Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Double field theory, twistors, and integrability in 4-manifolds

MPG-Autoren
/persons/resource/persons262649

Araneda,  Bernardo
Geometry and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2106.01094.pdf
(Preprint), 795KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Araneda, B. (in preparation). Double field theory, twistors, and integrability in 4-manifolds.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-C01D-F
Zusammenfassung
The search for a geometrical understanding of dualities in string theory, in
particular T-duality, has led to the development of modern T-duality covariant
frameworks such as Double Field Theory, whose mathematical structure can be
understood in terms of generalized geometry and, more recently, para-Hermitian
geometry. In this work we apply techniques associated to this doubled geometry
to four-dimensional manifolds, and we show that they are particularly
well-suited to the analysis of integrability in special spacetimes, especially
in connection with Penrose's twistor theory and its applications to general
relativity. This shows a close relationship between some of the geometrical
structures in the para-Hermitian approach to double field theory and those in
algebraically special solutions to the Einstein equations. Particular results
include the classification of four-dimensional, possibly complex-valued,
(para-)Hermitian structures in different signatures, the Lie and Courant
algebroid structures of special spacetimes, and the analysis of deformations of
(para-)complex structures. We also discuss a notion of "weighted algebroids" in
relation to a natural gauge freedom in the framework. Finally, we analyse the
connection with two- and three-dimensional (real and complex) twistor spaces,
and how the former can be understood in terms of the latter, in particular in
terms of twistor families.