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Abstract

We show that, under weak assumptions, the automorphism group of a CAT(0) cube

complex X coincides with the automorphism group of Hagen’s contact graph C(X).

The result holds, in particular, for universal covers of Salvetti complexes, where it

provides an analogue of Ivanov’s theorem on curve graphs of non-sporadic surfaces.

This highlights a contrast between contact graphs and Kim–Koberda extension graphs,

which have much larger automorphism group. We also study contact graphs associated

with Davis complexes of right-angled Coxeter groups. We show that these contact

graphs are less well behaved and describe exactly when they have more automorphisms

than the universal cover of the Davis complex.

1 Introduction

The curve graph associated with a finite-type surface is a fundamental object in the

study of mapping class groups [17, 18]. It has arguably been at the heart of the

monumental developments in our understanding of mapping class groups and Kleinian

groups that were initiated by the work of Masur and Minsky [31, 32] and have ultimately

led to the solution of Thurston’s ending lamination conjecture [1, 30].
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Automorphisms of Contact Graphs 3279

An important property of curve graphs is that they are rigid: Ivanov showed

that every automorphism of the curve graph of a non-sporadic surface is induced by an

element of the extended mapping class group [25, 26]. This was a central ingredient

first in the computation of the abstract commensurator [26], and later in the proof

that mapping class groups are quasi-isometrically rigid [8, 16]. Due to the classical

result of Tits that the automorphism group of a building coincides with the associated

algebraic group [34], Ivanov’s theorem also strengthens the analogy between mapping

class groups and arithmetic groups.

It was recently shown by Behrstock, Hagen and Sisto [4, 5] that the Masur–

Minsky machinery can be applied to a much vaster class of spaces, which they name

hierarchically hyperbolic spaces. This has proved a fruitful approach to a number of

problems [3, 12, 13], notably allowing these authors to obtain a particularly strong

rigidity result for quasi-flats [6].

It is natural to wonder if analogues of Ivanov’s theorem hold for other hier-

archically hyperbolic spaces. In this note, we address this question for CAT(0) cube

complexes.

Many CAT(0) cube complexes were shown to be hierarchically hyperbolic in

[4, 21], with Hagen’s contact graph playing the role of a curve complex. In particular, all

virtually special groups [24] are hierarchically hyperbolic, and these include all right-

angled Artin and Coxeter groups. In the case of right-angled Artin groups, a parallel

between curve graphs and extension graphs (a relative of contact graphs) had already

been observed by Kim and Koberda [27, 28].

For a general CAT(0) cube complex X, there are actually at least three (closely

related) graphs that can claim some analogy with curve graphs:

(i) Hagen’s contact graph C(X) [15] mentioned above. Vertices are hyperplanes

of X and edges connect pairs of hyperplanes that are not separated by a 3rd.

(ii) The crossing graph C�(X). This is the subgraph of C(X) with full vertex set

and edges only joining pairs of transverse hyperplanes.

(iii) The reduced crossing graph Cr(X). This is the simplicial graph obtained by

identifying vertices of C�(X) with the same link (see Definition 1 for a more

precise description).

When X� is the universal cover of a Salvetti complex, and if no two vertices

of the graph � have the same link, then Cr(X�) coincides with the extension

graph �e introduced by Kim and Koberda [27].
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3280 E. Fioravanti

If X is uniformly locally finite and has no cut vertices, then these three graphs

are quasi-isometric to each other (see e.g., [14, Appendix A]). By [15, Theorem 4.1], they

are quasi-trees, hence, in particular, they are δ–hyperbolic. When, in addition, X is

hierarchically hyperbolic, a number of further analogies with curve graphs and mapping

class groups is discussed in [4], including acylindricity of actions, existence of hierarchy

paths, and a Masur–Minsky-style distance formula. We also refer the reader to [28] for

other analogies in the case of right-angled Artin groups.

If G(X) denotes any of the three graphs above, we have a natural homomorphism

Aut X → Aut G(X). The closest we can get to an analogue of Ivanov’s theorem is if one

of these homomorphisms is an isomorphism. It is important to remark that the group

Aut X will often be uncountable and, in fact, this is essentially always the case for

universal covers of Salvetti complexes (see Remark 1 below).

It can be deduced from the work of Huang [22] that the images of the homomor-

phisms Aut X → Aut C�(X) and Aut X → Aut Cr(X) have uncountable index for most

universal covers of Salvetti complexes (see Remark 2 below). This dashes any hopes

that these two maps be isomorphisms, even for relatively harmless cube complexes like

Salvetti complexes.

As we are about to see, things are a lot better behaved for the contact graph C(X).

We only draw the reader’s attention to Example 7.1 in [4], which shows that even the

homomorphism ι : Aut X → Aut C(X) cannot be an isomorphism in complete generality.

We say that a vertex v ∈ X(0) is extremal if its link is a cone (cf. [2, Definition

2.2]). In other words, v lies in the carrier of some hyperplane w that is transverse to all

other hyperplanes containing v in their carrier. We stress that any vertex that belongs

to a single edge of X is extremal.

Every hyperplane w ⊆ X inherits a structure of CAT(0) cube complex from X,

where cubes of w are intersections with cubes of X. In particular, vertices of w are in

one-to-one correspondence with edges of X crossing w. It thus makes sense to speak of

extremal vertices of w.

Our main result is the following (its two parts will be proved in Corollary 1 and

Theorem 3.1, respectively). We denote by S(X(0)) the group of permutations of the vertex

set of X.

Theorem. Let X be a uniformly locally finite CAT(0) cube complex with no extremal

vertices. Let ι : Aut X → Aut C(X) be as above.

1. There exists a homomorphism ρ : Aut C(X) → S(X(0)) such that ρ ◦ ι = idAut X .

In particular, the homomorphism ι is injective.
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Automorphisms of Contact Graphs 3281

Suppose in addition that no hyperplane of X has extremal vertices. Then:

2 ι is a group isomorphism with inverse ρ.

The main idea in the proof of the Theorem 1 is that, when X has no extremal

vertices, vertices of X are in one-to-one correspondence with maximal cliques in C(X).

If, in addition, the hyperplanes of X have no extremal vertices, edges of X correspond to

pairs of maximal cliques of C(X) with the largest possible intersection.

Cube complexes with no free faces never have extremal vertices (see e.g.,

[2, Remark 2.5]), and neither do their hyperplanes. Hence:

Corollary. Let X be a uniformly locally finite CAT(0) cube complex with no free faces.

Then Aut X ∼= Aut C(X) via the map ι.

The Corollary applies in particular to all universal covers of Salvetti complexes

associated with right-angled Artin groups.

It would be nice to use this result to study abstract commensurators of

right-angled Artin groups, or to expand the known results on their quasi-isometry

classification [7, 10, 22, 29] and their quasi-isometric rigidity properties [9, 19, 23].

Unfortunately, it appears that these applications would rather require the extension

graph, which, as discussed above, is highly non-rigid.

For instance, Huang showed that every quasi-isometry between right-angled

Artin groups with finite outer automorphism groups induces an isomorphism of their

extension graphs [22, Lemma 4.5]. In the same context, quasi-isometries can fail to

induce isomorphisms of contact graphs (see e.g., Remark 3).

As pointed out by one of the anonymous referees, it is even true that every right-

angled Artin group G with #Out(G) < +∞ admits a proper cobounded quasi-action of

some group H that fails to induce an H–action by automorphisms on the contact graph

associated with the Salvetti complex of G (see the proof of [19, Theorem 6.10] along with

our Theorem 1). It remains unclear to me whether there can be such examples where

this issue cannot be resolved by passing to a finite-index subgroup of H.

In relation to this, the following question was suggested by the same anonymous

referee (several special cases have been studied in [23]):

Question 1. Let a group H be quasi-isometric to a right-angled Artin group G

with #Out(G) < +∞. Does a finite-index subgroup of H act properly and cocompactly

on the universal cover of the Salvetti complex of G?
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3282 E. Fioravanti

Finally, it is reasonable to wonder whether it really is necessary to require that

hyperplanes of X have no extremal vertices in the Theorem 1. Davis complexes provide

a nice class of counterexamples when we drop this hypothesis.

Recall that, for a graph � and a vertex a ∈ �(0), the star st a ⊆ �(0) is the set of

vertices that are either equal to a or joined to a by an edge. The following will be proved

in Proposition 1.

Proposition 1. Let W� be a right-angled Coxeter group with no finite direct factors.

Let Y� denote the universal cover of its Davis complex. Then:

1. Y� has no extremal vertices, so ι : Aut Y� → Aut C(Y�) is injective.

2. Y� has a hyperplane with extremal vertices if and only if there exist distinct

vertices a, b ∈ �(0) with st a ⊆ st b. In this case, the subgroup ι(Aut Y�) <

Aut C(Y�) has infinite index.

3. The homomorphism ρ : Aut C(Y�) → S(Y(0)
� ) is injective if and only if there

do not exist vertices a, b ∈ �(0) with st a = st b. When ρ is not injective, its

kernel is an uncountable torsion subgroup.

2 Preliminaries and Examples

All proofs are elementary, but we assume a certain familiarity with the basics of CAT(0)

cube complexes. See for instance [33, 35] for an introduction.

Given a graph G, we say that two vertices are adjacent if they belong to a

common edge. Given x ∈ G(0), the link lk x ⊆ G(0) is the subset of vertices adjacent

to x. The star of x is the set st x = lk x ∪ {x}.
An automorphism of G is a self-bijection of G(0) that preserves adjacency of

vertices. We denote the automorphism group of G by Aut G. If every vertex in G has finite

degree, Aut G is a 2nd-countable, locally compact topological group with the compact-

open topology,

If G1 and G2 are graphs, their join G1 ∗G2 is obtained by taking the disjoint union

G1 
 G2 and joining by an edge each vertex of G1 to each vertex of G2. We say that the

graph G is a cone if it is the join of some other graph G′ and a singleton.

Let X be a CAT(0) cube complex. The group of (cubical) automorphisms of X

coincides the automorphism group of the 1–skeleton X(1); we denote it by Aut X. A path

γ ⊆ X is a combinatorial geodesic if it is contained in X(1) and it is a geodesic for the

graph metric on X(1).
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Automorphisms of Contact Graphs 3283

We denote by W (X) and H (X), respectively, the set of all hyperplanes and all

halfspaces of X. Given a hyperplane w ∈ W (X), we refer to the two halfspaces h, h∗

bounded by w as its sides. Given subsets A, B ⊆ X, we denote by W (A|B) the set of

hyperplanes w such that A and B are contained in opposite sides of w.

Given w ∈ W (X), the union of all cubes of X that intersect w forms a subcomplex

C(w) ⊆ X known as the carrier of w. We say that w is adjacent to a vertex v ∈ X(0) if w

intersects an edge of X incident to v (equivalently, if v belongs to the carrier of w). We

denote by Wv ⊆ W (X) the set of hyperplanes adjacent to the vertex v ∈ X(0).

We say that a hyperplane u contacts another hyperplane w if their carriers

intersect. Equivalent conditions are that the set W (u|w) is empty, or that there exists

a vertex v ∈ X(0) such that {u,w} ⊆ Wv.

For each v ∈ X(0), we redefine the link lk v as follows.1 The graph lk v has a

vertex for every edge of X incident to v, and an edge joining two vertices of lk v if and

only if the corresponding edges of X span a square. Equivalently, the vertex set of lk v

is Wv, and we join two hyperplanes by an edge when they are transverse. We say that v

is extremal if lk v is a cone.

The intersection between a hyperplane w ⊆ X and a cube c ⊆ X is always either

empty or a mid-cube in c. It follows that w inherits a decomposition into cubes w ∩ c,

where c ranges through all cubes in the carrier C(w). This gives w a structure of CAT(0)

cube complex. We are thus allowed to speak of “vertices of w” (which are midpoints of

edges of X crossing w) and of their link in the CAT(0) cube complex w.

A subcomplex C ⊆ X is said to be convex if every combinatorial geodesic joining

two vertices of C is entirely contained in C. The carrier of every hyperplane is a convex

subcomplex, and so is the full subcomplex spanned by the vertices contained in any

given halfspace. If C1, . . . , Ck are pairwise-intersecting convex subcomplexes of X, we

have C1 ∩ · · · ∩ Ck 
= ∅. This fact normally goes by the name of Helly’s lemma.

Before we go any further, let us give a less ambiguous definition of the reduced

crossing graph Cr(X), which was sketched in the introduction.

Definition 1. Vertices of Cr(X) are maximal subsets W ⊆ W (X) with the property

that, for any two u, v ∈ W, each hyperplane of X is transverse to u if and only if it is

transverse to v. Vertices of Cr(X) corresponding to subsets U ,V ⊆ W (X) are joined by an

edge of Cr(X) if and only if there exist transverse hyperplanes u ∈ U and v ∈ V (in which

case every hyperplane in U is transverse to every hyperplane in V).
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3284 E. Fioravanti

We now obtain Remarks 1, 2, and 3, which were promised in the introduction.

Throughout this discussion, we denote by X� the universal cover of the Salvetti complex

associated with a right-angled Artin group A�.

Recall that the 1–skeleton of X� coincides with the standard Cayley graph of A�.

It follows that each edge of X� is labelled by a standard generator of A�, that is, a vertex

of the graph �. Opposite edges in a square of X� always have the same label, hence all

edges crossing a given hyperplane w ∈ W (X�) have the same label. We will refer to this

element of �(0) as the label of w.

Remark 1. It was pointed out to me by Nir Lazarovich that the group Aut X� is always

uncountable, except when X�
∼= Rn. The argument is essentially the one in Theorem 5.12

of [20], but I briefly recall it here.

Assume that the graph � is not complete and pick vertices x, y ∈ �(0) that are not

joined by an edge. Let φ be the automorphism of the group A� that fixes each standard

generator except for the one corresponding to y, which is taken to its inverse. Identifying

A� with X(0)
� , it is clear that φ determines a cubical automorphism of X�, which we also

denote by φ.

Let v ∈ X(0)
� be the vertex corresponding to the identity of A�. There are two

hyperplanes adjacent to v that are labelled by x ∈ �(0). Let w be one of them and let

h, h∗ denote its two sides. Observe that φ fixes the carrier C(w) pointwise and therefore

leaves invariant h and h∗.

Let the map ψ : X� → X� be defined as the identity on h∗ ∪ C(w), and as φ on

h ∪ C(w). It follows from the previous observation that ψ is well defined. Since every

edge of X� is contained in either h∗ ∪ C(w) or h ∪ C(w), this is an automorphism of X�. It

is clear that ψ 
= idX�
.

Now, given any finite set F of vertices of X�, there exists g ∈ A� with gF ⊆ h∗.

Hence the automorphism g−1ψg ∈ Aut X� − {idX�
} fixes F pointwise. We conclude that

the locally compact group Aut X� is non-discrete.

The fact that Aut X� is uncountable follows from Baire’s theorem (see e.g., [11,

Remark 2.A.18]).

We say that a combinatorial geodesic γ ⊆ X� is standard if all edges of γ have

the same label. Two bi-infinite standard geodesics are at finite Hausdorff distance if

and only if they cross the same hyperplanes; in this case, we say that they are parallel.

Given that X(1)
� coincides with the usual Cayley graph of A�, we will also speak of

standard geodesics in A�.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/5/3278/6027880 by M
PI M

athem
atics user on 29 M

arch 2022



Automorphisms of Contact Graphs 3285

The extension graph �e [22, 27, 28] has a vertex for every parallelism class of

standard geodesics in X�; the vertices determined by standard geodesics γ1 and γ2 are

joined by an edge of �e if and only if the hyperplanes crossed by γ1 are transverse to the

hyperplanes crossed by γ2.

Note that, in general, we do not have a homomorphism Aut X� → Aut �e, but

only a homomorphism A� → Aut �e.

Let dw denote the usual word metric on A�, which coincides with the graph

metric on X(1)
� under the identification A� = X(0)

� . Let dr be the syllable metric on A�, as

defined for example, in [28, Section 5.2] and [22, Section 4.3]. More precisely, dr is the

largest metric on A� satisfying dr(x, y) = 1 for all distinct x, y ∈ A� that are joined by a

standard geodesic.

In order to make Remark 2 below, we will need the following lemma, which can

in large part be deduced from the work of Huang [22].

Lemma 1. Let � be a finite graph.

1. There is a natural homomorphism Isom(A�, dr) → Aut �e. This is injective if

and only if � is not a cone.2

2. If no two vertices of � have the same link, every isometry of (A�, dw) is an

isometry of (A�, dr). Moreover, �e = Cr(X�) in this case.

Proof. We begin with part (2). Consider a vertex v ∈ X(0)
� , a vertex x ∈ �(0), and the two

vertices x± ∈ (lk v)(0) determined by x. If no two vertices of � have the same link, no

vertex of lk v−{x±} can have the same link as x+ and x−. It follows that every element of

Aut X� takes standard geodesics to standard geodesics. Identifying Isom(A�, dw) with

Aut X�, we deduce that every φ ∈ Isom(A�, dw) is 1–Lipschitz with respect to dr. Since

φ−1 must also be 1–Lipschitz for dr, this shows that φ ∈ Isom(A�, dr).

Finally, it is easy to see that, since no two vertices of � have the same link, the

projection C�(X�) � Cr(X�) identifies two vertices if and only if there exists a standard

geodesic crossing the corresponding hyperplanes. It follows that Cr(X�) coincides with

�e in this case.

Regarding part (1), Huang showed that every element of Isom(A�, dr) takes

standard geodesics to standard geodesics, as unparametrized sets (see Remark 4.16

and the proof of Corollary 4.15 in [22]). Since vertices of �e correspond to families of

hyperplanes transverse to standard geodesics, every isometry of the syllable metric

induces a permutation of the vertices of �e. Huang also showed (loc. cit.) that such
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3286 E. Fioravanti

permutations preserve adjacency of vertices of �e. We thus obtain a homomorphism

Isom(A�, dr) → Aut �e.

If � is the cone over a subgraph 	, we have A� = A	 × Z. For any permutation

σ : Z → Z, the map (g, n) �→ (g, σ(n)) is an isometry of the syllable metric on A	 ×Z, but

it maps to the identity in Aut �e.

Conversely, let us show that, when � is not a cone, the homomorphism

Isom(A�, dr) → Aut �e is injective. In other words, given φ ∈ Isom(A�, dr) taking

each standard geodesic to a standard geodesic at finite Hausdorff distance, we need to

show that φ fixes each element of A�.

Consider an element g ∈ A� and let {γx}x∈�(0) be the collection of all standard

geodesics containing g. Observe that
⋂

x γx = {g}, that each φ(γx) is a standard geodesic

at finite Hausdorff distance from γx, and that
⋂

x φ(γx) = {φ(g)}. Let α be a combinatorial

geodesic joining g and φ(g) in X�. Since α joins a point of γx to a point of φ(γx), every

edge crossed by α must be labelled by an element of st x ⊆ �(0). However, since � is not

a cone, we have
⋂

x∈�(0) st x = ∅. In conclusion, α does not cross any edges, and we have

φ(g) = g for all g ∈ A�. �

Remark 2. Suppose that � is not a cone and that no two vertices of � have the same

link. We show here that, in this case, the images of the two natural maps ι� : Aut X� →
Aut C�(X�) and ιr : Aut X� → Aut Cr(X�) have uncountable index.

It follows from Lemma 1 that we have a commutative diagram:

Now, the argument in [22, Example 4.14] shows that the embedding Isom(A�, dw) ↪→
Isom(A�, dr) is very far from being surjective. More precisely, for every standard

geodesic γ ⊆ X� and every permutation σ of its vertex set γ (0) ⊆ X(0)
� = A�, we can

construct an element of Isom(A�, dr) that preserves the set γ (0), and acts on it as σ .

On closer inspection, this corresponds to a copy of the infinite symmetric group

S(Z) < Isom(A�, dr) that intersects the subgroup Isom(A�, dw) in an infinite dihedral

subgroup. Thus, Isom(A�, dw) < Isom(A�, dr) has uncountable index, and so does

Aut X� < Aut Cr(X�).
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Automorphisms of Contact Graphs 3287

Finally, observe that the quotient projection C�(X�) � Cr(X�) induces a surjective

homomorphism πr : Aut C�(X�) � Aut Cr(X�).3 This yields the commutative diagram:

We conclude that Aut X� < Aut C�(X�) also has uncountable index.

Remark 3. There are many examples of quasi-isometries of X� that fail to induce an

automorphism of the contact graph C� := C(X�).

A 1st example is provided by the argument in Remark 2 (also appearing in [9,

Section 11] and [22, Example 4.14]). Under its assumptions, we have seen that every

permutation of the vertex set of the standard geodesic γ gives rise to an isometry of

(A�, dr). Considering bi-Lipschitz permutations of γ (0), the resulting isometries of dr

are quasi-isometries of (A�, dw) and most of them will not induce automorphisms of C�.

For a 2nd example, suggested by one of the anonymous referees, let � be a

pentagon. Consider the homomorphism τ : A� → Z/2Z with τ(v) = 1 for some vertex

v ∈ � and τ(w) = 0 for all other w ∈ �. Then ker τ is isomorphic to A�′ , where �′ is the

graph obtained by glueing two copies of � along st v. Since ker τ has index 2 in A�, there

is a natural proper cobounded quasi-action of A� on X�′ . It is not hard to see that every

hyperplane of X�′ is taken within bounded distance of another hyperplane, so we obtain

an action of A� on C(0)

�′ by bijections. However, the bijection associated with v ∈ A� does

not extend to an isomorphism of C�′ .

Note that it is not clear if the quasi-isometries in the 1st example can take part

in a proper cobounded quasi-action on X�. In the 2nd example, we do have a geometric

quasi-action, but #Out(A�′) = +∞. Moreover, the restriction to ker τ < A� of the quasi-

action on A�′ does in fact induce an action by automorphisms on C�′ . As mentioned in

the Introduction, other examples are provided by [19, Theorem 6.10], although, again,

all issues disappear in a finite-index subgroup.

3 Proof of the Theorem

Let X be a CAT(0) cube complex with contact graph C = C(X), as defined in the

introduction. We identify subsets of C with their intersection with C(0) and with the

corresponding subset of W (X).

Our 1st goal is to establish a correspondence between vertices of X and maximal

cliques in C.
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3288 E. Fioravanti

Lemma 2.

1. For every finite clique C ⊆ C, there exists v ∈ X(0) with C ⊆ Wv.

2. If C ⊆ C is a maximal finite clique, there is v ∈ X(0) with C = Wv.

3. If X is uniformly locally finite, the cliques of C are uniformly finite.

Proof. For every vertex v ∈ X(0), the subset Wv ⊆ C is a clique. Parts (2) and (3) thus

follow immediately from part (1), which we now prove.

Let C ⊆ C be a finite clique. For every hyperplane w ∈ C, at most one side of w

can contain a hyperplane in C disjoint from w. Picking this side for every w ∈ C, or just

any side if w is transverse to all other hyperplanes in C, we obtain a finite collection

of pairwise-intersecting halfspaces H ⊆ H (X). By Helly’s lemma, there exists w ∈ X(0)

lying in all elements of H.

Let d(w) denote the sum of the distances from w to the carriers of the

hyperplanes in C, using the graph metric of X(1). Thus, d(w) = 0 if and only if C ⊆ Wv.

If d(w) > 0, there exist hyperplanes u ∈ C − Ww and v ∈ Ww ∩ W (w|u). Let w′ ∈ X(0) be

the vertex with W (w|w′) = {v}. No hyperplane in C can be contained in the side of v that

contains w, or they would not contact u. It follows that d(w′) < d(w) and, iterating this

procedure finitely many times, we obtain a vertex v ∈ X(0) with d(v) = 0. This yields

part (1). �

Remark 4. Locally finite CAT(0) cube complexes need not be ω–dimensional (i.e.,

they can contain infinite families of pairwise-transverse hyperplanes). In particular,

there exist locally finite cube complexes whose contact, crossing, and reduced crossing

graphs all contain infinite cliques. Thus, the hypothesis in part (3) of Lemma 2 cannot

be weakened.

Lemma 3. Consider a vertex v ∈ X(0) with #Wv < +∞.

1. There exists w 
= v with Wv ⊆ Ww if and only if lk v is a cone.

2. In particular, if lk v is not a cone, the clique Wv ⊆ C is maximal and there

does not exist another vertex w with Wv = Ww.

Proof. By part (1) of Lemma 2, Wv is a maximal clique if and only if there does not

exist w ∈ X(0) with Wv � Ww. Part (2) thus follows from part (1).
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Suppose that w 
= v is a vertex with Wv ⊆ Ww. Let w ∈ Wv be a hyperplane

separating w and v. Since w cannot separate w from any element of Wv, it must be

transverse to all elements of Wv. Hence lk v is a cone.

Conversely, if lk v is a cone, there exists a hyperplane w ∈ Wv that is transverse

to all other hyperplanes adjacent to v. Denoting by w ∈ X(0) the vertex with W (v|w) =
{w}, we have Wv ⊆ Ww. �

Recall from the introduction that the action Aut X � W (X) results in a natural

homomorphism ι : Aut X → Aut C. Lemmas 2 and 3 immediately yield the 1st part of the

Theorem 1:

Corollary 1. Let X be uniformly locally finite, with no extremal vertices. There exists

a natural one-to-one correspondence between vertices of X and maximal cliques of C.

This induces a homomorphism ρ : Aut C → S(X(0)) satisfying ρ ◦ ι = idAut X .

We now proceed to study when the homomorphism ρ is injective.

Definition 2. For a hyperplane w ∈ W (X), we denote by I(w) the intersection of all

sets Wv that contain w. Let moreover I0(w) ⊆ I(w) be the subset of those hyperplanes

u ∈ I(w) for which w ∈ I(u).

Note that w ∈ I0(w) ⊆ I(w). Recall that a vertex v ∈ X(0) lies in the carrier of w

if and only if w ∈ Wv. Thus, we have u ∈ I(w) if and only if the carrier of w is contained

in the carrier of u. In particular, u ∈ I0(w) if and only if u and w have the same carrier.

Remark 5. Let X be uniformly locally finite, with no extremal vertices. Since the

subsets Wv ⊆ W (X) are exactly the maximal cliques of C, we have φ(I(w)) = I(φ(w))

for all w ∈ W (X) and φ ∈ Aut C. Moreover:

u ∈ I0(w) ⇔ u ∈ I(w) & w ∈ I(u)

⇔ φ(u) ∈ φ(I(w)) & φ(w) ∈ φ(I(u))

⇔ φ(u) ∈ I(φ(w)) & φ(w) ∈ I(φ(u)) ⇔ φ(u) ∈ I0(φ(w)).

Hence φ(I0(w)) = I0(φ(w)) as well.

Lemma 4. Consider w, u ∈ W (X).

1. We have u ∈ I(w) if and only if u is transverse to w and to all other

hyperplanes transverse to w. In particular, #I(w) ≤ dim X.
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3290 E. Fioravanti

2. If u ∈ I0(w), then u and w have exactly the same star in C.

3. We have u ∈ I0(w) if and only if I0(u) = I0(w). In particular, the sets I0(w)

provide a partition of C(0).

Proof. We begin with part (1). If u ∈ I(w), the carrier of w is contained in the carrier of

u, and it is clear that u is transverse to all other hyperplanes that intersect the carrier

of w (i.e., w and the hyperplanes transverse to w other than u). Conversely, suppose that

u 
∈ I(w). Then there exists v ∈ X(0) adjacent to w, but not to u. There exists v ∈ Wv

separating u and v. If u is transverse to w, so must be v. In conclusion, either u is not

transverse to w, or v is transverse to w and u is not transverse to v.

Finally, #I(w) ≤ dim X follows from the observation that the elements of I(w)

are pairwise transverse. This completes the proof of part (1).

Recall that we have u ∈ I0(w) if and only if u and w have the same carrier. Part

(3) is immediate from the fact that this is an equivalence relation. Part (2) follows from

the additional observation that edges of C join exactly those pairs of hyperplanes that

have intersecting carriers. �

Corollary 2. Let X be uniformly locally finite, with no extremal vertices. Let N ≤ S(C(0))

be the subgroup leaving each subset I0(w) ⊆ C invariant.

1. N is contained in Aut C.

2. N coincides with the kernel of ρ : Aut C → S(X(0)).

3. N is isomorphic to the direct product of the permutation groups S(I0(w)). In

particular, ρ is injective if and only if each I0(w) is a singleton.

Proof. Part (1) is immediate from part (2) of Lemma 4. The 1st half of part (3) is

immediate from part (3) of Lemma 4. The 2nd half of part (3) will follow from part (2).

Let us then conclude by proving part (2). Recall that an element φ ∈ Aut C lies

in ker ρ if and only if φ leaves invariant each maximal clique of C. Again by part (2)

of Lemma 4, every maximal clique in C is a union of sets of the form I0(w). Hence

N ≤ ker ρ.

Conversely, consider φ ∈ ker ρ. Given that each I(w) is an intersection of

maximal cliques, and φ leaves every maximal clique invariant, we have φ(I(w)) = I(w)

for all w ∈ W (X). Recalling that φ(I(w)) = I(φ(w)) by Remark 5, we have I(w) = I(φ(w)),

hence φ(w) ∈ I0(w). Thus, part (3) of Lemma 4 yields I0(φ(w)) = I0(w) and, again by

Remark 5, we have φ(I0(w)) = I0(w) for every w ∈ W (X). Hence φ ∈ N and ker ρ ≤ N. �
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Finally, we discuss when the homomorphism ρ takes values within Aut X.

Lemma 5. Suppose that no hyperplane of X has extremal vertices. Then:

1. given a vertex v ∈ X(0) and transverse hyperplanes u,w ∈ Wv, there exists

v ∈ Wv − {u,w} that is transverse to u, but not to w;

2. a vertex w ∈ X(0) is adjacent to v ∈ X(0) if and only if there does not exist

x ∈ X(0) − {v, w} with Wv ∩ Ww ⊆ Wv ∩ Wx.

Proof. We first prove part (1). Let v′ ∈ u be the projection of v to u (i.e., the midpoint of

the only edge of X that contains v and crosses u). This is a vertex of the cubical structure

on u and u∩w is a hyperplane of u adjacent to v′. Since u has no extremal vertices, there

exists a hyperplane v′ of the cube complex u that is adjacent to v′ and disjoint from

u ∩ w. If v ∈ W (X) is the hyperplane with v′ = v ∩ u, then v is adjacent to v, transverse

to u, and disjoint from w (disjointness follows, for instance, from the Helly property for

hyperplane carriers).

We now prove part (2). If w is not adjacent to v, there exists a vertex x ∈ X(0) −
{v, w} that is adjacent to v and lies on a combinatorial geodesic between v and w. By

convexity of carriers, we have Wv ∩ Ww ⊆ Wv ∩ Wx.

Conversely, suppose that v and w are adjacent and let x ∈ X(0) − {v, w} be such

that Wv ∩ Ww ⊆ Wv ∩ Wx. Let w be the only hyperplane separating v and w; since w ∈
Wv ∩ Ww, the vertex x must lie in the carrier of w. Let x′ and v′ = w′ be the projections

of the vertices x, v, w to the hyperplane w; since x 
∈ {v, w}, we have x′ 
= v′. Hence

there exists a hyperplane u′ of the cube complex w such that u′ is adjacent to v′ and

separates v′ from x′. Since w has no extremal vertices, there exists a hyperplane v′ of w

such that v′ is adjacent to v′ and disjoint from u′; in particular, v′ is not adjacent to x′.
Now, let v ∈ W (X) be the hyperplane with v′ = v ∩ w. Note that x is not adjacent to v, or

x would lie in a square of X crossed by v and w, in which case x′ would be adjacent to

v′. In conclusion, v ∈ Wv ∩ Ww − Wx, which contradicts our assumption that Wv ∩ Ww ⊆
Wv ∩ Wx. �

Theorem 3.1. Let X be a uniformly locally finite CAT(0) cube complex with no extremal

vertices and with no hyperplanes containing extremal vertices. The map ι : Aut X →
Aut C is an isomorphism and ρ is its inverse.

Proof. By part (2) of Lemma 5, any permutation of X(0) in the image of ρ : Aut C →
S(X(0)) preserves adjacency of vertices. It follows that ρ takes values in Aut X and we
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3292 E. Fioravanti

have already shown in Corollary 1 that ρ ◦ ι = idAut X . Finally, part (1) of Lemma 5 and

part (1) of Lemma 4 guarantee that I(w) = {w} for every w ∈ W (X). Thus, Corollary 2

shows that ρ is injective. �

4 Proof of the Proposition

In this section, we consider a right-angled Coxeter group W�, the universal cover Y� of

its Davis complex, and the contact graph C� = C(Y�).

Let cln denote the complete graph on n vertices. We can always split the finite

graph � as a join cln ∗ �′ for some n ≥ 0 and a subgraph �′ ⊆ � that is not a cone. This

corresponds to splittings W� = (Z/2Z)n × W�′ and

Y� = [0, 1]n × Y�′ , Aut Y� = ((Z/2Z)n � Sn) × Aut Y�′ ,

C� = cln ∗ C�′ , Aut C� = Sn × Aut C�′ ,

where Sn denotes the symmetric group on n elements. The natural map ι : Aut Y� →
Aut C� vanishes on the (Z/2Z)n subgroup, and it restricts to the natural map

ι : Aut Y�′ → Aut C�′ on the right-hand factors.

Therefore, the general study of C� and its automorphism group reduces to the

case n = 0. Since links of vertices of Y� are all isomorphic to the graph �, this is

equivalent to Y� having no extremal vertices.

Let us write Y = Y� and C = C� for short in the rest of the section. The

discussion on Salvetti complexes in the paragraph before Remark 1 readily generalizes

to Davis complexes, showing that every hyperplane of Y is labelled by a vertex of �. Let

γ : W (Y) → �(0) denote the map assigning to each hyperplane its label.

Lemma 6. Given w, u ∈ W (Y), we have u ∈ I(w) if and only if the carriers of u and w

intersect and st γ (w) ⊆ st γ (u). In this case, we have u ∈ I0(w) if and only if st γ (w) =
st γ (u).

Proof. If u ∈ I(w), the carrier of w is contained in the carrier of u, and we have

st γ (w) ⊆ st γ (u) by part (1) of Lemma 4. Conversely, suppose that st γ (w) ⊆ st γ (u) and

that a vertex v ∈ Y(0) lies in the carrier of both u and w. Any other vertex w in the carrier

of w is joined to v by a path that only crosses edges labelled by elements of st γ (w).

Since st γ (w) ⊆ st γ (u), none of these edges can leave the carrier of u, hence u ∈ Ww. This

shows that u ∈ I(w). The statement about I0(w) follows immediately. �
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We are now ready to prove the Davis intro ?? from the introduction, which we

recall here for ease of reference.

Proposition 1. Let W� have no finite direct factors. Then:

1. Y has no extremal vertices, so ι : Aut Y → Aut C is injective.

2. Y has a hyperplane with extremal vertices if and only if there exist distinct

vertices a, b ∈ �(0) with st a ⊆ st b. In this case, the subgroup ι(Aut Y) <

Aut C has infinite index.

3. The homomorphism ρ : Aut C → S(Y(0)) is injective if and only if there do not

exist vertices a, b ∈ �(0) with st a = st b. When ρ is not injective, its kernel is

an uncountable torsion subgroup.

Proof. As already observed, the fact that W� has no finite factors implies that Y has

no extremal vertices. Part (1) thus follows from Corollary 1.

Let us now prove part (3). By part (1) of Lemma 4, the cardinality of each set

#I0(w) is bounded above by dim Y. Thus, part (3) of Corollary 2 shows that ker ρ is a

(possibly trivial) torsion group. If no two vertices of � have the same star, then Lemma

6 implies that each set I0(w) is a singleton. In this case, part (3) of Corollary 2 shows

that ρ is injective.

Conversely, suppose that distinct vertices a, b ∈ �(0) have the same star. Since

W� has no direct factors, there exist infinitely many wi ∈ W (Y) with γ (wi) = a. The

sets I0(wi) are pairwise disjoint and each contains at least two elements, by Lemma 6.

Part (3) of Corollary 2 yields that ker ρ is a direct product of countably many non-trivial

groups, hence uncountable.

We conclude the proof of the proposition by addressing part (2). For every

w ∈ W (Y), the induced cubical structure on w is isomorphic to Y�, where � is the

full subgraph of � with vertex set lk γ (w). This has extremal vertices if and only if �

is a cone over some b ∈ �(0), that is, if st γ (w) ⊆ st b. We deduce that Y contains a

hyperplane with an extremal vertex if and only if there exist a, b ∈ �(0) with st a ⊆ st b.

We are only left to show the 2nd half of part (2). Let a, b ∈ �(0) be distinct vertices

with st a ⊆ st b, consider w ∈ Y(0), and let a, b ∈ Ww be labelled by a, b, respectively.

Let a± be the two halfspaces bounded by a. We define a partition W (Y) = A+ 
 A− 
 T ,

where a hyperplane lies in A± if it is contained in a±, and it lies in T if it is transverse

or equal to a.

Let rb ∈ W� < Aut Y be the reflection in the hyperplane b. Consider the map

φ : C(0) → C(0) defined as the identity on A− 
 T , and as ι(rb) on A+ 
 T (note that ι(rb)
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3294 E. Fioravanti

coincides with the identity on T ). Since no edge of C connects an element of A+ to an

element of A−, it is clear that φ ∈ Aut C.

If a vertex v ∈ Y(0) lies in the halfspace a−, we have Wv ⊆ A− 
 T , and this set is

fixed pointwise by φ. In this case, we have ρ(φ)v = v. On the other hand, if v lies in a+,

we have Wv ⊆ A+ 
 T , where φ = ι(rb). Hence ρ(φ)v = rbv. Looking at the action on any

square of Y that is crossed by both a and b, we see that ρ(φ) 
∈ Aut Y.

Let us write φa+,b in the rest of the proof, highlighting the dependence on the

choice of a+ and b in the definition of φ. Pick a sequence an ∈ W (Y) of hyperplanes with

γ (an) = a such that the distance between a and an diverges.4 Let bn ∈ W (Y) be (the only)

hyperplanes transverse to an with γ (bn) = b. We choose the side a+
n so that it is disjoint

from a+ and set ψn := φa+,b ◦ φa
+
n ,bn

. By the above discussion, we have ψn ∈ Aut C.

The permutation ρ(ψn) ∈ S(Y(0)) fixes exactly those vertices of Y that do not

lie in a+ 
 a+
n . Since the distance between a+ and a+

n diverges, the ρ(ψn) lie in pairwise

distinct cosets of Aut Y < ρ(Aut C). Hence, since ρ ◦ ι = idAut Y , the ψn lie in pairwise

distinct cosets of ι(Aut Y) < Aut C.

This concludes the proof. �

Notes

1. As a set, lk v is naturally identified with the link within the graph X(1). However, since v is a
vertex of a cube complex, it will be important that lk v inherits an additional structure of graph.

2. Note that the condition that � be not a cone in part (1) of Lemma 1 seems to have been overlooked
in Remark 4.16 of [22].

3. This holds for arbitrary CAT(0) cube complexes X, as long as the fibres of the projection C�(X) �
Cr(X) all have the same cardinality.

4. One can show the existence of the an as follows. Since W� has no finite factors, there exists
a hyperplane c ∈ W (Y) disjoint from a. Let ra, rc ∈ W� denote the reflections in a and c,
respectively. Then we can take an := (rcra)na.
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