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We present fresh evidence for the presence of discrete quantum time crystals in two spatial dimensions.

Discrete time crystals are intricate quantum systems that break discrete time translation symmetry in driven
quantum many-body systems undergoing nonequilibrium dynamics. They are stabilized by many-body localiza-
tion arising from disorder. We directly target the thermodynamic limit using instances of infinite tensor network
states, and we implement disorder in a translationally invariant setting by introducing auxiliary systems at each

site. We discuss how such disorder can be realized in programmable quantum simulators: This gives rise to the
interesting situation in which a classical tensor network simulation can contribute to devising a blueprint of a
quantum simulator featuring prethermal time crystalline dynamics, one that will ultimately have to be built in
order to explore the stability of this phase of matter for long times.
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I. INTRODUCTION

A time crystal is a periodic structure that not only repeats
itself periodically in space, as regular crystals do, but also in
time [1,2]. The idea of a crystal in space and time has been
proposed by Wilczek [3] using superconducting rings and
persistent currents. Not much later, it became clear that seri-
ous obstructions need to be overcome: Ground states of local
Hamiltonians can provably not host a spontaneous breaking
of time-translation symmetry [4,5]. So achieving a quantum
time crystal becomes possible only in two special scenarios:
(i) using a nonlocal Hamiltonian, or (ii) resorting to nonequi-
librium dynamics. Indeed, one can construct Hamiltonian
models whose ground states feature quantum time crystals,
albeit at the price of an intricate interaction pattern that is
presumably excessively challenging to achieve even in highly
engineered quantum systems [6].

As an alternative route much more amenable to experimen-
tal realization, one can resort to settings of nonequilibrium
physics [7-11]. Specifically, systems undergoing a time-
periodic driving in one spatial dimension have been identified
as suitable candidates to exhibit discrete time translation
symmetry breaking [1,2,8,11-15], referred to as discrete
time crystals, going back to the seminal work of Khemani,
Lazarides, Moessner, and Sondhi [8]. Indeed, this idea has
led to the experimental observation of time crystals, both
in one-dimensional systems of trapped ions using a pro-
grammable potential [16], and in large settings of dipolar spin
impurities in diamond at room temperature [17]. A further
obstacle that arises along the way in such periodically driven
physical systems can be largely overcome. To avoid heating
due to the driving, disorder comes to the rescue, giving rise
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to many-body localization [18,19], which prevents thermal-
ization [17,20-22], either for long (as in prethermal) or all
times [23,24]. That is to say, by suitably combining disorder
and periodic driving, the realization of this intricate state of
matter is conceivable in synthetic quantum devices. Indeed,
experimental realizations of such discrete time crystals can
be viewed as instances of dynamical quantum simulations
[25-27] realizing quantum technological devices [28]. In this
sense, they can be seen as physical systems that allow us to
probe intriguing features of interacting quantum many-body
systems under precisely controlled conditions.

This state of affairs, discussed in the previous paragraph, is
most interesting in situations in which state-of-the art classi-
cal simulation techniques can provide strong evidence of the
existence of discrete time crystals. At the same time, a full
simulation in all aspects is out of reach with present classical
simulation tools (and in fact presumably for all classical sim-
ulation tools, as there are complexity-theoretic obstructions to
this effect [29]). This points to the exciting direction of explor-
ing discrete time crystals in higher dimensions, settings that
are conceivable in programmable quantum simulators [21,30—
36], but for which the best known classical codes can only
keep track of the relevant features in time. Indeed, this state of
affairs gives rise to the interesting situation that one can build
trust in the functioning of a quantum simulator in relevant
regimes. At the same time, there is scope for explorations
outside the classically computationally accessible realm: after
all, the full quantum simulation is barely beyond the bound-
ary of what can be assessed with classical computers. And
along these lines, e.g., we can discriminate prethermal be-
havior for long times from genuine infinite-time time crystals
[1,2].
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In this work, we provide evidence for the existence of dis-
crete time crystals in two spatial dimensions. This is possible
by resorting to tensor network techniques such as projected
entangled pair states (PEPS) [37-41], here applied to and
pushed further to a regime involving interactions, disorder,
and a time-periodic drive in two spatial dimensions. Unlike
other numerical techniques, these tools are built to precisely
capture genuine quantum correlations [42], and they can di-
rectly target the thermodynamic limit (iPEPS) [37,39,43], thus
overcoming finite-size effects that are often encountered in
classical simulations of quantum many-body systems. Target-
ing the thermodynamic limit is quite important, especially in
the context of diagnosing time crystals, as they are only mean-
ingful in the infinite-size limit [2]. For these reasons, iPEPS
have been successfully used in the past to calculate ground
states of challenging condensed-matter problems [44-50],
thermal states [51-54], as well as nonequilibrium steady states
[55]. Tensor networks, in general, have the limitation that they
cannot handle large entanglement buildup associated with
studying time evolution, and therefore they cannot go to very
long times as this would require exponentially large bond
dimensions.

In fact, the challenge to reach longer times for tensor
network algorithms is rooted in fundamental complexity
theoretic obstructions, arising from considerations in
quantum information theory: The upshot is that the
development of efficient classical simulation methods
for all time-evolving local Hamiltonians is implausible
because such a time evolution turns out to be ultimately
as powerful as a full quantum computer. In principle, any
quantum algorithm could be run on a local Hamiltonian
quantum system undergoing such a time evolution. In
more technical terms, local Hamiltonian time evolution is
bounded-error quantum polynomial (BQP) complete [29],
and therefore a universal classical simulation of local
Hamiltonian evolution is not expected to be possible
for all times. Despite this, the application of tensor
networks has been extended to the challenging realm of
keeping track of the time evolution in two-dimensional
interacting systems [56—60] to unprecedented times
recently.

Equipped with this machinery, we take on the problem of
one of the most intricate quantum phases of matter: quan-
tum time crystals in two dimensions. To be concrete, we do
so by building upon recent efforts to capture time evolution
in many-body localized systems in two spatial dimensions
[58,60]. Indeed, the stability of many-body localization in
two spatial dimensions is an open and challenging topic due
to the argument of an avalanche mechanism caused by the
presence of rare ergodic bubbles [61,62], and with existing
tensor network methods, we may never be able to predict the
stability of such a phase at infinite times.

In fact, again it is clear that any such classical simulation
must face obstructions when aiming at assessing the behav-
ior of the system at long times. That said, by substantial
computational effort and suitable algorithm development, on
the practical side, we can push things to show the existence
of the phenomenon and to make a strong case for many-
body localization in two spatial dimensions, within the realm
of finite times that can be assessed. In fact, recently, there

has been more evidence of many-body localization in two
spatial dimensions [59,63-66] using a variety of numerical
techniques. In Ref. [60], we have shown the existence of
many-body localization in two spatial dimensions for the
longest times available to us based on the particle imbalance
and the growth of local Rényi entropies with programmable
discrete disorder. We found that taking a sufficient number
of disorder levels as well as disorder strength is required to
achieve localization, albeit for the available times. Besides,
as we have also found in extensive numerical work, as the
instability has its origin in thermal bubbles, the probability
measure underlying the disorder matters significantly, a situ-
ation that can be easily accommodated with programmable
disorder, say, in programmable quantum simulators, as we
have them in mind here. Our current work is built upon
this setup. To achieve our goal, we employ the evolution
under a time-dependent Floquet Hamiltonian within an iPEPS
framework.

Our advances are basically threefold: (i) We establish (at
least prethermal) the presence of time-crystalline behavior in
higher than one spatial dimension in unprecedented regimes
over other known methods, thereby (ii) also demonstrating
that tensor networks are able to make meaningful predictions
in this regime in which interactions, disorder, and time-
dependent drives come together, and (iii) we signify the power
of programmable disorder to stabilize such behavior at longer
times, thereby providing further impetus for such quantum
simulators from the perspective of quantum information sci-
ence to assess the stability of intricate quantum phases of
matter.

II. MODEL

In what follows, we consider a piecewise constant time-
dependent family of Floquet Hamiltonians ¢ + Hp(t) as

_ |HwpL if 1 €10,T/2),
Hp (1) = {Hs if 1 e|T/2,T). M

Specifically, the time evolution operator advancing the system
by one period is taken as U = e~ sT/2¢=iHvniT/2 with Hypy
being a static many-body localizing Hamiltonian described
below. This entails that the total Hamiltonian is time-periodic
with period 7', where within one period of ¢ € [0, T'), first only
Hypy is active for times ¢ € [0, T /2), while for the second
part of the period ¢t € [T /2, T) only Hyg acts on the systems.
Hy is a spin-flip operator that flips each spin in the system
at suitable moments in time. We choose Hy to be a spin-flip
operator with some periodicity 7 as in Ref. [15] as

Hs = 27 /T — 2¢) Zs;f. )

The action of this Hamiltonian is to flip each spin in the
system in the spin-z basis {| 1), | |)} at suitable times. S*
is the spin-1/2 operator in the spin-x basis acting on each
site, working in units % = 1. The frequency of this flipping
depends on the time period T > 0. The real constant param-
eter € determines the deviation from a perfect flip (| 1) —
| J)) and vice versa: The persistence of a time crystal for
nonzero values reflects a macroscopic rigidity since there is
a periodic response in a measurable observable even when the
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FIG. 1. Effect of imperfect flip (¢ = 0.5) on a single uncoupled
spin. One can see the emergence of a beating pattern along with the
associated spikes leading to the formation of a knot at around Floquet
cycle 32.

driving is not synchronized. A discrete time crystal is reflected
by a response that is periodic in integer multiples of the
driving period (here, period doubling given our specific set-
ting). For the Hypp contribution to the Hamiltonian, we
choose a Heisenberg model on a square lattice with discrete
disorder as

HypL =J Z -8+ Z hiS;, 3)
(i, J) i

where h; is drawn from a discrete uniform distribution with
d, levels between —h/2 and h/2 (the choice of naming the
integer number of levels d, will become apparent below).
The above Hamiltonian is not only amenable to quantum
simulation in programmable quantum simulators: it can at
the same time be implemented in a perfectly translationally
invariant fashion using iPEPS [60] by appending to every local
physical spin-1/2 (denoted by subindex p) an auxiliary one
(denoted by subindex a) with local Hilbert space dimension
d,. This a posteriori explains the above-mentioned choice of
variable name. We have found evidence of localization based
on the particle number very recently at sufficiently strong
and enough levels of disorder. The disordered Heisenberg
model is a paradigmatic model for many-body localization, a
feature that is preserved under discrete disorder. In our tensor
network simulation, briefly speaking, we start off from an
initial state that is a tensor product of the physical initial state
(local dimension d, = 2) and an auxiliary initial state (local
dimension d,), i.e., a state vector |Wo) = [¥,,) ® |¥4,), where
Wao) =1+ 4,4+, 4+ and [4) = d AT |s)), s
being the integer reflecting the allowed spin state determined
by d,.

The initial physical state vector [/,,) can be freely cho-
sen. In this work, we make use of two different initial state
vectors: [Vrp) =1..., 1, 4,1, |,...) (arranged in a checker-
board pattern, shown as a cartoon on the left side of the top
panel of Fig. 2 and others) and [/) = |..., 1, N, M, 1, ...),
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FIG. 2. Equal space correlator evaluated at different times for
coupled spins without disorder starting from the Néel state (left) and
the polarized state (right) for the perfect (top) and imperfect flips
(bottom). Time crystalline behavior cannot survive for the Néel state
due to thermalization, while there is no dynamics for the initial polar-
ized state. Also shown are simulations with D = 5 for stroboscopic
times. Insets: growth of local Rényi entropies (¢ = 1/2, 1) for the
blue and red curve, respectively.

referred to as the Néel and spin-polarized state vectors, re-
spectively, in the following. These initial states are readily
experimentally accessible and can be viewed as two limits of
the entire state space of random product states. The dynamics
of a given initial random product state, e.g., with respect to
its decay (of the expectation values of the observables), will
behave somewhere “in between” those two extreme configu-
rations. Another reason for choosing these initial states is that
because we are directly targeting the thermodynamic limit,
we need to assume some translational invariance with a fixed
unit cell. In our setting, we work with a two-site unit cell
arranged in a checkerboard patter (shown in Fig. 6). The two
initial states can be written exactly as an iPEPS with bond
dimension 1.

The dynamics generated by Hamiltonian (3) including the
disorder average can be implemented by introducing S$%S°
coupling in the Hamiltonian between the physical and the aux-
iliary sites. This term ensures that the exact disorder average
is recovered for all times and all disorder distributions. The
modified form of (3) then takes the form

Hyp =1 ) (S;S, +S)S; +887) +h) Sisi. ()
(i. ) i

where the subscripts p and a are used to denote the physical
and the auxiliary sites. The disorder average of all possible
configurations is already taken in one simulation while com-
puting the expectation values of the observables (discussed in
more detail in the Appendix A 3 of the paper). This is another
advantage of our setting because we do not need to take
multiple shots of disorder configuration and average them.
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To monitor the time crystalline behavior, we will extend
the notion of long-ranged order captured by order parameters
from equal-time correlations in space to general correlations
in space and time,

Coa 'y = lLl‘im (0, )0, 1)) # 0, 5)

where we put specific emphasis on equal-space correlations
in time, abbreviated as

co@, 1) = ‘Lllim (03, )0, 1)) = f(t,1), (6)

for times #,¢" > 0. For our purposes, we call a system a
time-crystal if, robust to perturbations, € # 0 (to avoid trivial
situations such as that considered in Ref. [4] being called a
time crystal), f(¢,t") shows a nontrivial (ordered) long time
t > t’ behavior that breaks the discrete time-translation sym-
metry of the underlying drive (here by period doubling or
more generally taking integer values).! We will concentrate
on O = S7 and ' = 0 and write the corresponding correlation
function as CiSZSZ (t,0) = C{*(¢) in shorthand notation. The
expectation values of these correlators are computed using
an instance of a corner transfer matrix renormalization group
(CTMRG) [67-70] (see also the Appendix A 3 for the tech-
niques being used).

In our subsequent detailed discussion, we specifically con-
sider the following different cases that seem particularly
important and insightful: These are (i) uncoupled spins with-
out disorder for J/ = 0, & = 0. Then, (ii) coupled spins without
disorder, J = 1, h = 0. Finally, (iii) we investigate coupled
spins with strong disorder, J/ = 1, A = 100 for different levels
of disorder, i.e., d, = 2 and 5, where d, corresponds to the
size of the local Hilbert space of the auxiliary systems.

II1. RESULTS

In all the cases discussed above, we choose 7 = 0.1, where
T is the periodicity of the Floquet cycle. We consider a perfect
flip ¢ = 0 and an imperfect flip € = 0.5 in order to check the
robustness of the time crystal in all the cases. To make sure
that our results are not an artefact of the finite bond dimension,
we make sure that the expectation values are consistent for
the two best available bond dimensions we can afford, i.e.,
D = 4,5, as our stopping criterion in time, identifying the
time when the iPEPS ansatz can no longer faithfully accom-
modate the entanglement growth (discussed in more detail in
the Figs. 7-9 of the Appendix). We largely focus on these
cases in order to understand the role of the various parts of
the Hamiltonian and to establish which parameters of the
Hamiltonian need to be tuned in actual quantum simulators
in order to stabilize or realize the time crystal.

Case (i): Uncoupled spins (J/ = 0, h = 0). This is the case
when only the second part of the Hamiltonian (1) acts on the
spins. Clearly, the spins stay uncoupled. While the system
exhibits signatures such as period doubling as well as stability

't is interesting to note that a Magnus expansion in terms of the
periodicity T will lead to a perturbative series of Hamiltonians, each
of which is captured by the no-go-theorem of Refs. [4,5], so that in
such a description, all orders must be considered.

to infinite times, it cannot be called a time crystal because it
is extremely sensitive to perturbations and is therefore not a
well-defined phase of matter. This can be tested by introduc-
ing an imperfection in the spin flip denoted by €. This is shown
in Fig. 1 for € = 0.5. Note that this regime is reminiscent of
the setting of an equal-position correlation function in inde-
pendent two-level systems spreading over space as considered
in Ref. [4] as rather trivial and not time-crystalline behavior.

We plot the equal space correlator defined in Eq. (6) as a
function of the Floquet cycle, and from this we can see the
beating pattern emerging and the knot of the beat at around
the Floquet cycle 32. We also notice the spikes in C7(¢) due
to the effect of nonzero €. We resort to looking at identifying
signatures of time crystal from the short time dynamics as
different values of ¢ would simply mean a change in the
position of such knots along the X axis. In other words, for
€ = 0, the knot would completely disappear along with the
spikes seen here.

Case (ii): Interacting spins in the absence of disorder (J =
1, h = 0). This is the case when both parts of the Hamiltonian
in (1) are active, however 7 = 0 for Hygr. We will show the
plots for € = 0, 0.5 starting from the Néel states as well as the
polarized states. In the presence of many-body interactions
without any disorder, our system is expected to thermalize
very quickly [7,9]. An instance of a time evolution compatible
with this expectation is shown by plotting the equal space
correlator in time in the left panels of Fig. 2, where we are
able to show time evolution only up to approximately 16
Floquet cycles. It is also evident from the growth of local
Rényi entropies for one-site reduced quantum states shown in
the insets of the left panels. The Rényi entropies (@ = 1/2, 1)
are rescaled to their maximal value of In(d,). The values of o
are chosen to provide insight into how well one would expect
alow bond dimension tensor to approximate the quantum state
at hand [71].

The right panels of this figure correspond to starting from a
polarized initial state, and, other than the periodic flipping of
the spins induced by Hg, there are no dynamics whatsoever.
This is also revealed by the local Rényi entropies, which
remain zero throughout the evolution (shown in the insets).
This can be easily understood by the spin SU(2) symmetry
of the Hamiltonian Hypr at A = 0, which entails that even
at nonzero €, the time evolution rotates all spins in the same
manner during the application of Hg, while the spins remain
inert during Hypp . Ultimately, the fully spin-polarized state
remains fully polarized (albeit with respect to a different po-
larization axis at € # 0) after each flip, and the dynamics are
the same as that of a single spin (compare Fig. 1).

Even in such a short timescale available (for the Néel initial
state), one can still see important features such as period
doubling and the absence of spikes due to finite €, as seen
in Fig. 1. One can then speculate that the destruction of the
time crystal behavior in this case is ultimately caused by
thermalization for long times. We then resort to overcoming
this effect by adding strong disorder 4 = 100 to our system
for different levels of disorder d4 = 2 and 5.

Case (iii): Interacting spins with strong disorder (J = 1,
h = 100). This is the case when both parts of the Hamiltonian
are active and also the Hyp features strong disorder. We start
our discussion by fixing the number of levels of disorder to 2.
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FIG. 3. Equal space correlator evaluated at different times for
coupled spins with strong disorder of two levels for different initial
states and €. Also shown are the simulations with D = 5 for stro-
boscopic times. Insets: growth of local Rényi entropies (@ = 1/2, 1)
for the blue and red curve, respectively.

This means the disordered field can take only two different
values. We see that, compared to case (ii), we have been
able to delay thermalization only slightly for both € = 0 and
0.5 for the Néel initial states (Fig. 3). For these cases, we
see that despite a strongly disordered field, the two levels
are not enough to sufficiently stabilize a time crystal. This
is consistent with our previous findings on many-body local-
ization in two spatial dimensions [60], where sufficient levels
of disorder were required to achieve localization. However, if
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FIG. 4. Same as Fig. 3, but with five levels of disorder. The time
crystal has stabilized due to the increasing number of disorder levels,
thereby surviving much longer times for both of the initial states.
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FIG. 5. Stability of the time crystal with respect to different
disorder strength 4 and perturbation to the perfect flip €. The results
are plotted only for stroboscopic times.

we start from the polarized state, we notice that the dynamics
slow down considerably for the case of € = 0.5 while there are
none in the case of € = 0. The local Rényi entropies shown in
the insets provide further substance to these results.

In a next step, we now increase the number of levels of dis-
order by taking d, = 5 such that our disordered field can take
five different values. In all the cases, we see that the stability
of the time crystal improves remarkably, thereby allowing us
to go much longer times even beyond the currently shown 40
Floquet cycle.

The delay of thermalization is also consistent with the
growth of local Rényi entropies (shown in the insets). Thus,
we have managed to stabilize our two-dimensional time crys-
tal (i.e., increase its lifespan) by increasing the number of
levels of disorder at sufficiently large strength. We have also
seen that the stability also depends on the initial state chosen,
the one starting from the polarized state being the most favor-
able. It is worth pointing out that a resurgence is observed in
the top left panel of Fig. 4 due to the strong disorder and the
perfect flip at ¢ = 0. In Fig. 5, we show the stability of our
time crystal starting from the polarized state with respect to
a smaller disorder (h = 50) and a larger perturbation to the
perfect flip (¢ = 1). As expected, smaller disorder strength
leads to a decrease in the lifespan of the time crystal. Unlike
the case in Ref. [60], where only a modest disorder strength
of h = 4 (with at least four levels of disorder) was enough to
localize our system, larger disorder strength is needed here in
order to counter the extra heating effect of the drive. Similarly,
a large value of € will also lead to the ultimate destruction
of the time crystal [16]. This is also shown in Fig. 5. This
behavior is consistent with the findings of Ref. [16].

IV. IMPLEMENTATIONS IN PROGRAMMABLE
QUANTUM SIMULATORS

It is key to the setting laid out here that it is amenable
to quantum simulation using programmable disorder.
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Dichotomic disorder seems incapable of sufficiently
stabilizing the time crystal, so that more intricate disorder is
required. Superconducting systems seem to be specifically
suitable for this kind of programmable disorder [30,36]. In
such systems, two spatial dimensions with programmable
disorder seem to be within reach, and also discrete
disorder can be largely programed. Other examples
include individually controlled Rydberg atoms [35] and
systems of cold atoms in optical lattices [32], in which the
disorder is realized by imaging a two-dimensional random
disorder potential to a single atomic plane in an optical
lattice, controlled by a digital mirror device allowing for
programming of discrete disorder, or possibly also by making
use of another atomic species acting as a disorder potential to
the other. Similarly, two-dimensional arrays of trapped ions
[34] have programming capabilities of the kind required here.

The situation discussed here gives rise to a highly inter-
esting state of affairs, linking notions of quantum many-body
and quantum information theory, to make a point mentioned
in the Introduction more precise and specific: For short times,
state-of-the-art tensor network methods provide a reliable ma-
chinery to assess the prethermal time crystalline behavior.
Based on such classically available data, and pushing the
classically accessible regime with substantial effort, one can
judge what phases of matter can reasonably be expected, with
substantial predictive power.

Still, due to the linear growth of the entanglement entropy
of subsystems in time [72], intermediate and long times will
remain inaccessible using tensor network methods, even if
folding methods [73] or the exploitation of mode transforma-
tions [74]—ideas that have not yet been developed for two
spatial dimensions—may ultimately render data on somewhat
longer times classically available.

This insight gives substantial impetus to the field of quan-
tum simulation. It is perfectly compatible with complexity
theoretic insights. When appropriately cast into the form of
a decision problem, the problem of simulating the time evolu-
tion under general translationally invariant local Hamiltonians
is in the complexity class BQP, the class of problems that can
be solved by a quantum computer to bounded error in poly-
nomial time. Interestingly, this problem is even complete for
BQP [29], which implies that it is unreasonable to expect that
there exists an efficient classical algorithm for the problem, as
this would imply that BPP = BQP, which would in turn result
in polynomial time classical algorithms for factoring, which
is considered excessively implausible. Of course, physically
“natural” problems may occur in principle outside the classi-
cally hard instances, but in light of these complexity theoretic
obstructions, it is still highly unlikely that a classical efficient
simulation method for interacting quantum many-body sys-
tems can ever be identified.

This comes along with advice concerning the necessity
of implementing quantum simulators: Indeed, one needs
programmable quantum simulators [21,30-36] to ultimately
assess the stability of such phases of matter for long times
[1,2]. This constitutes a most interesting situation and at
the same time a valid and meaningful application for pro-
grammable quantum simulators as intermediate quantum
technological devices between full quantum computers and
analog quantum simulators: Here, the long-time behavior

only accessible for quantum but not classical devices is
at the heart of the matter when discussing time-crystalline
behavior.

V. CONCLUSION AND OUTLOOK

In this work, we have provided fresh evidence of (prether-
mal) quantum time crystals in two spatial dimensions, using
the infinite version of projected entangled pair states (iPEPS)
that is able to address the thermodynamic limit directly.
We have combined a tensor network machinery that in-
cludes a quantum dilation approach to capture strong disorder
with a suitable stroboscopic Floquet Hamiltonian evolution
that features a discrete time translation symmetry. Starting
from different initial states, we have clearly encountered
the breaking of time translation symmetry revealed by the
equal space correlator in time that is robust to perturba-
tions in the spin-flip Hamiltonian. The stability of such
quantum time crystals can be increased by taking a suffi-
ciently strong disorder featuring a large number of levels
of disorder and suitable initial state. In future work, we
will explore whether dissipation can be properly engineered
to stabilize such phases of matter by avoiding thermaliza-
tion through the use of projected entangled pair operators
[55].

In addition to pushing the machinery of tensor networks to
anew regime, it is our hope that this work provides significant
further guidance for the use of programmable quantum sim-
ulators to explore intricate nonequilibrium quantum phases
of matter, and ultimately to discriminate prethermal from
genuine time crystals [2] as they cannot be classically dis-
criminated. Quantum simulators will also help to answer more
intricate questions such as that regarding broken translation
symmetry in space as well as analyzing Cg}o(t, tyatt' #0,
which is more challenging to compute in our classical simula-
tion approach. This could allow us to obtain deeper insights
into the mechanisms of spontaneous symmetry breaking in
space and time [75].

Ultimately, phases such as discrete time crystals may have
an impact beyond academic interests to devising technological
applications in, say, quantum metrology. The present scheme
adds to the portfolio of schemes for programmable quan-
tum simulators to be explored that are feasible instances of
quantum devices intermediate between analog quantum sim-
ulators and full-scale quantum computers. The present work,
so we hope, also helps to delineate the delicate boundary be-
tween classically simulatable regimes of quantum many-body
physics and those that ultimately have to be assessed with
quantum devices.
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FIG. 6. Implementing disorder in a translationally invariant set-
ting. We choose our initial global state to be a tensor product of the
physical state (represented by gray tensors) and the auxiliary state
(represented by green tensors). L, U, R, and Do correspond to the
different links we need to update for a particular site.
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APPENDIX

We make use of several tensor network methods here,
developed to be applicable in new regimes, in particular
a method rooted in infinite projected entangled pair states
(iPEPS) [37,39,43], here pushed to the fresh regime of in-
teractions, disorder, and time-dependent drive being present
simultaneously. We implement disorder in such a translation-
ally invariant setting using a quantum dilation technique [11].
We discuss briefly below the different numerical methods
used and developed in this work.

1. Implementing disorder in a translationally invariant system

This approach was originally introduced in Ref. [11] for
studying disordered infinite-sized one-dimensional systems
[76,77]. Such ideas have only very recently been implemented
in two-dimensional systems using iPEPS [58,60]. The proce-
dure starts by appending an auxiliary site to each physical one
in the system. The global initial state is thus a product state of
the physical system and the auxiliary system represented by a
state vector |Wo) = [V/p,) ® |, ). The auxiliary state is fixed
and is a tensor product of equal superposition states at each
site as defined in the main text. The physical state depends
on our choice and is also discussed in the main text. The
original part of the Hamiltonian in Eq. (3) is then modified
to the form in Eq. (4), which includes the classical interaction
Sf‘ijp between the physical sites and the auxiliary sites. This is
responsible for injecting the disorder into the physical system.
This is shown in Fig. 6. We then perform a quench of the
global initial state with the Floquet Hamiltonian defined in
Eq. (1) to arrive at a time-dependent state vector

(W(1)) = e M W), (AD)

We note here that the different parts of the Hamiltonian act at
different times of the evolution.

2. Time evolution

In this work, we exploit a variant of time evolving block
decimation (TEBD) [78] in two spatial dimensions. We have
specifically implemented an iPEPS algorithm with a two-site
unit cell arranged in a checkerboard pattern. Such a configura-
tion is enough to realize our two initial states discussed in the
main text. The tensors are then optimized using the so-called
simple update [79]. This scheme is more efficient and has also
been found to be more accurate and stable compared to the
full update procedure for real time evolution [57,58,60]. To
describe this approach briefly, consider our two-dimensional
Hamiltonian defined on a square lattice as in the setting used
here. We split our Hamiltonian into different parts correspond-
ing to the different links of the lattice, i.e.,

H =H"+HY + Hf + H°, (A2)

where

HY = Z he (A3)
(i.J)

fora = L, U, R, Do correspond to the left, up, right, and down
link of the square lattice. We then define the following two-
body gate operators: e H ~s gmidtH" o=idtH" p—ibtH" (—istH™
After updating each link with the appropriate term, the bond
dimension along that link is truncated. The procedure is per-
formed while assuming a mean-field-like environment of the
link. We use a first-order Trotter step of 6 = 0.005.

We have performed such an optimization procedure with
an iPEPS bond dimension of D =4, 5. The large physical
dimension of the local Hilbert space (d = d,d, = 4, 10) re-
stricts us from accessing very large bond dimensions D of
the iPEPS. This also limits the timescales that we can access
using tensor network approaches (reflecting the observation
that time evolution under local Hamiltonians is a computa-
tionally hard problem in worst-case complexity). The results
shown above are nonetheless converged and consistent with

047

< 0.2f

a=1e=0
—a=1/2e¢=0
-—-a=1/2e=0.5
a=1e=0.5
0 1 1 T
0 10 20 30 40

Floquet cycle

FIG. 7. Errors corresponding to Fig. 2 (left panels). Top: § > 0
is the absolute value of the difference of the expectation values of the
correlators corresponding to simulations with D = 4 and 5. Bottom:
growth of local Rényi entropies for one-site reduced density matrix
for the full time evolution.
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FIG. 8. Errors corresponding to Fig. 3. Top: § is the absolute
value of the difference of the expectation values of the correlators
corresponding to simulations with D = 4 and 5. Bottom: growth of
local Rényi entropies for one-site reduced density matrix for the full
time evolution. (a), (c), and (d) refer to the different subplots of
Fig. 3 in Sec. III.

the largest available bond dimensions used. Such an agree-
ment between the highest available bond dimensions can be
used to approximately determine the stopping criteria of our
time evolution.

3. Disorder-averaged expectation values

Once the tensors have been obtained using the above pro-
cedure, we resort to computing the expectation values of the
physical observables of interest. This involves contracting the
entire two-dimensional tensor network in the thermodynamic
limit. Unlike the situation for one-dimensional matrix product
states, this step cannot be done efficiently and is known to be a
computationally hard problem [80] for exact contraction even
in average-case complexity [81]. Luckily, there are several ap-
proximation schemes available for this [43,67,69,82—-84] (and
there is good evidence that the contraction of PEPS is com-
putationally feasible to a good approximation for physically
meaningful PEPS describing gapped models [85]). The expec-
tation values of the observables computed here are already the
disorder-averaged expectation values of all the possible disor-
der configurations. This is easy to see from the expression

((O@))) = (Wgle™ O™ |Wp)
= (Yol ® p(¥ol)e™ Oe ™™ (1y0), ® [Wo)a)- (Ad)

Thus, one of the advantages of our setting is having to avoid
taking multiple shots of disorder and taking their averages.
The programmable nature of the disorder employed here also
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FIG. 9. Errors corresponding to Fig. 4. Top: § is the absolute
value of the difference of the expectation values of the correlators
corresponding to simulations with D = 4 and 5. Bottom: growth of
local Rényi entropies for one-site reduced density matrix for the full
time evolution. (a), (c¢), and (d) refer to the different subplots of
Fig. 4 in Sec. III.

has direct control over avoiding rare ergodic regions, which
can lead to instability of MBL at long times [61,62].

In this work, we make use of the corner transfer ma-
trix renormalization group method (CTMRG) [67-70] to
approximate contraction, here freshly applied to classically
keeping track of quantum Floquet dynamics. This involves
computing a set of tensors known as the environment tensors
approximating the fixed points of the “corners” of an infinite
two-dimensional lattice. This infinite two-dimensional lattice
to be contracted is actually composed of the double-layer
norm tensors of bond dimension D?. We use an environment
bond dimension of up to y = D? in our simulations, which is
found to be sufficient for our purposes.

In Fig. 7 (top panel), we plot § > 0, defined as the abso-
lute value of the difference between the expectation values
of the correlators for bond dimensions D = 4 and 5. In the
bottom panel, we show the growth of local Rényi entropies
for the extended time evolution. The time at which 6 becomes
significant is used as the “cutoff” time for Fig. 2 (left pan-
els). Incidentally, the local Rényi entropies start saturating to
their maximal value near this point. For the right panels of
Fig. 2, there is no dynamics and therefore no concomitant
errors in the growth of entanglement. Similar error measures
corresponding to Figs. 3 and 4 are also shown in Figs. 8 and 9,
respectively. We see how the time evolution has been extended
significantly depending on the choice of disorder levels and
the initial states, directly corresponding to the stability of the
time crystal.
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