘Les «restitutions» ne sont rien autre chose que les signes par lesquels on
exprime en abrégé les correspondances.’

7 We added phonetic transcriptions, preceding the original sound given by the author, separated by a slash.
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Proto-Germanic

German

English

Dutch

Proto-Germanic

German

English

Dutch

'dead' 'thick' 'tongue'

'deed' 'thorn' 'tooth'

d au d ( a z )

t oː t ( - - )

d ɛ d ( - - )

d oː t ( - - )

θ e k ( u z )

d ɪ k ( - - )

θ ɪ k ( - - )

d ɪ k ( - - )

t u ŋ ( g oː )

ts ʊ ŋ ( - ə )

t ʌ ŋ ( - - )

t ɔ ŋ ( - - )

d eː d ( i z )

t aː t ( - - )

d iː d ( - - )

d a: t ( - - )

θ u r n ( u z )

d ɔ r n ( - - )

θ ɔː - n ( - - )

d oː r n ( - - )

t a n θ ( s )

ts aː n - ( - )

t uː - θ ( - )

t ɑ n t ( - )

Figure 2
Alignment analyses of the six cognate sets from Table 1. Brackets around subsequences indicate
that the alignments cannot be fully resolved due to secondary morphological changes.

While scholars of Indo-European tend to know these conditions by heart, it is perfectly
understandable why they would not list them. However, when presenting the results
to outsiders to their field in this form, it makes it quite difficult for them to correctly
evaluate the findings. A sound correspondence table may look impressive, but it is of
no use to people who have not studied the data themselves.

A further problem in the field of linguistic reconstruction is that scholars barely
discuss workflows or procedures by which sound correspondence patterns can be
inferred. For well-investigated language families like Indo-European or Austronesian,
which have been thoroughly studied for more than one hundred years (Blust 1990),
it is clear that there is no direct need to propose a heuristic procedure, given that the
major patterns have been identified long ago and the research has reached a stage where
scholarly discussions circle around individual etymologies or higher levels of linguistic
reconstruction, like semantics, morphology, and syntax.8 For languages whose history
is less well known and where historical language reconstruction has not even reached
a stage of reconstruction where a majority of scholars agree, however, a procedure that
helps to identify the major correspondence patterns underlying a given data set would
surely be incredibly valuable.

2.3 Correspondence Patterns and Alignments

In order to infer correspondence patterns, the data must be available in aligned form
(see Section 1), that is, we must know which of the sound segments that we compare
across cognate sets are assumed to go back to the same ancestral segment. This is
illustrated in Figure 2 where the cognate sets from Table 1 are presented in aligned
form, with zero-matches (gaps) being represented as a dash ("-"), and with brackets
indicating unalignable parts in the sequences, that is, parts that cannot be aligned,
since the differences are not due to regular sound change.9 Although alignments are
never explicitly mentioned in Clackson (2007), they are implied by the provided

8 For examples, compare the very detailed etymological discussions by Meier-Brügger (2002,
pages 173–187).

9 Scholars at times object to this claim, but it should be evident, also from reading the account by Anttila
(1972) mentioned above, that without alignment analyses, albeit implicit ones that are never provided in
concrete, no correspondence patterns could be proposed.
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θ u r n ( u z )

d ɔ r n ( - - )

θ ɔː - n ( - - )

d oː r n ( - - )

'thorn'alignment 
site

sound
correspondence

pattern

θ e k ( u z )

d ɪ k ( - - )

θ ɪ k ( - - )

d ɪ k ( - - )

'thick'
Proto-Germanic

German

English

Dutch

θ

d

θ

d

θ u r p ( a )

Ø Ø Ø Ø Ø Ø Ø

d ɔ r f ( - )

d ɔ r p ( - )

'thorp'

Figure 3
Alignment sites and correspondence patterns: While alignment sites are concrete representations
of the presumed relations among cognate words, correspondence patterns are a further stage of
abstraction.

correspondence patterns, which are presumably derived from the alignment of reflexes
in each of the daughter languages. These assumed alignments are given in Table 2.

Following evolutionary biology, a given column of an alignment is called an align-
ment site (or simply a site). An alignment site may reflect the same values as we
find in a correspondence pattern, and correspondence patterns are usually derived
from alignment sites, but in contrast to a correspondence pattern, an alignment site
may reflect a correspondence pattern only incompletely, due to missing data in one
or more of the languages under investigation. For example, when comparing German
Dorf “village” with Dutch dorp , it is immediately clear that the initial
sounds of both words represent the same correspondence pattern as we find for the
cognate sets for “thick” and “thorn” given in Figure 2, although no reflex of their Proto-
Germanic ancestor form þurpa- (originally meaning “crowd,” see Kroonen [2013, 553])
has survived in Modern English.10 Thanks to the correspondence patterns in Table 1,
however, we know that—if we project the word back to Proto-Germanic—we must
reconstruct the initial with *þ- ‘[θ], since the match of German d- and Dutch d- occurs—if
we ignore recent borrowings—only in correspondence patterns in which English
has th-.

These “gaps” due to missing reflexes of a given cognate set are not the same as the
gaps inside an alignment, since the latter are due to the (regular) loss or gain of a sound
segment in a given alignment site, while gaps due to missing reflexes may either reflect
processes of lexical replacement (List 2014, page 37f), or a preliminary stage of research
resulting from insufficient data collections or insufficient search for potential reflexes.
While we use the dash as a symbol for gaps in alignment sites, we will use the character
Ø (denoting the empty set) to represent missing data in correspondence patterns and
alignment sites. The relation between correspondence patterns in the sense developed
here and alignment sites is illustrated in Figure 3, where the initial alignment sites of
three alignments corresponding to Proto-Germanic *þ [θ] are assembled to form one
correspondence pattern.

10 Old English still has the word þorp, but in Modern English, we only find thorp in names.
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A E A F E F A C C E C F

Sanskrit u <=> u ------ u <=> u ------ u <=> u ------ u <=> u ------ u <=> u ------ u <=> u

Greek u <=> u u <=> u u <=> u u <=> u u <=> u u <=> u

Latin u <=> u u <=> u u <=> u u ? Ø Ø ? u Ø ? u

Gothic u ? Ø u ? Ø Ø ? Ø u >=< au au ? Ø au ? Ø

Matches 3 3 3 2 2 2

Figure 4
Assessing the compatibility of the four alignment sites from Figure 1.

3. Preliminary Thoughts on Correspondence Pattern Recognition

If we recall the problem we had in grouping the alignment sites E and F from Figure 1
with either A or C, we can see that the general problem of grouping alignment sites
to correspondence patterns is their compatibility. If we had reflexes for all languages
under investigation in all cognate sets, the compatibility would not be a problem,
since we could simply group all identical sites with each other, and the task could be
considered as solved. However, since it is rather the exception than the norm to have
all reflexes for all cognate sets in all languages, we will always find possible alternative
groupings for the alignment sites.

In the following, we will assume that two alignment sites are compatible, if they
(a) share at least one sound that is not a gap symbol, and (b) do not have any
conflicting sounds. This is illustrated in Figure 4 for our four alignment sites A, C, E,
and F from Figure 1. As we can see from the figure, only two sites are incompatible,
namely A and C, as they show different sounds for the reflexes in Gothic. Given that the
reflex for Latin is missing in site C, we can further see that C shares only two sounds
with E and F.

Having established the notion of alignment site compatibility, it is straightforward
to go a step further and model alignment sites in the form of a network. Here, all sites in
the data represent nodes (or vertices), and edges are only drawn between those nodes
that are compatible, following the criterion of compatibility outlined in the previous
section.11

Having shown how the data can be modeled in the form of a network, we can
rephrase the task of identifying correspondence patterns as a network partitioning task
with the goal of splitting the network into non-overlapping sets of nodes. Given that our
main criterion for a valid correspondence pattern is full compatibility among all align-
ment sites of a given partition, we can further specify the task as a clique partitioning
task. A clique in a network is “a maximal subset of the vertices [nodes] in an undirected
network such that every member of the set is connected by an edge to every other”
(Newman 2010, page 193). Demanding that sound correspondence patterns should
form a clique of compatible nodes in the network of alignment sites directly reflects
the basic practice of historical language comparison as outlined in Anttila (1972). Any
further grouping would require us to identify complementary phonetic environments
for the incompatible alignment sites.

11 We can further weight the edges in the alignment site network, for example, by using the number of
matching sounds (where no missing data is encountered) to represent the strength of the connection (but
we will disregard weighting in the approach presented here).
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(A) site network

1 2

(B) clique coverage

1

2

(C) fuzzy sites
Figure 5
General workflow of the method for automatic correspondence pattern recognition.

Parsimony dictates that—when partitioning our alignment site graph—we should
try to minimize the number of cliques to which the different nodes are assigned. This is
the minimum clique cover problem (Bhasker and Samad 1991, page 2). The minimum
clique cover problem is a well-known problem in graph theory and computer science,
although it is usually more prominently discussed in the form of its inverse problem,12

the graph coloring problem. In the graph coloring problem, one tries to assign all those
nodes in a graph to different clusters (i.e., to “color” them in different colors) which are
directly connected (Hetland 2010, page 276). While the problem is generally known to
be NP-hard (Hetland 2010, page 276), fast approximate solutions like the Welsh-Powell
algorithm (Welsh and Powell 1967) are available. Using approximate solutions seems to
be appropriate for the task of correspondence pattern recognition, given that we do not
(yet) have formal linguistic criteria to favor one clique cover over another.13

4. An Automatic Method for Correspondence Pattern Recognition

The method for automatic correspondence pattern recognition requires that the data be
coded for cognacy, and that all cognate sets be phonetically aligned. Thanks to recently
proposed algorithms, these tasks can be carried out automatically,14 but to guarantee
reliable results, it is useful to provide manually annotated data, or to manually correct
data that was automatically analyzed in a first step.15

The general workflow of the method consists of three basic steps (see Figure 5). In
a first step, the alignments in the data are used to construct an alignment site network
in which edges are drawn between compatible sites (A). The alignment sites are then
partitioned into distinct non-overlapping subsets using an approximate algorithm for
the minimum clique cover problem (B). In the final step (C), alternate correspondence
sets are considered for each individual alignment site. Any existing partitions with
which the site is compatible are added as potential correspondents. In the following
sections, I will provide more detailed explanations on the different stages.

12 The inverse problem of a given problem in graph theory provides a solution to the original problem for a
graph in which the original edges are deleted and nodes formerly unconnected are connected.

13 We should furthermore bear in mind that an optimal resolution of sound correspondence patterns for
linguistic purposes would additionally allow for uncertainty when it comes to assigning a given
alignment site to a given sound correspondence pattern. If we decided, for example, that the pattern C in
Figure 1 could by no means cluster with E and F, this may well be premature before we have figured out
whether the two patterns (u-u-u-u vs. u-u-u-au) are complementary and what phonetic environments
explain their complementarity.

14 For automatic cognate detection, compare for example List (2014), List, Greenhill, and Gray (2017),
Arnaud, Beck, and Kondrak (2017), and Jäger, List, and Sofroniev (2017), and for automatic phonetic
alignment, compare Prokić, Wieling, and Nerbonne (2009) and List (2014).

15 For manual annotation of cognates and alignments, compare List (2017).
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Table 3
Input format with the basic values needed to apply the method for automatic correspondence
pattern recognition.

ID DOCULECT CONCEPT FORM TOKENS STRUCTURE COGID ALIGNMENT

1 German tongue Zunge ts ʊ ŋ ə c v c 1 ts ʊ ŋ ( ə )

2 English tongue tongue t ʌ ŋ c v c 1 t ʌ ŋ ( - )

3 Dutch tongue tong t ɔ ŋ c v c 1 t ɔ ŋ ( - )

4 German tooth Zahn ts aː n c v c 2 ts aː n -

5 English tooth tooth t uː θ c v c 2 t uː - θ

6 Dutch tooth tand t ɑ n t c v c 2 t ɑ n t

7 German thick dick d ɪ k c v c 3 d ɪ k

... ... ... ... ... ... ... ...

c v c v

c v c c

4.1 Implementation, Input Format, and Output Format

The method has been implemented as a Python package that can be used as a plug-
in for the LingPy library for quantitative tasks in historical linguistics (List, Greenhill,
and Forkel 2017). The supplementary material offers precise instructions on how the
software package can be installed and how the experiments can be replicated.

The input format for the method described here generally follows the input format
employed by LingPy. In general, this format is a tab-separated text file with the first
row being reserved for the header, and the first column reserved for a unique numer-
ical identifier. The header specifies the entry types in the data. Table 3 provides an
example of the minimal data that needs to be provided to our method for automatic
correspondence pattern recognition. In addition to the generally needed information on
the identifier of each word (ID), on the language (DOCULECT), the concept or elicita-
tion gloss (CONCEPT), the (not necessarily required) orthographic form (FORM), and
the phonetic transcription provided in space-segmented form (TOKENS), the method
requires information on the type of sound (consonant or vowel, STRUCTURE),16 the
cognate set (COGID), and the alignment (ALIGNMENT).

The method offers different output formats, ranging from the LingPy wordlist
format in which additional columns added to the original wordlist provide information
on the inferred patterns, or in the form of tab-separated text files, in which the patterns
are explicitly listed. The wordlist output can also be directly inspected in the EDICTOR
tool, allowing for a convenient manual inspection of the inferred patterns.

16 The values passed to the STRUCTURE column can be arbitrarily filled. When running the analysis, they
are used to identify those positions in the alignments that should be analyzed separately, that is, they will
be considered as a useful pre-partitioning of the alignment sites.
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4.2 Detailed Description of the Algorithm

As mentioned above, the method for correspondence pattern recognition consists of
three stages. It starts with the reconstruction of an alignment site network in which
each node represents a unique alignment site, and links between alignment sites are
drawn if the sites are compatible, following the criterion for site compatibility outlined
in Section 3 (A). It then uses a greedy algorithm to compute an approximate minimal
clique cover of the network (B). All partitions proposed in stage (B) qualify as potentially
valid correspondence patterns of our data. But the individual alignment sites in a given
data set may as well be compatible with more than one correspondence pattern.17 For
this reason, the method iterates again over all alignment sites in the data, checking
whether each is compatible with any other existing partition. This procedure assigns
each alignment site to at least one but potentially more different sound correspondence
patterns (C).18

The clique cover algorithm (A) is an inverse version of the Welsh-Powell algorithm
for graph coloring (Welsh and Powell 1967). It starts with k cliques of size 1, which are
sorted in increasing order by the amount of missing data they contain. The algorithm
then picks the first pattern and compares it with the set of all other patterns. If this first
pattern is compatible with one of the other patterns, the two patterns will be merged into
a new pattern that is then further compared with the remaining ones. After the iteration,
the first pattern is added to the set of results, and the same procedure is repeated with
the remaining patterns that have not yet been merged and remain in the queue until no
patterns are left.

Since alignment sites may suffer from missing data, their assignment to particular
correspondence patterns is not always unambiguous. The example alignment from Fig-
ure 1, for example, would yield two general correspondence patterns, namely u-u-u-au
versus u-u-u-u. While the assignment of alignment sites A and C in the figure would be
unambiguous, sites E and F could be assigned to either partition, since they are missing
the disambiguating data. In order to reflect the fuzziness of the partition assignment,
the method therefore requires an additional step. In addition to the partition from stage
(B), alternative partitions are found for E and F during stage (C). The patterns, to which
a given alignment site is assigned, can further be ranked by counting the total amount
of alignment sites with which they are compatible, thus allowing us to prefer only those
site-to-pattern assignments that have a reasonable number of examples.

Figure 6 gives an artificial example that illustrates how the basic method infers
the clique cover. Starting from the data in (A), the method assembles patterns A and
B in (B) and computes their pattern, thereby retaining the non-missing data for each
language in the pattern as the representative value. Having added C and D in this
fashion in steps (C) and (D), the remaining three alignment sites, E–G, are merged to
form a new partition, accordingly, in steps (E) and (F). Step (G) reflects the reassignment
of individual alignment sites to the previously inferred patterns. In this example, all
sites are only assigned to one pattern, but it is possible, depending on the amount of
missing data, that one site can be assigned to more than one pattern.

17 Compare, for example, site E in Figure 1, which is both compatible with the pattern u-u-u-u reflected by
the site A, and the pattern u-u-u-au, reflected by site B.

18 By further weighting and sorting the fuzzy patterns to which a given site has been assigned, the number
of fuzzy alignment sites can be further reduced.
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F Ø u a Ø
G a Ø a u

L₁ L₂ L₃ L₄
A a a a Ø
B a a Ø a

Ø a Ø aa aPattern

L₁ L₂ L₃ L₄
A a a a Ø
B a a Ø a

Ø a Ø aa aPattern
C Ø a Ø a

L₁ L₂ L₃ L₄
A a a a Ø
B a a Ø a

Ø a Ø aa aPattern

C Ø a Ø a
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L₁ L₂ L₃ L₄
Ø

Ø u Ø ØØ aPattern

E a u a Ø
F Ø u a Ø

L₁ L₂ L₃ L₄
Ø

Ø u Ø ua aPattern

E a u a Ø
F Ø u a Ø
G a Ø a u

(A) (B) (C)

(D) (E) (F)

L₁ L₂ L₃ L₄ a-a-a-a a-u-a-u
A a a a Ø x
B a a Ø a x
C Ø a Ø a x
D a Ø a a x
E a u a Ø x
F Ø u a Ø x
G a Ø a u x

(G)

Figure 6
Example for the basic method to compute the clique cover of the data. (A) shows all alignment
sites in the data. (B–D) show how the algorithm selects potential edges step by step in order to
arrive at a first larger clique cover. (E–F) show how the second cover is inferred. In each step
during which one new alignment site is added to a given pattern, the pattern is updated, filling
empty spots. While there are two missing data points in (E), where only alignment sites E and F
are merged, these are filled after adding G. (G) shows how patterns are reassigned to individual
alignment sites.

It is important to note that the originally selected pattern may change during
the merge procedure, since missing spots can be filled by merging the pattern with
a new alignment site (as also shown in Figure 6). For this reason, it is possible that
this procedure, when only carried out one time, may not result in a true clique cover
(in which all compatible alignment sites are merged). For this reason, at the end of
the iteration, the algorithm checks if patterns exist that could be further combined,
and repeats the procedure with the existing patterns until the resulting partitioning
represents a true clique cover.

Pseudocode is in Algorithm 1 for the core function of the method for correspon-
dence pattern detection. In a worst-case scenario in which all alignment sites will be
assigned to distinct correspondence patterns, the algorithm requires

∑n
k=1 = n(n+1)

2 it-
erations in the while-loop, where k represents the number of alignment sites in the data,
so the general complexity of the algorithm is O(n2). In applications to real-world-data,
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Algorithm 1 Main part of the correspondence pattern detection method in pseudocode.
1: function CORRPATTERNS(almSites)
2: sort(almSites, sortKey:=countMissing); . sort the sites
3: patterns := []; . stores the patterns
4: while length(almSites)6=0 do
5: first, rest := almSites[0], almSites[1:]; . compare first site against rest
6: almSites := []; . fill with unmerged sites during for-loop
7: for i := 0; i < length(rest); i ++ do
8: if compatible(rest[i], first) then
9: first :=merge(first, rest[i]);

10: else
11: append(almSites, rest[i]);
12: end if
13: end for
14: append(patterns, first);
15: end while

return patterns;
16: end function

however, this worst-case scenario is never reached, and the method converges
rather fast.19

5. Testing the Method for Correspondence Pattern Recognition

The quantitative treatment of sound correspondence patterns presented in this study
is novel. As a result, no expert-annotated data listing all observable correspondence
patterns for a certain language family exhaustively is available.20 and it is not possible
to compare the suitability of this novel approach with expert-annotated gold standards,
as it is usually done in similar studies in computational historical linguistics.

The lack of suitable gold-standard data, however, does not mean that we cannot test
the method for its suitability. Since the core service the method provides is to impute
missing values in alignment sites resulting from cognate sets that are not reflected in all
languages in a given data set, we can easily design tests in which we test the power of
the method to predict those missing values in controlled settings.

5.1 Data for Testing

Three different data sets were selected to test the method proposed in this study.
The data sets were chosen with great care, since only a few of the many data sets
offering manually coded cognate sets also provide the cognate sets in aligned form.
Apart from the data by Hill and List (2017) on Burmish languages (original data based
on Huáng 1992), Walworth (2018) on East Polynesian languages (original data based

19 This can easily be seen when assuming clique cover that includes all nodes in a given network: Here, the
algorithm would need only one iteration, as it would consecutively merge each next node visited in the
first iteration into the same partition.

20 As we have seen in Figure 2, scholars list major sound correspondences across multiple languages, but
they do not show individual patterns for aligned cognate sets.
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Table 4
Three test sets used in this study.

Data set Source Languages Concepts Words Cognates
Burmish Hill and List (2017) 8 240 1,819 798
Chinese Hóu (2004) 14 623 8,371 623
Polynesian Walworth (2018) 10 210 2,427 1,187
Japanese Hattori (1973) 10 200 1,986 454

on Greenhill, Blust, and Gray 2008), and Hattori (1973) on Japanese dialect (data in
electronic form supplemented in List 2014), an additional data set of 14 Chinese varieties
originally published by Hóu (2004) was specifically modified and manually aligned
for this study. While the two former data sets are classical wordlists that are further
coded for cognacy and alignments,21 the Chinese data is based on a collection of
623 morphemes (reflected by a Chinese character each) whose pronunciation across the
14 dialects used in our sample was elicited by field workers. As a result, the amount of
cognate sets with missing reflexes in this data set is extremely low.

An overview of the data sets, along with additional information regarding the data
sources, the number of cognate sets, language varieties, and words in the data, is given
in Table 4. Needless to say that all data sets are provided in the supplementary material
accompanying this article.

5.2 General Characteristics

As a first illustrative test, the method was applied to the four data sets, and some basic
statistics were calculated. These include the original number of alignment sites in the
data, the number of patterns into which these sites were partitioned by the method,
and the number of singleton patterns, that is, patterns that are reflected by only one
alignment site in the data. By dividing the number of alignment sites assigned to non-
unique patterns by the number of all sites, we can further determine the proportion of
“regular” correspondence patterns in a given data set, assuming that a pattern is regular
if it recurs in at least two different alignment sites.

The results of this analysis are summarized in Table 5. As we can see from this table,
the number of correspondence patterns inferred by the algorithm is much lower than
the number of alignment sites. This is, of course, not surprising, if we assume that the
hypothesis that sound change is an overwhelmingly regular process holds. However,
across the data sets, we can find rather large differences with respect to the amount of
singleton patterns, that is, patterns reflecting only one alignment site. That an alignment
site is not compatible with any other site in the data can have different reasons. First,
there can be idiosyncratic sound changes, resulting, for example, from taboo, or from the
assimilation of frequently used words. Second, there can be errors in the data, resulting
from incorrectly assigned cognates, alignments, or undetected borrowings. It is also
possible that the data sample is too small, and that additional samples could be found,
but have not been included in the data.

21 All data sets are coded for partial cognates and across semantic categories.
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Table 5
Basic statistics after applying the correspondence pattern recognition method to the four data
sets.

Data set Align. Sites Corr. Patterns Singletons Reg. Patterns
Burmish 1,833 432 173 0.91
Chinese 2,891 1,341 966 0.67
Polynesian 1,863 243 64 0.97
Japanese 1,590 556 311 0.80

Table 6
Examples for idiosyncratic correspondence patterns in the Chinese dialects reflecting the major
groups (Běijı̄ng, Sūzhōu, Chángshā, Nánchāng, Méixiàn, Táoyuán, Guǎngzhōu, Fúzhōu, and
Táiběi [Mı̌n dialect spoken in Táiběi]).

When comparing the proportion of “regular” patterns that are reflected by at least
two alignment sites in the data across the data sets, the Chinese data shows the lowest
proportion, with only 67% of all alignment sites being assigned to patterns that recur in
the data. Given the intertwined history of the Chinese dialects, in which language con-
tact among the dialect varieties played an important role, it is not necessarily surprising
that the data looks less regular in general: If languages borrow from each other, and
borrowing is sporadic, rather than systematic, this will lead to an increase in irregular
correspondence patterns and therefore impact on the regularity we can observe. As a
manual inspection of the inferences reveals, the majority of the singleton alignment
sites in the Chinese data could be assigned to one of the regular patterns if one of the
reflexes would be ignored. Examples for these patterns are given in Table 6. On the other
hand, we find some patterns that are largely irregular for specific reasons like taboo.
An example is given in the same table with Chinese niǎo “bird” (pattern 679), which is
reflected by nasal and dental initials across the Chinese dialects. As we know from older
readings, the original reading had the initial [t], but it was later replaced by a nasal in
some Chinese varieties to avoid homophony with the word for “penis,” which was
most likely metaphorically shifted from “bird.”

What we can see from the individual analyses of the different data sets is that the
overall regularity of correspondence patterns does not necessarily reflect the time depth
of the languages in a given data set. Instead, correspondence patterns reflect different
aspects of the data, which have so far not been thoroughly investigated by researchers.
The overwhelming regularity of the patterns in the Polynesian data set, for example, is
probably also due to the fact that the languages contain very small phoneme inventories,
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with no more than 17 different sounds on average (compared to Chinese dialects with
about 35 sounds), while many idiosyncratic patterns in the Japanese data result from
morphological differences, which are difficult to handle in phonetic alignments.

5.3 Tests on Word Prediction

As mentioned briefly already in Section 1, correspondence patterns—once readily
inferred—can provide hints regarding the potential pronunciation of missing cognates
in an alignment. Since the method for correspondence pattern recognition imputes
missing data in its core, it can also be used to predict how a given word should look in a
given language if the reflex of the corresponding cognate set is missing. An example for
the prediction of forms has been given above for the cognate set Dutch dorp and German
Dorf. Since we know from Table 1 that the correspondence pattern of d in Dutch and
German usually points to Proto-Germanic *þ, we can propose that the English reflex
(which is missing in Modern English, apart from place names) would start with th, if it
was still preserved.22 Since the method for correspondence pattern recognition assigns
one or more correspondence patterns to each alignment site, even if the site has missing
data for a certain number of languages, all that needs to be done in order to predict a
missing entry is to look up the alignment pattern and check the value that is proposed
for the given language variety.

The test on word prediction was designed as follows: from each of the data sets,
a certain number of cognate sets was randomly deleted, and the resulting data was
then analyzed with the help of the correspondence pattern recognition algorithm. In
a second step, these inferred patterns were used to predict the cognate words which
were deleted before. For the prediction, only the largest correspondence pattern was
considered for the imputation, in order to avoid that multiple proposals for one sound
could be made by the algorithm. For each data set, three different proportions of words
to be deleted were tested (25%, 50%, and 75%).23 For each proportion and data set, 1,000
trials were tested and the results were averaged. To assess the accuracy of a predicted
word, the proportion of correctly predicted sounds in the given word was estimated
and divided by the total length of the word. The individual accuracies of predicted
words were then averaged by dividing the number of individual prediction scores by
the number of predicted words for each trial.

The results of this experiment are given in Table 7. In general, we can note that
the prediction experiment works very well across all data sets for wordlists reduced by
25% and 50% of their words appearing in cognate sets, while the accuracy of prediction
drastically drops in all data sets when removing up to 75% of the data. The only
exception is the Polynesian data set, where the difference in accuracy across the three
experiments is only small, with a rather large standard deviation.

What may come as a surprise is that the reduction of the data by 25% and 50% does
not seem to influence the accuracy of prediction in all data sets. On the contrary, in the
Chinese and the Polynesian data sets, we find even slightly higher accuracy scores for
the larger data reduction. At least in the Chinese data, the reason for this can be found
in the large number of singleton patterns that deviate only in one reflex from regularly

22 We ignore deliberately in this context that the alternative of the correspondence in Dutch and German is a
borrowing from Dutch, Frisian, or English to German.

23 Depending on the specific distribution of cognates in the individual data, these proportions could vary in
each run.
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Table 7
Results of the test on word prediction, based on 1,000 random samples for each subset of the
data. The column Proportion reflects the different proportions of the data that was deleted
during the experiments. Patterns refers to the average number of correspondence patterns
inferred in each trial, and Reg. Patterns points to the proportion of alignment sites covered by
patterns recurring at least twice.

Data set Proportion Patterns Reg. Patterns Accuracy
Burmish 25% 231.68 ± 6.86 0.94 ± 0.01 0.59 ± 0.02

50% 165.55 ± 6.08 0.94 ± 0.01 0.53 ± 0.02
75% 99.33 ± 5.71 0.89 ± 0.02 0.37 ± 0.03

Chinese 25% 1,040.62 ± 11.88 0.81 ± 0.01 0.69 ± 0.01
50% 672.35 ± 10.53 0.95 ± 0.00 0.70 ± 0.01
75% 373.23 ± 7.67 0.97 ± 0.00 0.64 ± 0.01

Japanese 25% 399.82 ± 10.04 0.89 ± 0.01 0.64 ± 0.01
50% 259.71 ± 9.39 0.93 ± 0.01 0.62 ± 0.01
75% 142.65 ± 7.35 0.92 ± 0.01 0.52 ± 0.02

Polynesian 25% 127.30 ± 5.38 0.97 ± 0.00 0.81 ± 0.01
50% 89.10 ± 5.51 0.97 ± 0.01 0.82 ± 0.01
75% 51.37 ± 4.69 0.95 ± 0.01 0.80 ± 0.03

recurring patterns. If the data is reduced by 50%, the number of idiosyncratic patterns
also drops, as we can see from the proportion of regularly recurring patterns given in
the table. While these cover 95% of all alignment sites in the data set reduced by 50%,
their proportion drops to 81% when being reduced by only 25%, and is (as we have seen
in Table 5) even lower when analyzing the whole data set. If enough words are deleted
from singleton patterns, like the ones shown in the examples in Table 6, the method for
correspondence pattern recognition will assign them to the same clusters. As a result,
the words whose pronunciation deviates will still be wrongly predicted, but the words
that are not affected by individual sound changes will be predicted correctly, and since
there are more regular words in the data, the overall prediction accuracy will increase.

When comparing the differences in the scores across the four data sets, we can also
see that the overall “regularity” of the data, as measured by the number of patterns
that recur more than one time, is not a good predictor of the success of the prediction
quality. The Burmish data, for example, has rather high rates of pattern regularity, but
performs worse in prediction than the other data sets. It is clear that the number of
singleton patterns that only reflect one alignment site in a data set will have a direct
impact on the word prediction quality, since only patterns that recur at least two times
in the data can be used for prediction. But this is not the only factor influencing the
prediction quality. Ambiguous alignment sites that can be assigned to more than one
pattern may, for example, likewise produce erroneous predictions. For the time being,
we cannot offer a full account of all the different factors that might influence prediction
quality. More studies on different data sets will be needed to increase our knowledge in
the future.

The fact that the prediction accuracy does not seem to improve or may even drop
when more data is retained in our experiments is important for further applications of
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the method (for example, when carrying out field work or when searching for missing
cognate sets), as it shows that we can reduce the amount of time spent on manual anno-
tation substantially when annotating data sets for historical linguistics. Linguists could,
for example, annotate half of their data manually and then use our method to impute
potentially missing cognates in their data. If actual words that were not annotated in
the first run turn out to have the same form as words predicted by our algorithm, this
would be a very strong argument that they are really cognate. Another example would
be guided field work for the purpose of historical language comparison. If insufficient
amounts of data have been collected, scholars can use the prediction method to predict
the most likely forms for certain cognate sets and use them to ease the elicitation of the
relevant forms when asking new informants.

5.4 Examples

Table 8 gives some examples illustrating the scoring procedure and typical failures of
the method, again illustrated for the Chinese data set.24 In cognate set 687, we find one
correctly predicted form for Chángshā, and one incorrectly predicted tone for the Jínán
form. As we can see from the frequencies of alignment sites supporting the proposed
pattern given in the column “Frequency” in the table, the inferred pattern clusters only
two alignment sites. As a result, it is not surprising that a wrong tone is proposed. The
wrong form for Měixiān in cognate set 319 is due to a wrong clustering of the cognate
set with the irregular cognate set 654, listed earlier in Table 6. Since the Měixiān word
was deleted in the experiment, the whole pattern is compatible with pattern # 73 in
the table, which predicts that the Měixiān form should start with th. In cognate set 518,
we can see that the method fails to propose a valid sound for the form in Wēnzhōu
for the second and the third site in the alignment, given that these sites are assigned to
singleton patterns (of one alignment site only) in which no sound for Wēnzhōu could
be imputed.

While the success or failure of the prediction experiments can help us to improve
the method in the future, we can also illustrate how the analysis can aid in practical
work on linguistic reconstruction. This example will again be based on the Chinese data,
since it has the advantage of offering quick access to Middle-Chinese reconstructions.
Because Middle Chinese is only partially reconstructed on the basis of historical lan-
guage comparison, and mostly based on written sources, such as ancient rhyme books
and rhyme tables (Baxter 1992), the reconstructions are not entirely dependent on the
modern dialect readings, which is a great advantage for testing the consequences of the
correspondence pattern analysis.

In Table 9, patterns inferred by the method for correspondence pattern recognition
for a reduced number of dialects (one of each major subgroup) have been listed. The
examples can all be reconstructed to a dental stop in Middle Chinese (*t, *th, or *d). If
we inspect only reflexes of Middle Chinese *d in the data, we can see that the initial
consonant is reflected in seven different patterns in our data. Four of these patterns,
however, occur only one time (# 719, # 1096, # 484, and # 654), as reflected in the column
Cogn. (pointing to supporting cognate sets), and if we exclude the reflexes for Méixiàn

24 This data set and the detailed predictions are available from the supplementary material as files
<chinese25.tsv> (wordlist) and predictions-chinese25.txt.
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Table 8
Examples for the word prediction experiment for the Chinese data. The column Frequency lists
the size of the inferred patterns for each position of the predicted word form. The score is
calculated by dividing the number of correctly predicted sounds by the total number of sounds.

(# 719, # 654), Táiběi (# 1096), and Nánchāng (# 484), respectively, we can assign # 719
and # 1096 to # 718 and # 484 and # 654 to # 73. In patterns # 718 and # 747, only Fúzhōu
shows a different reflex. Since we have forms that are homophones in Middle Chinese
in both correspondence patterns ( in # 747 and in # 718 were both pronounced as
*dam in Middle Chinese), we cannot find a conditioning context that would explain this
difference from the perspective of Middle Chinese alone. We know, however, that the
Mǐn dialects (to which Fúzhōu belongs) reflect features that are more archaic than Mid-
dle Chinese. In this case, the difference between the patterns is regularly reflecting the
difference between plain voiced and breathy voiced initials in the ancestor of the Mı̌n
dialects, with the latter going back to complex onsets in Old Chinese, the predecessor of
all Chinese dialects (Baxter and Sagart 2014, page 171f). Furthermore, if we compare the
patterns # 747 and # 73 directly, we can see that, although only Fúzhōu has a direct reflex
of the original voiced sound in Middle Chinese, we can still find its traces in the different
correspondence patterns, since Běijı̄ng and Guǎngzhōu have contrastive outcomes in
both patterns ([th] versus [t]). When inspecting the tones that are reconstructed for the
different words in Middle Chinese, we can easily find a conditioning context where the
reflexes differ. The píng (flat) tone category in Middle Chinese correlates with aspiration,
while the other tone categories correlate with devoicing in the three dialects.25 If we had
no knowledge of Middle Chinese, it would be harder to understand that both patterns
correspond to the same proto-sound, but once assembled in such a way, it would still be
much easier for scholars to search for a conditioning context that allows them to assign
the same proto-sound to the two patterns in questions.

The example shows that, as far as the Middle Chinese dental stops are concerned,
we do not find explicit exceptions in our data, but can rather see that multiple corre-
spondence patterns for the same proto-sound may easily evolve. We can also see that a
careful alignment and cognate annotation is crucial for the success of the method, but

25 This phenomenon most likely goes back to an earlier phonation contrast between the first (píng) tone in
Middle Chinese and the other tones.
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Table 9
Contrasting inferred correspondence patterns with Middle Chinese reconstructions (MC) and
tone patterns (MC Tones: P: píng (flat), S: shǎng (rising), Q: qù (falling), R: rù (stop coda)) for
representative dialects of the major groups (Běijı̄ng, Sūzhōu, Chángshā, Nánchāng, Méixiàn,
Táoyuán, Guǎngzhōu, Fúzhōu, Táiběi).

even if the cognate judgments are fine, but the data are sparse, the method may propose
erroneous groupings.

In contrast to manual work on linguistic reconstruction, where correspondence pat-
terns are never regarded in the detail in which they are presented here, the method has
the potential to drastically increase both the transparency and the quality of linguistic
data sets, especially in combination with tools for cognate annotation, like EDICTOR, to
which we added a convenient way to inspect inferred correspondence patterns interac-
tively (see the example in Appendix A). Because linguists can run the new method on
their data and then directly inspect the consequences by browsing all correspondence
patterns conveniently in the EDICTOR, the method makes it a lot easier for linguists to
come up with first reconstructions or to identify problems in the data.

6. Conclusion and Outlook

This study has presented a new method for the inference of sound correspondence
patterns in multilingual wordlists. Thanks to its integration with popular software
packages, the method can be easily applied, both within automated, or computer-
assisted workflows. The usefulness of the method was illustrated by showing how it
can be used to predict missing words in linguistic data sets. The method, however, has
much additional potential. Since the method can impute words not attested in existing
languages, it could likewise be used for the automatic reconstruction of proto-forms, the
identification of cognates, or the assessment of the general regularity of a given data set.
In addition to revealing potential correspondence structures underlying a given data
set, the method can additionally help to assess how well a given data set has been
analyzed before. By helping to improve the quality and transparency of existing and
future data sets in historical linguistics in this way, we hope that the method will in the
long run also contribute to new and important findings about the past of our world’s
languages.
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Supplementary Material

The supplementary material accompanying this article contains the code and all in-
structions needed to repeat the experiments described in this article. The original
package for correspondence pattern detection is publicly available from GitHub under
https://github.com/lingpy/lingrex (Version 0.1.0). The package providing the sup-
plementary material with results and instructions for running the code is also available
via GitHub under https://github.com/lingpy/correspondence-pattern-paper
(Version 1.1.1) and has been archived with Zenodo at https://doi.org/10.5281/
zenodo.1544949.

Appendix A: Inspecting Correspondence Patterns in EDICTOR

The following screenshots show how the modified version of the EDICTOR allows for
an enhanced inspection of sound correspondence patterns inferred by the method.
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5 Conclusion and Outlook
The popularity of computational approaches in the fields of historical linguistics and linguistic typology
is constantly increasing. In contrast to the early attempts by Morris Swadesh, whose methods for the
automated dating of language divergence times based on the amount of shared items in selected lists
of basic vocabulary (Swadesh 1952, Swadesh 1955) items were soon abandoned after they had first
been proposed (Bergsland and Vogt 1962, Hoijer 1956), it seems that the more recent computational
approaches, which were established during the past two decades, have entered the realm of the language
sciences without the intention to leave. Nevertheless, the recent intruders are still viewed skeptically
by many practitioners of historical linguistics and linguistic typology, and one can observe a divide in
the fields, with computational linguists promising novel revolutionary techniques on the one hand, and
traditional linguists who look at the new methods with suspicion, emphasizing the past success of their
manual and qualitative approaches.
In order to overcome this divide between quantitative and qualitative approaches, I have tried to work

on a combined framework for computer-assisted language comparison that would help qualitative linguists
to increase the efficiency of their work while helping quantitative linguists to increase the accuracy of their
approaches. Obviously, this framework cannot solve all problems once and for all times. In order to
reconcile quantitative and qualitative approaches, detailed and concrete proposals for concrete problems
are needed.
In this study, I have tried to show how the framework for computer-assisted language comparison can

be filled with life and how combined approaches which allow for a quantitative and a qualitative treatment
at the same time can be advanced. Starting from novel approaches to the reconstruction of phylogenetic
networks and ancestral character states in Chapter 2, I have presented new approaches towards data
formats and annotation frameworks in historical linguistics in Chapter 3, and finally presented in Chapter
4, how the concrete task of sequence comparison in historical linguistics can be further refined with
help of improved approaches to phonetic sequence modeling and new algorithms for the inference of
correspondence patterns. In this way, I have tried to illustrate how computer-assisted research can be
carried out and advanced in concrete.
Looking back at this research, which began pursuingmore than six years ago, three aspects have proven

to be crucial for any work on computer-assisted language comparison and possibly even for computer-
assisted approaches in the humanities in general. These aspects are the data, the the frameworks for
annotation (the interfaces), and the computational approaches (the software). All three are crucial for a
successful application of computer-assisted approaches to historical and typological language comparison.
Since both qualitative and quantitative research in historical linguistics usually deals with data (albeit in

different form), a first step towards a reconciliation of the two perspectives is to guarantee that data can be
both qualitatively and quantitatively processed. Since quantitative processing is based on computers, one
can also say that data should be not only human- but also machine-readable. All too often, scholars have
neglected this aspect in the past. Computational approaches have used numerical data representations
and restricted themselves to presenting only aggregated results to the experts. Experts on the other hand,
have created large datasets that can only be digested manually by eyeballing the collections page by page.
In order to overcome this problem, I have presented concrete standards in Section 3.1, with the CLDF
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initiative as a first example on general standards for a human- and machine-readable treatment of cross-
linguistic datasets (Forkel et al. 2018), and the CLTS initiative as a concrete example of how standards
for phonetic transcription systems can be established and practically used (Anderson et al. 2018).
In addition to the establishment of standards, computer-assisted language comparison also needs to al-

low experts to conveniently curate their data in concordance with the proposed standards. For this reason,
I have invested a considerable amount of time to develop specific interfaces and annotation frameworks,
as presented in Section 3.2. The EDICTOR (List 2017), for example, allows for an efficient annotation
of etymological data in concordance with basic aspects of linguistic standards. The guidelines for the
annotation of morphological relations and partial cognate relations, as presented in the study by (Hill
and List 2017), furthermore, illustrate how important it is to work towards a strict formalization of those
relations which qualitative linguists use in a mostly implicit manner.
As a last aspect, computer-assisted language comparison has to develop new methods which help to

solve concrete problems in the field of historical language comparison. Here, I have presented two kinds
of methods which I have been developing during the past years. First, in Chapter 2, I have presented
novel approaches to phylogenetic reconstruction, concentrating on phylogenetic networks (List et al.
2014a, List et al. 2014b) and on the reconstruction of ancestral character states (Jäger and List 2018,
List 2016). Although these approaches are more computational in their nature than qualitative, they
represent concrete advancements over past approaches. Thus, they deal explicitly with problems that
have been so far ignored in the majority of quantitative approaches, such as lexical borrowing or partial
cognacy. Furthermore, their usefulness has been explored qualitatively. Second, in Chapter 4, I have
presented novel methods for automated sequence comparison, which are supposed to help qualitative
researchers to increase the efficiency of annotation, by allowing them to pre-process their data with the
new approaches and later use the annotation tools presented in Section 3.2 to correct the errors. That
the methods are already good enough to be used in this way could be illustrated with the help of the
two studies presented in Section 3.1, which deal with partial cognate detection in particular (List et al.
2016b) and the evaluation of the performance of different cognate detection algorithms in general (List
et al. 2017). In Section 4.2, finally, I first presented a tutorial helping scholars to get started in making
active use of the new methods developed during the past years (List et al. 2018), and finally showed the
improved data formats and annotation frameworks along with the novel algorithms could be combined to
address the problem of sound correspondence pattern detection within a computer-assisted framework,
a problem which had not yet been addressed neither in quantitative, nor in qualitative approaches (List
2019b).
While I consider the work that I have presented here as a success, at least in parts, there remain many

challenges that I have not been able to tackle so far, and which may well remain challenges for quite some
time in the future. Among these is the problem of borrowing detection, for which I presented initial ideas
by using phylogenetic network approaches, but which remains one of the major obstacles that prevent
us from finding deeper genetic affiliations among the languages of the world (List 2019a). A further
problem, which became evident in the algorithm for partial cognate detection is that we are still unable
to identify morpheme boundaries from linguistic data without relying on experts. Methods which have
been proposed by colleagues in the past all fail when being applied to data in historical linguistics, because
the word lists which are available are all too small for the data-hungry approaches traditionally used in
Natural Language Processing. A third major challenge, which could not be addressed in this context
relates to the reconstruction of proto-sounds. While the work presented on ancestral state reconstruction
may seem applicable to tackle this problem (at least in part), it is obvious that current ancestral state
reconstruction methods cannot cope with the postulation of ancestral states that one cannot find in the
data, while linguists often do so in linguistic reconstruction (Fox 1995).
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In addition to these inference problems, we have also numerous problems of modeling, where we lack
the proper models to describe the processes of language change. Among these, we find – again – sound
change as a chief candidate that is difficult to model consistently, also since general language-independent
principles of phonotactics are still purely understood. A second candidate for an open problem is the
modeling of lexical change, which is still modeled as a simple process of word gain and word loss in
most phylogenetic approaches. As a third problem, we still lack clear-cut approaches to estimate language
relatedness. Although there have been some attempts by scholars to find a simple formula that assesses
the probability of two languages being related (Baxter and Manaster Ramer 2000, Kessler 2001), none
of the approaches proposed so far could really do justice to the complexity of language change, and only
a few approaches have been tested on sufficient amounts of data.
A third group of problems relates to the establishment of typological accounts on the classical phe-

nomena of language change. Here, the problems of modeling sound change make it also difficult to arrive
at a first dataset that would allow us to compare the major sound change processes which happened so
far in the languages of the world. While pioneering work has been done in this respect (Kümmel 2008),
it seems still impossible to come up with a general solution of collecting which sound changes occurred
in which language families, that would be applicable to all languages of the world. A similar problem
can be encountered when dealing with semantic change. While datasets that try to show the major ten-
dencies of semantic change across different languages and times have been published already (Zalizniak
2018), their applicability is still heavily exacerbated by the fact that the elicitation of specific meanings
has not been done in a systematic manner. Some specific typological problems have even never been
really asked for, although they should be interesting for historical linguists. An example in this regard
is a consistent typology of what Blank (1997) calls Attraktion and Expansion. The fact that the words
expressing certain concepts are repeatedly subject to change, while some concepts keep a rather stable
connection with word forms expressing them, has still not been systematically investigated by linguists,
although we would expect to find numerous interesting factors that could contribute to the attractivity
or the expansivity of a given concept, such as, among others, its frequency of use, its concreteness, or
how important the concept is to its speakers. Such a systematic investigation of “semantic promiscuity”
(as inspired by the concept of “domain promiscuity” in biology, see List et al. 2016c) in word formation
processes documented in the languages of the world might therefore provide us with many interesting
new insights into human perception and cognition. However, given the difficulty of making linguistic
data cross-linguistically comparable, it is not likely that this problem will be tackled any time soon.
All in all, we can say that there is, beyond doubt, still a lot to do in order to reconcile quantitative and

qualitative approaches in historical linguistics and linguistic typology within a unifying framework of
computer-assisted language comparison. With this study, I hope, nevertheless to have shown that these
attempts bear a lot of potential, and that it is therefore worthwhile to pursue them further.
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