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We present a method to accurately predict the Helmholtz harmonic free energies of molecular
crystals in high-throughput settings. This is achieved by devising a computationally efficient frame-
work that employs a Gaussian Process Regression model based on local atomic environments. The
cost to train the model with ab initio potentials is reduced by starting the optimisation of the
framework parameters, as well as the training and validation sets, with an empirical potential.
This is then transferred to train the model based on density-functional theory potentials, including
dispersion-corrections. We benchmarked our framework on a set of 444 hydrocarbon crystal struc-
tures, comprising 38 polymorphs, and 406 crystal structures either measured in different conditions
or derived from them. Superior performance and high prediction accuracy, with mean absolute de-
viation below 0.04 kJ/mol/atom at 300 K is achieved by training on as little as 60 crystal structures.
Furthermore, we demonstrate the predictive efficiency and accuracy of the developed framework by
successfully calculating the thermal lattice expansion of aromatic hydrocarbon crystals within the
quasi-harmonic approximation, and predict how lattice expansion affects the polymorph stability

ranking.

I. INTRODUCTION

Polymorphism and the prediction of the energetic sta-
bility of a crystal polymorph are a fundamental prob-
lem of condensed matter physics, especially for the re-
search and applications of molecular crystals. Polymor-
phism is the capability of solid materials to form more
than one distinct crystal structure [1, 2]. It is partic-
ularly pronounced when multiple atomic or molecular
packing arrangements are characterised by a similar free
energy. The physicochemical properties of these systems,
such as mechanical and optical characteristics, melting
point, chemical reactivity, solubility or stability are tied
strongly to the crystal morphology, therefore increasing
the relevance of a comprehensive structure screening and
the prediction of the relative stability of polymorphs for
a broad range of industries [3].

High-throughput computational screening of crystal
structures based on free energies is rarely performed due
to its high complexity as well as large computational ef-
fort, in particular if a first-principles potential energy
surface is required [4]. It is more common to evaluate
the relative stability of crystal polymorphs by calculat-
ing the lattice energy taking into account only potential
energy contributions [5-9], effectively disregarding en-
thalpic and entropic contributions at finite temperature
[2, 10]. Finite pressure contributions when comparing dif-
ferent phases at different pressures is typically of a lower
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magnitude, reaching only about 1 kJ/mol/molecule for
pressure difference of several gigapascals. It was shown
[11] that even if the vibrational free energy difference
between two given polymporphs lies typically around 2
kJ/mol/molecule, it is sufficient to cause a rearrangement
of the polymporph relative stability ranking. Further-
more, even when the vibrational contribution to the rel-
ative stability is taken into account in a number of cases,
the effect of the thermal expansion of the crystal unit-
cell on the free energy is most frequently omitted. This
is due to the, typically low impact of the thermal expan-
sion on the free energy (around 1 — 2 kJ/mol/molecule
[12]), which is, nevertheless, also sufficient to affect the
polymporph stability ranking.

The vibrational part of the free energy can be accessed
by, among others, two straightforward types of calcula-
tion: within the harmonic approximation given by lat-
tice dynamics calculations [13, 14] and with statistical
sampling methods that accounts for all anharmonic con-
tributions, for example via thermodynamic integration
(TI) [15-19]. Even though methods like TT are more ac-
curate, they are also extremely computationally demand-
ing, requiring a large amount of statistical sampling in or-
der to achieve the necessary accuracy. This renders this
technique often impossible to carry out within a high-
throughput setting. Approximations to the contribution
of anharmonic terms to the free energy can be accessed
by a number of other methods that are less computa-
tionally demanding. However, such approximations have
been shown not to present a significant improvement over
the much less computationally demanding harmonic ap-
proximation for the investigation of polymporph relative
stability [20]. Still, harmonic lattice dynamics are not



a viable solution for high-throughput screening if force
evaluations are a bottleneck, since the calculation typi-
cally involves hundreds of force evaluations for a single
structure (or costly perturbation theory techniques), con-
sidering the full unit cell.

Within the last decades, the rapid increase of computer
power, allied to the rise of machine learning (ML) and
big-data algorithms in the realm of material science, al-
lowed for large-scale screening of materials properties, in-
cluding those related to polymorphism [10, 21-28]. There
are only a handful of examples where vibrational free en-
ergies [29], or other quantities related to the vibrational
density of states [30-33], were successfully predicted with
the assistance of machine learning (ML) methods. Those
methods, however, do not focus on high transferability,
or, if they do, rarely achieve the necessary accuracy to
differentiate between polymorphs. Clearly, if one could
train a very accurate ML interatomic potential for a
large class of systems, it would represent the best so-
lution for the evaluation of lattice energies and free ener-
gies at the same time. However, despite the exceptional
performance of many such potentials, typical root-mean-
square errors on the forces lie around 20 meV/A /atom
[34-39]. With such errors, the expected prediction ac-
curacy of phonon modes is +0.15 THz for the best per-
forming potentials [34]. If the resulting phonon accuracy,
as in [34], is assumed to be constant along the entire fre-
quency range, the harmonic free energy calculation error
amounts to 0.38 kJ/mol/atom.

In this study, we target high accuracy and low com-
putational cost for harmonic free energy predictions. We
build a model for the prediction of Helmholtz harmonic
free energies of molecular crystals based on Gaussian Pro-
cess Regression (GPR) and Smooth Overlap of Atomic
Positions (SOAP) [40] descriptors for representing the
local atomic environments. We optimize the training
and validation set selection with a computationally cheap
empirical potential, confirm its transferability to a first-
principles potential, and proceed to achieve a model with
first-principles accuracy with a very low cost of train-
ing. For a set of hydrocarbon crystals, we are able to
achieve a mean absolute error on the free energies of 0.04
kJ/mol/atom. We analyzed the stability ranking for a
few families of hydrocarbon crystal polymorphs up to
300 K, highlighting the power and accuracy of the model.
Furthermore, this method can predict the anisotropic lat-
tice expansion of these crystals, allowing a cheap evalua-
tion of volume expansion and free energies in the quasi-
harmonic approximation.

II. RESULTS AND DISCUSSION

Because it was shown [20] that the harmonic approxi-
mation to the free energy can be a suitable estimate for
the computation of the relative stability between different
structures of molecular crystals, this project focuses on
predicting the harmonic Helmholtz free energies F'. Con-

tributions from pressure that would be described instead
by the Gibbs free energy are not considered because the
structures regarded in this study are typically observed
much below 1GPa of pressure, making this contribution
to the free energy negligible. Throughout this paper, for
the sake of simplicity, F' is evaluated at the I" point of the
Brillouin zone of a given unit cell. We consider unit cells
larger than the primitive cell where needed (see Meth-
ods). The harmonic free energies are thus calculated as
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where w; is the frequency of a given phonon mode at the
T" point. When taking lattice expansion into account, the
vibrational frequencies depend indirectly on the temper-
ature such that w; = w;(V(T)).

A. Definition of the GPR model

The key assumption of the free energy prediction ap-
proach explored in this project is that even if free energies
are defined only for the entire collection of atoms of the
crystal structure, they can be decomposed into local con-
tributions of atomic environments. The approach of cast-
ing a global property on local environments was explored
previously [41, 42] for the generation of an interatomic
potential from quantum mechanical data. The problem
of the harmonic Helmholtz free energy prediction is ap-
proached by connecting the atomic-wise free energy to
the full free energy by

F=MTf, (2)

where F' is the vector with all measured free energies for
a given crystal set of dimension N, (number of crystal
structures in the training set), M is an incidence matrix
of dimension Ny X N, (number of atom environments
in the given set) and f is the vector of all, unobserved,
atom-wise free energies in the chosen ensemble. Then,
the prediction of f in the training set is modeled as

f'=Ca, (3)

where C' is the matrix containing the similarities between
pairs of atomic environments (dimension Ny X Ny ), de-
fined as
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where o is a scaling prefactor, and g; is a vector of length
D describing local atomic environments. C;; corresponds
to the Gaussian kernel. In Eq. 3, « is a vector of Ny
weights for each atomic environment, such that

F' =M"Ca. (5)



Opening up this equation element-wise, the full free
energy of one sample 7 in the training set is given by
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Optimizing the weights a is equivalent to minimizing
the loss function

L= Z
where o2 is a regularization parameter related to the vari-
ance of the noise of the data.

Finally, substituting Eq. 6 into 7, the minimization is
straightforward and leads to

2+ o2’ Ca (7)

a=MM'CM +*I)"'F, (8)

where I is the identity matrix of dimensions Ny X Ny. In
this way, one can obtain the optimized weights with no
need to define or observe atom-wise free energies.

Finally the prediction of the free energy of a new struc-
ture that is not contained in the training set is achieved
by calculating
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where C* is the similarity matrix between the atomic
environments g* of the new structure to the ones in the
training set, with elements
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All hyper-parameters for the GPR model and the rep-
resentations were selected by minimising, using the steep-
est descent method, the negative log marginal likelihood
function [43]
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where 6 is a vector containing the hyperparameters of
the representations entering q. The application of the
steepest descent method is only guaranteed to find a lo-
cal minimum. A wide space of hyper-parameters was
considered in order to increase the probability of finding
a global minimum.

In all supervised machine learning based models, the
quality of the model strongly depends on the quality of
the training set. Typically, selecting the training set can
be done by either a random selection of samples, given
that the considered ensemble is fairly homogeneous, or by
implementing methods that aim at covering the sampled

domain by maximising the resulting prediction accuracy,
such as the “correlation” clustering method [44], genetic
optimization [45] or k-fold cross-validation [46]. Unfortu-
nately, most of the methods from the latter group require
a large pool of data for which the target property, like free
energy in this case, is available. In this study, because
one of the objectives is to minimize the computational
cost of obtaining a good training set, the applied pro-
cedure focuses on selecting an optimal training subset
based exclusively on the geometrical parameters of the
crystal structure.

For this purpose, the farthest point sampling (FPS)
[47] method is applied, that searches for a subset of the
entire investigated crystal structure ensemble that covers
evenly all structural motifs of the sampled domain with
minimal information overlap. First, a similarity measures
between molecular crystal structure R,_,; is defined ac-
cording to the best-match structural kernel [48] method,
as it is needed for the application of the FPS

np
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where C (q}’,qﬁ’) is the kernel matrix element defined in

equation 4, qj and qﬁ’ are i-th and j-th atomic environ-
ment representations of structure a and b respectively,
and similarly n, and n, are the number of atoms in
those structures. R,_,; defines how well atoms of struc-
ture a can represent geometrical motifs of structure b and
Ry_p # Rp—q. In other words, it is possible that atomic
environments of structure a represent well those of struc-
ture b, while structure b contains geometric features not
present in a. This method of defining the relationship be-
tween crystal structures is very similar to others typically
chosen for such tasks [40, 48-51], with the difference that
R, is not invariant with respect to the crystal struc-
ture index (Rg—p # Rp—q) s0 it is not a similarity metric
in a strict sense. Next, according to the FPS algorithm,
the training set is created by iteratively picking struc-
tures that are least represented by those already present
in the training set. Since any crystal structure can be
used as the starting point for the FPS algorithm, the ap-
plied method selects Ng potential training sets, where
Ng is the number of crystal structures in the considered
ensemble. In order to choose out of Ng potential train-
ing sets, we have investigated the scaled cumulative sum
I(N,,) of the R,—»,
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where N, is the total number of the molecular crystal
configurations in the training set. This quantity reveals
how fast a given training set candidate converges to unity,
which we consider to represent a full coverage of the sam-
pled feature space. In another sense, the I(N,,) quan-
tity can be seen as the description of the information ac-
quisition during consecutive steps of the FPS algorithm.
Finally, training set with the highest recorded value of

I(Nm) = (13)



I(N,,) after all N,,, = 60 steps of the FPS algorithm is
chosen. The training set size of N,, = 60 was chosen
because above this number, the improvement of the pre-
diction accuracy was too small to justify a larger training
set and the associated increase in computational effort.
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FIG. 1: a) Learning curves obtained for 100 randomly
chosen learning sets out of total 444 in grey, and the
chosen learning set with the highest recorded value of

I(N,,) in red. Data was obtained using SOAP
representation and the classical force field model with
the free energy calculated at 300K. b) Correlation

between predicted and calculated free energies at 300 K
(classical force field, SOAP representations). Different

crystal families are represented by different colors.

In the same spirit of maximizing accuracy and mini-
mizing cost, with the objective of performing free energy
predictions with ab initio data, the aim was to select an
efficient and reliable validation set, without using the en-
tire ensemble. Here the goal is to create such a subset
that would represent well the entire set, so as to include,
for example, a proportional number of outlier structures
as found in the entire set. A random selection of valida-
tion set would not fulfill this criterion due to the limited

size of validation set used in this project. Additionally,
this task largely differs from selecting the training set,
because it typically contains a greater relative number of
outliers compared to the entire set. In order to optimally
select the validation set, while preserving the density of
outliers, a stratified approach was used. Here each crys-
tal structure a is assigned a similarity index S,, that
compares a given crystal to entire set

Nq
Sa=Y Ras. (14)
b

The relatively high values of S, indicate a “typical”
crystal and low values indicate “outliers”. Next, the en-
tire set is sorted with respect to S, and the validation set
is chosen by selecting every n-th element of the sorted set,
with n = round(Nr/Ng) where Nr and Ng are the tar-
get numbers of structures in the validation and training
sets. All sets sorted with respect to S, are presented in
supplementary information Figure SI2.

Within the discussed framework and common to many
ML models, the choice of method encoding the atomic
environments to numerical representations has an im-
pact on the resulting performance of the model. In this
project, three well-established general-use atomic envi-
ronment representations [52] were selected and tested,
namely: Smooth Overlap of Atomic Positions (SOAP)
[40] that uses spherical harmonics to locally expand
atomic densities, Many Body Tensor Representation
(MBTR) [53] that uses distributions of different struc-
tural motifs (like radial or angular distribution functions)
and Atom-centered Symmetry Functions (ACSFs) [54]
that use two- and three-body functions detecting spe-
cific features. The Python implementations of the men-
tioned representations found in the DScribe package[55]
was used.

B. Model implementation and validation

For the purpose of this work we have chosen crys-
tals composed of seventeen different hydrocarbons:
pyrene, methylcyclopentane, styrene, naphthalene, ben-
zene, tetracene, mesitylene, pentane, pentacene, hexane,
ethylbenzene, propane, heptane, phenanthrene, butane,
hexacene and anthracene. We have included most avail-
able polymporphs that could be obtained from the Cam-
bridge Crystallographic Data Centre [56] (CCDC), lead-
ing to an ensemble of 74 structures. We noted that
polymporphs of very similar lattice constant in CCDC
tend to be almost identical, with close to negligible dif-
ferences in atomic positions, for example, the case of
ANTCEN20 and ANTCEN22. Finally, the sample do-
main was further expanded by introducing structures
with perturbations of roughly 5% in the lattice param-
eters, as this can lead to up to 16% increase in unit
cell volume - a typical volume expansion percentage for
molecular crystals [57]. The addition of crystal structures



with strongly perturbed lattice parameters was found to
be crucial for the later prediction of lattice expansion
coefficients. Finally, Ng = 444 crystal structures were
considered in this project.

The building and testing of the framework was ini-
tially performed using a classical force-field potential
(AIREBO, as detailed in Methods). In the first steps
of the model verification, the training and validation set
selection criterion, based on the FPS method and max-
imization of I(NV,,), was evaluated. For this purpose,
based on the classical force field data with prediction
performed at 300 K and with SOAP atomic-environment
representations, free energy mean absolute error Fyag
was calculated

N
1
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where N is the number of structures for which the predic-
tion is performed. The results are presented in Figure la
in the form of learning curves, with increasing size of the
training set N and with the validation set. It is visible
that the learning curve obtained for the chosen training
set, so with the highest I(N,,), shows one of the lowest
Fuvag at the target training set size among all potential
sets obtained using FPS method.

Next, the linear and monotonic correlations between
benchmark F and predicted F’ values was assessed by
calculating the Pearson and Spearman correlation coef-
ficients. For predictions performed at 300 K with the
SOAP representation they were found to be 0.9996 and
0.9894, respectively. A value so close to 1 for these co-
efficients indicate a good performance of the developed
framework. Furthermore, due to the low cost of the lat-
tice dynamics calculations performed using classical force
field, the Fyagp was inspected for the entire set (300
K with the SOAP representation) and it was found to
be 0.042 kJ/mol/atom. Additionally, the Fyjag = 0.218
kJ/mol/atom was obtained for 10% of the crystals with
the poorest prediction and 0.023 kJ/mol/atom for the
remaining 90% of samples.

Figure 1b shows the predicted free energy values F”’
compared with the benchmark data F' for the different
crystal families. The analysis gives an indication of the
system-sensitive performance of the framework, reveal-
ing that crystals of pentane, pentacene, tetracene and
hexane are characterised by the poorest averaged predic-
tion accuracy, with the Fyyag around 2 kJ/mol/molecule,
reaching a possible free energy difference between differ-
ent polymporphs [11, 12]. Additionally, the predictions
performed for crystal structures with strongly perturbed
lattice parameters were noticeably poorer, even if the
training set contained parental crystal structures. Nev-
ertheless, the prediction accuracy overall is very high,
especially considering the diversity of hydrocarbons rep-
resented.

Figure 2a shows the learning curves by monitoring
Fuag at 300 K with increasing training set size and
a constant validation set. Additionally, the impact of

the atomic environment representation on the efficiency
of the method was investigated. The learning is well-
behaved for all representations, as expected for properly
parameterized machine learning models. The results ob-
tained with the SOAP representation, with a 6 A cutoff
and 1 A for the standard deviation of the Gaussian func-
tions used to expand the atomic density, are characterised
by the lowest Fyag, showing that it is the best represen-
tation within the investigated set. Finally, the accuracy
of the predictions are noticeably affected by the temper-
ature at which the free energies are required, going from
0.019 kJ/mol/atom at 300 K and 0.015 kJ/mol/atom at
200 K to as low as 0.002 kJ/mol at 0 K.
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FIG. 2: Learning curves of Fyag (300 K) calculated
for the training (dashed line) and the validation set
(solid line) obtained with SOAP, MBTR and ACSF

representations. Results are presented for GPR models
obtained based on: a) the empirical AIREBO force field
and b) density-functional theory (PBE functional with
pairwise van der Waals corrections) data, and are
presented as a function of the number of crystal
structures in the training set. Error bars are equal to
the standard deviation of Fyjag of training sets with
different structures.

C. Transferability of the prediction model

Once the framework was built and proven to deliver
a satisfactory prediction of harmonic free energies based
on data coming from an empirical potential, the trans-
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FIG. 3: Flowchart of the developed framework.

ferability of the model when using DFT data was investi-
gated. For that, the PBE exchange correlation functional
with pairwise van der Waals interactions was employed,
as detailed in Methods. As a test, the similarity between
relaxed structures obtained with the empirical potential
and DFT was assessed by analysing the root mean square
deviation (RMSD) of the atomic positions averaged over
entire set. RMSD for carbon and hydrogen were 0.16
A and 0.20 A, respectively. Importantly, differences in
the SOAP representation were also investigated by cal-
culating the root mean square error normalized by the
standard deviation ex, defined as

2
D 1 N ( FF DFT
Zd NZi (Qd,i — 4y
2
D 1 N (-DFT DFT
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where D is the number of features of the representation
and N is the number of atoms for which the e x was calcu-
lated. Obtained values for both carbon and hydrogen are
ec=1.09 and eg=1.15 respectively. Those results show
that the overall structural features are in good agreement
in these two potential energy surfaces. As a consequence
of this structural similarity between two data sets, the
training and validation sets obtained with the empirical
potential, as explained in the previous section, can be
automatically used in DFT. As a cross-check, the same
training and validation set optimization procedure were
independently applied on the optimized DFT structures,
indeed obtaining the same results. This proved that the
experience gathered from the first phase of the project,

ex = 100 x (16)

where only classical data was used, is fully transferable
to the current stage, where we employ more accurate
ab initio data. As a result, the more expensive ab ini-
tio lattice dynamics calculations were only performed for
crystal structures included in the training and valida-
tion sets, greatly reducing the computational cost of the
model generation.

Finally, the hyperparameters of the GPR model were
re-optimised and were used to calculate learning curves
for training and validation sets shown in Figure 2b, with
the SOAP, MBTR and ACSF representations. All rep-
resentations presented a good performance, with MBTR
and SOAP yielding very similar learning curves. The ob-
tained Fyiag for the SOAP representation at full training
set was found to be 0.038 kJ/mol/atom. Interestingly, a
fairly good prediction performance can be obtained with
as little as 20 crystal structures, resulting in Fyjag=0.07
kJ/mol/atom. Such small training sets typically do not
contain all different molecular components of the crystals
that are present in the entire set, but can still describe
it well. The remainder of this manuscript will focus on
results obtained based on the DFT data with the SOAP
representation, exclusively.

The proposed framework is summarised in the
flowchart in Figure 3. In addition, as it is shown in the
SI, the possibility of this model trained only on hydro-
carbons to extrapolate to systems containing carbon, hy-
drogen and nitrogen atoms was investigated. Although
the prediction accuracy decreases as the concentration of
nitrogen atoms in the samples increases, the model is not
completely invalid. It shows that with a small addition of
structures to the training set, or building representations
for new atoms that combine characteristics of the atoms
that were previously trained [58, 59] this framework could
be easily extended to other systems.

D. Relative free energies of molecular crystals:
stability ranking

The GPR model was employed to create a stability
ranking of several families of hydrocarbon molecular crys-
tals. Sixteen crystal families were considered, encom-
passing 38 polymorphs and 36 variants corresponding to
different thermodynamical conditions with lattice param-
eters as they are given by the CCDC [56]. Additionally,
370 crystal structures with randomly distorted lattice pa-
rameters derived from the initial 74 were included. Fig-
ure 4 shows the lattice energy and the free energy ob-
tained at various temperatures, presented as relative val-
ues to the crystal structure characterised by the lowest
free energy at 300 K (full data is found in Table S2, in
the ST). The identifiers of all crystal structures follow the
convention used in CCDC [56]. For many crystal fam-
ilies, the structure with the lowest lattice energy is not
the same as the one with the lowest free energy especially
at the room temperature. A clear example is the pyrene
crystal and its three polymorphs: Form I is represented
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FIG. 4: Lattice energy Ej,:. and predicted free energy
differences between variants of four molecular crystal
families: anthracene, naphthalene, benzene and pyrene.
Full data, also for a larger number of crystals and
polymporphs, is available in the Table S2 in the SI.
Relative energies are calculated separately at each
temperature, always with respect to the lowest free
energy structure at 300K. The numbers on the labels
represent the identifiers of the crystals following the
convention used in CCDC [56].

by PYRENEOQ2 and PYRENEO3 (structures measured at
423 K and 113 K, respectively, and ambient pressure);
Form II is represented by PYRENE(O7 and PYRENE10
(at 93 K and 90 K, ambient pressure); and Form III is
represented by PYRENE(O8 and PYRENE(Q9 (measured
at at 0.3 GPa and 298 K, and at 0.5 Gpa and 298 K,
respectively). Form I is measured to be more stable than
form IIT at all temperatures up to and beyond 430 K,
at ambient pressure. Here, it is shown that the energy
ranking formed based on lattice energy exclusively would
place the high-pressure form III PYRENEOQ9 (form III)
structure very close to PYRENEOQ2 (form I). An inclu-
sion of zero-point-energy and vibrational contributions
already at low temperatures irrevocably destabilizes form
I11.

A similar example is the benzene crystal. Here, struc-
tures of the ambient-pressure form I, represented by, for
example, BENZEN15, BENZEN19 or BENZEN26, are
characterised by overall lower free energy comparing to
the high-pressure form II structures, like BENZEN16 and
BENZEN17. Interestingly, for this crystal family, the
lattice energy can provides a satisfactory relative stabil-
ity ranking. However, the need for including the vibra-

tional contributions becomes visible once a high and am-
bient pressure variants of one polymorph are compared,
e.g. BENZEN13 and BENZEN26. It is visible in Figure
4 that if considering only lattice energies, BENZEN13
shows the lowest energy compared to other crystal vari-
ants, with lattice energy lower than that of BENZEN26
by 2.58 (kJ/mol/molecule). However, the free energy
prediction shows that at 300 K, the BENZEN26 struc-
ture becomes the most stable out of all those investigated,
and its relative free energy with respect to BENZEN13 is
now lower by 2.92 (kJ/mol/molecule), effectively swap-
ping places in the relative ranking stability with BEN-
ZEN26. For this case, and to test the predictions of the
model in practice, the free energies for both BENZEN13
and BENZEN26 structures were additionally calculated
with DFT. These calculations showed that BENZEN13
is characterised by a free energy that is 3.43 (kJ/mol)
higher than that of BENZEN26 at 300 K, confirming the
results obtained with the GPR model.

The rearrangement of the relative stability ranking
when room temperature free energy is taken into account
is a very common trend among the investigated samples,
and there are a number of cases, where even at 0 K the
zero point energy contribution is high enough to affect
the relative stability ranking. These observations are in
good agreement with previous studies, where more di-
rect methods were used [11]. In some cases, the predic-
tion accuracy of this model is not sufficient to determine
the relative stability of some structures. Nevertheless,
the model is accurate enough to point towards those few
that are characterised by the lowest free energies. Here,
even only narrowing the pool of considered strucrures can
effectively decrease the computational effort of phonon
calculations required, if more accuracy is needed.

E. Predicting lattice expansion.

Because one of the challenges in high throughput com-
putational screening of crystal structures is accounting
for thermal lattice expansion, the application of the
trained free energy model was explored in this context.
To illustrate the procedure, a simple case where only one
of the lattice parameters is being perturbed was consid-
ered. For this purpose the BENZENI11 crystal was cho-
sen, with the lattice parameter a being sampled within
6.52 A and 7.32 A. Next, within the quasi-harmonic
approximation, the free energy was calculated and pre-
dicted as a function of a. Figure 5a shows the comparison
between the GPR model and DFT calculations for the
free energy at 200 K. The optimal lattice parameter a is
determined by a Birch-Murnaghan [60] fit. While there
are small differences between the DFT and the GPR
curves, mostly consisting of a shift in energy, the resulting
optimal lattice parameter a is very similar in both cases,
and equal to 6.92 A and 6.95 A respectively. This simple
and fairly artificial example illustrates that the prediction
accuracy of this framework is sufficient to be employed
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FIG. 5: a) Predicted (red) and calculated (blue, DFT)
free energies as a function of one lattice parameter of
the BENZEN11 crystal at 200K. Solid lines correspond
to a Birch—-Murnaghan fit. b) 3D visualisation, in lattice
parameter space (a, b, ¢), of the free energy prediction
including lattice expansion of the anthracene crystal at
200 K, with 300 different combinations of perturbed
lattice parameters. The red line indicates the observed
change in the lattice parameters when increasing the
temperature from 0 to 300 K. c) Relative predicted free
energies of benzene crystal structures when considering
fixed lattice constants (taken from CCDC), and when
considering lattice expansion at 0 K and at 300 K.

in the context of the lattice expansion/contraction pre-
diction.

A more challenging task is the prediction of anisotropic
lattice changes. Direct calculations of anisotropic lat-
tice expansion requires lattice dynamic evaluations for,
typically, hundreds of structures of the same crystal

polymorph, making it a very costly calculation for a
high-throughput setting. Although harmonic and quasi-
harmonic models [61] as well as an approach based on the
assumption of the linear relation between free energy and
volume have been proposed to overcome this cost [62],
with this framework these lattice changes can be esti-
mated without relying on any ansatz for the dependence
of the free energy on the lattice parameters. It is worth
noticing that even if the free energy predictions at various
temperatures requires training the ML model multiple
times, it happens with minimal computational overhead
once appropriate lattice vibrations have been computed.
Four molecular crystals were picked, namely P2;/a an-
thracene (ANTCEN), Pbca benzene (BENZEN), P1 pen-
tacene (PENCENO1) and Pben styrene (ZZZTKAO01) and
hundreds of ionic relaxations with the a, b and ¢ lat-
tice parameters perturbed by around 5% were performed.
Next, for each of those perturbed structures free energy
prediction at a number of temperatures from 0 K to 300
K range was performed.

Figure 5b shows a 3D visualisation of free energy pre-
dictions for over 300 different combinations of lattice pa-
rameters a, b and ¢ of the ANTCEN crystal. Even with
such a high number of sampled lattice parameter com-
binations, the position of the free energy local minima
might not overlap with the gathered data. In this case,
in order to find the minimum in this high-dimensional
space, an active learning based on the GPR algorithm is
employed. Here, the GPR is used as a multi-dimensional,
non-linear regressor, as implemented in the scikit-learn
[63] package. In detail, the following bootstrap proce-
dure is used:

1. Identifying the position of the data point with the
lowest free energy value according to the GPR 3D
interpolation.

2. For the chosen set of (a, b, ¢) lattice parameters per-
form an ionic relaxation and predict the free energy
with the trained model.

3. If the predicted free energy of the (a,b,c) sample
varies from the free energy obtained by the 3D GPR
regression, a new 3D GPR regression is performed,
now explicitly including sample (a,b,c), then go
back to step 1.

4. If the predicted free energy of the (a,b,c) sample is
sufficiently close to the one of the 3D GPR regres-
sion (within +£0.1%), then the scheme is stopped
and the optimal lattice parameters are considered
to be found.

We found that typically only around 3 additional relax-
ations and free energy predictions (per temperature) are
necessary to achieve sufficient convergence of the lattice
parameters. By employing this procedure to predict the
anisotropic lattice changes the lattice-parameter change
is calculated, as well as the full volume change of the
selected crystals, as shown in Figure S5.



The results obtained can be compared to experimental
values where data is available. For anthracene the ex-
perimentally measured volume change is Vooare/Voor =
1.024 [64] and we obtained VAL /VML = 1.034. For

pentacene the compamson is Vigare /Voore = 1.037 [65]
and VAL /V = 1.031; for benzene Vil /ViSE =
1.089 [66] and VML VML = 1.068; for styrene

VEIP Ve — 1017 (67, 68] and VAL /VME = 1.009.

The predlctlons are quite close to experimental data and
overall a high degree of anisotropy is observed. More-
over, a deviation from a linear behavior of the free energy
change with respect to volume is observed, as shown in
Figure S6.

This framework can thus be used to create the rel-
ative stability ranking including the thermal expansion
effect on the free energy. Here, one example of how
this can impact the relative stability and crystal form
of these systems is presented. For this purpose, BEN-
ZEN13 and BENZENB26 (high and low pressure vari-
ants of the P2 /b2, /¢21/a benzene I polymorph [69]) are
selected, as well as BENZEN16 (a high pressure P2;/c
benzene II polymorph [70]). The initial lattice constants
were taken from the CCDC. As shown in Figure 5c, by
simply searching for the free energy minimum at 0 K
using the procedure described above, BENZEN13 and
BENZEN26 were found to end up being characterised
by almost identical (predicted) free energies and lattice
constants. Further inspection indicated that indeed the
BENZEN13 and BENZEN26 structures converged to the
same structure, and the same behavior was found at all
investigated temperatures. Even if somewhat expected,
given that they are high and low pressure phases within
the same crystal group and in the absence of any ap-
plied pressure it is natural that they both adopt the low-
pressure structure, the fact that this result came from the
model alone, and that the free energy predictions were
able to capture this transition, shows that the method
is robust. The BENZEN16 structure is stabilized by 1
kJ/mol/molecule upon increasing the temperature from
0 K to 300 K, as shown in Figure 5c. This stabilization
is accompanied by an appreciable lattice expansion with
a volume increase of around 6% from 0 to 300 K.

III. CONCLUSIONS

In summary, we proposed a framework provides a ma-
chine learning model with first principles accuracy for the
harmonic Helmholtz free energies of molecular crystals,
that is suitable for high-throughput studies. In addition,
it was shown that the training and validation set of the
model can be optimised using a cheaper empirical poten-
tial, and then transferred to first-principles calculations,
thus substantially decreasing the cost of training, with-
out sacrificing accuracy.

The model was tested to predict the relative energetic
stability ranking of several diverse hydrocarbon poly-
morphs and distorted crystal structures derived from

them and the changes on this ranking with increasing
temperature was studied. We observed that in most
cases, omitting thermal effects and instead using only
the lattice energy, leads to misleading results. Further-
more, it was shown that the model can be efficiently em-
ployed to calculate the anisotropic lattice expansion — a
task rarely approached due to its complexity and high
computational demand when performed at the ab initio
level. Unsurprisingly, taking the anisotropic lattice ex-
pansion into account leads to further changes in the sta-
bility ranking. Naturally, the same framework could be
used to predict other quantities derived from vibrational
properties, like the vibrational heat capacity.

The strengths of this framework are its low computa-
tional cost, reliability and accuracy. However, because
the model is trained to directly predict free energies, one
still has to deal with the computational cost of obtaining
optimized structures, which here we obtained from first-
principles geometry optimizations. Nonetheless, fitting a
machine-learned interatomic potential is becoming more
streamlined [71], even though these potentials rarely tar-
get the accurate description of vibrational properties due
to the added complexity of including them in the learn-
ing procedure. The presented framework, on the other
hand, can be easily combined with any potential that
can predict structures in a reasonable manner and has
the potential to be more accurate.

Extending this framework beyond hydrocarbon-based
crystals could be straightforward, albeit perhaps requir-
ing different training data. We have already observed
that the framework is capable of predicting DFT free en-
ergies from FF-relaxed structures with promising accu-
racy (see Supplementary Information). Finally, targeting
fully anharmonic free energies with ab initio accuracy is
still a daunting task that can, nevertheless, profit from
the knowledge gained in this study.

IV. METHODS

Geometry optimisation calculations with empirical po-
tentials were performed using LAMMPS [72] together
with ATREBO [73] interatomic potentials. The conjugate
gradient minimization algorithm was used with dummy
parameters to ensure full convergence, namely 10725(1)
and 4 x 1072 kJ/mol/A for energy and forces respec-
tively and with 5 - 10* maximum iterations of the min-
imizer. Phonon calculations with the empirical poten-
tials were performed using the i-PI [74] code, considering
2 x 2 x 2 repetitions of the primitive cell. The phonons
were calculated by finite differences with a 0.005 A dis-
placement in all Cartesian directions.

All ab initio simulations were performed using the
FHI-aims package [75]. For this purpose, we employed
light settings for all atomic species, together with the
Perdew-Burke-Ernzerhof exchange-correlation functional
[76] and many-body dispersion corrections [77]. We
have used 5 x 5 x 5 k-point sampling of the Brillouin



zone. A self-consistency convergence criterion of 107°
eV/A was imposed on the forces, which ensured that
energies were converged to 10~ eV or below. The relax-
ation was performed using the trust radius version of the
Broyden-Fletcher-Goldfarb-Shanno [78, 79] optimization
algorithm with the maximum residual force component
threshold equal to 10=% eV/ A. Lattice dynamics calcu-
lations were performed through finite differences using
Phonopy [80]. The atomic displacements were of 0.002
A in all Cartesian directions. The size of the supercell
was individually chosen for the different molecular crys-
tals, with the requirement that at least twice the distance
between molecular centers of mass of adjacent molecules
was comprised by the vector lengths in each direction.

The framework for the GPR model was developed
using Python3 and Fortran95 languages. A prelim-
inary version of the core functionalities is available
in https://github.com/sabia-group/fep.git. The
SOAP, MBTR and ACSF representations were calculated
using the DScribe [55] package.
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1 GPR Model: Parameters and Tests

10!
Nm(1)

Figure S1: Convergence of the I®(N,,) calculated for all potential training set
candidates. Colours from yellow to brown marks sets of low to high I€(N,,)
convergence. The red colour is marking the selected training set.
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Table S1:

Results of the GPR hyper-parameters optimisation together with

the mean absolute error of the harmonic free-energy calculated for all discussed
descriptors based on both, ab initio and classical model. All presented values
were obtained based on the entire training set (N, = 60).

descriptor
SOAPDFT
MBTRpgr
ACSFppr
SOAPrp
MBTRpp
ACSFpp

o
0.077
0.077
0.074
0.097
0.097
0.096

l
72
414
18
22
157
42

Oc
0.03
0.03
0.03
0.03
0.01
0.04

FNm=00(k.J /mol /atom)
0.038
0.040
0.063
0.020
0.033
0.072

4 /
3- 4
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W /o
2 o" o®
s o0
e
14 e
)
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entire set
e training set
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sorted samples

Figure S2: Sorted vector S, calculated for each of discussed sets: validation,
training and the entire set. Each dot represent one molecular crystal. Presented
in the Figure S2 sorted vector S, for the training set differs greatly from this
of the entire set. This is caused by the necessity for the training set to cover
proportionally more outliers than those present in the entire set.

52



10t

—e— DFT

Ex

100_

12 24 36 48 60

o T X (F (X)) = F(X.))?
le,l Z;VX (FfF(Xt))z
is the subset of Nx crystal structures for which the prediction is performed)

calculated for the validation and the training set for both, ab initio and classical
models at 300K.

Figure S3: Prediction error ex = 100 x

(where X

2 Free Energy Predictions for Different Crystal
Families

Table S2: Lattice energy and free energy at 0K, 100K, 200K and 300K for
chosen crystals structures of different families and polymorphs, calculated with
respect to the structure showing the lowest free energy at 300K within a specific
category. Structures identifiers are presented according to the CCDC data base
format. All values are presented in (kJ/mol/molecule).

CCDCid. FEi  Fox  Fioox  Froox  Faoox
ANTCEN 0.63 0.64 0.56 0.42 0.29

ANTCENO1 -1.10 -0.55 -0.15 0.53 1.27
ANTCENO7 0.27 0.28 0.26 0.23 0.20
ANTCENO8 -1.17 -0.57 -0.14 0.62 1.43
ANTCENQ09 -1.20 -0.62 -0.16 0.62 1.47
ANTCEN10 -1.02 -0.57 -0.21 0.41 1.08
ANTCEN11 -0.81 -0.47 -0.18 0.30 0.82
ANTCEN12 -0.50 -0.28 -0.09 0.23 0.57
ANTCEN13 -0.12 -0.00 0.09 0.24 0.41
ANTCEN14 0.34 0.36 0.35 0.32 0.30
Continued on next page
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Table S2 — Continued from previous page
CCDC id. FEi  Fox  Fioox  Froox  Faoox
ANTCEN17 0.42 0.43 0.41 0.36 0.31
ANTCEN19 0.00 0.00 0.00 0.00 0.00
ANTCEN20 -1.46 -0.86 -0.40 0.39 1.24
ANTCEN21 -1.39 -0.87 -0.45 0.26 1.03
ANTCEN22 -1.48 -0.84 -0.35 0.48 1.39
ANTCEN23 -1.53 -0.97 -0.48 0.37 1.28

BENZEN 1.19 040 0.16 0.01 0.29
BENZENO1  0.22  0.00 0.05 0.38 1.15
BENZENO03 497 6.69 7.57 9.36 11.65
BENZEN04 497 6.69 7.57 9.36 11.65
BENZEN11 0.02 0.89 1.34 241 4.00
BENZEN12 117 297 3.70 5.31 7.51
BENZEN13 -0.08 047 0.81 1.67 3.02
BENZEN15 0.76  0.19 0.06 0.10 0.56
BENZEN16 2.66  3.08 3.67 4.87 6.45
BENZEN17 2.83  3.37 3.99 5.25 6.91
BENZEN18 1.38 0.50 0.22 0.01 0.21
BENZEN19 0.08 0.02 0.14 0.59 1.49
BENZEN20 0.26  0.02 0.05 0.36 1.11
BENZEN25 1.38 0.51 0.23 0.01 0.21
BENZEN26  2.50 1.27 0.77 0.19 0.03

DUCKOB04 0.00 0.00 0.00 0.00 0.00
DUCKOBO5 2.53 9.30 10.87 13.97 17.31
DUCKOB0O6 2.93 9.84 1143 1459 17.99
DUCKOBoO7 7.38 15.62 17.38 20.99 24.93
DUCKOBO08 13.60 23.36 25.27 29.29  33.70
DUCKOB09 19.90 31.08 33.09 37.39 42.14

HEPTANO1  0.00  0.00 0.00 0.00 0.00
HEPTANO3 -0.44 0.16 0.29 0.55 0.83

ZZZDKE(O1  0.00  0.00 0.00 0.00 0.00
Z7Z7ZDKE02 -0.58 -0.31 -0.14 0.17 0.51

NAPHTA04 -1.80 -0.86 -0.40 0.39 1.26
NAPHTA12 -1.88 -0.57 0.14 1.36 2.70
NAPHTA15 -191 -0.88 -0.37 0.51 1.48
NAPHTA17 -171 -097 -0.57 0.10 0.83
NAPHTA18 -1.46 -092 -0.62 -0.11 0.44
NAPHTA23 -193 -0.75 -0.20 0.77 1.83
NAPHTA24 -1.92 -0.77 -0.22 0.74 1.79
NAPHTA36 0.00 0.00 0.00 0.00 0.00

PENCEN -0.11  0.19 0.41 0.84 1.35
PENCENO1 -2.14 -1.10 -0.55 0.50 1.71
PENCENO5 3.33  3.65 3.27 2.70 2.17

Continued on next page
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Table S2 — Continued from previous page

CCDC id. FEi  Fox  Fioox  Froox  Faoox
PENCEN10 0.00 0.00 0.00 0.00 0.00

JAYDUI 0.00 0.00 0.00 0.00 0.00
JAYDUIO1 7.20 12.32 13.62 16.24 19.05
PYRENE 0.02 0.02 0.02 0.01 0.00
PYRENEO1 0.00 0.00 0.00 0.00 0.00
PYRENEO02 0.02 0.02 0.02 0.01 0.00
PYRENEO3 -1.51 -1.30 -0.91 -0.30 0.32
PYRENEO7 -1.08 -1.30 -0.79 0.05 0.92
PYRENEO8 1.69 1.66 2.19 3.07 3.89
PYRENEO9 -0.31 0.80 1.83 3.45 5.08
PYRENE10 -142 -1.17 -0.71 0.02 0.77
777ZTKA01 -0.40 -0.03 0.12 0.36 0.61
7Z7Z7ZTKA02 0.00 0.00 0.00 0.00 0.00

TETCEN 0.00 0.00 0.00 0.00 0.00
TETCENO1 -1.14 -0.69 -0.43 0.02 0.51
TETCENO03 2.76 2.81 2.33 1.55 0.77
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3 Free Energies Including Lattice Expansion

ANTCEN PENCENO1
-e- -o-
L 1.0151 % ¢ .
S 1.010
% 1.010;
X
1.005. 1.005
1.000+ 1.0001€ ,
0 200 0 200
BENZENE ZZZTKAO1
@ 2 o2
@b |-® b
1.031 o ¢ 1.02979"
S
—=1.02
§ 1.01;
1.01
1.001¢ ‘ 1.001¢ ,
0 200 0 200
T (K) T (K)

Figure S4: Temperature evolution of the relative lattice parameters calculated
for four investigated molecular crystals.
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Figure S5: Temperature evolution of the relative volume calculated for four
investigated molecular crystals.
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Figure S6: Relative free energy as a function of relative volume calculated within
0-300K range.
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Figure S7: Temperature variation of the the thermal pressure P, (T) = i‘ljgg

4 Predicting DFT free energies from force field
structures

We have analyzed whether the force-field (FF) structures could be used to pre-
dict DFT free energies. In order to obtain an upper limit for the errors that such
study would yield, we performed additional calculations of DFT free energies
using geometries obtained by relaxations with the AIREBO force-field. We have
used the same training (all 60 structures), validation sets and SOAP descriptors
as in the manuscript. We performed a new optimization of the hyperparameters
of the GPR model with the same approach as presented in the manuscript and
obtained values: ¢=0.079, [=18 and 0.=0.04. The predictions were performed
at 300K. Figure S8 shows a correlation between predicted and calculated free
energies. We have obtained a mean absolute deviation of 0.07 kJ/mol/atom —
almost a factor 2 higher when compared to the 0.04 kJ/mol/atom when DFT
structures were used. It is expected that once more accurate potential is used,
resulting in structures closer to those obtained in DFT, a higher prediction ac-
curacy could be achieved. This method thus shows some promise that the DFT
free energies could be directly from FF structures and potentially free energies.
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Figure S8: Correlation between predicted F’ and calculated F free energies at
300 K, with a model trained on force-field structures, but with DFT free-energy
predictions. Different crystal families are represented by different colors.
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