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Abstract

The search for a geometrical understanding of dualities in string theory, in partic-
ular T-duality, has led to the development of modern T-duality covariant frameworks
such as Double Field Theory, whose mathematical structure can be understood in
terms of generalized geometry and, more recently, para-Hermitian geometry. In this
work we apply techniques associated to this doubled geometry to four-dimensional
manifolds, and we show that they are particularly well-suited to the analysis of inte-
grability in special spacetimes, especially in connection with Penrose’s twistor theory
and its applications to general relativity. This shows a close relationship between
some of the geometrical structures in the para-Hermitian approach to double field
theory and those in algebraically special solutions to the Einstein equations. Partic-
ular results include the classification of four-dimensional, possibly complex-valued,
(para-)Hermitian structures in different signatures, the Lie and Courant algebroid
structures of special spacetimes, and the analysis of deformations of (para-)complex
structures. We also discuss a notion of “weighted algebroids” in relation to a natural
gauge freedom in the framework. Finally, we analyse the connection with two- and
three-dimensional (real and complex) twistor spaces, and how the former can be
understood in terms of the latter, in particular in terms of twistor families.
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1 Introduction

Generalized geometry [11, 2] is a branch of differential geometry that unifies symplectic and
complex geometry and in which, in particular, vector fields and 1-forms on a manifold M
are treated on an equal footing, as sections of a “doubled” or generalized tangent bundle,
TM =TM & T*M. The generalization to TM of the differential structure encoded in
the Lie bracket is captured by the notion of Courant algebroids, which involve the so-
called Dorfman bracket (or its antisymmetric version, the Courant bracket). During the
last years these structures have appeared naturally in theoretical high-energy physics, as a
central tool for the understanding of the geometry of string theory, related in particular to
the geometrical interpretation of T-duality (e.g. [3]). A prominent line of developments in
this respect is Double Field Theory (see below), where it has recently been shown [4] 5] 6], [7]
that also para-Hermitian geometry is particularly well-suited to the understanding of its
mathematical structure. In this work we show that doubled geometry is also natural in
general relativity, where it provides a new perspective on ‘integrability issues’ in special
spacetimes and their connection with twistor theory.

As an initial motivation, let us give a rough argument to introduce para-Hermitian
and generalized geometry in string theory, and their connections with T-duality. When
considering string toroidal compactifications, a distinctive feature of strings is that their



extended nature allows them to wrap non-contractible cycles around the compact dimen-
sions. As a consequence, strings are not only characterized by momentum modes but
also by winding modes, which describe how the strings wind around the tori. Roughly
speaking, T-duality is a symmetry of string theory that establishes that momentum and
winding states should be considered on an equal footing. As a simple example, suppose we
have only one compact dimension, a circle S! with radius R. The momentum and wind-
ing modes are quantized; they are characterized by two quantum numbers n, m. From
the mass spectrum for closed strings one can see (as a standard reference cf. [8, Section
8.3]) that, when R — oo, winding modes become very heavy, while momentum modes
become light and start to form a continuum, as corresponds to a non-compact dimension.
Similarly, when R — 0, momentum modes become infinitely massive but winding modes
become light, and the spectrum again approaches a continuum. Therefore, the R — oo
and R — 0 limits appear to be physically equivalent, a remarkable feature that is exclusive
to string theory since a field theory of point-like particles has no winding states (so no
spacetime dimension ‘opens up’ when R — 0 in that case). This equivalence comes from
the fact that the string spectrum is invariant under the simultaneous change R < o//R,
n <> m (where o/ is the inverse of the string tension), a symmetry which extends to any
observable in the theory. This is the simplest manifestation of T-duality; more generally,
T-duality relates the physics of strings propagating on backgrounds with very different
geometries.

Since momentum modes are conjugate or ‘dual’ to spacetime coordinates z‘, the con-
sideration of momentum and winding modes at the same level suggests the introduction
of a new set of coordinates z; ‘dual’ to winding. This doubling of coordinates allows to
formulate a field theory that incorporates the degrees of freedom associated to winding
without necessarily representing strings, and such that T-duality is a manifest symmetry
of the theory. This scheme is called Double Field Theory (DFT) since the pioneering
work [9] (see also e.g. [I0] for a review), and represents a T-duality covariant formulation
of supergravity that incorporates stringy aspects not present in the usual treatment of
supergravity. Although the doubling of space coordinates should only affect the compact
dimensions, it is useful in practice to duplicate all space coordinates; in this way one
ends up with a doubled space, which in the simplest case is a product T X T and has
global coordinates (z7,4;), where T and T are d-dimensional flat tori that are said to be
dual from each other. This ‘extended spacetime’ is intended to be the target space of
the fundamental string, and the physical fieldd] are organized in representations of the
T-duality group O(d,d). Furthermore, from the field content of the theory one deduces
a notion of generalized diffeomorphisms, that are infinitesimally generated by a general-
ized Lie derivative or ‘D-bracket’. Consistency conditions (i.e. closure of the algebra of
generalized diffeomorphisms) impose a restriction on the fields. A particular solution to
this restriction is the so-called ‘section condition’ or ‘strong constraint’, where the fields
are forced to depend on only half of the doubled coordinates. This half is determined as
a subspace that is maximally isotropic (or totally null) with respect to the O(d, d) metric

Tn the simplest formulation of DFT, the physical fields correspond to the massless sector of closed
strings, namely a metric tensor, a 2-form field (the Kalb-Ramond field) and a scalar field (the dilaton).



n=dz' ® dZ; + dz; ® dz* [11], i.e. a d-dimensional subspace S such that?

nls = 0. (1.1)

T-duality acts by transforming any such isotropic subspace into another.

One might already anticipate some parallelism of the DFT framework with generalized
geometry, in the sense that both formalisms are based on a doubled space. However, an
important difference is that in the former, what is doubled is the base manifold, while in
the latter is the tangent bundle. This difference is important if one wants to understand
T-duality in the generalized geometry setting, since, as argued above, the very essence
of T-duality is to exchange the manifolds 7" and 7. Upon restriction to fields satisfying
the strong constraint, the D-bracket reduces to the Dorfman bracket and one can argue
that the DFT setting reduces locally to generalized geometry (see e.g. [12]). A possible
formalization of all this (that is also intended to provide a global formulation of DFT)
originates in the work of Vaisman in [4], [5], who shows, in the first place, that the usual
extended spacetime of DFT is a flat para-Kéahler manifold. To see this, consider first an

almost para-Hermitian structure on a 2d-dimensional manifold M: a pair (1, K) where
K € End(TM) and n is a metric such that

K*=1 KX, KY)=-nX,Y) (1.2)

for any vector fields X,Y. The map K is called almost para-complex structure, and it
produces a splitting of the tangent bundle as TM = L & L, where L, L are the (£1)-
eigenbundles of K. These eigenbundles are maximally isotropic with respect to 7, i.e.
they are d-dimensional and satisfy (II)), and this implies that L 22 L* (see Section 2 for
details). If L and L are involutive under the Lie bracket then K is said to be integrable,
and there exist local coordinates (z°,Z;), i = 1, ..., d, such that, denoting 9; = 9/0x" and
J' = 0/07;, one has L = span(d;) and L = span(&). If 7 is flat, then it can be expressed
in these coordinates as n = dz! ® d#;. So there are two complementary foliations F, F
such that L = TF and L = TF EI, and L = L* implies that TEF = T*F, thus TM has
actually the structure of a generalized tangent bundle: TM = TF & T*F. Furthermore,
Vaisman shows [4] that there is a natural notion of D-bracket on 7'M, and that it reduces
to the Dorfman bracket for fields with dependence only on F, so in this way one recovers
generalized geometry. Finally, different T-dual spacetimes correspond to different choices
of para-complex structures.

The study of DFT from the perspective of para-Hermitian geometry, in settings more
general than the flat para-Kéhler case, was further developed in [5] and [6] [7, 13 [14],
and also in several subsequent works, being currently an active research area. (Early
considerations of the relationship between para-Hermitian structures and T-duality can be
found in [15].) A particularly important difference between Hermitian and para-Hermitian
geometry is that the eigenbundles of an almost-complex structure are complex conjugates
of each other, while those of an almost para-complex structure are independent. As a

2The metric n involved in (II]) does not represent the gravitational field; it is part of the ‘kinematics’
of the theory. The gravitational field is unified with the 2-form field into a ‘generalized metric’, which
codifies the dynamics; this will not play a role in the present work.

3This notation means that if ¥ is a leaf in F, then TY = Ly, etc.



consequence, the integrability properties of a para-Hermitian structure can be split into
separate questions about the involutivity of each eigenbundle, so one can talk about “half-
integrability”. We will see that this is especially important in general relativity and its
connection with twistor structures.

A key condition in the analysis above is equation (2], which implies (L)) for the
eigenbundles of K. For real K, this means that the signature of 7 must be (d, d); so in four
dimensions this is (++ ——), which is different from the usual Lorentz signature (+———)
of general relativity. However, if we allow K to be a map on the complezified tangent
bundle, then the metric is allowed to have any signature (or to be complex). Our interest
in complex-valued maps arises from the power of using complex methods in relativity,
which date back to remarkable programmes such as Penrose’s twistor theory, Newman’s
H-space, and Plebanski’s hyper-heavenly (HH) construction. (One can argue that, in a
sense, all these constructions can be understood as parts of the twistor programme.) This
is one of our main motivations in this work: submanifolds where the condition (L.T]) holds
are actually the basic object of twistor theory, but they arise from a completely different
perspective, namely the essential premise of the twistor programme that light-rays are
more fundamental than spacetime points. A related motivation comes from the fact that
a “complex-valued almost-complex structure” has some significance in developments in
mathematical relativity and their relation to twistor structures, see [16, 17, 18|, 19} 20].
As in ordinary para-Hermitian geometry, the phenomenon of “half-integrability” is shared
by such complex-valued maps. The present work can be regarded as the application of
some of the modern DFT-like techniques mentioned above to 4-manifolds, with the extra
ingredient that K can be complex-valued so that one can make contact with general
relativity and twistor theory.

Main results

The fact that we consider complex-valued “para-Hermitian” structures implies that, unlike
the usual literature in DFT and related matters, we can analyse different signatures of the
metric, by imposing different reality conditions. Since we work in a 4-manifold M (which
we assume to be orientable), this means that we will deal with Lorentz, Riemannian (or
Euclidean) and split (or neutral) signature. The Lorentzian case is relevant, of course,
for general relativity (and in particular for the so-called hyper-heavenly spaces [21]); the
Riemannian case is relevant because e.g. of the Atiyah-Hitchin-Singer approach to twistor
theory [22]; and the split case can be related, since the work of Ooguri and Vafa [23], to the
geometry of strings with N = 2 supersymmetry. (It is also related to the LeBrun-Mason
twistor construction in split signature [24].)

Since an arbitrary 4-manifold with a metric does not naturally come equipped with a
(possibly complex-valued) almost para-Hermitian structure, we first focus on classifying all
possible such structures. We show that regardless of signature, an almost para-Hermitian
structure is essentially equivalent to an (anti-)self-dual 2-form (in the sense of Hodge
duality). Then we use this result to describe the space P, of para-Hermitian structures
at any point x € M: we show that P, has two connected components and, imposing
appropriate reality conditions whenever possible, each component can be described as:



a complex projective line CP! in Riemannian signature@, the space (RP' x RP')\RP' in
split signature, and the space (CP' x CP')\CP"' in Lorentz signature (and in complex 4-
manifolds). We show that, topologically, these spaces are respectively a real 2-sphere S?,
a hyperboloid of one sheet H', and a complex 2-sphere CS?. For Hermitian structures,
the corresponding spaces are CP', CP*\RP' (a hyperboloid of two sheets) and (CP' x
CP')\CP*, respectively. We also find that there is a natural “gauge freedom” associated
to the representation of a (para-)Hermitian structure, and we develop a correspondingly
covariant formalism.

We then analyse the integrability conditions for almost (para-)Hermitian structures,
and we show that involutivity of one of the eigenbundles of K (or “half-integrability”)
is equivalent to the existence of certain special spinors, that in relativity language give
origin to what are called shear-free null geodesic congruences. This allows us to show that
there are natural algebroid structures associated to any four-dimensional manifold with a
shear-free congruence, namely Lie and Courant algebroids. This gives explicit examples of
Courant algebroids in four dimensions, that include e.g. all algebraically special Einstein
manifolds (such as the Kerr and Schwarzschild black hole solutions, but also all vacuum
Petrov type II solutions), so it connects the structures studied in generalized geometry
to spacetimes of interest in classical relativity. Furthermore, the Lie algebroid structure
has naturally associated a cochain complex that can be used to prove the existence of
potentials in problems of interest in relativity. We are naturally led to the question of
generalizing the algebroid structure to fields with general transformation properties under
the gauge freedom mentioned above, and we discuss the possible construction of such an
object (“weighted algebroid”) and the associated differential complex.

Finally, we focus on connections with twistor theory, showing that: any particular half-
integrable para-Hermitian structure defines a 2-dimensional (2D) twistor space, and if all
para-Hermitian structures are half-integrable, then there is a 3-dimensional (3D) twistor
space, which is a one-parameter family of 2D twistor spaces parametrized by projective
spinor fields. This 3D space is the total space of a fibration of 2D twistor spaces over
projective spinors if and only if the vacuum Einstein equations are satisfied. We also
discuss the relationships with other twistor constructions in the literature. Finally we
define deformations of para-complex structures in M and analyse their integrability, and
we show that small, half-integrable deformations exist if and only if the Weyl tensor is
half-algebraically special, and in this case they define sections of a line bundle over a
2D twistor space. As in the rest of the paper, our results here are valid for any metric
signature.

Conventions and overview

Our conventions for different kinds of indices, curvature, etc. follow Penrose and Rindler
[25, 26]. The organization of this work is as follows. We start in Section 2] with some
background material: we review basic notions on para-Hermitian geometry and related
structures (keeping always in mind that we allow complex-valued maps), generalized ge-
ometry and Lie and Courant algebroids, and conformal geometry and the Lee form. Then

4This turns out to be analogous to the result on almost-complex structures, which is already known
in the literature [22].



in Section [3] we study almost para-Hermitian structures in 4-manifolds equipped with a
metric of different signatures, and we describe the spaces of such structures in each case.
In Section Ml we study integrability issues: half-integrability of para-Hermitian structures,
the Lie and Courant algebroids associated to special spacetimes, and a possible notion
of “algebroids” for the treatment of weighted fields. In Section [l we study some connec-
tions with twistor theory: two- and three-dimensional twistor spaces, twistor families, and
integrability of small deformations of para-complex structures. In Section [0l we make a
summary of this work and comment on some possible future directions. We include three
appendices: Appendix [Alwith a brief review of spinors in 4 dimensions (in any signature),
Appendix [B] with additional details about the “gauge freedom” and the associated co-
variant formalism, and Appendix [C] with some properties of the curvature of the natural
connection in the above formalism.

2 Background

2.1 Para-Hermitian and related structures

In the following, M denotes a d-dimensional real, smooth manifold. The definitions still
apply if M is complex.

Definition 2.1. Let £ — M be a vector bundle with even rank. Let g be a non-
degenerate symmetric bilinear form on the fibers. Given a map K € End(F), we say that
(9, K) is a para-Hermitian structure on E if it holds:

1. K? =+1
2. The +1 eigenbundles of K have the same rank.
3. g(KX,KY)=—¢g(X,Y) forall X,Y € E.
If we require only the first two conditions, K is said to be a para-complex structure.

Consider a para-Hermitian structure (g, K). The map K gives a decomposition F =

L & L, where L is the (+1)-eigenbundle of K and L the (—1)-eigenbundle. Any element
X € F can be written as

X=a+2 (2.1)

where z € L and Z € L. In the following, we will extensively use this notational conven-
tion. Note that if z,y € L,i.e. Kz =z and Ky =y, then g(z,y) = g(Kz, Ky) = —g(z,y)
so g(x,y) = 0 for all z,y € L, and similarly ¢(#,§) = 0 for all #,§ € L. We then say that
L and L are isotropic with respect to g, i.e. gl = 0 = g|;. The following is a standard
result:

Proposition 2.2. We have the isomorphisms L = L* and L = L*.

Proof. f X € E = L® L, in general we have g(X,:) € L* @ L*. But if & € L, then
g(7,9) = 0 for all § € L since L is isotropic, therefore g(,-) € L*. Thus we have a map

L — L* given by 3
L>%— 7, :=g(,-) €L, (2.2)



and since ¢ is non-degenerate, the map is an isomorphism. The proof of L = L* is
analogous. O

Since here we are not using the abstract index notation, we use the musical isomorphisms
b and . From (2.2) it follows that the map

0 E=LOL—-LaLl, X=z+iw¢oX)=/ () (2.3)
is also an isomorphism.

Definition 2.3. We say that (g, K) is an almost para-Hermitian structure on a manifold
M if (g, K) is a para-Hermitian structure on TM ® C.

Remark 2.4. Notice that the map K in Def. [2.3] satisfies the conditions of Def. 2.1l
and is allowed to be complez-valued. From this perspective, we can equally well refer to
the map J = iK as a “Hermitian structure” in the sense that it satisfies J? = —I, its
eigenbundles have equal rank, and g(J-,J-) = g(+,-). We choose the terminology ‘para-
Hermitian’ because it suggests that the eigenbundles are not related to each other (unlike
in the usual real-valued Hermitian structures), see Remark below. See also Remark
3.3

Remark 2.5. If (g, K) is an almost para-Hermitian structure on M, and € is a nowhere
vanishing scalar field, then (2%¢, K) is also an almost para-Hermitian structure on M,
since (22g)(K-, K+) = —(22g)(+,+). This means that we can interpret K as an object
associated not to a particular metric g but to the conformal class [g] = {Q%g | Q €
C*(M),Q > 0}, in the sense that the conditions of definitions 2.3 and [2.1] are satisfied
for any g € [g]. Therefore, conformal invariance will play an important role in our study.
We will refer to ([g], K') as an almost para-Hermitian conformal structure on M.

A para-Hermitian structure (g, K) in M can also be thought of as an “almost-symplectic
structure”, in the sense that it automatically defines a non-degenerate 2-form w(X,Y) :=
g(KX,Y); this is usually called the fundamental 2-form. The relationship of this with
conformal geometry is particularly interesting, see Section 2.3 below. The eigenbundles
of K are isotropic with respect to w, that is w|, = 0 and w|; = 0.

Definition 2.6. An almost para-Kdihler structure on a manifold M is an almost para-
Hermitian structure such that the fundamental 2-form is closed, dw = 0.

Although our primary interest is in the case where there is only one para-Hermitian
structure, in later sections it will appear naturally the case in which one has more than
one para-complex or complex structure. Because of this, it is useful to recall now the
algebras of quaternions H and of para-quaternions (or split-quaternions) H':

H={¢=a+bitcj+dk|i*=j>=k*=—1, k=1ij = —ji}, (2.4)
H={¢d=a+bit+ecs+dt|i*=—1, s =t*=1,t=1is=—si} (2.5)
where a, b, c,d € R. The quaternion algebra H is associated to a positive definite quadratic

formd g = a®+b? + ¢+ d?, while I is associated to a quadratic form with split signature
q7 = a®> +b* — ¢* — d?. Based on these algebras, we define:

5The conjugate of a quaternion ¢ is § = a — bi — ¢j — dk, and the conjugate of a para-quaternion ¢’ is
o .
q =a—bi —cs—dt.



Definition 2.7. Let M be a real manifold, and let I, I, I3 be three anticommuting
endomorphisms of T'M. Then:

1. (I, 15, 1I3) is an almost-hypercomplex (or almost-quaternionic) structure if Iy, Is, I3
satisfy the quaternion algebra (2.4)). If M is equipped with a metric g, then
(g, 11, I5, I3) is an almost-hyperhermitian structure on M if it is almost-hypercomplex
and ¢(; X, L,Y) = g(X,Y) for all i = 1,2, 3 and for all vectors X,Y.

2. (I, 15, I3) is an almost-para-hypercomplex (or almost-para-quaternionic) structure if
Iy, I, I3 satisfy the para-quaternion algebra (2.3). If M is equipped with a metric
g, then (g, I1, I, I3) is an almost-para-hyperhermitian structure on M if it is almost-
para-hypercomplex and ¢(L, X, Y) = ¢(X,Y) and ¢(L;X,LY) = —g(X,Y) for
1=2,3.

The word ‘almost’ in all the definitions above can be removed by introducing a notion
of integrability. To do this, it is instructive to first briefly recall the situation in complex
geometry. An almost-complex structure in a real manifold M is a real map J in TM
such that J2 = —I, and whose %i eigenbundles, denoted T M, have the same rank. One
has the decomposition TM ® C = TT™M & T-M (note that the elements in T=M are
necessarily complex). An almost-complex structure is said to be integrable if T*M is an
involutive distribution in TM ® C, that is [[(TTM),T(T+*M)] Cc T(T*TM), where [-, ] is
the Lie bracket of vector fields, and I'(E') denotes the space of sections of a vector bundle
E. A real manifold equipped with an integrable almost-complex structure is a complex
manifold. The integrability condition for J is equivalent to the vanishing of its associated
Nijenhuis tensor, where, if A : I'(TM) — ['(T'M) is a linear map, the Nijenhuis tensor
associated to A is the map Ny : I'(T'M) x I'(TM) — I'(TM) given by

NA(X,Y) = i (AP[X,Y] + [AX, AY] — A([AX,Y] + [X, AY])), (2.6)

for all vector fields X, Y.
Mimicking the above definitions for complex structures, we define

Definition 2.8. A (para-)Hermitian structure on a manifold M is an almost (para-
JHermitian structure (g, K') such that the Nijenhuis tensor (2.6]) associated to K vanishes:

Nk =0. (2.7)

Similarly, a (para-)hyperhermitian structure on M is an almost-(para-)hyperhermitian
structure (g, I1, I, I3) such that N, =0 for all i = 1,2, 3.

A crucial difference between integrability of ordinary Hermitian and para-Hermitian
structures is the following:

Remark 2.9. The fact that an ordinary almost-complex structure J is a real tensor
implies that its eigenbundles are complex conjugates of each other, so J is integrable if
and only if both distributions T+t M and T~ M are involutive. In the para-Hermitian case,
the two eigenbundles of a real-valued K are not complex conjugates of each other, so one
of the distributions may be involutive while the other one is not. This also applies if K
is complex-valued as in Def. 2.3l



Recalling the splitting L & L induced by K, one can then separate integrability prop-
erties associated to the two eigenbundles L and L. This gives origin to a notion of
“half-integrability”

Definition 2.10. We say that an almost para-Hermitian structure (g, K') on M is half-
integrable if one of the eigenbundles of K is involutive. If both eigenbundles are involutive,
then K is integrable and (g, K) is a para-Hermitian structure on M.

Remark 2.11. In [6], half-integrable almost-para Hermitian structures on a manifold
M (with real-valued K) are called L-para Hermitian or L-para Hermitian manifolds,
depending on whether the (+1)- or the (—1)-eigenbundle is integrable, respectively.

It is useful to introduce the projectors to L and L; respectively:
P=3i1+K), P:=1i1-K). (2.8)

Using K* = I, one can easily check that these operators satisfy P?> = P, P2 = P and
PP = 0= PP. The Nijenhuis tensor (2.6]) for A = K can be rewritten in terms of these
projectors as [6, Eq. (3.13)]

Ni(X,Y) = Np(X,Y) + Np(X,Y), (2.9)

where

Np(X,Y)=P[PX,PY], N3X,Y)=P[PX,PY] (2.10)
Note that if L is integrable, then [PX, PY] € I'(L) and therefore P[PX,PY] = 0, ie.
Np = 0. Hence Np and Nz govern the involutivity of L and L respectively.

Remark 2.12. By Frobenius theorem (see e.g. [27, Theorem 19.21|), if M is a real
manifold and one has an involutive distribution L C T'M then the collection of all integral
manifolddd of I forms a foliation of M. But if the involutive distribution is complex,
ie. L C TM ® C, then the integral manifolds are complex submanifolds living in the
complexification of M [. Since complexification requires real-analyticity of M (which is
a restrictive property from the point of view of relativity), in general we will not assume
the existence of a foliation. The involutivity of the distribution, however, is well-defined,
and is what we mostly need in this work.

Remark 2.13. Since the eigenbundles L and L of K are isotropic with respect to the
almost-symplectic form w, we can refer to them as Lagrangian subbundles. If, say, L is
integrable and gives origin to a foliation F', we can refer to F' as a Lagrangian foliation.

The integrability of almost-para-Hermitian and related structures is a conformally
invariant property. Other properties that are not conformally invariant are also of interest,
in particular the Kéhler and related conditions:

Definition 2.14. Let M be a real manifold.

6An integral manifold of a distribution L C TM is an immersed submanifold N C M such that
T,N = L|, for all p € N. A generic distribution does not admit integral manifolds.

"Note that, given a real manifold M, the complex manifold resulting from an integrable almost-complex
structure, and the complexification of M, are two different concepts.
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1. An almost-para-Hermitian structure (g, K') on M is para-Kdhlerif it is para-Hermitian
and almost-para-Kéahler, that is, K is integrable and dw = 0.

2. An almost-para-hyperhermitian structure (g, Iy, Is, I3) on M is para-hyperkdhler if
it is para-hyperhermitian and dw; = 0, where w;(-, ) = g(I;-,-), i = 1,2, 3.

One can show the following:

Proposition 2.15. Let (g, K) be an almost-para-Hermitian structure on a real manifold
M. Then (g, K) is para-Kdahler if and only if K is parallel with respect to the Levi-Civita
connection of g. Likewise, an almost-para-hyperhermitian structure (g, I1, Is, I3) on M is
para-hyperkdhler if and only if I; is parallel w.r.t. the Levi-Civita connection of g for all
i=1,2,3.

2.2 Generalized geometry and algebroids
2.2.1 Elementary notions

Let V be a d-dimensional vector space and V* its dual, and consider the space V & V*.
We will denote elements of V& V* by (X, «), (Y, 3), etc. There is a natural inner product
(-,)yon V@ V*given by (X, a), (Y,5)) = a(Y)+B(X) H. Any orthogonal endomorphism,
i.e. any elemeny of so(V @ V*), can be written as

(5 )

where A € End(V), B can be viewed as a 2-form in A?V* and 3 as a bivector in A?V.
Exponentiating, one gets elements in SO(V @ V*), that can be separated into

) = (1), e =(; 7). et = ("0 %) ew

Remark 2.16. The matrix exp(B) in (2Z.I1)) is called a B-transformation, and it can be
thought of as a shear transformation in the sense that it fixes projections to V' while
shearing in the direction of V*; see [2, Chapter 2|. This interpretation and terminology
will be particularly well-suited to our purposes in later sections. Analogous considerations
apply to the B-transformation given by the matrix exp(3).

While the above is just linear algebra and can be done for any vector space, in
Generalized Geometry one applies this to the case where V' is the tangent space to a
point in a d-dimensional manifold M, and the generalized tangent bundle is defined as
TM :=TM & T*M. The construction above then describes the pointwise structure of
TM. The differential structure is described by generalizing the notion of Lie bracket [-, -]
of vector fields to a bracket operation on sections of TM. There are two different bracket
operations considered in the literature, the Courant bracket and the Dorfman bracket.
Here we choose the Dorfman bracket and denote it by [+, -]; it is defined by

(X, ), (Y,8)] = ([X,Y], £xB — £ya + d(iya))

8A factor of 1/2 is often included in the right hand side of this equation, but for our purposes this is
not important.
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where £ denotes the Lie derivative and 7y the interior product. The Courant bracket is
the skew-symmetrization of the Dorfman bracket. While the ordinary Lie bracket is skew-
symmetric and satisfies the Jacobi identity, the Dorfman bracket is not skew-symmetric,
but it satisfies the Jacobi identity. In turn, the Courant bracket is skew-symmetric, but
it does not satisfy the Jacobi identity.

2.2.2 Lie and Courant algebroids

In the literature one frequently encounters real Lie algebroids, but in this work we need
the complexified versions (although the manifold is still real). This is also used in e.g. [2],
see Chapter 3 therein.

Definition 2.17. A (complex) Lie algebroid is a triple (L, [-,-]r, p) where L — M is a
complex vector bundle, |-, -], : I'(L) xI'(L) — I'(L) is a bilinear map, and p : L - TM®C
is a bundle map called anchor, such that, for all X|Y,Z € I'(L) and f € C*°(M), the
following four conditions are satisfiedd:

1. [X,Y], = -]V, X],.

2. Jacy(X,Y, 2) = [X, [V, Z0]e + [Z,[X, Yol + [Yi [Z, X]1]e = 0.

3. p([X,Y]L) = [p(X), p(Y)], where [-,] is the Lie bracket of vector fields.
41X Y] = (p(X) )Y + fIX, Y]

From the first item we see that [-, -], is skew-symmetric, and the second means that the
Jacobiator for |-, -]; vanishes, or, in other words, the Jacobi identity for [, ], is satisfied.
Together, these two items imply that [-,-]; is a Lie bracket. The third item means that
p is a morphism, and from the fourth item we see that the anchor and the bracket are
subject to the Leibniz rule.

The following are standard examples of Lie algebroids, taken from [2, Chapter 3|:

Example 2.18. The tangent bundle TM gives origin to the tangent Lie algebroid (T'M, [-, -], 1),
where the bracket is the Lie bracket of vector fields and the anchor is the identity map.

Example 2.19. If L C€ TM is an involutive distribution, then (L, |-, -]r,1.) is a Lie
algebroid, with [-, -] and 1y, the restrictions of, respectively, the Lie bracket and the identity
map of TM to the subbundle L.

We will need some objects that can be naturally constructed from the structures in a
Lie algebroid:

Definition 2.20 (Def. 3.7 and 3.8 in [2]). Let (L, [-,]z, p) be a Lie algebroid, let A* =
AEL* for k=0,1,2,..., and let w € T'(A¥) and X, ..., X}, € T'(L).

9The anchor p extends to a map between sections I'(L) — I'(T'M ® C) that we also denote by p.

12



1. The Lie algebroid exterior derivative is the map d* : T(A¥) — T['(A¥1) defined by
(de)(Xm SaS) Xk) = Z(_l)zp(X) (X07 XM SRE) Xk)

+Z D) Hw([Xs X1, Xos ooy Xiy oo X

Gy oeee

X)) (2.12)

1<J
where the notation XZ means that the vector X; is omitted.

2. The generalized Lie derivative £* of w along X € I'(L) is the operator defined in
terms of d* by Cartan’s formula

L0 =ixd"w + dlixw (2.13)
where ix denotes interior product, ixw = w(X,...).

As examples of the exterior derivative (2.12), if f € T'(A°) and w € T'(A') then

(A" F)(X) = p(X)f, (2.14)
(@E)(X, Y) = p(X)w(Y) = p(¥)(X) — (X, V],). (2.15)

Remark 2.21 (de Rham complexes). The fact that the bracket of a Lie algebroid satisfies
the Jacobi identity, together with the morphism property of the anchor, imply that the Lie
algebroid exterior derivative d¥ satisfies d¥ o dl = 0. Therefore, (I'(A®),d%) is a cochain
complex (see e.g. |2l Chapter 3]). This will be particularly important in sections [4.2] [4.3]

Definition 2.22 (Def. 3.1 in [5]). A Courant algebroid is a quadruple (E, {-,-),p,[-,-])
where: £ — M is a vector bundle, (-,-) : ['(E) x I'(E) — C*°(M) is a non-degenerate
symmetric bilinear form, p: E — T'M is a bundle map called anchor, and [-, ] : T'(E) x
['(E) — T'(E) is a bilinear operation called Dorfman bracket, subject to the following
axioms for all X,Y,Z € T'(E):

L. p(X)<Y, Z> = <[[X7Y]]7Z> + <Y7 [[Xv Z]])
2. <[[X7X]]7Y> = %p(Y)<X,X>
3. [X, Y, Z]] = [IX, Y], Z2] + [Y, [X, Z]]

In terms of the Dorfman bracket, the axioms in Definition have the following
meaning: the first axiom means invariance of the inner product with respect to the bracket;
from the second axiom we see that the bracket is not skew-symmetric; and the third axiom
means that the bracket satisfies the Jacobi identity.

The definition of a Courant algebroid can be given using two different bracket opera-
tions: the Courant bracket [-,-]cour Or the Dorfman bracket [-,-]. The difference is that
one can require the bracket either to be skew-symmetric (Courant) or to satisfy the Jacobi
identity (Dorfman), but not both. The original definition, introduced in [28§], is in terms
of the Courant bracket. The two brackets are related by [X,Y]cow = 3 ([X, Y] —[Y, X]).

Remark 2.23. If only the first and second axioms in Definition [2.22] are required, the
bracket is said to be metric-compatible. The quadruple (E,(-,-),p, [, ]) is then called
metric algebroid [4].
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From the axioms in Definition [2.22] one can deduce two additional identities:

[X, Y] = (p(X) )Y + f[X, Y], (2.16)
p([X,Y]) = [p(X), p(Y)] (2.17)

for any f € C*°(M). The first identity means that the anchor and the bracket satisfy
the Leibniz rule; the second identity means that p is a morphism of bundles. These
identities are sometimes included as part of the definition of a Courant algebroid, but it is
known that they can be obtained from the axioms: to prove (2.16), compute ([X, fY], Z)
for Z € T'(E) arbitrary and use the first axiom; to prove (2I7), compute both sides
independently applied to (Z, W) for arbitrary Z, W € I'(F), and use the first and third
axioms.

As shown in [2§], a natural example of a Courant algebroid can be obtained from a
Lie bialgebroid. A related example, which is key for our purposes, is the following:

Proposition 2.24 (See e.g. Example 2.6 in [7]). Let (L, [, ]1, pr) be a Lie algebroid, and
consider the vector bundle L & L*. Denote sections of L & L* by (X, «), (Y, ) etc., and
introduce the following maps:

7T-LGBL"<<)(7 OJ)) = X7 (218)
(X, ), (Y, B)) o = a(Y) + B(X), (2.19)
[[(X’ a)? (Y7 ﬁ)]]L@L* = ([X7 Y]In fg(ﬁ - "650‘ + dL(Z.Ya)) (2'20)

where d* and £7 were defined in Definition[2.20. Then the quadruple
(L& L () ror Tror [ Jror-) (2.21)

is a Courant algebroid, with inner product (-, )per+, anchor Tper+ and Dorfman bracket
[['a ']]L@L* .

This procedure for constructing Courant algebroids from Lie algebroids is particularly
natural in manifolds with a foliation, as described by Vaisman in [5, Section 3]. The
following result is essentially Proposition 3.1 in [5] (see also [7, Section 3.4]):

Proposition 2.25. Let (g, K) be an almost-para Hermitian structure on a d-dimensional
real manifold M (Def. [2.3). Let L and L be the two eigenbundles of K, and assume that
L 1s tnwvolutive. Then the quadruple

(TM@ C7g7P7 [['7 ]])

is a Courant algebroid, where the inner product g is the metric, the anchor P is the
projector ([2.8) to L, and the Dorfman bracket is

[X. Y] = ([, %), (. %) 2cor).

Here, @ and b are the isomorphisms [23) and 22), [-, |rer- is the Dorfman bracket
220), and r = PX, & = PX, y = PY, § = PY are the decompositions of vectors
induced by K.
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Proof. The tangent bundle splits as TM @ C = L& L, where L and L are the eigenbundles
of K and L is involutive. From Example 2.19 the distribution L defines a Lie algebroid
(L, [, ]r,11). Therefore, applying Proposition [Z24] the quadruple

(L L* (-, )rer Trer+ [ lrer~) (2.22)

is a Courant algebroid, where the anchor, inner product and Dorfman bracket are given
by (218), (219) and (220). Now one simply has to transfer this structure to TM ® C
using the isomorphisms ¢ and b (egs. (2.3), (2.2))). Any elements X,Y € I'(TM ® C) can

be written as X = x + & and Y = y + g, where x,y, € I'(L) and &,y € I'(L). Using these
decompositions, and the fact that g/, = 0 = g|;, a brief calculation shows that

9g(X,Y) = ((x, %), (, %)) Lowr=

so the metric g plays the role of the inner product in Def. 2.22] Furthermore, recalling
the projector P given in (2.8)) and using again X = x + Z, we have

Ple+7) =2 =mrer-((z,3))

so P plays the role of the anchor. Finally, let us see the Dorfman bracket. Since any

elements «, 5 € I'(L*) can be written as o = Z,, = g, for some z,5 € I'(L), the
Dorfman bracket (2:20) is

[(z, %), (v, ) rer = (&, ylL, £59, — £35 + d"g(Z,y)) (2.23)

where we recall that by definition, Z,(y) = ¢(Z,y). The right hand side of (2.23) is,
of course, an element of L & L*. In order to map this to L @ L, one uses the inverse
isomorphisms # : L* — L and ¢! : L ® L* — L @ L, which map L ® L* 3 (z,7) —
¢ ((2,7)) = 2+t € L ® L. Replacing (z,7) by the right hand side of (2.23), we get

[+ %,y + 9] = ¢ ' ([(x,2), (v, )] Lor-)
= [e,y] + (£5G, — £55, + d"g(3,y))* . (2.24)

(This is the unnumbered equation above eq. (20) in [7].) O

2.3 Conformal geometry and the Lee form

As noticed in Remark 2.5 conformal invariance plays an important role in our work.
Recall that, given a manifold M and a metric g on it, the conformal class of g is defined
as [g] = {Q% | Q € C®(M),Q > 0}. We refer to the pair (M, [g]) as a conformal
structure. The elements in [g] are called conformal representatives.

Definition 2.26. Let (M, [g]) be a conformal structure. A Weyl connection is a linear,
torsion-free connection ¥V such that for any conformal representative g € [g], it holds

Vg = —-2f ® g for some 1-form f. We call f the Weyl 1-form.

Under a change of conformal representative g — g = %¢, by definition we must have
Vg = -2f® g for some 1-form f. Replacing g = (2g on the left hand side, we see that
f and f are related by (from now on we will frequently use the abstract index notation)

A~

fa = fa - (d log Q)a- (225)
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If we choose a metric g € [g] with Levi-Civita connection V, the relationship between
YV and V is given by a tensor field Q : I'(T'M) x I'(T'M) — I'(TM). Explicitly, one has

g("VxY,Z) = g(VxY. Z) + g(Q(X,Y), Z),

where
9(QX,Y), Z) = f(X)g(Y. 2) + [(Y)g(X, Z) — f(Z)g(X,Y).

In index notation this can be expressed as
YWV.Y? =V, Y+ Q.Y (2.26)

where
Qacb = 52fa + 53fc - gbdgaCfd- (2'27)

There are interesting relations between the 1-form f associated to a Weyl connection
and certain properties of almost para-Hermitian structures. This dates back to the original
work of H. C. Lee in [29] on almost symplectic manifolds (M, aq): M is a d-dimensional
manifold (with d even) and aq, = a[e) is a non-degenerate 2-form. The inverse of ag, is
(a™1)%, so that (a71)*aq = 0%. Lee defines the “curvature tensor” of aq as (da)a., and
the “curvature vector” as (a=1)*(da)ue. Two such spaces (M, aq) and (M, a,,) are said
to be “conformal” to each other if there exists a scalar field ¢ such that

&ab = gbaab. (228)
Assuming d > 2 and defining the 1-form

k 1 (a_l)bc<da)ab07

a = (d-2)
it is observed in [29] that k, and k, are related by
kg = ko — (dlog @), (2.29)

It follows from this that (dk)e = (dk)ap, so (dk)gp is called the “first conformal curvature
tensor” by Lee. There is also a “second conformal curvature tensor” a 3-form cg. given
by

Cave = (da)ape + (kK A @) ape- (2.30)

The tensors cupe and ¢y are related by Cope = OCape-

Now, as already noticed, a manifold with an almost-para-Hermitian structure (g, K)
comes automatically with an almost-symplectic form wy, = g4 K¢,. Therefore, we may
take aq = wep in Lee’s construction. Since K. K¢, = §%, we have (w™1)% = g*g*w, 4 =
w®. Under a conformal transformation of the metric, go» — Jap = 2?gap, the new almost-
symplectic 2-form is @, = Q%wg. Thus, we take ¢ = Q2 in (Z28]) and subsequent
formulas, and we define:

Definition 2.27. Let ([g], K) be an almost (para-)Hermitian conformal structure on a
d-dimensional manifold M, with d > 2. For a choice g € [g], let w be the associated
almost-symplectic 2-form. We define the Lee form as

Oo = 373y (AW) abe- (2.31)
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If V, is the Levi-Civita connection of g4, a short calculation using w®w,, = —d shows
that (2.31)) can be written as
O0f = 5 KP .V, KC,.

(d-2)
This is equivalent to 6, = —ﬁK ¢, VK", or in index-free notation:
0(X) = — gty (Ow) (K X) (2.32)

for any vector field X, where § is the codifferential.

From (2.29) and (2Z31)) we see that the Lee form 6, has exactly the transformation
property of a Weyl 1-form under conformal transformations of the metric g, — Gup =
g (i.e. 0, — éa =0, — (dlogQ),). Therefore, from the discussion above, we deduce:

Proposition 2.28. An almost (para-)Hermitian structure (g, K) on M induces a natural
Weyl connection in the conformal structure (M, [g]), by taking the Lee form as the Weyl
1-form, 0, = f,.

This motivates the following definition:

Definition 2.29. Let ([g], K) be an almost (para-)Hermitian conformal structure on M,
and let YV be a Weyl connection. We say that YV and K are compatible if the Weyl
1-form associated to ¥V and the Lee form associated to K coincide (in other words, ¥V
is induced by K).

Remark 2.30. In the literature, see e.g. [30), Section 4] (also [1§]), the usual definition of
compatibility of a Weyl connection ¥V with a Hermitian structure K is that they must
satisfy

VLK% = 0. (2.33)

Using (2.26)-(2.27), it follows easily that this is true if and only if the condition of Defini-
tion[2.29holds, namely the Weyl 1-form is equal to the Lee form. Thus, the two definitions
coincide. However, we have chosen Def. since it is an immediate consequence of Lee’s
construction, while the geometric meaning of requiring (2.33)) as a compatibility condition
is not clear to us.

Finally, from Lee’s results [29] and the definitions given in Section 2.I] we have:

Proposition 2.31 (Lee [29]). Let (g, K) be an almost (para-)Hermitian structure on a
d-dimensional manifold M. Then:

1. (g, K) is almost (para-)Kdihler if and only if the Lee form ([231]) vanishes.

2. Ford =4, (g, K) is locally conformally almost (para-)Kdahler if and only if the Lee
form is closed.

3. Ford >4, (g, K) is locally conformally almost (para-)Kdhler if and only if cape =0
(where cape s defined in (2.30) ).

Proof. The first item follows from the definitions of almost (para-)Kéahler (Def. [2.6]
dw = 0) and the Lee form (Z31]). The second and third items are Theorem 5 in [29]. O
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3 Almost para-Hermitian structures in four dimensions

3.1 Self-dual forms

Consider a 4-dimensional, orientable, real manifold M, equipped with a metric. Let
AR(M) = AFT*M be the space of k-forms. The Hodge star operator * can be seen as a
map * : A2(M) — A%(M) satisfying **> = (—1)*, where s is the number of (—1)’s appearing
in the signature of the metric. Thus, in Riemannian (s = 0) and split (s = 2) signature, *
always defines a para-complex structure in A*(M), whereas in Lorentz signature (s = 3)
it defines a complex structure in A?(M). The eigenvalues of * are £+/(—1)%. The space
of 2-forms is then decomposed as

A*(M) = A2 (M) @ A% (M) (3.1)

where A% (M) is the eigenspace corresponding to the eigenvalue ++/(—1)%, and A% (M)

corresponds to —y/(—1)%. Elements of A2 (M) are called self-dual (SD) 2-forms, and
elements of A% (M) are anti-self-dual (ASD) 2-forms.

Theorem 3.1. Let M be a real, 4-dimensional, orientable manifold with a metric g, let

A€ Aut(TM @ C) and let W be a bilinear map defined by
W(X,Y)=g(AX,)Y) (3.2)

for any vectors X,Y . Furthermore, let a be a non-vanishing scalatd. Then A satisfies
the conditions

A% =l (3.3)
g(AX, AY) = —ag(X,Y) (3.4)

if and only if the map W is either a self-dual or an anti-self-dual 2-form.

Proof. We will use the abstract index notation, and the metric and its inverse to raise
and lower indices as convenient. Notice that since A is an automorphism, the map W
in [B2) is non-degenerate. Appendix B in [3I] will be useful in the following. Since
M is orientable, it has a volume 4-form e,,.4, and the metric allows to normalize it as

EadeEabcd = (—1)54!.
Assume first that A € Aut(TM ® C) satisfies (B.3) and ([3.4). In index notation this

is

A A = ad%y, (3.5)
gchcaAdb = — adab (36)

with @ # 0. The bilinear map [B.2) is Wa, = greA,. Multiplying by A%; and using (B.6)):
Wap A’y = goeA°a A’ = —agaa.
Contracting now with A%, and using (3.5):

WabAbdAdc - aWac - _agadAdc = _a'Wcaa

0For the case a = 0, see Remark 3.7 below.
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which shows that W,, = —W,, and therefore Wy, is a 2-form. Now we want to show that
it is (A)SD. We can write the volume form as e4pcq = N WiayWeq, where N is determined
by the normalization of €,,.4. Expanding the skew-symmetrization:

Eabed = %(Wachd + WaeWay + WagWie).
Contracting with W and using that Wy, = —Wh,:
EabedW = T (Way WegW + 2W, Wy, W),
Now, using that Wy, = g A%q and W = g«g¥W,;, we have
WaWe = Ay A% = ad’y
from which it also follows that W.4;W = —4a. Therefore
EabeaW ! = —2NaW,. (3.7)
Using now the normalization of €,p.q:
(—1)%4! = eede, = Ne®AdW, W, = §N2a2,
thus

Na = £3+/(-1)s.

Replacing in (3.7)) and using the definition *W,, = %eadeWCd, we get

* ab = Fv (_1)3 Wab7

which shows that W,, must be (A)SD.

Suppose now that the map W defined in ([B.2]) is a 2-form. Writing the volume form
again as €qped = NWipWeq), and using the normalization gede 1q = (—1)%4!, a short
calculation reveals that (—1)%4! = 2N*W W, thus

N =12(=1)°(*WPW,,) . (3.8)
Now, from formula (B.2.13) in [3I] we have
(—1)°316% = e°deac 4,
Replacing €.4ep = NW.aWep and the expression for N, we get the general identity
5% = —A(WEW, )L W,

Assume now that Wy, is (A)SD:
Wap = €Wab7

where € = £4/(—1)#, depending on the signature of g and on whether we consider SD or
ASD forms. In any case, the above identity becomes

6% = —4(WPeWy )™t W*W,,, (3.9)

which shows that A%, = g*W,, satisfies (8.5]), with a = —i .sWe. Finally, to see that
[B4) holds, we compute
gchcaAdb = _WdaAdb = —Qagab

where the second equality is deduced form (B3.5]) by contracting with gg,. O
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Corollary 3.2. Let A € Aut(TM ® C) and let W be defined by (3.2)). Define a scalar
field ¢, a bilinear map w, and a map K € Aut(TM & C) by, respectively,

¢ = (=W, W)2, (3.10)
w=¢ W, (3.11)
g(KX,Y) = w(X,Y) (3.12)

for any vectors X,Y . Then K satisfies the conditions

K2 =T, (3.13)
g(KX,KY)= —g(X,Y) (3.14)

if and only if w is either a self-dual or an anti-self-dual 2-form.

Remark 3.3. Suppose that w in ([B.I1]) is an (A)SD 2-form. Then the map K defined
in (B12)) satisfies equations (8.I3]) and (3.14)), and its eigenvalues are +1,+1,—1,—1 so
the two eigenbundles of K have the same rank. According to definitions 2.1l and 2.3 we
say that (g, K) is an almost para-Hermitian structure. Notice that K is not necessarily
real-valued, this is the reason why we use TM ® C instead of TM in Def. 2.3l The reality
of K depends on the signature of ¢:

1. Riemannian signature (+ + ++): (A)SD forms can be chosen to be real, but ¢ in
(B.10)) is always purely imaginary, so K is purely imaginary or complex-valued.

2. Split signature (++ ——): (A)SD forms can be chosen to be real, but ¢ can be real
or complex, so K can be real- or complex-valued.

3. Lorentz signature (+———): (A)SD forms are necessarily complex, so K is complex-
valued.

3.2 Spaces of almost para-Hermitian structures

The results of Theorem B.1] and its Corollary show us that we can think of maps
satisfying (B.I3]) and (314 equivalently in terms of non-degenerate (A)SD 2-forms. Here
we will give a convenient parametrization of the space of such maps at a point x € M,
that is of the space

P, ={K ¢ Aut(T,M ®C) | K* =1 and g(K-, K-)=—g(-,)}. (3.15)

As emphasized in Remark 3.3 we consider K € Aut(7,M ® C) since a tensor satisfying
B13)-([B.14) is not necessarily real. Imposing reality conditions changes the structure of
P,, and this will depend on the metric signature. Our results in this subsection can be
summarized in the following form:

Theorem 3.4. Let M be a real, orientable 4-manifold with a metric g, and let x € M.
The space BI0) has two connected components, and depending on the signature of g,
each component can be parametrized as follows:
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1. Riemannian signature: the elements in the set (3.10) are not real but can be chosen
to be purely tmaginary, and each of the two components in the space of such maps
18

PR ~ CP =~ §? (3.16)

xT

where CP* is the complex projective line, and S? is the unit 2-sphere.

2. Split signature: the elements in the set ([3.10]) can be chosen to be real, and each of
the two components in the space of such maps is

P = (RP' x RP')\RP' = H* (3.17)
where RP' is the real projective line, and H' is a hyperboloid of one sheet.

3. Lorentz signature: the elements in the set (310) are necessarily complez, and each
of the two components in the space of such maps is

PD) =~ (CP' x CP")\CP' = CS? (3.18)
where CS? is the complexified 2-sphere.

Remark 3.5. The result (8.16]) is analogous to the result about almost-complex structures
in Riemannian geometry, which is already known in the literature (see Remark B.8 below).

We will first analyse the general structure of (3.I5) and then study the different sig-
natures separately.

First of all, the two connected components in P, refer to the fact that, if K € P,, then
the 2-form w(-,-) = g(K-,-) can be self-dual or anti-self-dual. We will focus on only one
of the components of P,; the analysis for the other is analogous.

The parametrization of P, involves the use of spinors. We refer to Appendix [Al for
a brief review of spinors in four dimensions, as well as for notation and conventions (see
also Appendix [B for spinor fields). In particular, we raise and lower spinor indices with
the symplectic forms e g, €45 and their inverses. In any signature, the spaces of SD and
ASD 2-forms have the spinor decomposition

A(M) =2S* oS, A2 (M) =S oS, (3.19)

where S and S* are the (dual) primed and unprimed spinor bundles (see the beginning
of Appendix [B]). In indices, this means that if W} is SD, and W, is ASD, then there
exist symmetric spinors p4p = @ap) and Yap = Papy such that

W;{, = wA'B/EAB7 (3.20
Wa_b = QABEA'B’- (321)
These 2-forms are non-degenerate if and only if 14 52 ? # 0 and @ape?? # 0 respec-
tively. In the following, since we will focus on only one of the two components of P,, we
are free to choose to work with either SD or ASD forms. For concreteness, from now on
we will focus on the ASD case (the SD case being entirely analogous), that is on forms
like (B:21)), and we omit the superscript “—” since it will not be needed.
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Remark 3.6 (Convention). If a tensor/spinor depends non-trivially only on unprimed
spinors, we will often refer to it as having “negative chirality”, while if it depends only on
primed spinors we will say that it has “positive chirality”. For example, we say that ¢,
or T% = 74564 5 have negative chirality, and that U,p = ga€45 or V,, = parpeap have
positive chirality. More formally, the notions of negative and positive chirality refer to the
two kinds of representations of the spin group (in the notation of appendix [Al negative
chirality corresponds to representations (n,0), and positive chirality to (0,m)).

Remark 3.7 (Null-Kéhler). We notice that the proof of Theorem Bl is particularly
simple if one uses the isomorphisms (3.1]), (8.19) and the explicit expressions (3.20) and
B21). Actually, these decompositions also allow to deal with the case a = 0 in (3.3)).
Suppose that N € End(T'N @ C) satisfies N2 = 0 and g(NX,Y) + ¢g(X, NY) = 0 for all
X,Y. Then using 310), 3I9)—@21)), it is straightforward to show that any N satisfying
these conditions must be of the form

N% = a?agd? 5 or N% = ,uA/,uB/cSAB (3.22)

for some spinors o, ', depending on whether the 2-form g(N-,-) is SD or ASD. We
may refer to the pair (¢, N) as an ‘almost-null Kéhler structure’. It follows that the space
of such maps at a point 2 € M is simply the space of spinors at z. If the spinor a? (or
pA") is parallel under the Levi-Civita connection of g, then this is called a Null-Kdihler
structure, see [32] and [33], Section 10.2.3]. (If N is real, then the signature of g must be
split, however here we allow N to be complex.)

Let Wy be an ASD 2-form at © € M, with the spinor representation (B.21]), and
let (£4,m4) be a basis of S*|,, where é4n? = x # 0. Then @45 can expanded as (see

Appendix [A])
ap =X "[p26a&s — @1(Eanp + nap) + @onans), (3.23)

where goo = oaplAEP, o1 = pap&MnP and vy = @apn™n®. The scalar ([B.10) is then

¢ = (—2oapp?®)V? = x7Hp? — @op2)'/?. Thus, the tensor K% = ¢~'g*W,. satisfies
B13) and (BI4) and is explicitly
1 /
K% = ———— [¢2§A§B — o1& +n'Es) + @oﬁAnB} 5% g (3.24)
XVel — opr

This can be written in a more convenient form by expressing ¢ 4p in terms of its principal
spinors, see Appendix [Al since 5047 # 0, there exist two non-proportional spinors
4, B4 such that

Yap = aafp + apfa. (3.25)
Independently of signature, the spinors a4 and 4 are in general complex, since they
are obtained by finding the roots of a second order polynomial; see around eq. ([A.I0]).
However, whereas in Lorentzian and Riemmanian signature they are necessarily complex,

in split signature the combination in the right hand side of (3.27]) is real.
The decomposition (3.25) implies that ¢ = ¢3¢, therefore

K% = (acf°) Y aBp + frap)i* 5. (3.26)
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From Corollary we see that any map satisfying conditions (B.13) and (3.14]) in four
dimensions has the form (3.26]) for some spinors a4, 84 (the only other possibility being
choosing positive instead of negative chirality). However, (B:20) does not uniquely fix
these spinors: we see from this equation that K is invariant under

Qg — Aag, Ba — pBa (3.27)

for any non-vanishing scalars A and p. Now, the space of spinors at a point (the fiber
of the spin bundle) is C? in signature (+ — ——) and (+ + ++), and R? in signature
(+ + ——). Since any element of the set (3.10) (with negative chirality) can be put in
the form (3.26]), and since the spinors are subject to the projective equivalence (3.27), we
deduce that a priori each component of the set P, can be parametrized by the product
of two projective spaces, that is CP* x CP'. (Notice that although in the split signature
case the projective spin space is RP', if we allow the rescalings in ([3.27) to be complex
then we get the complexification of RP', which is CP'.) But since the spinors a4 and (4
are not allowed to be proportional, we must remove the “diagonal” from CP' x CP!, so
we get

P, = {(a, ) € CP' x CP' | a # B} = (CP! x CP")\CP! (3.28)

where we are now abusing notation and using P, for one of the two components of (3.15).
Requiring reality conditions for (3.26), however, imposes additional restrictions on the
spinors aa, B4. We will analyse separately the different signatures.

3.2.1 Riemannian signature

In this case we can require the ASD 2-form W, to be real. To analyse this in more
detail, we need to introduce the Euclidean spinor conjugation. This is an involution
on the spin spaces, i.e. S — S and §' — §' (so it does not interchange the chirality as
in the Lorentzian case), and if we write a spinor ¢4 in components as p4 = (a,b), then
ol = (=b,a). Tt follows that 1> = —1. Since €'y, ,, = eap, We get that Wy, is real if and
only if 84 = ialy, so Wy, = i(aaal, + aljap)es . Furthermore, (ae8°)' = —i/|a|?,
where ||a||? := eapa?al®. Therefore, with the additional requirement of real ASD 2-
forms, the map (B.26) becomes in the Riemannian case

1 /
K = (ol +aag) s, (3.20)

so we see explicitly that K is parametrized by only one projective spinor. Each of the two
components of the set of “Riemannian para-Hermitian structures” at x € M is therefore

PR =~ CP', (3.30)

The complex projective line CP' is the Riemann sphere, and is topologically CP' 2 S2.
Thus, there is a 2-sphere of Riemannian para-Hermitian structures at any point.

Remark 3.8. From (3.29) we see immediately that K is purely imaginary, since 12 = —1.
Therefore, the map
J =1iK
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is real-valued and satisfies J? = —I, so it defines a complex structure in each tangent space,
and the space of complex (Hermitian) structures at any point is again parametrized by
CP'. In this way we recover the Riemannian results for almost-complex structures given
in [34] Section 9.1] and [22] (see eq. (9.1.20) in the first reference and page 429 in the
second).

The 2-sphere ([3.30) of Riemannian para-Hermitian structures can also be seen by using
non-projective spinors as follows. From the general form (3.24]), choosing different values
for g, 1, 2 we deduce the following particular cases

(K1) = X' (€8 +1¢8)0" 5/, (3.31)
(K2)% = ix (€' s +n'np)d" 5, (3.32)
(K3)% = x"" (6" —n'ns)6" (3.33)

(where reality conditions imply na = i&;). Any K can be expressed as a linear combina-
tion of these tensorstl. It is straightforward to check the following identities:

(K1)? = (Ky)? = (K3)? =1, K,K; = —K;K; for i+ j. (3.35)
Using these properties, a short calculation shows that
(aK) + DKy + cK3)* = (a® + b* + A, (3.36)

where a, b, ¢ are real numbers. Thus, as long as (a,b,c) € S?, the combination Kiape) =
aKi + bKs + cK3 is a new para-Hermitian structure parametrized by an element (a, b, ¢)
of S2, so there is a 2-sphere of such structures.

Since the K; are all purely imaginary, we can define the real maps J; = iK;, Jy = 1Ky
and J3 = 1K3; then it follows that these tensors satisfy

(J;)* = -1, JiJy = J3, Jods =1, J3Ji = Jy, (3.37)

so the triple (Jy, Ja, J3) defines an almost-hyperhermitian structure on M (Def. 2.1).

3.2.2 Split signature

In signature (++ ——) spinors can be chosen to be real. Therefore, the reality of the map
(3:24) depends on the sign of % — pgips. This is equivalent to the reality conditions for the
principal spinors a4 and B4 in B28): if 2 — @ops > 0 then a s and 3,4 are real, whereas
if p? — o2 < 0 they are complex; see around equation (AJ(0). Thus, requiring (3.24)
to be real, and hence an ordinary para-Hermitian structure, is equivalent to requiring a4
and 4 in ([B.26) to be real. We can thus restrict to real rescalings in (3.27), so the space
of para-Hermitian structures at x (of a definite chirality) is

P =~ [(a, B) € RP' x RP' | o # B} = (RP! x RP!)\RP'. (3.38)

HNote that ([3.24) is equivalent to

Koy = — ) (e, CN2 100 (e ga, (027 00) (g, (3.34)

Vel — o2 20/¢% — o2 2¢/¢1 — vop2
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The real projective line RP! is topologically RP' 22 S' so the space of para-Hermitian
structures at any point in split signature is the torus S* x S! with the line o = 3 removed.
To visualize this structure, we consider again the three cases (8:31)), (332), (333), where
now &4 and 74 are real spinors. We see that K; and K3 are real, but Ky is purely
imaginary, so we define the real map K/ = iK,. These tensors satisfy the following:

(K))* = (K3)? =1= —(K})? KKy = —-K)K, = Kj. (3.39)

From these relations and definition 27 we see that the triple (K, K}, K3) defines an
almost-para-hyperhermitian structure. If a, b, ¢ are real numbers, we now find

(aK; + bK) + cK3)? = (a* — b* + A, (3.40)

thus the condition for aK; + bK) + cK3 to be an almost-para-Hermitian structure is
a’? —b? +c? = 1, which describes a hyperboloid. Therefore, the space (3.38) is in this case
a hyperboloid of one sheet. One can also convince oneself of this by drawing (S* x S1)\S?
(where we think of the removed S as a “diagonal” circle —i.e. non-contractible).

Remark 3.9 (Almost-complex structures). An analysis analogous to the one that leads
to (B.28) can be carried out to find the set of almost complez structures compatible with
g in split signature (i.e. maps satisfying J?> = —I and ¢(J-, J-) = +¢(+,-)). Requiring J
to be real, it is straightforward to see (cf. around eq. (A.I0)) that the principal spinors
must be complex. Since they are complex conjugates of each other, i.e. 4 = a4, J is
parametrized by only one spinor a4, and one finds

i

J% = — (atap + aap)d? 5 (3.41)

(aca®)

(note that this is real since (aca®) = —(aca®)). We have the freedom oy — Aoy with
A € C*, and we must exclude the set a4 o< a4, so it follows that the set of Hermitian
structures at a point is CP'\RP'. Topologically this is S?\S*, which is homemorphic to
a hyperboloid of two sheets. This can also be seen by simply requiring a? — b* + ¢ = —1
in (3.40). We will invoke this result in section (5.2.1] below.

3.2.3 Lorentz signature

As observed in Remark B3] in this case the elements of the set ([B.I5]) are necessarily
complex-valued, and P s simply given by (8.28). Topologically, this is the product
52 x S? of two 2-spheres with the “diagonal” o = 3 removed. We can obtain an alternative
description of this structure by considering again the three maps (3.31)), (3:32), (3:33).
These tensors satisfy (3.35), but now they are complex-valued. Considering K40 =
aKy + bKy 4 ¢K3, equation (3.36)) still holds, but now a, b, ¢ are complex numbers. The
condition for K, to be a “Lorentzian para-Hermitian structure” is thus

a>+ b+ =1, a,b,c € C (3.42)

which is the complexification of the 2-sphere, CS2. (In this case it is perhaps not so easy
to argue intuitively that the set (S? x S?)\S? is a complex 2-sphere.)

Each of the two components in the set (8.13]), without any reality conditions, is there-
fore a complexified sphere CS?. Notice that this is true in any signature, and also for
complex 4-manifolds.
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3.3 Gauge freedom and a covariant formalism

From Remark and the results of section B2 we see that fixing a (para-)complex
structure K at a point = € M is equivalent to fixing (ignoring reality conditions):

1. a conformal structure [g], and
2. two (different) points on the Riemann sphere at z.

Over an open neighbourhood in M, instead of considering point objects we consider
fields, i.e. smooth sections of the appropriate bundles. In practice we will work with
representatives, i.e. with some metric g,, or its spinor equivalents e4p and €/ g/, and
with two non-proportional spinors au, 54 (which in split signature are real, while in
Riemannian signature one has $4 = iaL). But since the only given data is K, the
framework should not depend on the representatives chosen. Here we give the essential
points of a formalism that takes into account this issue, namely that is covariant under
the transformations associated to this “gauge freedom”. A more detailed description of
this framework is given in Appendix Bl

We have seen that the explicit expression of K in terms of the representative spinors

is (B3.20), that is:
1

(e“Pacfp)

We are free to assign conformal weights to the spinors a4, 84, i.e. we can impose these
spinors to change under a conformal transformation of the metric as

Kab = GAE(OzEﬁB + ﬁEOzB)éAIB/. (343)

aq — QwOJrlOéA, BA — leJrlﬁA (3.44)
for some real numbers wy, wy. Recalling the conformal behavior
€AB —>Q€AB, €A B —>Q€A/B/. (345)

we see explicitly from (3:43]) that K is invariant under conformal rescalings. (The confor-
mal weights in (8.44]) are chosen so that a® — Qwoa?, g4 — Quwipd)

The “gauge freedom” is given by conformal (3.45) and projective (B.27) rescalings.
In Lorentzian and Riemannian signature, these transformations define the grou G, =
C* x C* x R*, where Rt corresponds to conformal rescalings ([8.45) and C* x C* to
projective rescalings (3.27). In split signature one replaces C* x C* by R* x R*.

Definition 3.10. We say that a spinor/tensor/scalar field @25 is weighted and has
type (r,r’;w), where r,7’ w are real numbers, if under the transformations (3:45)-(327)
it changes as

et = QN W el (3.46)

This transformation law defines a representation of the group G,, see Appendix [Bl
Examples of weighted fields are o, 34 and ¢ = a434; we give the specific weights for
them in table [l

2R+ denotes the multiplicative group of positive real numbers, and C* (R*) is the multiplicative
group of complex (real) numbers.
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w r|r
A wy 011
BA ’LU1‘|“1 0 1
a’ W 110
Qg wo + 1 110
¢ |wo+wy+1[1]1

Table 1: Weights of the fields associated to an almost-para Hermitian structure.

A non-trivial issue is how to define a derivative operator that is covariant under all the
transformations involved, since, to begin with, in a conformal structure one does not have
the usual Levi-Civita connection. The first point is to apply Lee’s construction, seen in
Section 2.3], to use the natural Weyl connection ¥V, induced by an almost-para Hermitian
conformal structure ([g], K') (Proposition 2.28)). Then, after applying the appropriate
machinery, one arrives at:

Definition 3.11. Let (M, [g], K) be a real, 4-dimensional, almost-para-Hermitian con-
formal structure, and let aa, 84 be the spinor fields representing K as in (3.26), with
eABaysfp =¢ #0. Let "V a and faa be the Weyl connection and Lee form induced by
K, and let gog_'_'_'gf_'_'_' be a spinor field of type (r,r’;w). We define the covariant derivative
Caar by

Canpt b ="Vanpt &+ (wfan +rLaa + 1" Maw) ol & (3.47)

where
LAA’ = qb_lﬁBVAA'OéB + Qb_lBAfA’BaB - wOfAA’a (348)
MAA’ = - gb_lOzBVAA/BB - ¢_1OZAfA’BﬁB - wlfAA’ (349)

(with wy and w; defined by (8.44])), and where V 44/ is any Levi-Civita connection in the
conformal class.

To understand the construction of (3.47)), we refer to the discussion that leads to eq.
(B.9) in Appendix Bl Under a gauge transformation (B.46]), G4 satisfies

Canplrbr — QN Canplb . (3.50)

The projection of €44/ into the eigenbundles of K deserves special attention, so we
introduce:

Definition 3.12. Let (M, [g], K) be a real, 4-dimensional, almost-para-Hermitian con-
formal structure, and let a4, 54 be the spinor fields representing K as in (3.20). Let C4a
be the associated covariant derivative, defined by (3.47). We define the operators

éA/ = CYAGAA/, GA/ = BAGAA/. (351)
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Remark 3.13. Let (g, K) be an almost-para-Hermitian structure, let P and P be the
associated projectors (2.8)) to its eigenbundles, and let o, 34 be the spinor fields rep-
resenting K (eq. (B:26)). Furthermore, let V be an arbitrary derivative operator, and
X € I'(TM ® C). In the modern para-Hermitian approach to double field theory, see in
particular [6] and [7], an especially important role is played by the operators Vp ) and
Vp(x) (in arbitrary dimensions). These operators are also crucial in the present work,
and in our notation we have the equivalence:

@A’ = OzAVAA/ =4 VP(X)? (3.52&)
Vg i= 6AVAA/ = VP()()- (3.52b)

In particular, éA/ corresponds to GP(X), and €4 corresponds to Cp(x).

4 Integrable structures

4.1 Special spinor fields

The characterization given by Theorem [B.4 of the space of almost para-Hermitian struc-
tures allows immediately an explicit description of the eigenbundles: given K, there exist
projective spinors a, 34 such that eq. ([3.26) (or ([3.29) in the Riemmanian case) holds,
and from this expression one can readily check that the £+1 eigenbundles are respectively

L={u*ecTM®C|u®= 4", v* eS(0,-1;—uwy)}, (4.1)
L={'eTM®C |v* =o'y, " e (-1,0;—w)}, (4.2)

where 84, a? are fixed and v?', u4" vary, and where S’ (r,7’;w) represents the weighted
bundles described in Appendix [Bl We have to include these weighted bundles because,
since 34 and o have non-trivial weights (see table []), the spinors v 1A should also
have non-trivial weights so that the elements of L, L are ordinary vectors.

As discussed in Section 2], the integrability properties of an almost para-Hermitian
structure like ([3:26) refer to whether the distributions L and L are involutive. In partic-
ular, according to Definition 210, K is half-integrable if and only if Np =0 or Ns =0,
and integrable if and only if Np = N = 0. For the case of (3.26)), the projectors (2.8]) to
L and L are respectively

P, =
Py =

(6% + K%) = ¢~ Blaps’ p, (4.3a)
(5ab - Kab) = —(bilO[ABB(SA/B/. (43b)

1
2
1
2

where ¢ = a4,

Lemma 4.1. Consider an almost (para-)Hermitian structure on a real 4-manifold M
(Def. [2.3), and let V be the Levi-Civita connection of g. For concreteness suppose that
the (para-)complex structure is of negative chirality (see Remark[34). Then the (para-
)Hermitian structure is

1. half-integrable if and only if there exists a non-trivial unprimed spinor field o such
that

APV anpp = 0. (4.4)
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2. integrable if and only if there are two linearly independent solutions to equation
E.4).

Proof. Denote the (para-)complex structure by K, and suppose it has negative chirality.
Then K can be written as (3.26]) for some (projective) spinor fields a4, 54 (where in the
Riemannian case we have 34 = ial,). Then the projectors P, P take the form (Z.3a)- (£.3%).
Now let us compute Np(X,Y) for arbitrary X, Y, using (E3a)-(43D). We have:

(Np(X, Y )M = — ¢~ Lapp[PX, PY]BY
— *IOZA/BB <¢71/BCO(DXDCIVCC/((bilBBOéEYEAI)
_qb*lBCOZDyDC'VCCl(gbfl/BBaEXE'A/))
= — ¢2aBp(B%ap X P apY PV 0 8% — BCapY P ap X P4V oo BF)
— ¢73OZA/BBBCO(EO(D (XDclyEA/ . XDA/YEC’)VCC//BB
= — ¢73(aEaDXDE’YEEI)OZAﬁBBCVCA,ﬁBa

therefore we see that Np = 0 if and only if 54 satisfies equation (&4, which proves the
first item. An analogous calculation applies to o, and this shows that N = 0 iff o
satisfies (4.4]). Therefore, the condition Np = Np = 0 is equivalent to the condition that
both spinors a4 and Bp satisfy eq. (4.4); this proves the second item. O

Not any 4-manifold admits non-trivial solutions to (4.4]), so half-integrability of K
imposes restrictions. We may call equation (4.4]) the “shear-free condition”, since in
Lorentzian general relativity its solutions define what are known as shear-free null geodesic
congruences: the real vector field ¢ = 234" is tangent to a null geodesic congruence
which is shear-free (see e.g. [31} Section 9.2] for the definition of shear of a geodesic con-
gruence). If, for example, one also asks the metric to be Einstein, then by the Goldberg-
Sachs theorem the Weyl tensor must be algebraically special, which is a restriction on
the curvature. Still, many physically interesting spacetimes in general relativity satisfy
this property; in particular, stationary black hole solutions such as Kerr or Schwarzschild
(with or without cosmological constant).

In the DFT language, a choice of K means a choice of T-dual ‘spacetimes’, where the
physical spacetime is related to the involutive eigenbundle. If we change K, the new K
might not be half-integrable so it would not define such T-dual spaces. Requiring any K
to be “appropriate” in this sense imposes more severe restrictions:

Lemma 4.2. Let M be a real, 4-dimensional, orientable manifold equipped with a metric
g. 1If all almost-para-Hermitian structures (of a definite chirality) are half-integrable, then
the Weyl curvature of g is (A)SD.

Proof. Let K be an arbitrary almost para-Hermitian structure, and assume for concrete-
ness that it has negative chirality. Then we know that it is represented by two projective
spinor fields a4, 34. We also know that K is half-integrable if and only if one of these
spinor fields satisfies eq. (&4]). Let ¢ denote any of these spinors. From (4] we deduce
that @2V aupp = @pmg for some spinor field 7z. Applying now Va4 to equation
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([#4), one obtains the following integrability condition:

0=V (¢ ePVaren)
= 27TA/(,0AQ0BVAA'QOB — soctpAsOBDACSOB
= — Upepp? P p” (4.5)

where Oac = Vi AVC)A/, and W pcp is the Weyl curvature spinor (see [25] for details).
If any almost para-Hermitian structure K is half-integrable, then (LH) must be satisfied
by all spinors *, which implies that ¥ 450p = 0 and thus the Weyl curvature of g is SD.
(Choosing positive chirality instead leads to ASD Weyl curvature.) 0

Remark 4.3. When saying that “any almost-para-Hermitian structure is half-integrable”,
it is convenient to be more specific and say, using the terminology mentioned in Remark
211 that “the manifold is L-para Hermitian with respect to any K", i.e. the (+1)-
eigenbundle of any K is involutive. From this perspective, if a manifold is L-para Her-
mitian with respect to any K, then it follows that it is para-Hermitian. To see this: let
K be an arbitrary L-para Hermitian structure, i.e. its (+1)-eigenbundle is involutive. If
any other K is also L-para Hermitian, then in particular this is true for K’ = —K. The
(4+1)-eigenbundle of K’ is then involutive, and it is the (—1)-eigenbundle of K. So K is
both L-para Hermitian and L-para Hermitian, i.e., it is para-Hermitian.

The (A)SD restriction in lemma is quite strong. In Lorentz signature, the left-
and right-handed Weyl curvature spinors are complex conjugates of each other, which
implies that (A)SD Weyl curvature means vanishing Weyl tensor, so the manifold must
be conformally flat. In Riemannian and split signature, the two Weyl curvature spinors
are independent from each other, so one of them can vanish while the other one is general.
In the Riemannian case, if one also asks Ricci-flatness (as well as (A)SD Weyl curvature),
then it can be shown that the manifold must be hyperkahler.

In the DFT literature, a change of para-complex structure is referred to as a change
of polarization. As mentioned, an arbitrary change of polarization in general does not
lead to a new pair of T-dual ‘spacetimes’, unless all para-complex structures are half-
integrable. Another possibility is to consider “small” changes of polarization, by which
we mean deformations of the para-complex structure. These issues will be addressed in
section [Bl, in connection also with twistor constructions.

4.2 Lie and Courant algebroids

We have seen that, given a 4-dimensional real manifold M with a metric g, any K €
Aut(TM ® C) satisfying conditions (8.13]) and (B.14) is characterized by two projective
spinor fields [a4], [84]. The tangent bundle splits as TM @ C = L @ L, where L and L
are the eigenbundles of K, given explicitly in eqs. (1]), (£2). Because of this splitting,
any vector in 7'M ® C can be decomposed into two pieces, as originally done in ([2.1]). We
can explicitly describe these pieces using @), (@32), the identity P + P = I and the fact
that the projectors P and P are given by (&3a)), (43h). That is, any X € ['(TM @ C) is
decomposed as

XA = (PX)M 4+ (PX)A = g4 4 7Y (4.6)
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where
(PX)A = 22 = gz 2% = ¢ LapXBY, (4.7)
(PX)A = 34 = o234, 7YV = —¢ 18X PN, (4.8)

Analogous decompositions and notation apply to any other vector Y44 = yA4" 4 §A44",
etc. Similarly, a 1-form W € I'(T*M ® C) is decomposed as
Waar = wanr +@0aa = aawa + Bawar, (4.9)

with

wa = ¢~ BPwpa,

(:)A/ = — gb_l()szBA/.
Remark 4.4. Ordinary tensor fields have trivial r, ', w weights (in the notation of Defini-
tion [3.10), but the spinors a”, 34 have non-trivial weights (given in Table [I]). Therefore,
when decomposed into pieces like (L6) or (£9), the primed spinor parts are also non-
trivially weighted. For example, the spinors 4" and 4" in the decomposition (Z7)-(ZS)

have non-trivial weights, which can be deduced from those of ¢ and o, 4. This is
analogous to the fact that v, y4" in ([@1)), ([@2) are also weighted.

We now use the above decomposition to describe the Lie and Courant algebroid struc-
tures of 4-manifolds admitting non-trivial solutions to (£4]). Since this equation involves
only a conformalstructure and a projective spinor field, the covariant formalism of Section
is here appropriate to give a formulation invariant under the associated gauge freedom.
We recall that the metric is allowed to have any signature.

Lemma 4.5. Let (M, [gaw]) be a 4-dimensional, real conformal structure. Let gup € [gan),
with Levi-Civita connection ¥V 44:. Suppose that there is a projective spinor field [5a4],
where any representative $4 satisfies the equation

BABPV awBp = 0. (4.10)

Let ay be any spinor field such that €*Pasfp = ¢ #0. Let L C TM ® C be defined by
(&T), and let Car be the operator introduced in (B.51]).

1. The triple (L,[-,], P) is a Lie algebroid, where P is the projector ([&3al), and the
Lie algebroid bracket is

[X, Y]éAl = BA(.TBIGB/yAI — yB,eB/SL’AI), (411)
for any vector fields X, Y € T'(L).

2. Let N* = A*L* k= 0,1,2,.... The Lie algebroid exterior derivative of (L,[-,-]r, P)
s given by

(d"f)an = ¢ aaCulf, (4.12)
(de)AA/BB/ = ¢’1(€C/wc/)aAaBeA/B/, (4.13)

and d*w = 0 for any w € T(A¥) with k > 2, where w®" in the right hand side of
([@I3) refers to the decomposition (E9).
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3. For a 1-form w € T'(L*), the generalized Lie derivative along X € I'(L) is
(fﬁw)AA/ = aA[xA/(GB/wB') + eA/(:L‘B,wB/)]. (414)

Proof. For the first item, we need to check that the conditions in Definition 217 are
satisfied. First of all, we know that L is a vector bundle over M. We have also seen that
the condition (A.I0) implies that sections of L are in involution with respect to the usual
Lie bracket [, -] of vector fields, thus its restriction to L, [, |, indeed maps I'(L) x I'(L)
to I'(L), is skew-symmetric and satisfies the Jacobi identity. In addition, the identity in
T M restricted to L coincides with P, and it satisfies the conditions to be an anchor. So
it only remains to prove the expression ([AI1]) for the Lie algebroid bracket. To do this,
notice first that, since ordinary vector fields X, Y have trivial w, r, v’ weights (see Remark
A7), we have for example
Co X = V. X + Qp" X,

where Qy.* was defined in ([2.27). Since Qp" = Qe)”, We get
X'V, Y — YV, X = XPC Y — YPC, X
Using this and decompositions like (4.6))-(@.1)-(L8)) for X, Y € I'(L), we have:
(X, Y] = XPE'V VAN _ VBB, XAX
= 2P BBChp (B4Y) — yP BB Crp (8424
= BAGP Cpy? — yF Cra?)

where in the third line we used (B.11d) and (£.10), together with the definition (3.51]) for
Car.

Now let us prove the second item. From Definition [2.20] the Lie algebroid exterior
derivative acting on a O-form f € T'(A%) is given by (dLf)(X) = P(X)(f) (since here the
anchor is the projector P). Since f has trivial weights, we can replace the ordinary 04as
implicit in this formula by the covariant derivative €44/, so we get

(A" )(X) = (PX) ™ Can f.

Using (&), formula (£12)) follows. Consider now a 1-form w € I'(A'). The operator d*
acting on w is given by the expression (2I5), with p = P. Since w, X, Y have trivial
weights we can, as before, replace 044 by Caar:

(d*w)(X,Y) = (PX)* Y Cun(wpp Y BE) — (PY)AY Cuu (wpp XBP) — wan [ X, Y44
Replacing the expressions for X, Y and [X, Y], this is
(d"w)(X,Y) = 27 Cp(dway™) —y” Cp (dwaa™) — gwa(z” Cpy™ —y” Cpa)
= ¢ |27 Cp (wA/yA/) —yPep (wA/a:A/) — wA/:L’B/GB/yA/ + wA/yB/GB/xA/]

= ¢(a"y” =y 2" )Cawp (4.15)
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where in the second line we used (B.11d)). Now:

! ! ! ! ! ’ I R/
l‘A B_A:L,B:( C’D)EAB

€Ec'p' Y
_ / / 2=
— (GC’D’QS zacXCC aDyDD )EA B

I ! ! !
A'B )XCC YDD

Y Y

= (¢ 2acapecipe

where in the second line we replaced the expression (&7) for 24, and similarly for y*'.
Replacing now in (LI5), and noticing that

(ALw)(X,Y) = (d*w)eepp XCCY PP

formula (T3] follows. If now w € T'(A¥), k > 2, then dXw vanishes since it is a (k+1)-form
with £ > 2 in a 2-dimensional space.
Finally, to show the third item, from the general expression (2.I3]) we have

(f%W)AA/ = XBB/ (dLW)BB/AA/ + [dL(XBBleB/)]AA/.
Using the second item, this is

(£5w)an = XPP o apasep aCow® + ¢ tanCu ¢z wp)

= a0 Cow? + asCu (% wp),
which proves (L.14)). O

Lemma 4.6. Let (M, [gawp]) be a 4-dimensional, real conformal structure. Let gqp € [gan],
with Levi-Civita connection ¥V a44:. Suppose that there is a projective spinor field [5a],
where any representative B4 satisfies the equation

BABPV awBp = 0. (4.16)
Let aq be any spinor field such that €2 BaaBg = ¢ # 0. Then the quadruple

is a Courant algebroid, where the anchor P and the Dorfman bracket are respectively

P g =67 Brapd? b, (4.18)
[[X, Y]]AA’ _ ﬁA(xB/GB/yA/ . yB,GB/ZUAI) + O{A <xA’GB/gB/ . yA/eB/jB/ + GAICUB,ZJB/))
(4.19)

with C4s the operator defined in (B.5I).

Proof. Define the bundle L € TM ® C by (@I); then from Lemma 5 the triple
(L, [, |1, P) is a Lie algebroid. Thus, applying Proposition [224] the vector bundle L @ L*
together with the maps defined by (2ZI8), (2.19) and (2.20), constitute a Courant al-
gebroid. Using now the pair of spinors (ag, Sa) to define, via (3.26), a tensor field K

satisfying conditions (3.13) and (8.14)), the eigenbundles of K are given by (4.1]) and (4.2)
and we have the splitting TM ® C = L & L. We can then apply Proposition 2225 so the
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quadruple (417 is also a Courant algebroid. The anchor is simply the projector (4.3al).
What remains now is to translate the expression ([2.24]) for the Dorfman bracket to the

language we are using in this section. Using (A7), (A]), (LI2) and (@I4), we have

/ ~
Th)aa = EABGA'B'HCBB = QAT ar,
!

(4.20)

Jp)an = eapeany’’ = aaja, (4.21)
,y) = eapean i yP? = oiay”, (4.22)
(4.23)

(4.24)

(z
(

N

’

(@ g(E ) = aaCulEny™),
["gi‘l(gb)]AA’ = O[A[xA’eB/'gB, + GA/ (I’BIgB/)].

The Dorfman bracket ([2:24) is
YT = [, y) ™+ (£2(5) — £5(@) +dg(@,y)

. . / ’
Since z,y are sections of L, we have [z, 4] = [z,y]?4", so we can use formula (ZIT)).

Replacing also ({23), ([£24)), we get

[X. Y]* = A epy? —y” Cpa®) + at[z¥ Cpi® + €Y (2 jip)]
— aA[yA/GB/a: + GA/(y ip)] + aCY (Zpy )
— ﬁA(.TBIGB/y . y GB/SL’ ) + o (IA/@B/ZJBI _y /GB/i’B/ + GA/<xB/gB/)>

which is (4.19). O

Recall from Remark 2.21] that a Lie algebroid has naturally associated a cochain com-
plex (I'(A®),dl). In our case this is

0 — DA% 25 Al 95 rA?) - 0. (4.25)

We can think of this as a (twisted) de Rham complex. Since a twisted de Rham complex
is locally exact, if an object ¢ satisfies d¥p = 0, then there exists, locall , another field
1 such that ¢ = d¢). Therefore, the Lie algebroid structure leads to a potentlahzatlon
scheme. For example, suppose W = aswa € T(AY) satisfies d“W = 0, then there
exists f € T(A%) such that W = d*f. Using (EI2)-(&I3), the equation d*W = 0 is
Caw? =0, and the equation W = dF f is Wau = ¢ 'aaCu f. In other words:

GA/wA' =0 = wpr = gb‘l(?A/f (426)

for some f. Such a basic ‘potentialization’ scheme turns out to be very powerful when
applied to problems of interest in relativity (this will be the subject of a separate work).
Notice, however, that the weights of the potentials here are restricted by the fact that the
spaces I'(A¥) in the complex (E25]) are composed of objects with zero weights. If we want
to study whether the complex ([420) can be generalized to fields with other weights, we
are led to the question of constructing Lie algebroids for weighted fields. This turns out
to be a bit tricky, and will be analysed in the next subsection.

1BOf course, global existence of potentials is a different story, where one has to take into account the
cohomology of the complex ([.27]).

34



4.3 Weighted algebroids

The algebroids constructed in lemmas and consist of vectors with trivial weights
(in the sense of def. BI0). From the discussion at the end of the previous subsection, we
are also interested in analysing whether spaces of non-trivially weighted objects can be
given an algebroid structure. We will see here that ordinary Lie algebroids do not seem
to be compatible with weighted fields.

Let L be the bundle ({Il), where 34 satisfies (@4). Consider the weighted vector
bundle L.,y == L @ S(r,7";w), where S(r,r’; w) is the line bundle defined in (B.4)). An

element of L, . is a vector with weights (r,7';w) (so L is simply L 0,0)):
X € Lppay & X0=p%" and X %%\ 0vX.

Ly 1.0 18 a vector bundle over M. In order to construct a Lie algebroid, we also need an
anchor and a Lie bracket satisfying the conditions given in Def. 2171

Let us first focus on the bracket. Given two weighted vector fields X € I'(Ly, s wy)),
Y € I'(L(ryrt5)), We have a natural candidate for a bracket operation:

(X, Y2 = X"C,Y* — YPe, X (4.27)

This is skew-symmetric, and, since €, satisfies (3.50) and €,34 = 0, the result of [X, Y3
is again a vector of the form 474" with well-defined weights. However, the first problem
that arises is that the weights of [ X, Y]% are (ry + 79, 7] 4+ rh; w1 +ws), so [X, Y% is neither
an element of L, y1.,) NOT Of Ly, p.00,), and consequently, we cannot use [-,-]e as a Lie
bracket for a particular L. ,+.,. More precisely, what we have is

['7 '](3 : F<L(r1,r’1;w1)) X F(L(m,ré;wz)) — F(L(r1+r2,r’1+r§;w1+wz)>- (4-28)

This suggests that we consider the vector bundle with graded fibers

L= @ L(r,r/;w)7 (429)
( )

r,r!w

where the sum runs over all possible values of (7, r; w). We then have [+, -]¢ : ['(L)xI'(L) —
['(L). So the first item in Def. 217 is satisfied, and we can try to give a Lie algebroid
structure to L.

The second item in Def. 217 requires the Jacobi identity for [-,-]e to hold. Since
Cp cannot be replaced by 9, in (A27)) (because X and Y now have non-trivial weights),
whether or not the Jacobi identity for [-, -]¢ is satisfied is a non-trivial issue. To investigate
this, we use the Jacobiator:

Jac@(X, Y, Z) = [X, [K Z]e]@ + [Z, [X, Y]e]@ + [K [Z, X]@]@. (430)

The following result shows that in order for this to vanish, we also need to require (half-
)algebraic speciality of the Weyl curvature:

Lemma 4.7. Suppose that the spinor field 3 is shear-free. Then the Jacobiator ([E30)
vanishes if and only if B is a repeated principal spinor of the ASD Weyl curvature.
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Proof. Take three arbitrary vector fields in I'(IL) (with possibly different weights), X* =
pAzA Y = gAyA, Z = B2z A tedious but straightforward calculation shows that

(Jace(X, Y, 2)™ = pA[(woy ) (€m €7 oY)~ (2cr2”) (Co €7y )+ (yor 2 ) (Cp €7 2.
Therefore, the Jacobi identity for [-, -]¢ is satisfied if and only if
CuCY =0 (4.31)

when acting on any weighted primed spinor field. This equation is investigated in Ap-
pendix [C, where the proof of Lemma shows that equation (3T is satisfied if and
only if VapepBEBYBP = 0, ie., B is a repeated principal spinor of the ASD Weyl
curvature. 0

Let us now focus on the construction of the anchor. From Def. 217 this should be
amap p: L = TM®C. An element X € L.,y C L has non-trivial weights, so we
cannot use the projector P as an anchor as before, since PX has also non-trivial weights
and thus it is not an element of T'M ® C. Therefore, to any weighted vector X we must
somehow associate a vector p(X) with trivial weights. To this end, consider three scalar
fields A, B, C of types (1,0;0), (0,1;0) and (0,0; 1) respectively; that is:

Afs A, B uB, 0% ac

Then we can define a map
p: Loy > TM®C,  p(X):=A"B"C™"X. (4.32)

Although this is rather ad hoc since we have not specified anything about the scalars
A, B, C, we restrict the possible choices of them by requiring

GA/A = GA/B - GA/C - 0 (433)

where as before 4 = $4C44. In Lemma it is shown that, if 54 is shear-free and
a repeated principal spinor, the integrability condition €4'C4® = 0 is satisfied for any
weighted scalar field @, so there are indeed solutions to (A.33). With the choice (£.33)), if
X e F(L(Tlﬂ"l;wl))? Y € F<L(r2,ré;w2)>7 we have

p<[)(7 Y]G)a _ A—(7’1-1-7’2)B—(r’l-l—ré)Cr—(w1-i-w2)[)(7 Y]%
_ A—(r1+r2)B—(r’1+ré)C—(wl-i-wg)(Xbebya N YbebXa)
= AT BTICTM XY (ATPBTRCTY ) — AT BT O Y PG (AT BT CT XY
= p(X)"Cy(p(Y)") = p(Y)"Co(p(X)*)
= [p(X), p(Y)]*
where in the third line we used (£33)), in the fourth we used the definition (4.32), and in
the fifth the fact that p(X), p(Y) have trivial weights. Therefore, we see that with the

choice of the anchor (432)-(33]) and the bracket (£.27)), the map (£32]) is a morphism
and the third item in the definition .17 of a Lie algebroid is satisfied.

36



The last condition that we need to investigate is the fourth item in Def. 2.17, namely
the Leibniz rule for the bracket and the anchor:

X, fY)e = (p(X)f)Y + fIX,Y]e (4.34)

for any X € I'(Lgytiwn), Y € T( Ly giuny) and f € C(M). However, the gradation
(#28) of the bracket implies immediately that we cannot expect this condition to be
satisfied: If f € C°°(M) is an ordinary function, then fY € I'(L(y, 14:u,)), 80, because of
(4.28)), the left hand side of (4.34]) is an element of I'( L, 4y 1t 4rpsw +ws)); DUt in the right
hand side, while the second term is in this space as well, the first term lives in T'(L(y, v1:u,))
so eq. (434) is generally inconsistent. (There is the possibility however of taking p = 0,
but this is not something that we wish to consider here; see (A35]) below.) In other words,
asking the condition (£34)) to hold is incompatible with the gradation (assuming p # 0).
The structure we appear to need is then some sort of “graded Lie algebroid” (if such a
thing can be defined at all). Here we simply observe that computation of the left hand

side of (4.34) gives
(X, fY]e = X(f) Y + FIX, Ve, (4.35)

which is the Leibniz rule satisfied by the ordinary Lie bracket of vector fields.

In conclusion, the triple (L, p, [+, -]e), where I, p and [-, -]¢ are defined respectively by
(#29), ([432)-(£33)) and (4.27), satisfies the conditions to be a Lie algebroid ezcept for
the Leibniz rule (£34]), which must be replaced by the ordinary Leibniz rule (4.35)). More
precisely, the Leibniz rule ([434]) cannot be compatible with the gradation of a vector
bundle (when p # 0), so it seems that one would need to find an appropriate modification
of it in order to accommodate a situation with graded fibers.

Another possibility is to introduce a notion of “weighted algebroids”’, by simply re-
placing the tangent bundle in the original definition 2.17 by the weighted tangent bundle
TMEE,T,;w) =TM ® C® S(r,r";w). The bracket (L.27) is also defined for any section of
TM ((E’T,;w), so the ordinary Lie bracket of the tangent bundle could be replaced by (E27]).
A “weighted Lie algebroid” would then be given by definition .17 and its four items, but
using T'M (((;’,r’;w) instead of the tangent bundle. Then, by simply taking the inclusion map
L iy = TMEE’T,;w) as “anchor” (in other words, p = P again), the triple (L, P, [, |¢) is
a “weighted Lie algebroid” in the above sense.

The above definition is completely ad hoc, and it is not clear if one gains anything at all
by introducing such a structure, apart from perhaps adapting the Lie algebroid definition
to a situation with graded fibers in this particular case. However, our motivation for
analysing this issue was, as mentioned at the end subsection [£.2] to see if the differential
complex (4.25)) can be generalized to objects with arbitrary weights. The fact that (£.25]) is
indeed a differential complex is a consequence of: (i) the morphism property of the anchor,
and (i) the vanishing Jacobiator for the Lie algebroid bracket. If we now take the inclusion
L yriwy = TM (E’T,;w) as anchor, then it is trivially a morphism, and the Jacobiator for the
bracket (£.27) has been investigated in Lemma A7l Therefore, it still makes sense to try
to construct an analogue of the complex . To this end, we first introduce weighted

14 Ak

differential forms as sections of the space (AFL*) @ S(r,r';w), and we define

(rrw) "=

MNote that A*

(ryrw

) # AL @ S(r,r'; w))*.
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the “weighted Lie algebroid differential”,

A" D(AG ) = DAG ) (4.36)

(ryr'w) (ryr'w

by its action on weighted 0- and 1-forms, in close analogy to (ZI4)-(2.15):

(d“f)(X) = Cxf, (4.37)
(A"w)(X,Y) = Cxw(Y) — Cyw(X) — w([X, Y]e). (4.38)

Explicitly, these expressions are formally equal to the right hand sides of (EI2)-(EI3),
but now f and w are allowed to have arbitrary weights. We have:

Lemma 4.8. Suppose that 4 is shear-free. Then the following sequence is a differential

complex if and only if 34 is also a repeated principal spinor of the ASD Weyl curvaturdd:
0 d~ 1 d- 2

0= D(AG ) = DA ) — T(AG ) — 0. (4.39)

Proof. We have to check d¥ o d“ = 0. We only have to see this for (weighted) 0-forms,

since for a 1-form w, d*d*w is a 3-form in a 2-dimensional space and thus it vanishes

automatically. Consider an arbitrary weighted scalar f € T'(AY ), and two arbitrary

(r,r';w)

weighted vectors X = 424" Y = p4y4" | then, using ([£37), [@33):

(d*d"f)(X,Y) = CxCy f — CyCx f — Clxyie f
= XY(C,Cy — CC,) f
— xA/yBIBABB[Gm eb]f
= xB,yB'GA/(BA'f

where in the fourth line we used (C.8)). Therefore, d“d™ f = 0 if and only if € CA f = 0,
which, because of Lemma [C.5 is equivalent to requiring 8% to be a repeated principal
spinor. 0

Therefore, we see that as long as 34 is shear-free and a repeated principal spinor, the
“potentialization” (A.20]) is also valid for fields with arbitrary weights.

Remark 4.9. If we are only interested in a particular metric g4, i.e. not in a conformal
structure, then instead of C44 we can use the so-called “GHP” covariant derivative © 44/
(which consists of only some parts of C44/) and its projections © 4/, ©4. One can show
that if 34 is shear-free and a repeated principal spinor, then © 4 = 840 44 also satisfies
0404 =0 (on scalars and primed spinor fields), so we again have a “potentialization”
scheme for ©4. This is particularly useful for analysing integrability of the Einstein
equations.

Remark 4.10. Although the Leibniz rule is not included in the definition 2.22] of a
Courant algebroid, we saw in eq. (ZI0]) that it is actually a consequence of the axioms;
thus, the vector bundle L cannot give an ordinary Courant algebroid structure either.

15A similar complex was obtained in [20], but not in the context of Lie algebroids.

38



5 Twistors

The twistor programme was introduced by Roger Penrose and it describes a non-local
correspondence between spacetime and another space called twistor space. In this section
we describe some natural relations between the constructions we have seen so far and
twistor theory. We first give the basic definition of a twistor, then we elaborate in sections
6.1l and on the relation between the integrable structures studied in previous sections
and twistor spaces.

According to Penrose, the basic premise in twistor theory is that light rays are to
be regarded as more basic entities than spacetime events (see e.g. [26, Section 6.1]).
Consider real, 4-dimensional Minkowski spacetime M, and a point with coordinates 244’
(with respect to an arbitrary origin). A light ray « through this point is described by the
null geodesic

A (1) = TAAN 4 A (5.1)
where 7 is a real parameter, and we are using that the vector field pA tangent to
the geodesic is null, so it can be expressed as p?4 = A4 for some spinor field \4.

Contraction with A4 shows that ZL‘AAI(T))\ A= fo’)\ 4 for all 7. Since this is true for all 7,
the contraction defines a spinor " by

e\, = ip? (5.2)

where 244" denotes any point in v, and the factor i is here introduced only to follow
standard twistor conventions. The entire light ray ~ is then in principle represented by
the pair of spinors (A4, u). However, the same v is obtained if we multiply A4 and p#’
by a non-zero complex number. Thus, v can be represented as a point in (C>* @ C?)/ ~,
where ~ refers to the equivalence relation just mentioned. The space PT := (C*®C?)/ ~
is called (projective) twistor space (we see that it is isomorphic to the complex projective
3-space CP? ['9). Actually, real light rays lie in a submanifold of PT, since for real 244’
one has the constraint 4\ 4 + 4\ 4 = 0, as follows from (5.2). On the other hand, given
a point (Ag, ,LLA/) in twistor space PT, what does this correspond to in spacetime? The
answer is the set of 244" such that (5.2) holds. If pA'As + g*A4 # 0, (5:2) has no real
solutions for 44", so one needs to complexify spacetime in order to have solutions. In the
complexified spacetime CM, suppose that 344" is a solution to ([5.2), i.e. y44' 4 = ip?,
then we see that 44" = AMx4" + 44" is also a solution for any spinor 74", Thus the set of
points in CM satisfying (5.2]) is a 2-dimensional (complex) plane Y. For any two points
z,y in ¥ C CM we have 244" — y44" = Mz4" for some 7', thus vectors tangents to ¥
are of the form M 74" where A is fixed and 74 varies. This implies that any tangent to
> is null, and likewise the inner product between any two tangent vectors vanishes. In
other words,

Nlrs =0 (5.3)
where T is the tangent bundle to ¥ and 7 is the Minkowski metric. Twistor space PT
is then the moduli space of the 2-surfaces ¥ in which (5.3)) holds.

The above construction of twistor space starts from the explicit expression (5.1]) for
light rays (null geodesics) in flat spacetime (which leads to the fundamental relation (5.2))),

16Twistor space is actually CP*\CP" (see e.g. [36} [34]), but we do not need to make this distinction
for our elementary presentation.
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thus it does not apply to curved spacetimes. For the curved case one has to generalize
(E3). We allow also different signatures for the metric:

Definition 5.1. Let M be a (possibly complex) 4-dimensional manifold equipped with
a metric g. A twistor surface (or simply twistor) in M is a totally null 2-surface: a
2-dimensional surface ¥ in which the induced metric vanishes identically,

where T'X is the tangent bundle to ¥. We define twistor space as the moduli space of the

2-surfaces (0.4).

In flat spacetime one can also define twistors via solutions to the twistor equation (see
[26]), but in general curved spacetimes this equation has no solutions so the definition
via (B4 is slightly more general, see [35, [36, [34]. The existence of twistor surfaces is
however still quite restrictive; in particular, the usual twistor space of twistor theory is
3-dimensional and it requires the Weyl curvature to be (anti-)self-dual.

Having introduced these basic concepts, we can now describe the connection of these
ideas with the structures studied in previous sections. We notice first that, from the
basic definition (4] (or (53)) of a twistor, we see that it coincides with the Lagrangian
submanifolds considered in double field theory, eq. (L) (but the motivation here is
completely different, as we just saw).

Remark 5.2. Since here we are interested in twistors, which are generally complex sur-
faces, in this section we assume the manifold to be real-analytic, so that it admits a
complexification, which will be denoted by CM.

5.1 Two-dimensional twistor spaces

An immediate connection between twistors and the para-Hermitian structures considered
in this work is as follows: A half-integrable (para-)Hermitian structure in four dimensions
defines a two-dimensional twistor space.

To see this, consider an almost-para Hermitian structure (g, K') on a 4-manifold M,
which produces a splitting TM @ C = L& L, where L and L are both 2-dimensional. If the
structure is half-integrable, then the distribution L (say) is involutive. Then the integral
manifolds associated to L are 2-surfaces ¥ such that 7Y = L|y. Now, the para-Hermitian
property implies, as we know, that g|rs = 0, therefore the integral manifolds (i.e. leaves)
Y are twistor surfaces. Furthermore, the space of leaves is two-dimensional, thus we have,
according to definition Bl a two-dimensional twistor space. Notice that this is true for
any signature.

If the almost-para Hermitian structure is moreover integrable, i.e. the two eigenbun-
dles L and L are involutive, then there are two different sets of twistor surfaces, i.e. two
different two-dimensional twistor spaces. (In the next subsection we will analyse possible
ways of understanding these spaces in relation to the usual three-dimensional space of
twistor theory.) Note that each involutive eigenbundle defines a pair of (possibly com-

plex) coordinates, 2! = (z!,2%) and z; = (%1, Z3), which give in particular a basis for
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the cotangent bundle, T*M ® C = span(dz?,dz;). Furthermore, the fact that the metric
satisfies g(K-, K+) = —g(+, ) implies that it can be written in this basis as

g=g/dz' ®dz; + ¢';d% @ d. (5.5)

According to the DFT interpretation, the interchange of the foliations 2* = const. and
Z; = const. is understood as a T-duality transformation.

If only one of the distributions L, L is integrable, it is worth mentioning that, apart
from the above interpretation in terms of the twistor programme, (complex) 4-manifolds
admitting a foliation by the associated twistor surfaces have been extensively studied by
Plebariski and collaborators, who called these surfaces null strings, and the manifolds
admitting them HH- or hyper-heavenly spaces; the name originates in the fact that they
are a ‘generalization’ of the H-spaces, or heavens, introduced by Newman[41. Remarkably,
Plebarniski and Robinson showed in [21] that the existence of such integral submanifolds is
sufficient for reducing the full non-linear Einstein vacuum equations to a scalar, second-
order, non-linear PDE known as ‘hyper-heavenly equation’.

A 2-dimensional twistor space like the one above has been considered in [20] in relation
to problems in perturbation theory in relativity. It is interesting to analyse how this 2-
dimensional twistor space is related to the usual 3-dimensional space of twistor theory;
we will do this next.

5.2 Three-dimensional twistor spaces

In this section we will show the following: If all almost-para Hermitian structures are
half-integrable, then there exists a three-dimensional (3D) twistor space PT, which is a
mono-parametric family of two-dimensional (2D) twistor spaces parametrized by projec-
tive spinor fields. This family is not necessarily a fibration over projective spinors: it is a
fibration iff the vacuum Einstein equations hold.

Our discussion will be valid for any signature (also for complex manifolds). We will
generically denote the space of projective spinors (at a point) as P, that is P! = CP' in
Riemannian and Lorentz signature (and in complex manifolds), and P! = RP" in split
signature.

We will first see how to get from a 2D twistor space to a 3D one, then we will discuss
the fibration structure. First, recall from Remark that, if any K is half-integrable,
then any K is actually integrable. Now let K be an arbitrary integrable para-Hermitian
structure. From Section we know that it is represented by two projective spinor fields,
say a4 and (4, in the form (3.26]), where (since K is integrable) both fields satisfy (4.4)).
Any other para-Hermitian structure K’ is represented by two other projective spinor fields
pa and ¥4 in the same way, and, since spin-space is 2-dimensional, at any point these
spinors can be expressed as linear combinations of a4 and Sy, say pa = aas + b5 and

17This ‘generalization’ is in the sense that while an H-space is a Ricci-flat, complex 4-manifold with
self-dual curvature, an HH-space was originally defined as a Ricci-flat, complex 4-manifold with (half)
algebraically special curvature. But the definition of Newman’s H-space is more subtle than this sim-
ple characterization in the sense that it is, by construction, associated to general, asymptotically flat
spacetimes (with real-analytic null infinity), via solutions to the good-cut equation. See also section

B2T
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YA = cayg + dfBa. But since ¢4 and ¥4 should really be thought of as projective spinor
fields, the scaling is irrelevant, so we can take 4 = a4 + A4 and Y4 = g + A4 for
some A1, Ao. This means that the principal spinor fields of any para-Hermitian structure
can be reached by different values of X in

'YA()\) = Q- + )\ﬁA (56)

Note that a4 corresponds to A = 0 whereas 4 corresponds to A = oco. At any fixed
point of M, one can think of A as a stereographic coordinate on the Riemann sphere
P! 2 CU {oo} (for Riemannian and Lorentz signature) or on the circle P! = R U {oo}
(for split signature).

For any fixed A, 74(\) is a principal spinor field of an integrable para-Hermitian
structure, thus, from section 5.1l it defines a 2D twistor space. Therefore, varying A we
add one more dimension and we get a three-dimensional twistor space: equivalently, a
mono-parametric family of 2D twistor spaces. We denote the 3D twistor space as PT.
Since varying A\ means varying y4(A), the family is parametrized by projective spinor
fields.

Notice that in Riemannian and Lorentz signature, twistor surfaces are necessarily
complex, and the twistor space PT is complex. Twistor surfaces live in the complexification
CM, and at each point of CM there is a 2-sphere CP! worth of them. In terms of M,
what we have is a 2-sphere bundle of twistor planes, where a twistor plane is the tangent
space to a twistor surface. In split signature, we can restrict to real twistor surfaces, and
the associated twistor space PT is real. In this case, at each point of M there is a circle
RP! worth of twistor surfaces; i.e. we have a circle bundle of twistor planes over M. For
the connection of these twistor spaces with other twistor constructions in the literature,
see section B.2.1] below.

Remark 5.3. From the constructions seen in section [d] it follows that if any almost-para
Hermitian structure is half-integrable, then there is a one-parameter family of Lie and
Courant algebroids for the tangent bundle, where each algebroid structure is defined by
a projective spinor field.

Let us now discuss the possible fibration structure of PJ. What we will argue is that
the family of 2D twistor spaces is fibered over projective spinors if and only if the Einstein
vacuum equations are satisfied. Essentially, the obstruction for a fibration is that, given
an arbitrary integrable para-Hermitian structure K, defined by two projective spinor fields
[aa], [Bal], we can achieve

aPVpaa =0, BPVppBa=0 (5.7)
but in general we have
BBVBB/(IA 7& O, (IBVBB/ﬂA 7é 0. (58)

First, recall that the assumption that any para-Hermitian structure is integrable im-
plies that the Weyl curvature is self-dual (i.e. ¥ agcp = 0, we saw this in Lemma IZ;Z‘@])

18In twistor theory, the fact that the twistor space of a Ricci-flat complex 4-manifold is fibered over
CP' is already known; see e.g. Remark (2) in p. 444 in [34].

9The restriction to self-dual curvature in relation to the existence of a 3D twistor space has of course
been known in twistor theory since its origins.
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Recall also that any representative spinor field a4 satisfies the shear-free condition (4.4]).
We can now ask a stronger condition and choose the scaling such that a4 is covariantly
constant over any twistor surface ¥ associated to it:

X'"Vyaa =0 VX € (TY), (5.9)
that is, a®Vgpas = 0. We can do this because the integrability condition for it is
U apepa®aPaP = 0, which is satisfied since U pcp = 0.

Consider two neighboring points in PT. These correspond to two twistor surfaces ¥, ¥/
in CM, which we take to be associated to the same congruence defined by the spinor field
a4. We now use the concept of a ‘connecting vector’ as defined by Penrose and Rindler
in [26], Section 7.1], but slightly generalized to a congruence of surfaces instead of curves.
This is used by Ward and Wells in [34] Section 9.1]: a vector field v defined over ¥ is a
‘connecting’ vector to the nearby twistor surface ' if the Lie derivative of v along vectors
tangent to ¥ is again tangent to X, i.e. £xv € I'(TY) for all X € I'(TX). Given the
connecting vector v, the change in the spinor field a4 between the nearby twistor surfaces
3 and Y is represented by the spinor field

5,4 = UbvbOéA. (510)

If 04 # 0, the different twistor surfaces defined by the same spinor field ay (i.e. the
differents points in the associated 2D twistor space) cannot be associated to a same
point spinor. So, there is no projection from the 2D twistor space to a point in P!, and
consequently, the 3D twistor space PT is not fibered over P

Now, we can decompose the vector v as v* = a® o + bP' B8 for some o', bP". Thus,

using (5.9), equation (5.10) is equivalently
(SA = bBlﬁBvBB/OéA. (5.11)

Therefore, the change in ay between the different twistor surfaces of the congruence is
governed by B8Vgpaa. If BBVepas # 0, as changes along the congruence and thus
there is no projection PT — P!. If 88V g a4 = 0, we have v*Vya 4 = 0 for any connecting
vector and so a4 does not change between the different twistor surfaces of the associated
2D twistor space. All such surfaces can then be associated to the same point spinor,
i.e. to the same element of P'. So in this case there is a fibration PT — P!, where the
fibers are 2D twistor spaces. We represent this in Figure [Il In addition, note that, since
asf? # 0, if we have both a®Vggas = 0 and BBV iz a4 = 0 then we actually have
Ve aas = 0. In particular this implies that [V,, Vi]Jac = 0, so the Riemann curvature
must be half-flat (since a4 was arbitrary). Since we already had Vapcp = 0, the new
information is

Oagop =0=A (5.12)

where ® 4pcrpr is the spinor analogue of the trace-free Ricci tensor, and A is proportional
to the curvature scalar (see |25, Section 4.6]). Therefore, the manifold must be Ricci-flat.

Notice that in the Riemannian case, the conditions ¥ sgcp = 0 = Paporpr = A imply
that (M, g) is hyperkéhler (see e.g. Theorem 9.3.3 in [33]).
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Figure 1: 3D twistor space PT seen as a fibration of 2D twistor spaces over projective
spinors P!, in the case that the Einstein vacuum equations are satisfied. In Riemannian
and Lorentz signature, P! = CP' = S?, while in split signature P! = RP! = S, If the
manifold is not Ricci-flat, PT still consists of a family of 2D twistor spaces, but it is not
fibered over P!. The 2D twistor spaces T, and T3 are “T-dual” in the sense that they
define two T-dual Lagrangian foliations of the manifold M.

5.2.1 Connections with other twistor constructions

Let us briefly comment on some relationships with the twistor space constructions in the
literature, following mainly [35 34, B33, 22 24]. (We are only concerned with projective
twistor space.) The original construction of twistor space was done by Penrose in [35],
where it is called non-linear graviton and is specific to complex (anti-)self-dual 4-manifolds.
The non-linear graviton is a 3-complex-dimensional manifold and its points are totally null
surfaces in the (A)SD 4-manifold. The precise relationship between the two spaces can
be encoded in a double fibration, where the correspondence space is the projective spin
bundle. For real 4-manifolds, one can, according to signature, introduce different ‘real
structures’ (involutions) on the twistor space of the complex 4-manifold; but there are
also other routes to construct the twistor space of a real 4-manifold.

In the Riemannian case, the reformulation of Penrose’s twistor construction was done
by Atiyah, Hitchin and Singer in [22]. This formulation associates a natural almost-
complex manifold to any real Riemannian 4-manifold (M, g). The basic idea is to in-
corporate all almost-complex structures in M into one almost-complex structure in a
larger manifold; in other words, to provide the space of almost-complex structures itself
with an almost-complex structure. The space of complex structures at a point is CP!
(see Remark [3.§]), so over the whole manifold one gets the projective spin bundle PS. The
almost-complex structure of PS is described by Ward and Wells |34, Section 9.1] as follows.
Since PS has a connection, at any point p = (x,«) € PS the tangent space decomposes
as T,PS = T, M © T,CP'. On T,M we have the complex structure J = iK defined by
o = [ay], with K given by (8.29), and T,CP' is the tangent space to a complex manifold
so it naturally has a complex structure, say Jep:1. Thus, the complex structure of 7,PS is
J = diag(J, Jepr). Atiyah et al. proved [22] Theorem 4.1| that J is integrable if and only
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if the Weyl curvature of g is (A)SD. In that case, the space PS becomes a 3-dimensional
complex manifold: this is the twistor space of M. It coincides with the space of twistor
surfaces in the complexification of M.

Remark 5.4 (Twistor families). Suppose that 7 : PT — CP' is the fibration by 2D
twistor spaces, so that 7, '(a) is the 2D twistor space T,. In the Riemannian setting,
there is an alternative way to define a fibration of PT over CP'. Since PT is actually the
projective spin bundle of the real 4-manifold M, one can think of a different projection
Ty : PT = PS — CP' where a typical fiber 7, *(a) is the complexr 2-manifold (M, g, J,),
where J, is the complex structure determined by a = [a4] (in our terms this is J, = iK,,
with K, given by the right hand side of (3.29)), and g is Hermitian w.r.t. J,. Therefore,
PT can also be seen as a CP'-family of complex surfaces where the fibers are isometric
as Riemannian manifolds but the complex structure changes from fiber to fiber. This is
known in the literature as a twistor family. (Particularly relevant is the case in which
M is a K3 surface, so that PT is a CP'-family of K3 surfaces.) The relation between
the two fibrations 71, my : PT — CP' can be seen by considering the complexification of
M, denoted CM. An integral submanifold in CM of the involutive distribution L, C
TM ® C = TCM is, on the one hand, a point in T, = 7; *(a) (i.e. a twistor surface
defined by a = [a4]), and on the other hand, a complex surface (M, g, J,) = 7, '(a).
In other words, a fiber of 7 is the space of leaves of the foliation of CM induced by a
projective spinor «, and a fiber of 7y is a leaf in this foliation. Both typical fibers are
2-dimensional complex manifolds.

In split signature, the twistor construction for ASD conformal structures was done by
LeBrun and Mason in [24], and it also involves, in a way, the consideration of the space
of almost-complex structures over M. In section we restricted to real twistor planes
(recall that a twistor plane is the tangent space to a twistor surface), but we can also
consider complex twistor planes by simply complexifying the space of spinors, i.e. taking
R? ® C = C%. Then the bundle of complex twistor planes over M, which we denote by
2 following [24], has fibers CP' (the twistor planes we consider here are the 3-planes of
[24]). The subbundle of real twistor planes is denoted by F' in [24], and its fibers are
RP'. Now, as we saw in Remark 3.9, the bundle of almost-complex structures over M,
say J(, has fibers CP"\RP'. This is the same as removing real twistor planes in Z, so
it coincides with the bundle Z\F in [24]. Using that CP'\RP' is a hyperboloid of two
sheets, and identifying each sheet with a disk, we see that HH consists of two connected
components, say H = U, U U_, each of which is a disk bundle over M. The twistor
space of M constructed in [24] is obtained essentially by giving a complex structure to the
manifold-with-boundary U, U F' (see [24], Theorem 7.3]), which we can see as “one half”
(with a boundary attached) of the space of almost-complex structures over M. A twistor
space construction involving the two halves of the hyperboloid H? together also with the
equator RP! (in other words, the Riemann sphere CP!' = H? U RIP’I) can be found in [33],
Section 10.5]. Here, the twistor space is obtained in a similar way to the Atiyah-Hitchin-
Singer construction [22], i.e. by finding an involutive subbundle for TP@; and it consists
of two open sets that are separated by a 3-dimensional real boundary. This boundary is
the real twistor space that we considered in section 5.2l

20Whether this actually gives a complex structure to PS in the ordinary sense is a little subtle, see [37].
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Finally, in Lorentz signature, the Weyl curvature spinors of opposite chirality are com-
plex conjugates of each other, so (A)SD Weyl tensor implies conformally flat curvature.
Since the basic twistor construction is conformally invariant, the Lorentzian case is not
very different from the Minkowski case. Regarding spaces of complex structures, we saw
that any para-Hermitian structure is necessarily complex-valued, so by simply multiply-
ing by i = y/—1 it can be converted into a “complex” structure. We showed that the
space of such structures is CP' x CP' with the “diagonal” removed, which turns out to
be a complex sphere CS?. The bundle of “almost-complex structures” compatible with
g over M has then CS? fibers, and since S? = CP!, CS? is a kind of “second complex-
ification” of CP' regarded as a real 2-manifold. It seems that one is then considering a
situation similar to the Riemannian case (in which the corresponding bundle has fibers
CP') but where the fibers are now the complexified version. While in this case we are not
aware of a twistor construction analogous to the one in other signatures, we find worth
mentioning that complexified spheres are actually crucial in the construction of H-space
and asymptotic twistor space (since these involve the complexification of null infinity).
This suggests a different connection between Lorentzian “almost-complex structures” and
twistor constructions: Since such “almost-complex structures” are complex-valued, we can
just consider the bundle of “almost-complex structures” compatible with a complex metric
on a genuine complex 4-manifold. As before, the fibers of this bundle are again CS?, so we
have a 4-parameter family of complexified spheres. If all such “almost-complex structures”
are “integrable”, then VU 4pcp = 0 (Lemma [4.2), which suggests that we may identify the
complex 4-manifold of CS?’s with Newman’s H-space, and the CS?’s with the ‘good cuts’
of the complexified null infinity of a real, asymptotically flat (Lorentzian) spacetim.

5.3 Deformations of the para-complex structure

We now wish to define a notion of deformations of a para-complex structure, and study the
integrability of such deformations. Notice that we explicitly distinguish deformations of
the para-complex structure K from deformations of the para- Hermitian structure (g, K); in
the former, we only deal with a family K (¢) of para-complex structures satisfying the para-
Hermitian condition with respect to some fized metric g, while in the latter, one should
consider families of both para-complex structures K (t) and metrics g(¢). For the definition
of deformations, we will follow [2, Chapter 5| and [38, Chapter 6]. The setting in these
works is however slightly different than ours in the sense that they consider deformations
of complex structures, where the eigenbundles are complex conjugates, whereas in our case
they are independent since we consider para-complex structures (or even complex-valued
maps). Our definition will agree with that of [7].

In the following we leave the dimension unspecified; we particularize to four dimensions
after this discussion. Let (g, K') be an almost-para Hermitian structure on a d-manifold M,
and let TM @C = L& L be the splitting induced by K. We consider a continuous, smooth
family K (t) = K, of para-complex structures, with Ky = K and g(K;-, K;-) = —g(+,-) for
all t. Then for each ¢ we have a splitting TM @ C = L, @ L, into the eigenbundles of
K;. For small t, an element of L; can be described as x + B;x where x € L, Byx € E,

21H-space is also Ricci-flat, so presumably we would need to add some additional condition in order to
make this suggestion more precise.
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and the deformation has been encoded in By, which from the above we deduce is a map
B, : L — L. Since L; must be isotropic, we must have g(x + Byz,y + Byy) = 0 for all
x,y € L, which translates into g(z, Biy) + g(Byx,y) = 0, that is, B, is skew-symmetric
and can be thought of as an element of A2L*. Analogously, the deformation of L is
described by a skew-symmetric map B, : L — L, i.e. an element of A2L. For the case of
Hermitian structures, one has B, = B, since the eigenbundles are complex conjugates; but
for para-Hermitian (or complex-valued) structures the maps B, and B, are independent.
The small deformation is then described by an endomorphism A, : L & L — L & L whose

matrix representation is ~
I, B:
Ay = .
t <& %)

Thus we see that the deformation is given by (one half of) the sum of the B- and -
transformations in (Z.I7]), with parameters B = 2B, and § = 2B,, and according to the
interpretation mentioned in Remark .16, it represents a simultaneous shearing in the
directions of L and L. Provided A, is invertible, the deformed para-complex structure
is K; = A,KA;'. Now, we are interested in the case where the original para-Hermitian
structure is half-integrable, which means that (say) the eigenbundle L is involutive while
L is not. Since we want to study integrable deformations, we will focus on deformations of
only L, that is, we set B; = 0. Then the deformation corresponds to a B-transformation
([ZI1), and noticing that (in the splitting L @ L) K = diag(I;, —I;), the deformed (para-
JHermitian structure K, = A, KA; ' is

(I 0
6ok ). -
This coincides with the definition given in [7]. For the calculations below, we will need
some more details about this matrix representation. Let E; = (e;,€') be a basis for

L@ L, with e; and & bases for L and L respectively. Any vector X € L @ L can then be
decomposed as X = x'e; + ;¢ Let F = (8%,6;) be the dual basis, so that FI(E;) = 6%.
The map K; € Aut(L ® L) can be expanded as K; = (K;)';E; ® F’, and the matrix
representation (0.13) means that

Ki=e, @0 —&®0; +2(B,);¢ 6. (5.14)

Remark 5.5. In four dimensions, we have seen that half-integrability of K is equivalent
to the fact that one of the spinor fields representing K is shear-free. Therefore, the result
that deformations of K are encoded in B-transformations is somewhat natural, since, as
mentioned in Remark 2.16] B-transformations in generalized geometry are interpreted as
a shearing.

Now let us restrict to d = 4 dimensions. Suppose that o and 34 are the spinor fields
representing K, eq. [B20). Let p' = (u®, p**) and v = (15", 1) be two bases for
the primed spin bundle §'. We have e pu® pu*? = N # 0 and eqpvi vP = N # 0.
From these relations one can deducd??

S R

,uiA/,ujA’ = ]\751‘“ MMIMB/ = N(SA,BH

%2Here, €;; is defined by €;; = —¢j; (i,7 =0,1) and €o1 = 1.
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where 11,5 = €ar B/eijum/, and similarly for I/ZA/. (Indices i, j are raised and lowered with
¢’ and ¢;;, analogously to A’, B'.) Using these identities and F'(E;) = &}, we deduce the
following expressions for the frames and their duals:

A A ~ A A
e; = BV Ognr, e =a u Oan,

0t = (ng)’laAufg/dxAA/, 0; = —(ng)’lBAuiA/dxAA,
where we recall that ¢ = a434. It then follows that B, is given by

By = (By)i;e' @ 07 = (¢N) " Y(By)s;a’app™ v, 040 @ dzPP
Using now that (B;)a = Gac(Bt)p is skew-symmetric, we get

(Bi)ab = —¢~'canapenp,
where the scalar field ¢ = —1N71(B,);;¢" piiyvh, encodes the deformation. From (5.3)
we get (By)% = ¢ 'eaapd? g, thus, the deformed para-complex structure (5.14) is
(K1)% = K% + 2(By)%
- ¢_1(QABB + ﬁAOZB)(;A/B/ + 2¢_1EQAOZB(5A/B/
= (acB) HaBp + Blap)d m, (5.15)
where we introduced
B = pA +ea. (5.16)
Note that ¢ is the parameter of the continuous family K;, while € is a (possibly complex)
scalar field on the manifold. The eigenbundles of K; are analogous to (4.1])-(4.2]):
Li={u*eTM®C |u*= 2", v* eS(0,—1; —uy)}, (5.17)
Li={v*eTM&C |v*=ap?, p* €S'(-1,0; —wp)}. (5.18)
We see that the bundle L is not modified since I~/t = f/, whereas L is deformed to L; by
using 54 instead of 54.
Half-integrability of the deformation K refers to the involutivity properties of L;. Such
conditions were given in Lemma BT where we saw that one has to study equation (4.4)).

Therefore, the spinor field (B.I6]) codifies the integrability properties of the deformation
(5I4]). We first prove the following identity:

Proposition 5.6. Let a®, 84 be arbitrary spinor fields with aaBh = ¢ #0, let Chur be
the associated covariant derivative (Def. [311) and let Car, Car be the projections (3.51)).
Let 32 be given by (B.16), where € is an arbitrary (possibly complex) scalar field. Then
we have the identity

BLBEN anBep = BBV anBp + ¢Cae + %¢éA'€2 + (@'’ V anap)e. (5.19)

Proof. We first check that V 44/ can be replaced by €44/ in the left hand side of (5.19]).
Note that the weights of S.p are the same as those of Sp, so using Table [Il and formula

(B.10) we have

Canfep = Vaubep — fapfea+ (w1 + 1) fan + Man)pep,
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thus, contracting with 485, we get
BABEN i Bep = BLBECawBes.
Now,

Can B = Canfp + apCyane +eCyaap
= ¢ 2aaap(BYBPVoufp) + apCane + ¢ 2Babp(aaPVoaap)

where in the second line we used identities (B.I1D) and (B.ILd). Contracting now with
BABE and using A4 = —de and BAas = ¢, we get

BLBECAnB-p = BBV anBr + 9Cae + deCu + (0P V g nap)e’
therefore (5.19) follows. O

Theorem 5.7. Let (g, K) be a half-integrable para-Hermitian structure (Def. on
a 4-manifold M, and let ay, B4 be the spinor fields representing K, where 4 satisfies
(#4). Let K; be a small deformation of the para-complex structure K, represented by the
scalar field € as in (BI0), (BI6). Then the eigenbundle Ly is involutive (i.e. K is a
half-integrable deformation) if and only if

GA/€ = 0. (520)

Proof. From Lemma [£1] and its proof we know that involutivity of L; is equivalent to
Np, = 0, which in turn is true if and only if 8 satisfies equation (Z4). The left hand

side of ([4) has been computed for 32 in (5.I9). Since 84 satisfies (4] by assumption,
and “small” deformation means that we only keep terms linear in ¢, the result (G.20)
follows. O

Remark 5.8. Equation (5.20) has non-trivial integrability conditions: applying €4, we
get C4'Cue = 0. Using the first equation in (C.IH), we have

CaCYe = (BAB5V avhi )z

where 1, is given by (C.2) with r, 7/, w the weights of €. These weights can be deduced
from (BI6): w(e) = wy — wy, r(e) = —1, r'(¢) = +1. Replacing these values in identity

eA/eA,EE == 4¢_1\I/ABCDQA68505D €.

Therefore, if ¢ # 0 satisfies (5.20), then we must have ¥ pcpa? 32362 = 0, or equiv-
alently WpcopBPB°BAP = 0 (since B4 satisfies ([@5)). This means that in order for
integrable deformations to exist, the Weyl tensor must be (half) algebraically special.

We end this section with a few remarks.
First, notice that in view of (£37) (see also (£I2))), we can write (.20) equivalently
as
d“e =0 (5.21)

where d¥ is the weighted Lie algebroid exterior derivative (£36). Taking into account
the fact that ¢ is a scalar field, we can interpret this as a Maurer-Cartan equation (since
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[Ba] [Bea]

Figure 2: Illustration of small deformations of a para-complex structure in M in terms of
2D twistor spaces. A principal spinor field 54 of a half-integrable para-complex structure
K defines a 2D twistor space T3 (thick vertical straight line). The dashed horizontal lines
represent a line bundle £ over Tz. A section of £ (vertical curved line) corresponds to a
scalar field € on M such that C4ec = 0. It represents a small half-integrable deformation
of K, so it defines a 2D twistor space T, . Integrability conditions imply that the Weyl
tensor must be half-algebraically special.

the commutator term in the usual Maurer-Cartan eq. vanishes because ¢ is a scalar).
The reason for interpreting (5.2]]) in such a way is that it fits with the usual theory of
integrable deformations of complex structures (see e.g. [38, Chapter 6]).

Second, recall from section 5.1l that a half-integrable para-Hermitian structure defines
a 2D twistor space, say Tg. In [20], functions e satisfying (5.20) were interpreted as
defining sections of line bundles over T3. Here we see that (5.20) appear as integrability
conditions for deformations of a para-complex structure in M. We can attempt a more
or less “intuitive” understanding of this by considering a picture similar to figure [I in
which 2D twistor spaces are represented as vertical lines. We illustrate this in figure 2. If
L is a line bundle over T3, a section is a smooth map T3 — £, defined by the condition
that it should be covariantly constant over the twistor surfaces associated to T, i.e. we
can think of it as a scalar field € on M such that C4e = 0. So a section of £ defines,
by theorem [5.7] a half-integrable small deformation, and consequently a 2D twistor space
Tjs., “close to” T, see fig. 2L

Finally, in the literature on DFT (see [7]), there are weaker forms of integrability
where one replaces the ordinary Lie bracket by the so-called D-bracket (a generalization
of the Dorfman bracket). In particular, in |7, Proposition 5.6] it is shown that a small
deformation is ‘weakly integrable with respect to K’ if and only if a certain Maurer-Cartan
equation is satisfied, where the operators involved are associated to the Lie algebroid
structure. The notion of weak integrability refers to the involutivity of a subbundle in
terms of the canonical D-bracket [[-,-]", see [7] for details. Adapting these concepts to
our formulation, the subbundle L, is weakly integrable if, for all x,y € I'(L,), it holds
([z, y]*™) A4 = pA7A" for some 74". Equivalently, this is B.a([z,y]?*)*4 = 0. By a
direct calculation (using the definition of [-,-]*" given in [7]) one can show that this is
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always true in our case, so any small deformation of K is weakly integrable with respect
to K.

6 Summary and conclusions

In this work we have attempted to show that there is a close connection between the
para-Hermitian approach to double field theory (a formulation of string theory designed
to be manifestly covariant under T-duality) and the geometry of special four-dimensional
manifolds that are of particular interest in general relativity. This approach to DFT
is based on the consideration of para-complex structures where one of the eigenbundles
is integrable, so the tangent bundle of the extended manifold has the structure of a
Courant algebroid, which is one of the main objects studied in generalized geometry. We
have analysed the four-dimensional version of this approach while also allowing the para-
complex structure to be complex-valued, which in turn allows us to work with different
metric signatures.

One of our original motivations was to point out the similarity between some of the
geometrical structures in the para-Hermitian approach to DFT, and Plebanski’s hyper-
heavenly construction in general relativity. This connection is revealed when one observes
that Plebanski’s congruence of “null strings” can be understood as the foliation by integral
manifolds of an involutive eigenbundle of a complex-valued “almost-complex structure”.
Such a structure has independent eigenbundles and so it is actually ‘half-integrable’. In
real geometry, this phenomenon is captured by para-complex structures.

Since a spacetime manifold M is, in general, not naturally equipped with a (para-
Jecomplex structure (see also below), we first deduced the general form of any almost (para-
JHermitian structure in four dimensions, and we described the space of such structures
over M. We did this by showing their equivalence to (anti-)self-dual 2-forms and then
describing the corresponding spaces in terms of projective spaces, for the three different
possible metric signatures. We showed that these spaces are certain fiber bundles over
the 4-manifold, where the fibers can be real 2-spheres (Riemannian signature), 1-sheet
hyperboloids (split signature), or complex 2-spheres (Lorentz signature). Noticing that an
almost para-Hermitian structure is associated only to a conformal metric and to projective
spinor fields, we showed how to deal with the associated “gauge freedom” by employing a
formalism manifestly covariant under gauge transformations. The corresponding covariant
objects are weighted fields.

Having the general form of any almost para-Hermitian structure, we proceeded to
analyse integrability issues, showing that half-integrability corresponds to the existence
of special spinor fields (“shear-free congruences”), and then constructing the associated
Lie and Courant algebroids. We were naturally led to the problem of generalizing the
algebroid structures to fields with arbitrary weights, and we showed that ordinary Lie
algebroids seem to be incompatible with them, since the Leibniz rule is not compatible
with the gradation of the vector bundle of weighted fields (assuming that the anchor
does not vanish identically). Nevertheless, we were able to generalize the Lie algebroid
differential complex, under the additional assumption of algebraically special curvature.
Further applications of these generalized geometric structures are left for future work.

Finally, we discussed connections of this approach with twistors. The first obser-
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vation is that the Lagrangian submanifolds of DFT correspond to the basic object in
twistor theory, namely twistor surfaces in a 4-manifold. Such twistor surfaces arise as
integral submanifolds of a half-integrable (para-)Hermitian structure K. This K defines
a two-dimensional (2D) twistor space, by means of the corresponding projective spinor
field satisfying the shear-free condition. If all (para-)Hermitian structures are integrable,
we showed that one then gets a three-dimensional (3D) twistor space, which is a one-
parameter family of 2D twistor spaces, parametrized by projective spinor fields. In gen-
eral this is not a fibration over projective spinors: the fibration structure is obtained iff
the vacuum Einstein equations hold. We discussed connections of this construction with
other developments such as the Atiyah-Hitchin-Singer and the LeBrun-Mason approaches
to twistor theory, and also with the CP! twistor families known in the literature. Lastly,
we analysed deformations of a para-complex structure K in M, and we showed that a
small deformation is half-integrable iff it corresponds to a section of a line bundle over the
2D twistor space associated to K. We also found that small half-integrable deformations
can only exist if the Weyl tensor is half-algebraically special.

As mentioned, a choice of (para-)complex structure in a spacetime manifold is in
general an extra assumption, and this is one of the reasons why we first focused on
classifying all such possible choices. However, for 4-manifolds there are, at least, two
situations of interest where natural almost (para-)complex manifolds arise:

1. Einstein manifolds with algebraically special Weyl tensor,
2. Twistor theory.

The first case is perhaps the one of immediate interest in general relativity. The Goldberg-
Sachs theorem implies that a vacuum solution (cosmological constant allowed) to the
Einstein equations which is algebraically special, has at least one shear-free congruence.
If the corresponding (projective) spinor field is S84, one can choose any other spinor field
o with B4a 4 # 0 and define a half-integrable para-Hermitian structure by ([3.26). In the
second case, for 4-manifolds M with a metric of Riemannian or split signature, the twistor
construction associates a natural almost-complex manifold: it gives an almost-complex
structure to the space of all almost-complex structures in M.

To conclude, we make a few comments about some possible directions that will be
explored in future works.

First, as mentioned before, the Lie algebroid structure of a manifold with a shear-free
spinor field has associated natural differential complexes that, in our case, allow to find
certain potentials for problems of interest in general relativity. This particular point will
be the subject of a separate work. In addition, we notice that in the current work we
have merely given an explicit description of the Courant algebroid associated to such
special 4-manifolds, but we have not applied the resulting construction in any interesting
way. It may be worth analysing if this explicit connection between generalized geometry
and spacetimes of relevance in relativity has potentially interesting consequences. More
broadly, the generalized notions of integrability encountered in double field theory (such
as the D-bracket or the associated metric algebroids) were not applied in this work.

In addition, we have not attempted to analyse applications of the notion of T-duality
that is obtained in general relativity by particularizing the DFT framework to 4-manifolds.
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However, an immediate observation is that, for Einstein manifolds of Petrov type D,
there is a natural para-Hermitian structure where both eigenbundles are integrable, and
one eigenbundle is associated to ingoing principal null directions while the other one is
associated to outgoing p.n.d.’s. The transformation between ingoing and outgoing p.n.d.’s
can then be understood as a T-duality transformation. The question of whether this has
some interesting consequences for e.g. black hole spacetimes (or perturbations thereof) is
left for future work.

Another point that will be elaborated on in a separate work is the relationship between
the bundle of complex-valued almost-complex structures in a 4-manifold and the theory
of H-space and asymptotic twistor space (see section [L.2.1]).

Finally, a possible generalization to higher dimensional manifolds of some of the ideas
developed in this work will likely follow the perspective and results in [39]. A spinorial
treatment should involve the use of pure spinors.
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A Spinors in four dimensions

In this appendix we review some basic facts about spinors at a point in four dimensions,
in any signature. For spinor fields, see the beginning of Appendix [Bl

Given a d-dimensional vector space with a non-degenerate inner product of signature
(p,q), with p+ g = d, the spin group can be defined as the double covering of the identity
component of the orthogonal group, that is Spin(p, q) = S,E)/O(p, q). In four dimensions,
one has the following isomorphisms depending on the signature:

Spin(1,3) 2 SL(2,C), (A1)
Spin(4) = SU(2) x SU(2), (A.2)
Spin(2,2) 2 SL(2, R) x SL(2, R). (A.3)

The natural (inequivalent) representations of SL(2,C) are C? and C%. For SU(2), the
natural representation is C? (which in this case is equivalent as a representation to C?), and
for SL(2, R) the natural representation is R?. Therefore, in all cases the finite dimensional
irreducible representations are classified by two integers or half-integers (n,m), that are
said to be of opposite chirality. The fundamentals are (3, 0) and (0, 3). We see that, in the
Lorentzian and Riemannian cases, spinors are complex, while in neutral signature they
are real. Furthermore, in Lorentz signature, complex conjugation interchanges chirality
(i.e. it maps an element of C? to an element of C?), but in the Riemannian case it is an
involution. In the following everything is valid for any signature.

We denote elements in the (1,0) representation by e.g. ¢*, and elements in (0, 1) by
e.g. 4. The vector representation is (,1) = (1,0) ® (0,1), thus, a vector v® can be
represented as an object with a pair of spinor indices v44". The map from v* to v34 is
v — v = 5,44, where o, represents the identity and the three Pauli matrices. It
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/. . . .
4" in this correspondence, so that one simply associates a vector

! . .
vA4 ete.; in this work

is customary to omit o,
index with a pair of spinor indices of opposite chirality, e.g. v* =
we follow this convention.

The spin spaces are equipped with the symplectic structures e4p and €4p. The
inverses are denoted by e and e*'?’, and they satisfy e*Cepe = 645 and €' “egier =
64" g. These objects allow to raise and lower spinor indices; our convention is

= "Pop, $a = epad”, (A4)
and analogously for primed indices. The relation between e,p, €45 and the metric is
simply gay = gaa'Bp = €aBEAB-

Given two spinors &4, 74 with €& mp = x # 0, and using the convention (A4)) to
define €4, 74, we have

eap = X (€ans — EBNaA), (A.5)
§p = —x (s — ). (A.6)

These identities are used repeatedly throughout this work. For example, consider a spinor
©AB = P(AB), then using the identity

oap = 046" pocp (A7)

and replacing ([A.G]) one gets the expression (3.23)).
Any symmetric spinor can be decomposed into a symmetrized product of 1-index

spinors, which are then called its principal spinors. This is a consequence of the fact
that the field of complex numbers is algebraically closed, see Proposition (3.5.18) in [25].
We illustrate this with a simple example. Using a basis £4,n4, with &4n? = x # 0, let
(4 =&+ zn?, and consider pap = @ap). Then

p(2) = papCtCP = @0 + 2012 + 022° = (2 — 23.) (2 — 2), (A.8)

where we assume @y # 0, and the roots z4 are

2o = 3 (1 £ (91 — op2)'/?). (A.9)

Then the principal spinors of @45 are Cj =&a + 24m4, and

PYAB = X72902C(J,F4C§)- (A.10)

It is important to note, however, that the principal spinors may be complex. This is
of course always true in Riemannian and Lorentz signature, but in split signature, a
symmetric spinor can be real while its principal spinors are complex. This depends
on whether the roots zi are real or complex, which in turn depends on the sign of
—20app™?® = X2} — vop2). If o} — wop2 > 0, then zy are real and the principal

spinors Cf are real. If p? — oo < 0, then zy are complex conjugates, and ¢+ = (¢j).
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B Further details on the covariant formalism

Here we give more details on the covariant formalism introduced in section 3.3

Let Ppin denote the principal fibre bundle corresponding to the spin structure in
the conformal manifold. Let G be the associated structure group: G = Spin(p, q) x R,
where Spin(p, ¢) is one of the three groups (A.I)—-(A.3) (and R* accounts for the conformal
rescalings of the metric). Let V = (®*K?) ® (2FK?) ® (2'K*) ® (®"K?*), where K = C
for signature (+ — ——) and (+ + ++), and K = R for (+ + ——) (in which case “R” is
simply another copy of R). The spinor bundles are the associated vector bundles

where S5 C, ~ has k unprimed and k&” primed indices in the upper position, and [ unprimed
and [’ prlmed indices in the lower position; and X denotes the “natural” representation
of GonV . For only one index, we also use the notation S = S?, §' = S¥', §* = Sp,
S™* = Sp.

A spinor field is a section of (B.I)). But in this work we also need weighted spinor
fields, as a consequence of the fact that we have the ‘gauge freedom’ (3.27) and (3.45). In
section 3.3 we mentioned that the gauge group associated to this freedom is G,. We see
that the transformation law (8.46]) corresponds simply to the representation of G, on V'
given by py,1. 1 G, = GL(V),

[orrw(N 11, Q)lE G = X QBB (B.2)

The principal bundle B over M whose structure group is GG, can be understood as a
‘reduction’ of Py, (in the sense that G, C G), and, similarly to (B.I)), we now have the
weighted spinor bundles

SE-B(r,r';w) = B x V. (B.3)

A spinor field of type (r,r’;w) (Definition BI0) is a section of this bundle. For example,
the spinor fields a4, S84 associated to a given almost para-Hermitian structure K, and the
scalar field ¢ = 434, are all sections of (B.3)), for different values of r, ', w. We give the
specific weights in table [Il For convenience we mention that objects without indices, i.e.
weighted scalar fields, are sections of the line bundles

Prr!sw

S(r,7";w) = B X % (B.4)

Prr 0
where V =C or V =R.

The covariant derivative introduced in Definition [B.11] is an operator on sections of
(B.3), whose construction can be understood as follows. First, use the spinors a4, g4
associated to K as a basis: ¢4 = (a”, 34) (where A = 0,1 is understood as a concrete
index), with ay84 = ¢. The dual frame is e = (—¢~ 16A,gz5 Yay). The natural Weyl
connection ¥V, induced by K defines a local connection 1-form by ¥V,e8 = Wwchsg,
or equivalently

YwesC = €§ "V, eB. (B.5)

23More precisely, the tensor product of the natural representations. Also, we are being a bit sloppy
since G also includes the conformal rescalings R, so this representation is understood to have also some
definite conformal weight. But this is not important here since it is accounted for anyway in (B.2)).
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Under G, some parts of this object transform covariantly, and some other do not. The
components that transform covariantly are “wqo' and “w,,°. For the rest, one can check
that

Vwao” 2 Vwa” + w92 + A9,
V! Ge, Ywar' w0, + O
Therefore, defining the 1-forms
Lo = —"wa’ — wo fa, (B.6a)
M, = —Vwa' — w1 fa, (B.6b)
and recalling the Lee-form f,, we have
fa <5 fa— Q7100
Lo S Lo — A1,
M, %% M, — p'0up,

$0 ¥q = (fa, La, M,) can be thought of as the connection 1-form associated to the gauge
symmetry G,. The explicit expression of L, and M, in terms of the spinors a4, 54 is

given in formulas (3:48)), (3.49). For f,, a calculation shows the following:

Proposition B.1. The Lee form (231)) induced by an almost-para Hermitian structure
K is given by

fanr = 0% (aaBea®VpaBY + BaacBVpaa®). (B.7)
where ay and B are the (projective) spinor fields representing K, with ¢ = a4B2.

Now, consider an element u = (x,y,z) € Lie(G,) in the Lie algebra of G,. The
representation (B.2)) of G, induces a representation g .., of Lie(G,), given by

Py i) = T2 + 7"y + w2 (B.8)

Since the connection 1-form v, is valued in Lie(G,), we have p). .., (o) = 7 Lo+1"My+w f,.
Combining this with the Weyl connection “V,, the induced covariant derivative is

an + p;,r’;w(wa) = ea (Bg)
which is simply ([3.47). For convenience we give the explicit formula for (B.9) in terms
of an arbitrary Levi-Civita connection V 44, when acting on a spinor field gogg; of type
(r,r’;w):
Can it = Van ot + (wfaa +rLaa +1' Man)plo,
+ea” faxoll + ea® faxi 088 — facoil — facpllh- (B.10)

Proposition B.2. We have the general identities:

eagbc =0= GGGBC - eaeB’C”a (Blla)
GAA/OzB = gf)_z(aCOzDV(jA/OzD)ﬁAﬂB, (B.llb)
Canf? = ¢72(BYBPVouBp)aaa®, (B.11c)
Coand = 0. (B.11d)
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Remark B.3. Recalling the definition 3351) of €4, Cr, we deduce from (BIIL) and
(B.11d) the general identities

GA/OéB = 0, éA/BB =0. (B.12)

C Curvature of C,

In this appendix we describe some properties of the curvature of the connection (B.9),
that we need in the main text. The curvature of €, is defined by the commutator [C,, Cp].
Since this is skew-symmetric in ab, the decomposition (B.I]) implies that [C,, Cp] splits into
SD and ASD pieces; this will be applied below.

Let v44 be a vector field with weights (r,7';w). Then by definition

vaDD/ = vaDD/ + wb'l}DD/ + WbcD’UCD/ + WbC/D/UC/D, (Cl)

where for convenience we put

wb = wfb + TLb + ’I“/Mb, (CQ)
Wic” = fpces”, (C.3)
WbC/DI = fBC/EB/DI (C4)

Applying another covariant derivative €, and taking the commutator, after a short cal-
culation we find

[Cas CoJv”P" = [Va, ViJoPP" + (2V 1t )0 + Fupo "o + Fopo 0P (C5)
where

Fuc” =2V Wyc” + 2Wig " Wyc”, (C.6)

FabC/D/ = QV[aWb}CﬂD/ + QW[Q‘E/‘D/WI)}C/E/. (C?)

We can see three contributions to (C.Hl): the curvature of the Levi-Civita connection,
the curvature of the “internal” connection 15, and the curvature of the Weyl connection,

’

which is encoded in the two pieces Fy” and Fab(;/D )
Now, a straightforward computation shows that

[Ca, €] = €4BCeaCrnE + earnConalr), (C.8)

and similarly, all the pieces in the right hand side of (C.5]) decompose into SD and ASD
pieces. Thus the SD and ASD pieces in (C5) can be simply obtained as 1e*#[C,, €] and
1er'B'[e,, €. We find:

GA/(AGB)A/UDD/ = DABUDD/ + (VA/(AIDSS)UDD/ + FABCDUCD/ + GABC/D/UC/D, (Cg)

eA(A/GB/)A’UDD/ = DA/B/’UDD/ + (VA(A/¢§1))UDD/ + F’A/B/C/DIUC/D + GA/B/CD’UCD/, (C.lO)

o7



where [(ap and [ g are ordinary spinor curvature operators, see [25, Section 4.9]|, and
we defined

Fapc® = e” [VB)C'fCC/ + fB)C’fCC/] , (C.11)
Gapc” = =V fene + fa” fee, (C.12)
Fapo™ = ea” [Venefo© + fonefo], (C.13)
Gapce” = =V feyor + fu” fayor. (C.14)

The spinors G, I are respectively the SD and ASD pieces of FucP, and G, F those of
FapcP'. Likewise, VA(A/¢§/) and VA/(AwS; are the SD and ASD pieces of 2V ,1)y.

Remark C.1. For weighted scalars ®, formulas (C.9)-(C.I0) are much simpler:
CaaCr @ = (Vaum)®  CawCp)*® = (Vauts,)®. (C.15)

Using (C.2)) and the expressions ([3.48)-([3.49) for L,, M,, we note that

Vo = (W — rwy — 7'wy) fo + 7' YP) + rpl@, (C.16)
where

WP = — ¢ apVaaB® — 6 aafass”, (C.17)

Ui = ¢ BV ana® + ¢ Bafapa®. (C.18)
Note also that lp((f‘) can be rewritten as lp((f‘) = —1/1((1[3 ) V.log¢ — f,; therefore, the

curvature of the “internal” connection can be computed in terms of the curvatures of f,
and wéﬁ ).
Viey = (w — 1 — rwy — 7'wy) Vig fo) + (' — T)V[a@/)éf). (C.19)

For later use, we note in particular the following:
ﬁAﬁBVA/(AQ/Jgs = (w — T —TWo — r’wl)ﬁAﬁBVA/(Afé)' + (TI - T)ﬁAﬁBVA/(AQ/}g)A/. (CQO)
Some identities when 4 is shear-free

Proposition C.2. Suppose that B4 is shear-free, then we have the following identities:

O pcpB°B” + GapepBOBY =0, (C.21)
UapepB°BY + 20BaBs + FapepSBY = 0. (C.22)
Proof. These identities follow from (CI0) and (C9) by applying them to S, using
C.3% = 0, and contracting with Sp. O

Proposition C.3. If 4 is shear-free, we have:

BABE® apcrp + BABEG Ao = %EC’D’ﬁAﬁBVA’(Afg)Ia (C.23)
WapepfPBOBP = LBaBP BV psfE = — 18485 OV el . (C.24)
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Proof. To prove (C.23), we use (C.21)):

BABE®sporp + BABPGaporp = — B85 Gorprap + BB Gaperny
= BABPV A forya — BBPV apr fora
= — BBV fona
= Lecp BBV aath). (C.25)

Now let us prove (C24)). Contracting (C22)) with 82, we find
VapcnBPB9BY + FapepBP 587 = 0. (C.26)
The second term is
FapepBPB°B" = €p) [VB o fe + fB)C/fC’C,] BPBYBP = —3(B° BV s g),)ﬁA

which establishes the first equality in (C24]). Now, applying (C.9) to P and contracting
with B4B5, we get

0= UapcpB*B78° + (BB Ve mie ™ )Bp + FancpBB2A°.

From (C.26) we deduce that ¥ 4pcp B2 8° = —Fpapce B8P BY, where we used W opop =
\D(ABCD ThUS

= (B8°Vuwl)” )8 — FoancB' B8 + FapopB*876°.  (C.27)
The last term in the right hand side is
FapepBBPBY = eap| | Ve fo© + fryer fo© | 84828 = (BB Vs fE)Bo.
which shows that FapcpBABEBR¢ = —2FpapcfABB . Therefore
(BB st )Bp = 3FpapaB* 878 = =3Wapons 8787,
and the last equality in (C.24) follows. O

Remark C.4. Using (C24), when 34 is shear-free we can deduce a useful identity for
(C.20), for arbitrary weights w,r, " in (C.2):

5AﬁBVA/(Awg; ==2¢ (w—1r—3(r" —r) — rwy — r'w1)Vapcpa’ BPBEBY. (C.28)
Lemma C.5. Suppose that 34 is shear-free. Then the equation
CuCY =0 (C.29)

is satisfied when acting on any weighted scalar/spinor/tensor field, if and only if B4 is a
repeated principal spinor of the ASD Weyl curvature.
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Proof. Consider first a primed spinor field 74, with arbitrary weights (r,r’;w). Applying
([C9) to 7" and contracting with 3437, we have

!

CpCtn? = pAEP 0T + (8467V weavp) 7 + 5457 Capo” 7
= (B8P apcr” + B BPGapc” )1 + (BABPV watihy ) m”
= (3848 Vaa f;‘)/)WD/ + (5A58VA/(A¢E;)7TD/
= (w+§+5r—rwo— 3’ — lel)(ﬁAﬁBVA'(Afé)/)WD,,
where in the third line we replaced (C.23]), and in the fourth we used (C.20) and the

second equality in ([C.24). Therefore, we see that CuCA' 7" = 0 for any "’ if and only
if B85V 44 fg‘)' = 0, which, using the first equality in (C24), is true if and only if

U apcopfP AP = 0.
Consider now an unprimed spinor field p# with weights (r,7’;w). This can be written
as 4 = aa? + bB4. Using €,8% = 0 and the first equation in (B.12)), we have

CaCY P = aPeye¥a + PCLHCAD. (C.30)

Thus, we see that €4 C4 P = 0 on arbitrary weighted unprimed spinor fields ¢” if and
only if €4 @4 ® = 0 for arbitrary weighted scalar fields. From (C.15), we get

CaCYD = (BABPV pat))®. (C.31)
Using now (C.20) and (C.24)), we see that C4CA'® = 0 if and only if W pcpBPB°HAY =
0. O
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