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The term Anthropocene—used to describe a new epoch 
in which human activity has become the dominant influ-
ence on Earth systems—has been vigorously debated in the 

natural and social sciences1–3 since its popularization two decades 
ago4. Tropical forests, which cover only 14% of the Earth’s surface5 
but contain 68% of the global living carbon stock6 and half of the 
Earth’s biodiversity7, are a central feature of this discussion8. Indeed, 
human-driven, habitat-scale reorganization of these systems (a con-
ceivable scenario given contemporary climatic, fire and land use tra-
jectories9) is thought to pose an “existential threat to civilization”10. 
The search for the beginnings of the Anthropocene has, in geologi-
cal circles, centred on the identification of a single golden spike11. 
Attempts to track this critical transition initially focused on the onset 
of industrial fossil fuel burning in the eighteenth and nineteenth 
centuries4, but today concentrate on the Great Acceleration in the 
1960s11,12. However, there have been growing calls in the social sci-
ences to search for the origins of the Anthropocene as a long-term 
process that extends back into the pre-industrial era2,13,14, based on 
the premise that early agricultural processes substantially impacted 
atmospheric greenhouse gas concentrations, including CO2 levels3. 
This is particularly important within carbon-rich tropical forests 
where archaeological and palaeoecological research has revealed 
evidence for substantial human impacts on ecosystems, species 
distributions and soils over the past 45,000 years15. However, while 
there is increasing consensus that pre-industrial societies had large 
impacts on global ecosystems and biodiversity16,17, the exact scale 

and nature of anthropogenic alteration, particularly with respect to 
forest cover and CO2 concentrations, remains to be elucidated.

It has been proposed that contact between the so-called Old 
World and New World after 1492 ce as part of the expansion 
of the Spanish and Portuguese empires (termed the Columbian 
Exchange18) resulted in the radical reorganization of life on Earth 
without geological precedent18,19. Not only did Iberian colonizers 
bring new crops, animals and ways of using the land to the trop-
ics18, they also introduced lethal diseases from Eurasia. The ensu-
ing pandemics, alongside starvation and murder, wiped out up to 
90% of Indigenous populations in the Americas, with the impact of 
their lack of immunity compounded by colonial policies focused on 
urban relocation and enslavement20,21. Earth system scientists have 
argued that this Great Dying, and the abandonment of traditional 
land use now known to have been extensive across the Neotropics, 
was so widespread that it led to dramatic forest regrowth22,23. The lat-
est estimates suggest that subsequent afforestation captured 7.4 PgC 
(3.5 ppm CO2 equivalent) from the atmosphere, resulting in a CO2 
level drop recognizable in ice cores by 1610 ce and driving global 
cooling seen in the form of the Little Ice Age (LIA)21. Although the 
global impacts of this regional signal have been promoted as a poten-
tial golden spike for the Anthropocene and the scale of the Great 
Dying is historically well documented (noting that specific estimates 
remain debated), direct evaluation of consequential vegetation 
change and overhaul of land management in carbon-rich tropical 
forests following Iberian colonization has been limited. Research of 
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this nature in the Americas has often been locally constrained (for 
example, ref. 24), while larger-scale analyses have focused on the syn-
thesis of charcoal records to reveal population and land use change, 
including a sustained period of reduced biomass burning after ~500 
calibrated years before the present (cal yr bp)21,25,26. Assessment of 
ecosystem responses to these demographic and land use drivers 
has, to date, been qualitative, non-systematic and focused on a small 
number of datasets21. Homogenous, broad-scale ecological transi-
tions in response to depopulation in the Neotropics thus remain 
more assumed than proven.

Although Alfred Crosby, who coined the term Columbian 
Exchange18, discussed impacts at a global scale, recent framings 
of this phenomenon on tropical ecosystems and their Earth sys-
tems feedbacks have been almost entirely limited to the Atlantic 
sphere21. This is despite the fact that, following their arrival in the 
Philippine archipelago in the sixteenth century, the Spanish Empire 
(including Portuguese-claimed regions incorporated into the 
Spanish Empire between 1580 and 1640 ce during the short-lived 
Iberian Union) united Madrid, Mexico City and Manila into the 
first truly pan-tropical biological, cultural and economic system27 
(Fig. 1). Like their Neotropical counterparts, many societies living 
in Southeast Asia and parts of the Pacific had been part of exten-
sive exchange systems that moved people, crops and ideas across 
vast areas28. Historical records and archaeology also show that the 
Spanish East Indies (including parts of Taiwan, Indonesia, Palau 
and Micronesia)—particularly those that were geographically iso-
lated from Eurasia—witnessed large-scale (albeit staggered) disease 
spread29 and the introduction of additional novel domesticates30 
between the 1500s and 1700s (contact dates shown in Fig. 1). The 
resultant infection rates, coupled with new forms of settlement 
organization and land use imposed by colonial states, led to major 
demographic disruption, with a population decrease estimated at 
30–90% depending on pre-Iberian geography and demography (dis-
cussed for each region in Supplementary Text 2). It is thus plausible 
that associated shifts in traditional farming and forestry may have 
resulted in similar afforestation processes and, potentially, Earth 
systems feedbacks to those hypothesized for the Americas29,31,32. Yet, 
there has been no regional assessment of how Iberian arrival in the 
Asia-Pacific influenced ecosystems and Indigenous land use and 
whether any parallels can be drawn between the Pacific and Atlantic 
hemispheres33. Addressing this gap is important for unravelling the 
landscape legacy of Iberian colonization on a more global scale and, 

more broadly, as a starting point for assessing cross-continental, 
European colonial legacies within the tropics.

Here, we systematically compile and semi-quantitatively anal-
yse pollen records from tropical regions of the Americas, Southeast 
Asia and the Pacific that became part of the first truly pan-tropical 
Empire—the Spanish Empire—between the 1500s and 1700s  
(Fig. 1). This permits direct, broad-scale insights into vegetation 
changes over the past 2,000 years—a time frame that provides 
context for understanding the scale of forest response to shifting 
land use and climate dynamics in the period leading up to and fol-
lowing European colonization. In doing so, we take advantage of 
Neotoma34—a rich, open access palaeoecological database that 
permits consistent reclassification of previously published data—to 
yield broad-scale assessments of ecological change in the Neotropics 
through time. We also compile pollen, phytolith and charcoal data 
from available palaeoenvironmental records in the Spanish East 
Indies to determine how tropical forests in the Asia-Pacific region 
responded to land use change associated with a decrease in the 
Indigenous population and Iberian colonization. We test the degree 
to which a uniform, pan-tropical Anthropocene process is visible 
following European colonization and assess how interplays of physi-
cal and human geography may complicate, or even overprint, this 
signal in ecosystem dynamics. We seek to provide a major advance 
on existing work and provide a framework for exploring how the 
concept of the Anthropocene can be more successfully applied as 
a tool for discerning the longevity, imbalances and variability of 
human–Earth system impacts over the past 2,000 years, providing 
more pragmatic perspectives for ongoing policy and conservation35.

Results
Neotropics. The distribution of the 28 Neotropical sites included in 
our analysis of the Spanish Americas shows a spatial bias to the Andes 
and coastal regions and lacks data for regions known to be populous 
in the fifteenth century, including territory occupied by the Triple 
Alliance (or Aztec Empire) (Fig. 2). Nevertheless, there is generally 
at least one record for each of the major cultural sub-regions that 
have previously been defined within the Neotropics21 (Fig. 2a). This 
doubles the number of records assessed in the most recent attempt 
to gauge forest response to the Great Dying in the Americas21, 
thereby representing a major advance on previous assessments of 
post-colonial Neotropical vegetation change. Half of the analysed 
sites are located in moist tropical forest, five occur within dry tropi-
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cal forest, three in tropical coniferous forest and six in tropical/
montane savanna settings36. Given the poorly resolved age–depth 
models and sampling resolution of many of the datasets used in this 
analysis (discussed for each record in Supplementary Text 3), many 
afforestation responses after Iberian contact were classified with a 
degree of uncertainty (see Methods and Fig. 2). This factor has not 
been accounted for in recent attempts to use pollen data to assert 
early colonial era afforestation in the Spanish Americas21.

Eleven of the 28 records show a degree of afforestation between 
1500 and 1600 ce (Fig. 2), consistent with prevailing theories of for-
est regrowth following European arrival21. This signal is classified 
with a higher degree of certainty (that is, it is clearly reflected in 
the generalized additive model (GAM) curvature and in the plant 
functional grouping (Extended Data Fig. 1)) for two of the 11 sites, 
which are located within the Los Llanos tropical savanna (Laguna 
Mozambique37) and Andean valley dry forests (Quilichao basin38) 
(Figs. 2b and 3, Extended Data Fig. 1). Fifteen sites indicate affores-
tation in the years preceding Spanish arrival (1000–1500 CE) (Figs. 
2 and 3), probably linked to the onset of broadly wetter climate 
conditions over much of the Neotropics during this time period 
(Supplementary Text 1)39,40. Seven of these records occur within the 
Andes, including all five sites located in or immediately proximal 
to dry valley forest ecoregions (<2,000 m above sea level). This spa-
tial response bias likely reflects the cooler, wetter conditions asso-
ciated with the LIA in the Andes, coupled with the sensitivity of 
seasonally dry and Neotropical montane forests to changing climate 
drivers41. There is no clear spatial or cultural relationship among 
the remaining eight records that reflect pre-Iberian afforestation. 
However, five of these sites occur within biomes other than moist 

tropical forest (four within tropical savanna and scrubland and one 
in coniferous tropical forest36). This implies heightened climatic 
sensitivity of non-rainforest biomes that lie closer to precipitation 
thresholds and/or that changes in the availability of resources under 
a changing climate regimen within these habitat types encouraged 
social restructuring. Two of the 28 records indicate forest opening 
between 1500 and 1600 ce: Lake Caranã42 (a long-cultivated tropi-
cal forest site in the Amazon) and Cenote San Jose Chulchaca43 (a 
site occurring on the boundary of the Maya lowlands within dry 
tropical forest).

We also explored changes in vegetation in these records over the 
past 150 years to provide some comparison of pre-industrial and 
industrial era environmental changes, although these results should 
be approached cautiously given the lack of sampling and age–depth 
resolution in the younger portion of several of the records included 
in this analysis (and hence lack of signal detection in the GAM 
(Fig. 3)). There appears to be a clear signal of deforestation in sites 
from the Caribbean (2/3), Atlantic Forests (2/2), Cerrado (1/1), Los 
Llanos (2/2), lowland Andes (2/5) and Amazonian rainforest (1/2) 
after ~1850 ce (Fig. 3).

Spanish East Indies. With the exception of the Marshall Islands, 
our dataset includes at least one island from each of the major tropi-
cal archipelagos directly impacted by Iberian imperialism in the 
Asia-Pacific region (Fig. 4). There is, however, a scarcity of data 
from the Philippines—the centre of (and largest archipelago within) 
what was known as the Spanish East Indies—which is only repre-
sented by a single charcoal record and a single pollen record for 
the colonial period (both from the island of Luzon). Importantly, 
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historical records suggest that all of the assessed regions in the 
Spanish East Indies experienced a degree of Indigenous popula-
tion mortality following European contact between the 1500s and 
1700s (the timing and extent of which is reviewed in Supplementary 
Text 2). Together, the 21 palaeoenvironmental records from 13 sites 
encompass the major tropical biogeographical zones in the region 
(Taiwan, the Philippines, Wallacea and Micronesia) (Fig. 4). Nine of 
the analysed sites occur in moist tropical forest, three occur within 
seasonally dry tropical forest and one occurs in tropical coniferous 
forest36 (Fig. 4b).

There is evidence for afforestation and decreased fire activity 
in four pollen/phytolith records and three charcoal records from 
Micronesia after archival references to a decrease in the Indigenous 

population (between ~50 and 90%; Supplementary Text 2). Most of 
these shifts have been classified with a degree of uncertainty (Fig. 4) 
due to the low sampling and chronological resolution of the datas-
ets, meaning that this change is not captured in the GAMs produced 
for each record (Fig. 5 and Supplementary Text 3). All of the records 
showing afforestation in the years following European contact come 
from small islands (Yap (Fool and Thool swamps)44 and Guam 
(Laguas)45) and 75% of the records are located within seasonally dry 
tropical forest (Fig. 4b). Available charcoal data from these islands 
indicate that afforestation coincides with reduced or unchanged 
fire activity in the landscape (Fig. 5). Decreased fire activity after a 
known population decrease (50% between 1840 and 1900 ce) is also 
reflected in a charcoal record from Pohnpei46, although in this case 
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there is no evidence of corresponding afforestation, possibly due to 
the simultaneous introduction of pigs to the island by the Spanish 
(see Supplementary Text 3).

None of the records from regions that regularly traded with 
mainland Eurasia before colonization (Minahasa, North Maluku, 
Luzon and North Taiwan)—which also appear to have relatively 
low post-colonization mortality rates (15–50%; Supplementary 
Text 2)—show an afforestation signal following Iberian contact. 
In fact, the records assessed from the Philippines and Taiwan sug-
gest that colonization resulted in deforestation and increased fire 
disturbance, although this is not captured in the GAM (and thus 
not classified) for the Duck Pond site47 (Taiwan), while the Lake 
Paoay48 (Philippines) charcoal data do not include the Spanish 
colonial period (Fig. 4 and 5; see Supplementary Text 3 for details). 
Higher sampling resolution and better selection of sites relative to 
key European occupation zones, particularly for the Philippines, are 
required to investigate the consistency of this process over space.

Approximately half of the pollen/phytolith (6/11) and charcoal 
(6/10) records show afforestation and decreased fire in the land-
scape in the centuries before Iberian imperial influence. There is 
no consistent geographic or ecoregional pattern associated with this 
signal. This suggests that changes in forest cover after colonization 
were, in many cases, muted relative to those caused by land use or 
climatic factors before Iberian contact.

The lack of sampling resolution in the Asia-Pacific records, as 
well as the relatively late influence of Europeans on some of the 

islands (Palau (1800s), Yap and Pohnpei (1700s); Supplementary 
Text 2) means that it is not possible to tease out an industrial era 
signal of ecosystem change for this region from available palaeo-
ecological data.

Discussion
Over one-third of the palaeobotanical records from the Atlantic and 
Pacific realms indicate a degree of afforestation (including minor or 
uncertain forest recovery) following Iberian contact. This, in part, 
appears to support claims made in previous work that the docu-
mented decrease in Indigenous populations in the Americas follow-
ing the introduction of foreign diseases and colonial policies led to a 
collapse of existing farming and food production systems and con-
comitant forest regrowth21. Furthermore, it provides the first evi-
dence that this process was not exclusive to the Americas, but also 
occurred in the Spanish East Indies (although it should be noted 
that the timing of Iberian contact was staggered in the Asia-Pacific; 
see Supplementary Text 2). Nevertheless, the lack of consistency in 
this response across the entire spectrum of records studied indi-
cates that variable land use strategies, as well as other cultural, social 
and biophysical factors, played a key role in the observed changes 
to vegetation and burning. For instance, documented Indigenous 
resistance to Iberian occupation (for example, in North Sulawesi49 
and the West Caroline Islands50) appears to have resulted in a geo-
graphically isolated settlement and/or a protracted Iberian settle-
ment process, thereby drawing out the spread of Eurasian pathogens 
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and land use (discussed in Supplementary Text 2). A similar result 
may have also ensued from the geographic inaccessibility of, lack of 
Iberian interest in or socio-ecological resilience of certain regions, 
including the interior Amazon51 and Pacific coast rainforests52, 
the Llanos de Moxos53, Palau54, the Brazilian Cerrado55, the West 
Carolines56 and the highlands of Hispaniola57 and the Philippines58 
(discussed in Supplementary Text 2). As a consequence, the demog-
raphy of some of these less accessible sites after Iberian colonization 
may have been characterized by population replacement or migra-
tion rather than just an abrupt decrease in the population. Finally, 

it is important to point out that certain land use strategies adopted 
in the tropics (for example, the polyagricultural systems deployed 
in the eastern and southwestern Amazon Basin) may have actually 
sustained forest cover, thus challenging the assumption that affores-
tation in palaeoenvironmental records should be the only expected 
ecological signal of a decrease in the Indigenous population follow-
ing colonization42,59.

Ecological and biogeographic factors may also have mediated 
forest resilience to human disturbance in both the pre-colonial and 
early colonial era. For instance, seasonal ecosystems within both the 
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Fig. 5 | Afforestation proxies and charcoal curves from the Asia Pacific region. Afforestation proxies (pollen and phytolith records) and charcoal curves 
(point data) overlain with GAMs (coloured shading for pollen/phytolith data and black shading for charcoal data) over the past 2,000 years for the 21 
records assessed from the Spanish East Indies. The data are grouped according to broad geopolitical zones (Fig. 4a) and the shading of the GAM for 
the pollen/phytolith data corresponds to the contemporary biome in which each record currently occurs (Fig. 4b)36. The orange and blue horizontal 
bars represent the occurrences of the MWP and LIA, respectively, in the Asia-Pacific76. The timing of Iberian contact and known population decrease is 
individually annotated for each region. The data used to create the plots were from refs. 44–48,117–121, as well as the present study.
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Atlantic and the Pacific appear more prone to Iberian-era afforesta-
tion, potentially reflecting their structural reliance on Indigenous 
land use practices, particularly swiddening60. Similarly, islands that 
were seemingly pushed towards their natural resource limits by 
pre-Iberian populations (including the small Micronesian islands 
and Hispaniola) are, from a biogeographic perspective, more sen-
sitive to disturbance61 and appear to show a higher prevalence of 
forest regrowth after European contact. Interestingly, the more open 
habitat types that appear to show the greatest forest dynamism in 
response to Iberian conquest have, in general, lower carbon seques-
tration capacity than the apparently less sensitive, dense, perpetually 
humid rainforests of South America or Southeast Asia6—a factor 
that is overlooked in the calculation of the impact of early colo-
nial era afforestation on the global carbon budget21. It is also worth 
noting that our dataset lacks coverage within key pre-Iberian and 
Iberian era urban hubs—regions that would be expected to show 
higher levels of ecological restructuring following colonization. Key 
under-researched sites include the Valley of Mexico (controlled by 
the populous Empire of the Triple Alliance at the time of Spanish 
contact) and important Spanish settlements in the Philippines (for 
example, Manila, which was central to European colonialism-driven 
biological exchange because it hosted the Philippines–Acapulco 
Galleon Trade). A lack of research within important Iberian hubs 
relates, at least in part, to the fact that most pollen-based studies 
focus on reconstructing past ecological–climate or human–envi-
ronment relationships over much longer time scales, biasing site 
selection away from landscapes that have been heavily modified 
over the past ~1,000 years40. Targeted site selection to European 
settlement and trade centres, as well as improved chronological 
and sampling control within recent centuries, is thus an important 
element of future palaeoecological work. Indeed, these limitations 
have been raised in the context of recent work attempting to use 
palaeoecology to gauge pre-European landscape burning patterns 
in Northern America62.

Our dataset also documents, in many instances, afforestation 
in the centuries before Iberian conquest across the study area (that 
is, after 1000 ce). In several cases, this process actually appears to 
have exceeded early Iberian era forest regrowth in terms of scale. 
Notably, it suggests that coupled atmospheric–human drivers 
(Supplementary Text 1), social disruption and, potentially, ecosys-
tem engineering by pre-colonial populations (Supplementary Text 
3) may have been more important drivers of regional forest cover 
than Iberian contact. Particularly important climate drivers probably 
included increasing climatic variability between ~1050 and 1400 ce, 
linked to the El Niño–Southern Oscillation (ENSO)63,64, as well as 
the heterogeneous expression of the Medieval Warm Period (MWP) 
and LIA across the study region (see Figs. 3 and 5 for the approxi-
mate timing in the Spanish Americas and Spanish East Indies, 
respectively). For example, the MWP is linked to warmer, wetter 
conditions in the Northern Hemisphere in the centuries preceding 
Spanish arrival65 (Supplementary Text 1). As with the early Iberian 
era, increased forest regrowth before European contact also appears 
to have been partially controlled by biogeography. For instance, cli-
matically driven increases in forest cover between 1200 and 1450 ce 
was more common in the seasonal ecosystems of western South 
America (including Los Llanos, Andean valley dry forests and the 
Brazilian Cerrado), as well as in the resource-limited Pacific islands, 
than in perpetually humid forests. However, it is also worth pointing 
out that climate-driven landscape changes were, in all likelihood, 
accompanied and potentially reinforced by human behavioural 
adaptations. For instance, there is evidence that Indigenous groups, 
including the Classic and post-Classic Maya and Inka, engaged in 
adaptive agroforestry and developed new agricultural practices to 
cope with climatic extremes66. Similarly, the ENSO-driven 1300 ce 
climate event in the Pacific, which resulted in a substantial depletion 
of available food resources (see Supplementary Text 3), is speculated 

to have led to the development of inland rather than coastal sys-
tems for procuring food, reef flat infill and construction of defensive 
infrastructure67. More detailed work is thus required to determine 
the changing intensity of pre-colonial and colonial human–environ-
ment–climate interactions in many of these tropical regions, such as 
has been conducted for the Brazilian highlands68.

Our data also demonstrate patterns of deforestation after Iberian 
arrival, both as a more immediate response to settlement and as a 
later response to the broader consequences of European colonial-
ism, including the rise of capitalist European hegemony69,70 and the 
Great Acceleration11. Although currently limited in number, sites 
in Taiwan and the Philippines that are proximal to early Spanish 
centres hint at intensified land clearance following settlement (Fig. 
4). A potential side effect of these settlements, which were usually 
established in agriculturally primed, governable lowlands may have 
been the active decision by Indigenous populations to migrate to 
less accessible uplands (for example, the Luzon highlands). It is 
plausible that this could have led to locally intensified land use and 
forest clearance within previously uncultivated areas as a corollary 
of a social and political resistance to colonial rule58. Sites in the 
Americas proximal to early Iberian settlements also indicate local-
ized forest opening after an intensification of European land use. 
For instance, records from the Hispaniola lowlands show dramatic 
landscape opening in the sixteenth and seventeenth centuries fol-
lowing the establishment of intensive monocultural cropping sys-
tems71. Similarly, sites proximal to mining centres in the Andes and 
Veracruz, Mexico indicate intensified landscape disturbance follow-
ing Iberian arrival72. Neotropical records from converted landscapes 
(for instance, those from the Atlantic Forests) highlight that indus-
trial era deforestation far exceeds in magnitude any other shifts in 
forest cover over the past 2,000 years. The low temporal (subsam-
pling) resolution of core tops and the spatial sampling bias towards 
sites surrounded by more intact ecosystems means that this change 
is likely to be under-represented in the assessed pollen records.

Overall, our analysis indicates that while forest regrowth did 
often occur following the decimation of large Indigenous popu-
lations after Iberian contact in the tropical Americas21, as well as 
the Asia-Pacific29,73, the timing and extent of observed afforesta-
tion in the early Iberian era appears contingent on spatially vari-
able cultural and climatic factors coupled with ecoregion-specific 
resilience. Tropical forests reflect long-term land use legacies on an 
interhemispheric basis15. The murder, relocation and infection of 
Indigenous populations in many regions, as well as the floral and 
faunal exchanges that took place following Iberian colonialism, are 
essential considerations for re-evaluating the Anthropocene as a 
temporally variable and biogeographically/culturally contingent 
unequal process13. However, the variations in forest dynamics we 
observed before and after the initial period of Iberian contact and 
the establishment of colonies highlight the need to develop more 
detailed records of vegetation and land management change in dif-
ferent parts of the tropics, combining archaeology, palaeoecology 
and Indigenous traditional knowledge. This will permit a compre-
hensive exploration of the ways in which Indigenous resistance, 
invasive species, economic imbalances and the extension of colo-
nial power and profit-driven land use left their varied marks on 
contemporary landscapes around the tropical world. Addressing 
these fine-scale, interdisciplinary questions will require well-dated, 
high-resolution palaeoenvironmental reconstructions spanning the 
past 2,000 years and covering the range of pre-colonial and colo-
nial land use strategies that were present across the tropics. Only 
when such records become available can more realistic estimates of 
land use change and corresponding carbon fluxes be produced and 
fed into Earth systems models, with current projections21 likely to 
be simplifications. It is also clear that more refined understandings 
and records will enable conservation practitioners to grapple with 
the diverse socio-political, cultural and economic factors that have 
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shaped, and continue to shape, the composition, diversity and resil-
ience of tropical landscapes into the twenty-first century.

Methods
Due to the inaccessibility of raw palynological data from sites in the Spanish 
East Indies relative to the Spanish Americas (shaded regions in Figs. 2a and 4a), 
palaeoecological data from each of these regions were extracted and prepared 
differently, as described below. For the Neotropics, we did not attempt to 
quantitatively reanalyse charcoal data from the region, as previous work has 
already demonstrated a sustained period of reduced biomass burning after 
~500 cal yr bp21,25,26. In some instances, this change has been linked to a decrease in 
anthropogenic fire use following Iberian arrival and has been used to support the 
hypothesis that reduced land cultivation following a decrease in the population 
led to region-wide afforestation. However, site-specific discussion of the role 
of changing fire regimens relative to vegetation response are discussed in 
Supplementary Text 3 and included in our analyses where relevant. A composite 
curve of transformed charcoal influx (biomass burning) for the Americas 
(including North and South America)26, which shows a decrease in charcoal influx 
(biomass burning) between 1500 and 1650 ce to a minimum at 1650–1700 ce, is 
included in Fig. 3.

Neotropics data preparation. We extracted Neotropical pollen datasets from 
the Neotoma Paleoecology Database34 (Neotoma), which were relevant for 
reconstructing tropical floristic change in the former Spanish Americas before, 
during and after Spanish colonization, using the following criteria:

 1. The record was located within geopolitical units that were part of the former 
Spanish Empire (including Brazil).

 2. The record was directly dated.
 3. The record encompassed the time period spanning at least 600–1900 ce, 

permitting reasonable assessment of the scale of Iberian-induced change 
relative to the past 2,000 years. These datasets (n = 98; Supplementary Text 3; 
Supplementary Data 1) were individually assessed and selected for further 
analysis if:

 4. The record derived from a terrestrial site that currently occurs within a tropi-
cal or subtropical biome36. If in a montane grassland, savanna and shrubland 
biome, the site was proximal (<5 km) to a tropical or subtropical biome.

 5. The record included one sample that was estimated to come from the time 
frame 1500–1600 ce, thereby permitting assessment of floristic response to 
any Iberian-induced land use change.

 6. The temporal resolution of the upper 2,000 years of the record (or total core 
length where the base of the record was <2,000 cal yr bp) was <200 years per 
sample.

The cut-off in criterion (6) was set in an attempt to capture forest turnover 
while maintaining a reasonable distribution of records across the study area. The 
Cobweb Swamp (Sawgrass Core)74 record, which has a resolution of 212 years per 
sample (Supplementary Data 1), was retained for analysis as it is situated within 
the heart of urban development across the Mesoamerican lowlands during the 
Classic Maya period. We set 2,000 years as an appropriate time frame for assessing 
ecological dynamics as it is short enough to identify late Holocene-scale floristic 
change while being long enough to assess the magnitude of Iberian-influenced 
change against the backdrop of pre-European land use dynamics and key late 
Holocene climate forcing (notably, the MWP and LIA and intensification of the 
ENSO75,76). An overview of how these events impacted the various geographic 
regions assessed in this study is outlined in Supplementary Text 1.

The application of the above criteria resulted in a final selection of 28 pollen 
records (from the same number of sites) for analysis. The setting, location and 
publication(s) associated with the selected records are detailed in Supplementary 
Data 1 and discussed in Supplementary Text 3.

The chronology and sampling resolution of the pollen records can influence 
whether rapid response dynamics are captured and appropriately constrained77. 
While this is problematic for many Neotropical records78, our selection of the 
pollen records based on sampling density and chronological control over the 
time period of interest attempts to selectively remove data that do not adequately 
capture ecosystem dynamics before, during and after the Iberian colonial period. 
We used the most up-to-date chronological models developed for the records 
in Neotoma and include a discussion of the interpreted ecological change, in 
the context of each chronological model produced for the records, as part of 
Supplementary Text 3.

A major obstacle to comparing palynological records across space (including 
different cultural zones and ecoregions) is the variability in the taxonomic 
resolution and the range of methods used by the original authors to classify 
vegetation change through time. To manage this, we adopted a two-pronged 
approach to assessing ecological change. First, we used the raw pollen counts 
from each record and consistently reclassified all individual pollen taxa into nine 
plant functional groups that can provide information about major state shifts in 
site vegetation through time. These functional groupings are listed in Extended 
Data Fig. 1. Classification was based on previously published work assigning 

different pollen types to biomes using surface pollen data from Latin America79. 
Once regrouped, we converted raw values to relative abundances and plotted 
each dataset stratigraphically against the age–depth models produced for each 
record (Supplementary Text 3). Major changes in the records were identified 
by clustering the data (method = coniss; distance = Euclidean; stratigraphically 
constrained)80,81. Second, the reclassified data for each site were used to calculate 
the ratio of non-arboreal to arboreal taxa as a proxy for landscape openness in the 
tropics82,83. This methodology attempts to eliminate interpretations of change based 
on fluctuations in aquatic, wetland and fern taxa, which are commonly driven 
by site-specific, local-scale hydrological shifts. This method assumes that grass 
pollen derives from a dryland versus wetland source. Changes in this ratio were 
cross-checked against shifts in the plant functional groupings, as well as the nature 
of the site type (Supplementary Text 3).

Spanish East Indies data preparation. Neotoma and the Global Paleofire 
Database84 were searched for pollen and charcoal data within the time frame 
0–2000 ce from countries within the former Spanish East Indies. This search 
returned four charcoal records (Supplementary Data 2) and no pollen records. 
We obtained an additional, unpublished raw charcoal dataset prepared by J.S. 
from a site (Lake Bulalacao) in the Philippines, and the raw pollen data were 
from Lake Paoay48. The five raw charcoal datasets were analysed by converting 
raw concentration values into influx rates (fragments per cm2 per year). The Lake 
Paoay pollen data were prepared by calculating and plotting the ratio of grass to 
arboreal pollen as a proxy for forest openness. This proxy was chosen to maintain 
consistency with other available pollen curves from the region.

To increase data capture within the Spanish East Indies, a review of regional 
published pollen and publications was conducted. Data from any plots of grass or 
dry herbs data plotted against depth (in most cases, used as a proxy for landscape 
openness), as well as any complimentary charcoal data, were extracted using 
WebPlotDigitizer85. While all efforts were made to ensure precise data extraction, 
minor sample or variable offsets may have been introduced as errors into the 
dataset depending on the quality of the initial graph production. Because some 
of these plots were made against depth (versus age), and the interpretation of age 
was based on outdated chronologies, an updated age–depth model for several of 
the cores was constructed using the program Bacon86 (R version 3.6.2)81 (details 
included in Supplementary Text 3). Because of the paucity of datasets from this 
part of the world, more liberal inclusion criteria were set for these datasets. Records 
were included if they captured environmental change within the 200-year period 
before Iberian contact (or a known disease-influenced population decrease) and 
at least one post-European sample. In the absence of pollen data, a single phytolith 
record was used to obtain a forest response signal from the island of Pohnpei. This 
was the only phytolith record used in the analysis given that phytoliths appear to be 
less sensitive to changes in tree cover than pollen in evergreen forests87, including 
the majority of the sites considered in this paper, and tend to represent more local 
rather than regional proxies for vegetation change, making them less useful than 
pollen for gauging broader afforestation signals.

The extracted data totalled ten pollen records, eight charcoal records and one 
phytolith record from 13 sites. Site details are outlined in the Supplementary Data 2 
and discussed in Supplementary Text 3.

Generalized additive modelling of palaeoecological data. The non-arboreal 
to arboreal ratios calculated for each Neotropical record, and the charcoal data 
and various pollen proxies for forest openness in the Spanish East Indies, were 
summarized using GAMs. This permitted an assessment of nonlinear trends in 
palaeoecological data, particularly those that are irregularly spaced in time, as is 
the case both within and between some of the Neotropical pollen datasets88. Data 
were first standardized by transformation (logit transformation for percentage 
data; log transformation for count and frequency data) and then standardized 
into z scores. Each GAM was fitted using thin-plate regression splines as the basis 
function89: the rank of the basis function was set to one-tenth the sample size or 5, 
whichever value was larger (ranks ranged from 5–26). GAM plots included 95% 
uncertainty intervals around the GAM fit line. Implementation of the GAM fits, 
calculation of uncertainty intervals and creation of record-specific GAM plots was 
undertaken in R version 3.6.2 (ref. 81) using the mgcv package (version 1.8-31)90. 
For data importation and manipulation, we used the packages data.table (version 
1.12.8)91 and readxl (version 1.3.1)92. Resultant data are plotted stratigraphically in 
Fig. 3 (Spanish Americas) and Fig. 5 (Spanish East Indies). The analytical script 
used to create core-specific plots is available at the Open Science Framework (OSF) 
project page https://osf.io/gu483/, which also includes code to apply the same 
methods used in this paper to other datasets.

Analysis of afforestation signal over 2,000 years. The palaeoecological proxies 
for forest cover, their associated GAMs, the known timings of Iberian contact and 
disease-induced population decrease (outlined for each region in Supplementary 
Text 2) and, for the Neotropical sites, cluster analysis of the plant function 
group (PFG) data, were used to semi-quantitatively assess whether the records 
showed afforestation or deforestation following Iberian contact, pre-Iberian 
(1000–1500 ce) afforestation or limited forest change over the past 1,000 years. We 
set 1,000 years as the time frame for classifying change as it is sufficiently long to 
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provide a context for the pre-Iberian forest conditions while reducing the need to 
consider the influence of protracted mid- to late Holocene climate change on forest 
cover40. However, attention was given to the timing and asynchronous influence 
of shorter-term climate events on forest cover over the past 1,000 years (that is, the 
MWP and LIA), the regional influence of which is discussed in Supplementary 
Texts 1 and 3. The following criteria were used to classify the afforestation signal 
for each record:
•	 Post-Iberian afforestation (that is, afforestation after Iberian contact): the 

forest cover proxy data and GAM curvature show an increase in forest pollen 
in the 100-year time frame following a known population decrease associated 
with Iberian contact. For the Neotropics only, the clustered PFG data show 
that this shift is associated with a clear change in forest type and forest cover.

•	 Minor (or unclear) post-Iberian afforestation: either (1) the forest cover proxy 
data and GAM curvature show an increase in forest pollen in the 100-year 
time frame following a known population decrease associated with Iberian 
contact but the PFG data indicate forest stability over the same time period or 
(2) the forest cover proxy and PFG data indicate an increase in forest pollen 
in the 100-year time frame following a known population decrease associated 
with Iberian contact but this is not captured in the curvature of the GAM.

•	 Post-Iberian deforestation (that is, deforestation after Iberian contact): as for 
post-Iberian afforestation, but the data indicate forest opening rather than 
closing.

•	 Pre-Iberian afforestation: there is an afforestation or minor afforestation signal 
(as above) in the period between 1000 and 1400 ce for the Neotropical sites or 
between 1000 ce and the timing of Iberian contact for the Asia-Pacific sites.

•	 A limited forest response was determined if the records did not meet any of 
the above-listed criteria.

Changes in the Asia-Pacific charcoal records were assessed over the same 
time frames as those used for the above-discussed vegetation data. Decreases or 
increases in fire activity (as interpreted from the charcoal proxy data) after Iberian 
contact that were not captured in the GAM curvature were classified as minor/
uncertain.

Site-by-site analysis of the palaeoecological and chronological trends and 
confidence for each record, together with other external supporting data, are 
presented in Supplementary Text 3.

The results of pre- and post-Iberian land use and forest change analysis were 
mapped for each region in ArcGIS Pro 2.5 (Fig. 2 and Fig. 4) and interpreted 
within both broad, pre-Iberian cultural groupings (Figs. 2a and 4a), as well within 
biomes (Figs. 2b and 4b).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The synthesized datasets used to undertake the analyses are available at the 
following OSF project page: https://doi.org/10.17605/OSF.IO/GU483.

Code availability
The analytical script used to create core-specific plots is available at the following 
OSF project page: https://doi.org/10.17605/OSF.IO/GU483. This includes code to 
apply the same methods used in this paper to other datasets.
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Extended Data Fig. 1 | Changes in major plant functional groups & cluster analysis of Neotropical pollen records. Stratigraphic plot of Neotropical pollen 
records showing changes in major plant functional groups & cluster analysis of these data.
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Study description We compile and synthesis pollen data (Spanish Americas), and pollen, phytolith and charcoal data (Spanish East Indies) from available 
palaeoenvironmental records over the past 2,000 years to determine how tropical forests in the former Iberian Empire responded to 
land-use change associated with Indigenous population decline and European colonization. Specifically, we test the degree to which 
a uniform, pan-tropical ‘anthropocene’ process is visible following Iberian colonization, and assess how interplays of physical and 
human geography may complicate, or even overprint this signal in ecosystem dynamics. 

Research sample Due to the inaccessibility of raw palynological data from sites in the Spanish East Indies relative to the Spanish Americas, 
palaeoecological data from each of these regions were extracted and prepared differently as described below.  
 
We extracted all pollen datasets made available for the Spanish Americas from The Neotoma Paleoecology Database (Neotoma). 
These were refined to those relevant for reconstructing tropical floristic change in the former Spanish Americas prior to-, at-, and 
after-Spanish colonisation using the sampling strategy outlined in the below "sampling strategy" section. We did not examine 
charcoal data from the Spanish Americas as this has already been completed in previous, recent research. 
 
No pollen records, and only four relevant charcoal records from the Spanish East Indies have been made available through the 
Neotoma and the Global Paleofire Databases. We thus obtained additional charcoal and pollen records from the region using the 
following methods: 
1) We obtained an unpublished raw charcoal dataset prepared by J. Stevenson (coauthor) from a site (Lake Bulalacao) in the 
Philippines, and a raw pollen dataset from Lake Paoay in the Philippines. The preparation of these data follows standard methods for 
calculating charcoal influx and the methods applied to the Neotropical pollen datasets extracted for assessment of Spanish American 
vegetation change.  
2) In order to increase data capture within the Spanish East Indies, a review of regional pollen and phytolith publications was 
conducted. Data from any plots made of grass or dry herb data plotted against depth (in most cases used as a proxy for landscape 
openness), and any complimentary charcoal data was extracted using Web Plot Digitiser. While all efforts were made to ensure 
precise data extraction, minor sample or variable offsets may have been introduced as errors into the dataset depending on the 
quality of the initial graph production. Because some of these plots were made against depth (versus age), and interpretation of age 
was based on outdated chronologies, updated age-depth model for several of the cores was constructed using the program Bacon. 

Sampling strategy Because of the paucity of data from the Spanish East Indies relative to the Spanish Americas, and the availability of complete raw 
datasets for the Spanish Americans versus the Spanish East Indies, the sampling strategy (i.e. selection for inclusion and data 
preparation) varies between the two region as described below:  
 
Spanish Americas 
Pollen records were included in the study if: 
1) The record was directly dated 
2) The record encompasses the time period spanning at least 600 to 1900 CE, permitting reasonable assessment of the scale of 
Spanish induced change relative to the past 2,000 years. 
3) The record derives from terrestrial sites that currently occur within a tropical or subtropical biome. If in a ‘montane grassland, 
savanna and shrubland’ biome, the site is proximal (<5km) to a tropical or subtropical biome. 
4) The record includes  at least one sample that is estimated to come from the time frame 1500 to 1600 CE, thereby permitting 
assessment of floristic response to any Spanish-induced land use change; 
5) The temporal resolution of the upper 2000 years (or total core length where the base of the record is <2000 cal. BP), is <200 years 
per sample. This cutoff was set in an attempt to capture forest turnover while maintaining a reasonable distribution of records across 
study area. One record - Cobweb Swamp (Sawgrass Core) - which has a resolution of 212 years per sample, was retained for analysis 
as it is situated within the heart of urban development across the Mesoamerican lowlands during the Classic Maya period. 
The application of the above criteria resulted in final selection of 28 pollen records. 
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Spanish East Indies 
Records were included if they captured environmental change within the 200-year period prior to Spanish/Portuguese contact (or 
known disease-influenced population decline), and at least one post Spanish imperial sample. The extracted data totaled 10 pollen, 
eight charcoal, and one phytolith record from 13 sites. 

Data collection RH collected  and synthesised all of the data from Neotoma, published pollen records, and the Paleofire database as described in 
"Research sample".

Timing and spatial scale Temporal framework: two-thousand years was set as an appropriate timeframe for assessing ecological dynamics as is short enough 
to identify late Holocene-scale floristic change, while being long enough to assess the magnitude of Spanish-influenced change 
against the backdrop of pre-Spanish land-use dynamics and low-magnitude late Holocene climate forcing (e.g. the Medieval Warm 
Period the Little Ice Age). 
Spatial scale: All records from the area occupied by the former Spanish Empire were included in the analysis, and then refined 
following the "sampling strategy" detailed above.

Data exclusions Data exclusions were systematic, and only occurred where the records did not meet the criteria for inclusion, and detailed in the 
"sampling strategy" above.

Reproducibility Note that the project uses the entire population of the available palaeoecological datasets available for the study region. All data 
from the Neotropics were systematically reclassified following Marchant (2009) to eliminate uncertainty in assigning functional 
grouping to individual pollen taxa (a common issue in palynological analysis). The results produced from our analyses should be 
entirely reproducible if reanalysed. 

Randomization Note that the project uses the entire population of the available palaeoecological datasets available for the study region. 
Randomisation is part of the statistical assessment of the individual records using Generalised Additive Models (GAMs). Specifically 
"GAMs use automatic smoothness selection methods to objectively determine the complexity of the fitted trend, and as formal 
statistical models, GAMs, allow for potentially complex, non-linear trends, a proper accounting of model uncertainty, and 
the identification of periods of significant temporal change... (As an) underlying mechanism of GAMs... the first derivatives 
of the trend are used to properly account for model uncertainty and identify periods of change." (Simpson, 2018, FREE. 6:149).

Blinding Blinding is not relevant to this study as the project included the entire population of available palaeoecological data for the specified 
region.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data
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Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging
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