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Abstract

The search for a geometrical understanding of dualities in string theory, in partic-
ular T-duality, has led to the development of modern T-duality covariant frameworks
such as Double Field Theory, whose mathematical structure can be understood in
terms of generalized geometry and, more recently, para-Hermitian geometry. In this
work we apply techniques associated to this doubled geometry to four-dimensional
manifolds, and we show that they are particularly well-suited to the analysis of inte-
grability in special spacetimes, especially in connection with Penrose’s twistor theory
and its applications to general relativity. This shows a close relationship between
some of the geometrical structures in the para-Hermitian approach to double field
theory and those in algebraically special solutions to the Einstein equations. Partic-
ular results include the classification of four-dimensional, possibly complex-valued,
(para-)Hermitian structures in different signatures, the Lie and Courant algebroid
structures of special spacetimes, and the analysis of deformations of (para-)complex
structures. We also discuss a notion of “weighted algebroids” in relation to a natural
gauge freedom in the framework. Finally, we analyse the connection with two- and
three-dimensional (real and complex) twistor spaces, and how the former can be
understood in terms of the latter, in particular in terms of twistor families.
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1 Introduction

Generalized geometry [1, 2] is a branch of differential geometry that unifies symplectic and
complex geometry and in which, in particular, vector fields and 1-forms on a manifold M
are treated on an equal footing, as sections of a “doubled” or generalized tangent bundle,
TM = TM ⊕ T ∗M . The generalization to TM of the differential structure encoded in
the Lie bracket is captured by the notion of Courant algebroids, which involve the so-
called Dorfman bracket (or its antisymmetric version, the Courant bracket). During the
last years these structures have appeared naturally in theoretical high-energy physics, as a
central tool for the understanding of the geometry of string theory, related in particular to
the geometrical interpretation of T-duality (e.g. [3]). A prominent line of developments in
this respect is Double Field Theory (see below), where it has recently been shown [4, 5, 6, 7]
that also para-Hermitian geometry is particularly well-suited to the understanding of its
mathematical structure. In this work we show that doubled geometry is also natural in
general relativity, where it provides a new perspective on ‘integrability issues’ in special
spacetimes and their connection with twistor theory.

As an initial motivation, let us give a rough argument to introduce para-Hermitian
and generalized geometry in string theory, and their connections with T-duality. When
considering string toroidal compactifications, a distinctive feature of strings is that their
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extended nature allows them to wrap non-contractible cycles around the compact dimen-
sions. As a consequence, strings are not only characterized by momentum modes but
also by winding modes, which describe how the strings wind around the tori. Roughly
speaking, T-duality is a symmetry of string theory that establishes that momentum and
winding states should be considered on an equal footing. As a simple example, suppose we
have only one compact dimension, a circle S1 with radius R. The momentum and wind-
ing modes are quantized; they are characterized by two quantum numbers n,m. From
the mass spectrum for closed strings one can see (as a standard reference cf. [8, Section
8.3]) that, when R → ∞, winding modes become very heavy, while momentum modes
become light and start to form a continuum, as corresponds to a non-compact dimension.
Similarly, when R → 0, momentum modes become infinitely massive but winding modes
become light, and the spectrum again approaches a continuum. Therefore, the R → ∞
and R → 0 limits appear to be physically equivalent, a remarkable feature that is exclusive
to string theory since a field theory of point-like particles has no winding states (so no
spacetime dimension ‘opens up’ when R → 0 in that case). This equivalence comes from
the fact that the string spectrum is invariant under the simultaneous change R ↔ α′/R,
n ↔ m (where α′ is the inverse of the string tension), a symmetry which extends to any
observable in the theory. This is the simplest manifestation of T-duality; more generally,
T-duality relates the physics of strings propagating on backgrounds with very different
geometries.

Since momentum modes are conjugate or ‘dual’ to spacetime coordinates xi, the con-
sideration of momentum and winding modes at the same level suggests the introduction
of a new set of coordinates x̃i ‘dual’ to winding. This doubling of coordinates allows to
formulate a field theory that incorporates the degrees of freedom associated to winding
without necessarily representing strings, and such that T-duality is a manifest symmetry
of the theory. This scheme is called Double Field Theory (DFT) since the pioneering
work [9] (see also e.g. [10] for a review), and represents a T-duality covariant formulation
of supergravity that incorporates stringy aspects not present in the usual treatment of
supergravity. Although the doubling of space coordinates should only affect the compact
dimensions, it is useful in practice to duplicate all space coordinates; in this way one
ends up with a doubled space, which in the simplest case is a product T × T̃ and has
global coordinates (xi, x̃i), where T and T̃ are d-dimensional flat tori that are said to be
dual from each other. This ‘extended spacetime’ is intended to be the target space of
the fundamental string, and the physical fields1 are organized in representations of the
T-duality group O(d, d). Furthermore, from the field content of the theory one deduces
a notion of generalized diffeomorphisms, that are infinitesimally generated by a general-
ized Lie derivative or ‘D-bracket’. Consistency conditions (i.e. closure of the algebra of
generalized diffeomorphisms) impose a restriction on the fields. A particular solution to
this restriction is the so-called ‘section condition’ or ‘strong constraint’, where the fields
are forced to depend on only half of the doubled coordinates. This half is determined as
a subspace that is maximally isotropic (or totally null) with respect to the O(d, d) metric

1In the simplest formulation of DFT, the physical fields correspond to the massless sector of closed
strings, namely a metric tensor, a 2-form field (the Kalb-Ramond field) and a scalar field (the dilaton).
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η = dxi ⊗ dx̃i + dx̃i ⊗ dxi [11], i.e. a d-dimensional subspace S such that2

η|S = 0. (1.1)

T-duality acts by transforming any such isotropic subspace into another.

One might already anticipate some parallelism of the DFT framework with generalized
geometry, in the sense that both formalisms are based on a doubled space. However, an
important difference is that in the former, what is doubled is the base manifold, while in
the latter is the tangent bundle. This difference is important if one wants to understand
T-duality in the generalized geometry setting, since, as argued above, the very essence
of T-duality is to exchange the manifolds T and T̃ . Upon restriction to fields satisfying
the strong constraint, the D-bracket reduces to the Dorfman bracket and one can argue
that the DFT setting reduces locally to generalized geometry (see e.g. [12]). A possible
formalization of all this (that is also intended to provide a global formulation of DFT)
originates in the work of Vaisman in [4, 5], who shows, in the first place, that the usual
extended spacetime of DFT is a flat para-Kähler manifold. To see this, consider first an
almost para-Hermitian structure on a 2d-dimensional manifold M : a pair (η,K) where
K ∈ End(TM) and η is a metric such that

K2 = I, η(KX,KY ) = −η(X, Y ) (1.2)

for any vector fields X, Y . The map K is called almost para-complex structure, and it
produces a splitting of the tangent bundle as TM = L ⊕ L̃, where L, L̃ are the (±1)-
eigenbundles of K. These eigenbundles are maximally isotropic with respect to η, i.e.
they are d-dimensional and satisfy (1.1), and this implies that L̃ ∼= L∗ (see Section 2 for
details). If L and L̃ are involutive under the Lie bracket then K is said to be integrable,
and there exist local coordinates (xi, x̃i), i = 1, ..., d, such that, denoting ∂i = ∂/∂xi and
∂̃i = ∂/∂x̃i, one has L = span(∂i) and L̃ = span(∂̃i). If η is flat, then it can be expressed
in these coordinates as η = dxi ⊙ dx̃i. So there are two complementary foliations F, F̃
such that L = TF and L̃ = T F̃ 3, and L̃ ∼= L∗ implies that T F̃ ∼= T ∗F , thus TM has
actually the structure of a generalized tangent bundle: TM ∼= TF ⊕ T ∗F . Furthermore,
Vaisman shows [4] that there is a natural notion of D-bracket on TM , and that it reduces
to the Dorfman bracket for fields with dependence only on F , so in this way one recovers
generalized geometry. Finally, different T-dual spacetimes correspond to different choices
of para-complex structures.

The study of DFT from the perspective of para-Hermitian geometry, in settings more
general than the flat para-Kähler case, was further developed in [5] and [6, 7, 13, 14],
and also in several subsequent works, being currently an active research area. (Early
considerations of the relationship between para-Hermitian structures and T-duality can be
found in [15].) A particularly important difference between Hermitian and para-Hermitian
geometry is that the eigenbundles of an almost-complex structure are complex conjugates
of each other, while those of an almost para-complex structure are independent. As a

2The metric η involved in (1.1) does not represent the gravitational field; it is part of the ‘kinematics’
of the theory. The gravitational field is unified with the 2-form field into a ‘generalized metric’, which
codifies the dynamics; this will not play a role in the present work.

3This notation means that if Σ is a leaf in F , then TΣ = L|Σ, etc.
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consequence, the integrability properties of a para-Hermitian structure can be split into
separate questions about the involutivity of each eigenbundle, so one can talk about “half-
integrability”. We will see that this is especially important in general relativity and its
connection with twistor structures.

A key condition in the analysis above is equation (1.2), which implies (1.1) for the
eigenbundles of K. For real K, this means that the signature of η must be (d, d); so in four
dimensions this is (++−−), which is different from the usual Lorentz signature (+−−−)
of general relativity. However, if we allow K to be a map on the complexified tangent
bundle, then the metric is allowed to have any signature (or to be complex). Our interest
in complex-valued maps arises from the power of using complex methods in relativity,
which date back to remarkable programmes such as Penrose’s twistor theory, Newman’s
H-space, and Plebański’s hyper-heavenly (HH) construction. (One can argue that, in a
sense, all these constructions can be understood as parts of the twistor programme.) This
is one of our main motivations in this work: submanifolds where the condition (1.1) holds
are actually the basic object of twistor theory, but they arise from a completely different
perspective, namely the essential premise of the twistor programme that light-rays are
more fundamental than spacetime points. A related motivation comes from the fact that
a “complex-valued almost-complex structure” has some significance in developments in
mathematical relativity and their relation to twistor structures, see [16, 17, 18, 19, 20].
As in ordinary para-Hermitian geometry, the phenomenon of “half-integrability” is shared
by such complex-valued maps. The present work can be regarded as the application of
some of the modern DFT-like techniques mentioned above to 4-manifolds, with the extra
ingredient that K can be complex-valued so that one can make contact with general
relativity and twistor theory.

Main results

The fact that we consider complex-valued “para-Hermitian” structures implies that, unlike
the usual literature in DFT and related matters, we can analyse different signatures of the
metric, by imposing different reality conditions. Since we work in a 4-manifold M (which
we assume to be orientable), this means that we will deal with Lorentz, Riemannian (or
Euclidean) and split (or neutral) signature. The Lorentzian case is relevant, of course,
for general relativity (and in particular for the so-called hyper-heavenly spaces [21]); the
Riemannian case is relevant because e.g. of the Atiyah-Hitchin-Singer approach to twistor
theory [22]; and the split case can be related, since the work of Ooguri and Vafa [23], to the
geometry of strings with N = 2 supersymmetry. (It is also related to the LeBrun-Mason
twistor construction in split signature [24].)

Since an arbitrary 4-manifold with a metric does not naturally come equipped with a
(possibly complex-valued) almost para-Hermitian structure, we first focus on classifying all
possible such structures. We show that regardless of signature, an almost para-Hermitian
structure is essentially equivalent to an (anti-)self-dual 2-form (in the sense of Hodge
duality). Then we use this result to describe the space Px of para-Hermitian structures
at any point x ∈ M : we show that Px has two connected components and, imposing
appropriate reality conditions whenever possible, each component can be described as:
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a complex projective line CP
1 in Riemannian signature4, the space (RP1 × RP

1)\RP1 in
split signature, and the space (CP1 × CP

1)\CP1 in Lorentz signature (and in complex 4-
manifolds). We show that, topologically, these spaces are respectively a real 2-sphere S2,
a hyperboloid of one sheet H1, and a complex 2-sphere CS2. For Hermitian structures,
the corresponding spaces are CP

1, CP1\RP1 (a hyperboloid of two sheets) and (CP1 ×
CP

1)\CP1, respectively. We also find that there is a natural “gauge freedom” associated
to the representation of a (para-)Hermitian structure, and we develop a correspondingly
covariant formalism.

We then analyse the integrability conditions for almost (para-)Hermitian structures,
and we show that involutivity of one of the eigenbundles of K (or “half-integrability”)
is equivalent to the existence of certain special spinors, that in relativity language give
origin to what are called shear-free null geodesic congruences. This allows us to show that
there are natural algebroid structures associated to any four-dimensional manifold with a
shear-free congruence, namely Lie and Courant algebroids. This gives explicit examples of
Courant algebroids in four dimensions, that include e.g. all algebraically special Einstein
manifolds (such as the Kerr and Schwarzschild black hole solutions, but also all vacuum
Petrov type II solutions), so it connects the structures studied in generalized geometry
to spacetimes of interest in classical relativity. Furthermore, the Lie algebroid structure
has naturally associated a cochain complex that can be used to prove the existence of
potentials in problems of interest in relativity. We are naturally led to the question of
generalizing the algebroid structure to fields with general transformation properties under
the gauge freedom mentioned above, and we discuss the possible construction of such an
object (“weighted algebroid”) and the associated differential complex.

Finally, we focus on connections with twistor theory, showing that: any particular half-
integrable para-Hermitian structure defines a 2-dimensional (2D) twistor space, and if all
para-Hermitian structures are half-integrable, then there is a 3-dimensional (3D) twistor
space, which is a one-parameter family of 2D twistor spaces parametrized by projective
spinor fields. This 3D space is the total space of a fibration of 2D twistor spaces over
projective spinors if and only if the vacuum Einstein equations are satisfied. We also
discuss the relationships with other twistor constructions in the literature. Finally we
define deformations of para-complex structures in M and analyse their integrability, and
we show that small, half-integrable deformations exist if and only if the Weyl tensor is
half-algebraically special, and in this case they define sections of a line bundle over a
2D twistor space. As in the rest of the paper, our results here are valid for any metric
signature.

Conventions and overview

Our conventions for different kinds of indices, curvature, etc. follow Penrose and Rindler
[25, 26]. The organization of this work is as follows. We start in Section 2 with some
background material: we review basic notions on para-Hermitian geometry and related
structures (keeping always in mind that we allow complex-valued maps), generalized ge-
ometry and Lie and Courant algebroids, and conformal geometry and the Lee form. Then

4This turns out to be analogous to the result on almost-complex structures, which is already known
in the literature [22].
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in Section 3 we study almost para-Hermitian structures in 4-manifolds equipped with a
metric of different signatures, and we describe the spaces of such structures in each case.
In Section 4 we study integrability issues: half-integrability of para-Hermitian structures,
the Lie and Courant algebroids associated to special spacetimes, and a possible notion
of “algebroids” for the treatment of weighted fields. In Section 5 we study some connec-
tions with twistor theory: two- and three-dimensional twistor spaces, twistor families, and
integrability of small deformations of para-complex structures. In Section 6 we make a
summary of this work and comment on some possible future directions. We include three
appendices: Appendix A with a brief review of spinors in 4 dimensions (in any signature),
Appendix B with additional details about the “gauge freedom” and the associated co-
variant formalism, and Appendix C with some properties of the curvature of the natural
connection in the above formalism.

2 Background

2.1 Para-Hermitian and related structures

In the following, M denotes a d-dimensional real, smooth manifold. The definitions still
apply if M is complex.

Definition 2.1. Let E → M be a vector bundle with even rank. Let g be a non-
degenerate symmetric bilinear form on the fibers. Given a map K ∈ End(E), we say that
(g,K) is a para-Hermitian structure on E if it holds:

1. K2 = +I

2. The ±1 eigenbundles of K have the same rank.

3. g(KX,KY ) = −g(X, Y ) for all X, Y ∈ E.

If we require only the first two conditions, K is said to be a para-complex structure.

Consider a para-Hermitian structure (g,K). The map K gives a decomposition E =
L⊕ L̃, where L is the (+1)-eigenbundle of K and L̃ the (−1)-eigenbundle. Any element
X ∈ E can be written as

X = x+ x̃ (2.1)

where x ∈ L and x̃ ∈ L̃. In the following, we will extensively use this notational conven-
tion. Note that if x, y ∈ L, i.e. Kx = x and Ky = y, then g(x, y) = g(Kx,Ky) = −g(x, y)
so g(x, y) ≡ 0 for all x, y ∈ L, and similarly g(x̃, ỹ) ≡ 0 for all x̃, ỹ ∈ L̃. We then say that
L and L̃ are isotropic with respect to g, i.e. g|L = 0 = g|L̃. The following is a standard
result:

Proposition 2.2. We have the isomorphisms L̃ ∼= L∗ and L ∼= L̃∗.

Proof. If X ∈ E = L ⊕ L̃, in general we have g(X, ·) ∈ L∗ ⊕ L̃∗. But if x̃ ∈ L̃, then
g(x̃, ỹ) = 0 for all ỹ ∈ L̃ since L̃ is isotropic, therefore g(x̃, ·) ∈ L∗. Thus we have a map
L̃→ L∗ given by

L̃ ∋ x̃ 7→ x̃♭ := g(x̃, ·) ∈ L∗, (2.2)
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and since g is non-degenerate, the map is an isomorphism. The proof of L ∼= L̃∗ is
analogous.

Since here we are not using the abstract index notation, we use the musical isomorphisms
♭ and ♯. From (2.2) it follows that the map

ϕ : E = L⊕ L̃→ L⊕ L∗, X = x+ x̃ 7→ ϕ(X) = (x, x̃♭) (2.3)

is also an isomorphism.

Definition 2.3. We say that (g,K) is an almost para-Hermitian structure on a manifold
M if (g,K) is a para-Hermitian structure on TM ⊗ C.

Remark 2.4. Notice that the map K in Def. 2.3 satisfies the conditions of Def. 2.1
and is allowed to be complex-valued. From this perspective, we can equally well refer to
the map J = iK as a “Hermitian structure” in the sense that it satisfies J2 = −I, its
eigenbundles have equal rank, and g(J ·, J ·) = g(·, ·). We choose the terminology ‘para-
Hermitian’ because it suggests that the eigenbundles are not related to each other (unlike
in the usual real-valued Hermitian structures), see Remark 2.9 below. See also Remark
3.3.

Remark 2.5. If (g,K) is an almost para-Hermitian structure on M , and Ω is a nowhere
vanishing scalar field, then (Ω2g,K) is also an almost para-Hermitian structure on M ,
since (Ω2g)(K·, K·) = −(Ω2g)(·, ·). This means that we can interpret K as an object
associated not to a particular metric g but to the conformal class [g] = {Ω2g | Ω ∈
C∞(M),Ω > 0}, in the sense that the conditions of definitions 2.3 and 2.1 are satisfied
for any g ∈ [g]. Therefore, conformal invariance will play an important role in our study.
We will refer to ([g], K) as an almost para-Hermitian conformal structure on M .

A para-Hermitian structure (g,K) inM can also be thought of as an “almost-symplectic
structure”, in the sense that it automatically defines a non-degenerate 2-form ω(X, Y ) :=
g(KX, Y ); this is usually called the fundamental 2-form. The relationship of this with
conformal geometry is particularly interesting, see Section 2.3 below. The eigenbundles
of K are isotropic with respect to ω, that is ω|L = 0 and ω|L̃ = 0.

Definition 2.6. An almost para-Kähler structure on a manifold M is an almost para-
Hermitian structure such that the fundamental 2-form is closed, dω = 0.

Although our primary interest is in the case where there is only one para-Hermitian
structure, in later sections it will appear naturally the case in which one has more than
one para-complex or complex structure. Because of this, it is useful to recall now the
algebras of quaternions H and of para-quaternions (or split-quaternions) H′:

H = {q = a+ bi+ cj + dk | i2 = j2 = k2 = −1, k = ij = −ji}, (2.4)

H
′ = {q′ = a + bi+ cs+ dt | i2 = −1, s2 = t2 = 1, t = is = −si} (2.5)

where a, b, c, d ∈ R. The quaternion algebra H is associated to a positive definite quadratic
form5 qq̄ = a2+b2+c2+d2, while H′ is associated to a quadratic form with split signature
q′q̄′ = a2 + b2 − c2 − d2. Based on these algebras, we define:

5The conjugate of a quaternion q is q̄ = a− bi− cj − dk, and the conjugate of a para-quaternion q′ is
q̄′ = a− bi− cs− dt.
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Definition 2.7. Let M be a real manifold, and let I1, I2, I3 be three anticommuting
endomorphisms of TM . Then:

1. (I1, I2, I3) is an almost-hypercomplex (or almost-quaternionic) structure if I1, I2, I3
satisfy the quaternion algebra (2.4). If M is equipped with a metric g, then
(g, I1, I2, I3) is an almost-hyperhermitian structure onM if it is almost-hypercomplex
and g(IiX, IiY ) = g(X, Y ) for all i = 1, 2, 3 and for all vectors X, Y .

2. (I1, I2, I3) is an almost-para-hypercomplex (or almost-para-quaternionic) structure if
I1, I2, I3 satisfy the para-quaternion algebra (2.5). If M is equipped with a metric
g, then (g, I1, I2, I3) is an almost-para-hyperhermitian structure on M if it is almost-
para-hypercomplex and g(I1X, I1Y ) = g(X, Y ) and g(IiX, IiY ) = −g(X, Y ) for
i = 2, 3.

The word ‘almost’ in all the definitions above can be removed by introducing a notion
of integrability. To do this, it is instructive to first briefly recall the situation in complex
geometry. An almost-complex structure in a real manifold M is a real map J in TM
such that J2 = −I, and whose ±i eigenbundles, denoted T±M , have the same rank. One
has the decomposition TM ⊗ C = T+M ⊕ T−M (note that the elements in T±M are
necessarily complex). An almost-complex structure is said to be integrable if T+M is an
involutive distribution in TM ⊗ C, that is [Γ(T+M),Γ(T+M)] ⊂ Γ(T+M), where [·, ·] is
the Lie bracket of vector fields, and Γ(E) denotes the space of sections of a vector bundle
E. A real manifold equipped with an integrable almost-complex structure is a complex
manifold. The integrability condition for J is equivalent to the vanishing of its associated
Nijenhuis tensor, where, if A : Γ(TM) → Γ(TM) is a linear map, the Nijenhuis tensor
associated to A is the map NA : Γ(TM)× Γ(TM) → Γ(TM) given by

NA(X, Y ) =
1

4

(
A2[X, Y ] + [AX,AY ]− A([AX, Y ] + [X,AY ])

)
, (2.6)

for all vector fields X, Y .
Mimicking the above definitions for complex structures, we define

Definition 2.8. A (para-)Hermitian structure on a manifold M is an almost (para-
)Hermitian structure (g,K) such that the Nijenhuis tensor (2.6) associated to K vanishes:

NK ≡ 0. (2.7)

Similarly, a (para-)hyperhermitian structure on M is an almost-(para-)hyperhermitian
structure (g, I1, I2, I3) such that NIi ≡ 0 for all i = 1, 2, 3.

A crucial difference between integrability of ordinary Hermitian and para-Hermitian
structures is the following:

Remark 2.9. The fact that an ordinary almost-complex structure J is a real tensor
implies that its eigenbundles are complex conjugates of each other, so J is integrable if
and only if both distributions T+M and T−M are involutive. In the para-Hermitian case,
the two eigenbundles of a real-valued K are not complex conjugates of each other, so one
of the distributions may be involutive while the other one is not. This also applies if K
is complex-valued as in Def. 2.3.
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Recalling the splitting L⊕ L̃ induced by K, one can then separate integrability prop-
erties associated to the two eigenbundles L and L̃. This gives origin to a notion of
“half-integrability”:

Definition 2.10. We say that an almost para-Hermitian structure (g,K) on M is half-
integrable if one of the eigenbundles of K is involutive. If both eigenbundles are involutive,
then K is integrable and (g,K) is a para-Hermitian structure on M .

Remark 2.11. In [6], half-integrable almost-para Hermitian structures on a manifold
M (with real-valued K) are called L-para Hermitian or L̃-para Hermitian manifolds,
depending on whether the (+1)- or the (−1)-eigenbundle is integrable, respectively.

It is useful to introduce the projectors to L and L̃; respectively:

P := 1
2
(I+K), P̃ := 1

2
(I−K). (2.8)

Using K2 = I, one can easily check that these operators satisfy P 2 = P , P̃ 2 = P̃ and
PP̃ = 0 = P̃P . The Nijenhuis tensor (2.6) for A ≡ K can be rewritten in terms of these
projectors as [6, Eq. (3.13)]

NK(X, Y ) ≡ NP (X, Y ) +NP̃ (X, Y ), (2.9)

where
NP (X, Y ) = P̃ [PX, PY ], NP̃ (X, Y ) = P [P̃X, P̃Y ] (2.10)

Note that if L is integrable, then [PX, PY ] ∈ Γ(L) and therefore P̃ [PX, PY ] = 0, i.e.
NP ≡ 0. Hence NP and NP̃ govern the involutivity of L and L̃ respectively.

Remark 2.12. By Frobenius theorem (see e.g. [27, Theorem 19.21]), if M is a real
manifold and one has an involutive distribution L ⊂ TM then the collection of all integral
manifolds6 of L forms a foliation of M . But if the involutive distribution is complex,
i.e. L ⊂ TM ⊗ C, then the integral manifolds are complex submanifolds living in the
complexification of M 7. Since complexification requires real-analyticity of M (which is
a restrictive property from the point of view of relativity), in general we will not assume
the existence of a foliation. The involutivity of the distribution, however, is well-defined,
and is what we mostly need in this work.

Remark 2.13. Since the eigenbundles L and L̃ of K are isotropic with respect to the
almost-symplectic form ω, we can refer to them as Lagrangian subbundles. If, say, L is
integrable and gives origin to a foliation F , we can refer to F as a Lagrangian foliation.

The integrability of almost-para-Hermitian and related structures is a conformally
invariant property. Other properties that are not conformally invariant are also of interest,
in particular the Kähler and related conditions:

Definition 2.14. Let M be a real manifold.

6An integral manifold of a distribution L ⊂ TM is an immersed submanifold N ⊂ M such that
TpN = L|p for all p ∈ N . A generic distribution does not admit integral manifolds.

7Note that, given a real manifold M , the complex manifold resulting from an integrable almost-complex
structure, and the complexification of M , are two different concepts.
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1. An almost-para-Hermitian structure (g,K) onM is para-Kähler if it is para-Hermitian
and almost-para-Kähler, that is, K is integrable and dω = 0.

2. An almost-para-hyperhermitian structure (g, I1, I2, I3) on M is para-hyperkähler if
it is para-hyperhermitian and dωi = 0, where ωi(·, ·) = g(Ii·, ·), i = 1, 2, 3.

One can show the following:

Proposition 2.15. Let (g,K) be an almost-para-Hermitian structure on a real manifold
M . Then (g,K) is para-Kähler if and only if K is parallel with respect to the Levi-Civita
connection of g. Likewise, an almost-para-hyperhermitian structure (g, I1, I2, I3) on M is
para-hyperkähler if and only if Ii is parallel w.r.t. the Levi-Civita connection of g for all
i = 1, 2, 3.

2.2 Generalized geometry and algebroids

2.2.1 Elementary notions

Let V be a d-dimensional vector space and V ∗ its dual, and consider the space V ⊕ V ∗.
We will denote elements of V ⊕V ∗ by (X,α), (Y, β), etc. There is a natural inner product
〈·, ·〉 on V ⊕V ∗ given by 〈(X,α), (Y, β)〉 = α(Y )+β(X) 8. Any orthogonal endomorphism,
i.e. any elemeny of so(V ⊕ V ∗), can be written as

(
A β
B −A∗

)

where A ∈ End(V ), B can be viewed as a 2-form in ∧2V ∗ and β as a bivector in ∧2V .
Exponentiating, one gets elements in SO(V ⊕ V ∗), that can be separated into

exp(B) =

(
1 0
B 1

)
, exp(β) =

(
1 β
0 1

)
, exp(A) =

(
expA 0
0 (expA∗)−1

)
. (2.11)

Remark 2.16. The matrix exp(B) in (2.11) is called a B-transformation, and it can be
thought of as a shear transformation in the sense that it fixes projections to V while
shearing in the direction of V ∗; see [2, Chapter 2]. This interpretation and terminology
will be particularly well-suited to our purposes in later sections. Analogous considerations
apply to the β-transformation given by the matrix exp(β).

While the above is just linear algebra and can be done for any vector space, in
Generalized Geometry one applies this to the case where V is the tangent space to a
point in a d-dimensional manifold M , and the generalized tangent bundle is defined as
TM := TM ⊕ T ∗M . The construction above then describes the pointwise structure of
TM . The differential structure is described by generalizing the notion of Lie bracket [·, ·]
of vector fields to a bracket operation on sections of TM . There are two different bracket
operations considered in the literature, the Courant bracket and the Dorfman bracket.
Here we choose the Dorfman bracket and denote it by J·, ·K; it is defined by

J(X,α), (Y, β)K = ([X, Y ],£Xβ −£Y α + d(iY α))

8A factor of 1/2 is often included in the right hand side of this equation, but for our purposes this is
not important.
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where £ denotes the Lie derivative and iY the interior product. The Courant bracket is
the skew-symmetrization of the Dorfman bracket. While the ordinary Lie bracket is skew-
symmetric and satisfies the Jacobi identity, the Dorfman bracket is not skew-symmetric,
but it satisfies the Jacobi identity. In turn, the Courant bracket is skew-symmetric, but
it does not satisfy the Jacobi identity.

2.2.2 Lie and Courant algebroids

In the literature one frequently encounters real Lie algebroids, but in this work we need
the complexified versions (although the manifold is still real). This is also used in e.g. [2],
see Chapter 3 therein.

Definition 2.17. A (complex) Lie algebroid is a triple (L, [·, ·]L, ρ) where L → M is a
complex vector bundle, [·, ·]L : Γ(L)×Γ(L) → Γ(L) is a bilinear map, and ρ : L→ TM⊗C

is a bundle map called anchor, such that, for all X, Y, Z ∈ Γ(L) and f ∈ C∞(M), the
following four conditions are satisfied9:

1. [X, Y ]L = −[Y,X ]L.

2. JacL(X, Y, Z) := [X, [Y, Z]L]L + [Z, [X, Y ]L]L + [Y, [Z,X ]L]L = 0.

3. ρ([X, Y ]L) = [ρ(X), ρ(Y )], where [·, ·] is the Lie bracket of vector fields.

4. [X, fY ]L = (ρ(X)f)Y + f [X, Y ]L.

From the first item we see that [·, ·]L is skew-symmetric, and the second means that the
Jacobiator for [·, ·]L vanishes, or, in other words, the Jacobi identity for [·, ·]L is satisfied.
Together, these two items imply that [·, ·]L is a Lie bracket. The third item means that
ρ is a morphism, and from the fourth item we see that the anchor and the bracket are
subject to the Leibniz rule.

The following are standard examples of Lie algebroids, taken from [2, Chapter 3]:

Example 2.18. The tangent bundle TM gives origin to the tangent Lie algebroid (TM, [·, ·], I),
where the bracket is the Lie bracket of vector fields and the anchor is the identity map.

Example 2.19. If L ⊂ TM is an involutive distribution, then (L, [·, ·]L, IL) is a Lie
algebroid, with [·, ·]L and IL the restrictions of, respectively, the Lie bracket and the identity
map of TM to the subbundle L.

We will need some objects that can be naturally constructed from the structures in a
Lie algebroid:

Definition 2.20 (Def. 3.7 and 3.8 in [2]). Let (L, [·, ·]L, ρ) be a Lie algebroid, let Λk =
∧kL∗ for k = 0, 1, 2, ..., and let ω ∈ Γ(Λk) and X0, ..., Xk ∈ Γ(L).

9The anchor ρ extends to a map between sections Γ(L) → Γ(TM ⊗ C) that we also denote by ρ.
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1. The Lie algebroid exterior derivative is the map dL : Γ(Λk) → Γ(Λk+1) defined by

(dLω)(X0, ..., Xk) =
∑

i

(−1)iρ(Xi)ω(X0, ..., X̂i, ..., Xk)

+
∑

i<j

(−1)i+jω([Xi, Xj ]L, X0, ..., X̂i, ..., X̂j, ..., Xk) (2.12)

where the notation X̂i means that the vector Xi is omitted.

2. The generalized Lie derivative £
L of ω along X ∈ Γ(L) is the operator defined in

terms of dL by Cartan’s formula

£
L
Xω = iXd

Lω + dLiXω (2.13)

where iX denotes interior product, iXω = ω(X, ...).

As examples of the exterior derivative (2.12), if f ∈ Γ(Λ0) and ω ∈ Γ(Λ1) then

(dLf)(X) = ρ(X)f, (2.14)

(dLω)(X, Y ) = ρ(X)ω(Y )− ρ(Y )ω(X)− ω([X, Y ]L). (2.15)

Remark 2.21 (de Rham complexes). The fact that the bracket of a Lie algebroid satisfies
the Jacobi identity, together with the morphism property of the anchor, imply that the Lie
algebroid exterior derivative dL satisfies dL ◦ dL = 0. Therefore, (Γ(Λ•), dL) is a cochain
complex (see e.g. [2, Chapter 3]). This will be particularly important in sections 4.2, 4.3.

Definition 2.22 (Def. 3.1 in [5]). A Courant algebroid is a quadruple (E, 〈·, ·〉, ρ, J·, ·K)
where: E → M is a vector bundle, 〈·, ·〉 : Γ(E) × Γ(E) → C∞(M) is a non-degenerate
symmetric bilinear form, ρ : E → TM is a bundle map called anchor, and J·, ·K : Γ(E)×
Γ(E) → Γ(E) is a bilinear operation called Dorfman bracket, subject to the following
axioms for all X, Y, Z ∈ Γ(E):

1. ρ(X)〈Y, Z〉 = 〈JX, Y K, Z〉+ 〈Y, JX,ZK〉

2. 〈JX,XK, Y 〉 = 1
2
ρ(Y )〈X,X〉

3. JX, JY, ZKK = JJX, Y K, ZK + JY, JX,ZKK

In terms of the Dorfman bracket, the axioms in Definition 2.22 have the following
meaning: the first axiom means invariance of the inner product with respect to the bracket;
from the second axiom we see that the bracket is not skew-symmetric; and the third axiom
means that the bracket satisfies the Jacobi identity.

The definition of a Courant algebroid can be given using two different bracket opera-
tions: the Courant bracket J·, ·KCour or the Dorfman bracket J·, ·K. The difference is that
one can require the bracket either to be skew-symmetric (Courant) or to satisfy the Jacobi
identity (Dorfman), but not both. The original definition, introduced in [28], is in terms
of the Courant bracket. The two brackets are related by JX, Y KCour =

1
2
(JX, Y K−JY,XK).

Remark 2.23. If only the first and second axioms in Definition 2.22 are required, the
bracket is said to be metric-compatible. The quadruple (E, 〈·, ·〉, ρ, J·, ·K) is then called
metric algebroid [4].
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From the axioms in Definition 2.22 one can deduce two additional identities:

JX, fY K = (ρ(X)f)Y + fJX, Y K, (2.16)

ρ(JX, Y K) = [ρ(X), ρ(Y )] (2.17)

for any f ∈ C∞(M). The first identity means that the anchor and the bracket satisfy
the Leibniz rule; the second identity means that ρ is a morphism of bundles. These
identities are sometimes included as part of the definition of a Courant algebroid, but it is
known that they can be obtained from the axioms: to prove (2.16), compute 〈JX, fY K, Z〉
for Z ∈ Γ(E) arbitrary and use the first axiom; to prove (2.17), compute both sides
independently applied to 〈Z,W 〉 for arbitrary Z,W ∈ Γ(E), and use the first and third
axioms.

As shown in [28], a natural example of a Courant algebroid can be obtained from a
Lie bialgebroid. A related example, which is key for our purposes, is the following:

Proposition 2.24 (See e.g. Example 2.6 in [7]). Let (L, [·, ·]L, ρL) be a Lie algebroid, and
consider the vector bundle L ⊕ L∗. Denote sections of L ⊕ L∗ by (X,α), (Y, β) etc., and
introduce the following maps:

πL⊕L∗((X,α)) = X, (2.18)

〈(X,α), (Y, β)〉L⊕L∗ = α(Y ) + β(X), (2.19)

J(X,α), (Y, β)KL⊕L∗ = ([X, Y ]L,£
L
Xβ − £

L
Y α+ dL(iY α)) (2.20)

where dL and £
L were defined in Definition 2.20. Then the quadruple

(L⊕ L∗, 〈·, ·〉L⊕L∗, πL⊕L∗ , J·, ·KL⊕L∗) (2.21)

is a Courant algebroid, with inner product 〈·, ·〉L⊕L∗, anchor πL⊕L∗ and Dorfman bracket
J·, ·KL⊕L∗.

This procedure for constructing Courant algebroids from Lie algebroids is particularly
natural in manifolds with a foliation, as described by Vaisman in [5, Section 3]. The
following result is essentially Proposition 3.1 in [5] (see also [7, Section 3.4]):

Proposition 2.25. Let (g,K) be an almost-para Hermitian structure on a d-dimensional
real manifold M (Def. 2.3). Let L and L̃ be the two eigenbundles of K, and assume that
L is involutive. Then the quadruple

(TM ⊗ C, g, P, J·, ·K)

is a Courant algebroid, where the inner product g is the metric, the anchor P is the
projector (2.8) to L, and the Dorfman bracket is

JX, Y K = ϕ−1(J(x, x̃♭), (y, ỹ♭)KL⊕L∗).

Here, ϕ and ♭ are the isomorphisms (2.3) and (2.2), J·, ·KL⊕L∗ is the Dorfman bracket
(2.20), and x = PX, x̃ = P̃X, y = PY , ỹ = P̃Y are the decompositions of vectors
induced by K.
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Proof. The tangent bundle splits as TM⊗C = L⊕L̃, where L and L̃ are the eigenbundles
of K and L is involutive. From Example 2.19, the distribution L defines a Lie algebroid
(L, [·, ·]L, IL). Therefore, applying Proposition 2.24, the quadruple

(L⊕ L∗, 〈·, ·〉L⊕L∗, πL⊕L∗ , J·, ·KL⊕L∗) (2.22)

is a Courant algebroid, where the anchor, inner product and Dorfman bracket are given
by (2.18), (2.19) and (2.20). Now one simply has to transfer this structure to TM ⊗ C

using the isomorphisms ϕ and ♭ (eqs. (2.3), (2.2)). Any elements X, Y ∈ Γ(TM ⊗C) can
be written as X = x+ x̃ and Y = y + ỹ, where x, y,∈ Γ(L) and x̃, ỹ ∈ Γ(L̃). Using these
decompositions, and the fact that g|L = 0 = g|L̃, a brief calculation shows that

g(X, Y ) = 〈(x, x̃♭), (y, ỹ♭)〉L⊕L∗ ,

so the metric g plays the role of the inner product in Def. 2.22. Furthermore, recalling
the projector P given in (2.8) and using again X = x+ x̃, we have

P (x+ x̃) = x = πL⊕L∗((x, x̃♭))

so P plays the role of the anchor. Finally, let us see the Dorfman bracket. Since any
elements α, β ∈ Γ(L∗) can be written as α = x̃♭, β = ỹ♭ for some x̃, ỹ ∈ Γ(L̃), the
Dorfman bracket (2.20) is

J(x, x̃♭), (y, ỹ♭)KL⊕L∗ = ([x, y]L,£
L
x ỹ♭ − £

L
y x̃♭ + dLg(x̃, y)) (2.23)

where we recall that by definition, x̃♭(y) ≡ g(x̃, y). The right hand side of (2.23) is,
of course, an element of L ⊕ L∗. In order to map this to L ⊕ L̃, one uses the inverse
isomorphisms ♯ : L∗ → L̃ and ϕ−1 : L ⊕ L∗ → L ⊕ L̃, which map L ⊕ L∗ ∋ (z, γ) 7→
ϕ−1((z, γ)) = z + γ♯ ∈ L⊕ L̃. Replacing (z, γ) by the right hand side of (2.23), we get

Jx+ x̃, y + ỹK ≡ ϕ−1(J(x, x̃♭), (y, ỹ♭)KL⊕L∗)

= [x, y] +
(
£

L
x ỹ♭ − £

L
y x̃♭ + dLg(x̃, y)

)♯
. (2.24)

(This is the unnumbered equation above eq. (20) in [7].)

2.3 Conformal geometry and the Lee form

As noticed in Remark 2.5, conformal invariance plays an important role in our work.
Recall that, given a manifold M and a metric g on it, the conformal class of g is defined
as [g] = {Ω2g | Ω ∈ C∞(M),Ω > 0}. We refer to the pair (M, [g]) as a conformal
structure. The elements in [g] are called conformal representatives.

Definition 2.26. Let (M, [g]) be a conformal structure. A Weyl connection is a linear,
torsion-free connection w∇ such that for any conformal representative g ∈ [g], it holds
w∇g = −2f ⊗ g for some 1-form f . We call f the Weyl 1-form.

Under a change of conformal representative g → ĝ = Ω2g, by definition we must have
w∇ĝ = −2f̂ ⊗ ĝ for some 1-form f̂ . Replacing ĝ = Ω2g on the left hand side, we see that
f and f̂ are related by (from now on we will frequently use the abstract index notation)

f̂a = fa − (d log Ω)a. (2.25)
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If we choose a metric g ∈ [g] with Levi-Civita connection ∇, the relationship between
w∇ and ∇ is given by a tensor field Q : Γ(TM)× Γ(TM) → Γ(TM). Explicitly, one has

g(w∇XY, Z) = g(∇XY, Z) + g(Q(X, Y ), Z),

where
g(Q(X, Y ), Z) = f(X)g(Y, Z) + f(Y )g(X,Z)− f(Z)g(X, Y ).

In index notation this can be expressed as

w∇aY
b = ∇aY

b +Qac
bY c, (2.26)

where
Qac

b = δbcfa + δbafc − gbdgacfd. (2.27)

There are interesting relations between the 1-form f associated to a Weyl connection
and certain properties of almost para-Hermitian structures. This dates back to the original
work of H. C. Lee in [29] on almost symplectic manifolds (M, aab): M is a d-dimensional
manifold (with d even) and aab = a[ab] is a non-degenerate 2-form. The inverse of aab is
(a−1)ab, so that (a−1)acacb = δab. Lee defines the “curvature tensor” of aab as (da)abc, and
the “curvature vector” as (a−1)bc(da)abc. Two such spaces (M, aab) and (M̂, âab) are said
to be “conformal” to each other if there exists a scalar field φ such that

âab = φaab. (2.28)

Assuming d > 2 and defining the 1-form

ka :=
1

(d−2)
(a−1)bc(da)abc,

it is observed in [29] that k̂a and ka are related by

k̂a = ka − (d logφ)a (2.29)

It follows from this that (dk)ab = (dk̂)ab, so (dk)ab is called the “first conformal curvature
tensor” by Lee. There is also a “second conformal curvature tensor”: a 3-form cabc given
by

cabc := (da)abc + (k ∧ a)abc. (2.30)

The tensors cabc and ĉabc are related by ĉabc = φcabc.
Now, as already noticed, a manifold with an almost-para-Hermitian structure (g,K)

comes automatically with an almost-symplectic form ωab = gcbK
c
a. Therefore, we may

take aab ≡ ωab in Lee’s construction. Since Ka
cK

c
b = δab, we have (ω−1)ab = gacgbdωcd ≡

ωab. Under a conformal transformation of the metric, gab → ĝab = Ω2gab, the new almost-
symplectic 2-form is ω̂ab = Ω2ωab. Thus, we take φ = Ω2 in (2.28) and subsequent
formulas, and we define:

Definition 2.27. Let ([g], K) be an almost (para-)Hermitian conformal structure on a
d-dimensional manifold M , with d > 2. For a choice g ∈ [g], let ω be the associated
almost-symplectic 2-form. We define the Lee form as

θa =
1

2(d−2)
ωbc(dω)abc. (2.31)
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If ∇a is the Levi-Civita connection of gab, a short calculation using ωabωab = −d shows
that (2.31) can be written as

θa =
1

(d−2)
Kb

c∇bK
c
a.

This is equivalent to θa = − 1
(d−2)

Kc
a∇bK

b
c, or in index-free notation:

θ(X) = − 1
(d−2)

(δω)(KX) (2.32)

for any vector field X, where δ is the codifferential.
From (2.29) and (2.31) we see that the Lee form θa has exactly the transformation

property of a Weyl 1-form under conformal transformations of the metric gab → ĝab =
Ω2gab (i.e. θa → θ̂a = θa − (d logΩ)a). Therefore, from the discussion above, we deduce:

Proposition 2.28. An almost (para-)Hermitian structure (g,K) on M induces a natural
Weyl connection in the conformal structure (M, [g]), by taking the Lee form as the Weyl
1-form, θa ≡ fa.

This motivates the following definition:

Definition 2.29. Let ([g], K) be an almost (para-)Hermitian conformal structure on M ,
and let w∇ be a Weyl connection. We say that w∇ and K are compatible if the Weyl
1-form associated to w∇ and the Lee form associated to K coincide (in other words, w∇
is induced by K).

Remark 2.30. In the literature, see e.g. [30, Section 4] (also [18]), the usual definition of
compatibility of a Weyl connection w∇ with a Hermitian structure K is that they must
satisfy

w∇aK
a
b = 0. (2.33)

Using (2.26)-(2.27), it follows easily that this is true if and only if the condition of Defini-
tion 2.29 holds, namely the Weyl 1-form is equal to the Lee form. Thus, the two definitions
coincide. However, we have chosen Def. 2.29 since it is an immediate consequence of Lee’s
construction, while the geometric meaning of requiring (2.33) as a compatibility condition
is not clear to us.

Finally, from Lee’s results [29] and the definitions given in Section 2.1 we have:

Proposition 2.31 (Lee [29]). Let (g,K) be an almost (para-)Hermitian structure on a
d-dimensional manifold M . Then:

1. (g,K) is almost (para-)Kähler if and only if the Lee form (2.31) vanishes.

2. For d = 4, (g,K) is locally conformally almost (para-)Kähler if and only if the Lee
form is closed.

3. For d > 4, (g,K) is locally conformally almost (para-)Kähler if and only if cabc ≡ 0
(where cabc is defined in (2.30)).

Proof. The first item follows from the definitions of almost (para-)Kähler (Def. 2.6,
dω = 0) and the Lee form (2.31). The second and third items are Theorem 5 in [29].
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3 Almost para-Hermitian structures in four dimensions

3.1 Self-dual forms

Consider a 4-dimensional, orientable, real manifold M , equipped with a metric. Let
Λk(M) = ∧kT ∗M be the space of k-forms. The Hodge star operator ∗ can be seen as a
map ∗ : Λ2(M) → Λ2(M) satisfying ∗2 = (−1)s, where s is the number of (−1)’s appearing
in the signature of the metric. Thus, in Riemannian (s = 0) and split (s = 2) signature, ∗
always defines a para-complex structure in Λ2(M), whereas in Lorentz signature (s = 3)
it defines a complex structure in Λ2(M). The eigenvalues of ∗ are ±

√
(−1)s. The space

of 2-forms is then decomposed as

Λ2(M) = Λ2
+(M)⊕ Λ2

−(M) (3.1)

where Λ2
+(M) is the eigenspace corresponding to the eigenvalue +

√
(−1)s, and Λ2

−(M)

corresponds to −
√

(−1)s. Elements of Λ2
+(M) are called self-dual (SD) 2-forms, and

elements of Λ2
−(M) are anti-self-dual (ASD) 2-forms.

Theorem 3.1. Let M be a real, 4-dimensional, orientable manifold with a metric g, let
A ∈ Aut(TM ⊗ C) and let W be a bilinear map defined by

W (X, Y ) = g(AX, Y ) (3.2)

for any vectors X, Y . Furthermore, let a be a non-vanishing scalar10. Then A satisfies
the conditions

A2 = aI, (3.3)

g(AX,AY ) = − ag(X, Y ) (3.4)

if and only if the map W is either a self-dual or an anti-self-dual 2-form.

Proof. We will use the abstract index notation, and the metric and its inverse to raise
and lower indices as convenient. Notice that since A is an automorphism, the map W
in (3.2) is non-degenerate. Appendix B in [31] will be useful in the following. Since
M is orientable, it has a volume 4-form εabcd, and the metric allows to normalize it as
εabcdεabcd = (−1)s4!.

Assume first that A ∈ Aut(TM ⊗ C) satisfies (3.3) and (3.4). In index notation this
is

Aa
cA

c
b = aδab, (3.5)

gcdA
c
aA

d
b = − agab (3.6)

with a 6= 0. The bilinear map (3.2) is Wab = gbcA
c
a. Multiplying by Ab

d and using (3.6):

WabA
b
d = gbcA

c
aA

b
d = −agad.

Contracting now with Ad
c and using (3.5):

WabA
b
dA

d
c = aWac = −agadAd

c = −aWca,

10For the case a = 0, see Remark 3.7 below.
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which shows that Wac = −Wca and therefore Wab is a 2-form. Now we want to show that
it is (A)SD. We can write the volume form as εabcd = NW[abWcd], where N is determined
by the normalization of εabcd. Expanding the skew-symmetrization:

εabcd =
N
3
(WabWcd +WacWdb +WadWbc).

Contracting with W cd and using that Wab = −Wba:

εabcdW
cd = N

3
(WabWcdW

cd + 2WacWdbW
cd).

Now, using that Wdb = gebA
e
d and W cd = gcegdfWef , we have

WdbW
cd = Ac

dA
d
b = aδcb

from which it also follows that WcdW
cd = −4a. Therefore

εabcdW
cd = −2

3
NaWab. (3.7)

Using now the normalization of εabcd:

(−1)s4! = εabcdεabcd = NεabcdWabWcd =
8
3
N2a2,

thus
Na = ±3

√
(−1)s.

Replacing in (3.7) and using the definition ∗Wab =
1
2
εabcdW

cd, we get

∗Wab = ∓
√

(−1)s Wab,

which shows that Wab must be (A)SD.
Suppose now that the map W defined in (3.2) is a 2-form. Writing the volume form

again as εabcd = NW[abWcd], and using the normalization εabcdεabcd = (−1)s4!, a short
calculation reveals that (−1)s4! = 2N∗W abWab, thus

N = 12(−1)s(∗W abWab)
−1. (3.8)

Now, from formula (B.2.13) in [31] we have

(−1)s3!δab = εcdeaεcdeb

Replacing εcdeb = NW[cdWeb] and the expression for N , we get the general identity

δab = −4(∗W deWde)
−1 ∗W acWcb.

Assume now that Wab is (A)SD:
∗Wab = ǫWab,

where ǫ = ±
√

(−1)s, depending on the signature of g and on whether we consider SD or
ASD forms. In any case, the above identity becomes

δab = −4(W deWde)
−1 W acWcb, (3.9)

which shows that Aa
b = gacWbc satisfies (3.5), with a = −1

4
WefW

ef . Finally, to see that
(3.4) holds, we compute

gcdA
c
aA

d
b = −WdaA

d
b = −agab

where the second equality is deduced form (3.5) by contracting with gda.
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Corollary 3.2. Let A ∈ Aut(TM ⊗ C) and let W be defined by (3.2). Define a scalar
field φ, a bilinear map ω, and a map K ∈ Aut(TM ⊗ C) by, respectively,

φ = (−1
4
WabW

ab)1/2, (3.10)

ω = φ−1W, (3.11)

g(KX, Y ) = ω(X, Y ) (3.12)

for any vectors X, Y . Then K satisfies the conditions

K2 = I, (3.13)

g(KX,KY ) = − g(X, Y ) (3.14)

if and only if ω is either a self-dual or an anti-self-dual 2-form.

Remark 3.3. Suppose that ω in (3.11) is an (A)SD 2-form. Then the map K defined
in (3.12) satisfies equations (3.13) and (3.14), and its eigenvalues are +1,+1,−1,−1 so
the two eigenbundles of K have the same rank. According to definitions 2.1 and 2.3, we
say that (g,K) is an almost para-Hermitian structure. Notice that K is not necessarily
real-valued, this is the reason why we use TM ⊗C instead of TM in Def. 2.3. The reality
of K depends on the signature of g:

1. Riemannian signature (+ + ++): (A)SD forms can be chosen to be real, but φ in
(3.10) is always purely imaginary, so K is purely imaginary or complex-valued.

2. Split signature (++−−): (A)SD forms can be chosen to be real, but φ can be real
or complex, so K can be real- or complex-valued.

3. Lorentz signature (+−−−): (A)SD forms are necessarily complex, so K is complex-
valued.

3.2 Spaces of almost para-Hermitian structures

The results of Theorem 3.1 and its Corollary 3.2 show us that we can think of maps
satisfying (3.13) and (3.14) equivalently in terms of non-degenerate (A)SD 2-forms. Here
we will give a convenient parametrization of the space of such maps at a point x ∈ M ,
that is of the space

Px := {K ∈ Aut(TxM ⊗ C) | K2 = I and g(K·, K·) = −g(·, ·)}. (3.15)

As emphasized in Remark 3.3, we consider K ∈ Aut(TxM ⊗ C) since a tensor satisfying
(3.13)-(3.14) is not necessarily real. Imposing reality conditions changes the structure of
Px, and this will depend on the metric signature. Our results in this subsection can be
summarized in the following form:

Theorem 3.4. Let M be a real, orientable 4-manifold with a metric g, and let x ∈ M .
The space (3.15) has two connected components, and depending on the signature of g,
each component can be parametrized as follows:
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1. Riemannian signature: the elements in the set (3.15) are not real but can be chosen
to be purely imaginary, and each of the two components in the space of such maps
is

P (R)
x

∼= CP
1 ∼= S2 (3.16)

where CP
1 is the complex projective line, and S2 is the unit 2-sphere.

2. Split signature: the elements in the set (3.15) can be chosen to be real, and each of
the two components in the space of such maps is

P (S)
x

∼= (RP1 × RP
1)\RP1 ∼= H1 (3.17)

where RP
1 is the real projective line, and H1 is a hyperboloid of one sheet.

3. Lorentz signature: the elements in the set (3.15) are necessarily complex, and each
of the two components in the space of such maps is

P (L)
x

∼= (CP1 × CP
1)\CP1 ∼= CS2 (3.18)

where CS2 is the complexified 2-sphere.

Remark 3.5. The result (3.16) is analogous to the result about almost-complex structures
in Riemannian geometry, which is already known in the literature (see Remark 3.8 below).

We will first analyse the general structure of (3.15) and then study the different sig-
natures separately.

First of all, the two connected components in Px refer to the fact that, if K ∈ Px, then
the 2-form ω(·, ·) = g(K·, ·) can be self-dual or anti-self-dual. We will focus on only one
of the components of Px; the analysis for the other is analogous.

The parametrization of Px involves the use of spinors. We refer to Appendix A for
a brief review of spinors in four dimensions, as well as for notation and conventions (see
also Appendix B for spinor fields). In particular, we raise and lower spinor indices with
the symplectic forms ǫAB, ǫA′B′ and their inverses. In any signature, the spaces of SD and
ASD 2-forms have the spinor decomposition

Λ2
+(M) ∼= S

′∗ ⊙ S
′∗, Λ2

−(M) ∼= S
∗ ⊙ S

∗, (3.19)

where S′∗ and S∗ are the (dual) primed and unprimed spinor bundles (see the beginning
of Appendix B). In indices, this means that if W+

ab is SD, and W−
ab is ASD, then there

exist symmetric spinors ϕAB = ϕ(AB) and ψA′B′ = ψ(A′B′) such that

W+
ab = ψA′B′ǫAB, (3.20)

W−
ab = ϕABǫA′B′ . (3.21)

These 2-forms are non-degenerate if and only if ψA′B′ψA′B′ 6= 0 and ϕABϕ
AB 6= 0 respec-

tively. In the following, since we will focus on only one of the two components of Px, we
are free to choose to work with either SD or ASD forms. For concreteness, from now on
we will focus on the ASD case (the SD case being entirely analogous), that is on forms
like (3.21), and we omit the superscript “−” since it will not be needed.
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Remark 3.6 (Convention). If a tensor/spinor depends non-trivially only on unprimed
spinors, we will often refer to it as having “negative chirality”, while if it depends only on
primed spinors we will say that it has “positive chirality”. For example, we say that ϕA

or T a
b = τABδ

A′

B′ have negative chirality, and that UaB = σA′ǫAB or Vab = ρA′B′ǫAB have
positive chirality. More formally, the notions of negative and positive chirality refer to the
two kinds of representations of the spin group (in the notation of appendix A, negative
chirality corresponds to representations (n, 0), and positive chirality to (0, m)).

Remark 3.7 (Null-Kähler). We notice that the proof of Theorem 3.1 is particularly
simple if one uses the isomorphisms (3.1), (3.19) and the explicit expressions (3.20) and
(3.21). Actually, these decompositions also allow to deal with the case a = 0 in (3.3).
Suppose that N ∈ End(TN ⊗ C) satisfies N2 = 0 and g(NX, Y ) + g(X,NY ) = 0 for all
X, Y . Then using (3.1), (3.19)–(3.21), it is straightforward to show that any N satisfying
these conditions must be of the form

Na
b = αAαBδ

A′

B′ or Na
b = µA′

µB′δAB (3.22)

for some spinors αA, µA′

, depending on whether the 2-form g(N ·, ·) is SD or ASD. We
may refer to the pair (g,N) as an ‘almost-null Kähler structure’. It follows that the space
of such maps at a point x ∈ M is simply the space of spinors at x. If the spinor αA (or
µA′

) is parallel under the Levi-Civita connection of g, then this is called a Null-Kähler
structure, see [32] and [33, Section 10.2.3]. (If N is real, then the signature of g must be
split, however here we allow N to be complex.)

Let Wab be an ASD 2-form at x ∈ M , with the spinor representation (3.21), and
let (ξA, ηA) be a basis of S

∗|x, where ξAη
A = χ 6= 0. Then ϕAB can expanded as (see

Appendix A)
ϕAB = χ−2[ϕ2ξAξB − ϕ1(ξAηB + ηAξB) + ϕ0ηAηB], (3.23)

where ϕ0 = ϕABξ
AξB, ϕ1 = ϕABξ

AηB and ϕ2 = ϕABη
AηB. The scalar (3.10) is then

φ = (−1
2
ϕABϕ

AB)1/2 = χ−1(ϕ2
1 − ϕ0ϕ2)

1/2. Thus, the tensor Ka
b = φ−1gacWbc satisfies

(3.13) and (3.14) and is explicitly

Ka
b =

1

χ
√
ϕ2
1 − ϕ0ϕ2

[
ϕ2ξ

AξB − ϕ1(ξ
AηB + ηAξB) + ϕ0η

AηB
]
δA

′

B′ . (3.24)

This can be written in a more convenient form by expressing ϕAB in terms of its principal
spinors, see Appendix A: since ϕABϕ

AB 6= 0, there exist two non-proportional spinors
αA, βA such that

ϕAB = αAβB + αBβA. (3.25)

Independently of signature, the spinors αA and βA are in general complex, since they
are obtained by finding the roots of a second order polynomial; see around eq. (A.10).
However, whereas in Lorentzian and Riemmanian signature they are necessarily complex,
in split signature the combination in the right hand side of (3.25) is real.

The decomposition (3.25) implies that φ = αCβ
C , therefore

Ka
b = (αCβ

C)−1(αAβB + βAαB)δ
A′

B′ . (3.26)
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From Corollary 3.2 we see that any map satisfying conditions (3.13) and (3.14) in four
dimensions has the form (3.26) for some spinors αA, βA (the only other possibility being
choosing positive instead of negative chirality). However, (3.26) does not uniquely fix
these spinors: we see from this equation that K is invariant under

αA → λαA, βA → µβA (3.27)

for any non-vanishing scalars λ and µ. Now, the space of spinors at a point (the fiber
of the spin bundle) is C2 in signature (+ − −−) and (+ + ++), and R2 in signature
(+ + −−). Since any element of the set (3.15) (with negative chirality) can be put in
the form (3.26), and since the spinors are subject to the projective equivalence (3.27), we
deduce that a priori each component of the set Px can be parametrized by the product
of two projective spaces, that is CP

1 × CP
1. (Notice that although in the split signature

case the projective spin space is RP
1, if we allow the rescalings in (3.27) to be complex

then we get the complexification of RP1, which is CP1.) But since the spinors αA and βA
are not allowed to be proportional, we must remove the “diagonal” from CP

1 × CP
1, so

we get
Px

∼= {(α, β) ∈ CP
1 × CP

1 | α 6= β} ∼= (CP1 × CP
1)\CP1 (3.28)

where we are now abusing notation and using Px for one of the two components of (3.15).
Requiring reality conditions for (3.26), however, imposes additional restrictions on the
spinors αA, βA. We will analyse separately the different signatures.

3.2.1 Riemannian signature

In this case we can require the ASD 2-form Wab to be real. To analyse this in more
detail, we need to introduce the Euclidean spinor conjugation. This is an involution †
on the spin spaces, i.e. S → S and S

′ → S
′ (so it does not interchange the chirality as

in the Lorentzian case), and if we write a spinor ϕA in components as ϕA = (a, b), then
ϕ†
A = (−b̄, ā). It follows that †2 = −1. Since ǫ†A′B′ = ǫA′B′ , we get that Wab is real if and

only if βA = iα†
A, so Wab = i(αAα

†
B + α†

AαB)ǫA′B′ . Furthermore, (αCβ
C)−1 = −i/‖α‖2,

where ‖α‖2 := ǫABα
Aα†B. Therefore, with the additional requirement of real ASD 2-

forms, the map (3.26) becomes in the Riemannian case

Ka
b =

1

‖α‖2 (α
Aα†

B + α†AαB)δ
A′

B′ , (3.29)

so we see explicitly that K is parametrized by only one projective spinor. Each of the two
components of the set of “Riemannian para-Hermitian structures” at x ∈M is therefore

P (R)
x

∼= CP
1. (3.30)

The complex projective line CP
1 is the Riemann sphere, and is topologically CP

1 ∼= S2.
Thus, there is a 2-sphere of Riemannian para-Hermitian structures at any point.

Remark 3.8. From (3.29) we see immediately that K is purely imaginary, since †2 = −1.
Therefore, the map

J := iK
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is real-valued and satisfies J2 = −I, so it defines a complex structure in each tangent space,
and the space of complex (Hermitian) structures at any point is again parametrized by
CP

1. In this way we recover the Riemannian results for almost-complex structures given
in [34, Section 9.1] and [22] (see eq. (9.1.20) in the first reference and page 429 in the
second).

The 2-sphere (3.30) of Riemannian para-Hermitian structures can also be seen by using
non-projective spinors as follows. From the general form (3.24), choosing different values
for ϕ0, ϕ1, ϕ2 we deduce the following particular cases

(K1)
a
b = χ−1(ξAηB + ηAξB)δ

A′

B′ , (3.31)

(K2)
a
b = iχ−1(ξAξB + ηAηB)δ

A′

B′ , (3.32)

(K3)
a
b = χ−1(ξAξB − ηAηB)δ

A′

B′ (3.33)

(where reality conditions imply ηA = iξ†A). Any K can be expressed as a linear combina-
tion of these tensors11. It is straightforward to check the following identities:

(K1)
2 = (K2)

2 = (K3)
2 = I, KiKj = −KjKi for i 6= j. (3.35)

Using these properties, a short calculation shows that

(aK1 + bK2 + cK3)
2 = (a2 + b2 + c2)I, (3.36)

where a, b, c are real numbers. Thus, as long as (a, b, c) ∈ S2, the combination K(a,b,c) =
aK1 + bK2 + cK3 is a new para-Hermitian structure parametrized by an element (a, b, c)
of S2, so there is a 2-sphere of such structures.

Since the Ki are all purely imaginary, we can define the real maps J1 = iK1, J2 = iK2

and J3 = iK3; then it follows that these tensors satisfy

(Ji)
2 = −I, J1J2 = J3, J2J3 = J1, J3J1 = J2, (3.37)

so the triple (J1, J2, J3) defines an almost-hyperhermitian structure on M (Def. 2.7).

3.2.2 Split signature

In signature (++−−) spinors can be chosen to be real. Therefore, the reality of the map
(3.24) depends on the sign of ϕ2

1−ϕ0ϕ2. This is equivalent to the reality conditions for the
principal spinors αA and βA in (3.25): if ϕ2

1 −ϕ0ϕ2 > 0 then αA and βA are real, whereas
if ϕ2

1 − ϕ0ϕ2 < 0 they are complex; see around equation (A.10). Thus, requiring (3.24)
to be real, and hence an ordinary para-Hermitian structure, is equivalent to requiring αA

and βA in (3.26) to be real. We can thus restrict to real rescalings in (3.27), so the space
of para-Hermitian structures at x (of a definite chirality) is

P (S)
x

∼= {(α, β) ∈ RP
1 × RP

1 | α 6= β} ∼= (RP1 × RP
1)\RP1. (3.38)

11Note that (3.24) is equivalent to

Ka
b =

(−ϕ1)√
ϕ2
1 − ϕ0ϕ2

(K1)
a
b +

(−i)(ϕ2 + ϕ0)

2
√
ϕ2
1 − ϕ0ϕ2

(K2)
a
b +

(ϕ2 − ϕ0)

2
√
ϕ2
1 − ϕ0ϕ2

(K3)
a
b (3.34)
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The real projective line RP
1 is topologically RP

1 ∼= S1, so the space of para-Hermitian
structures at any point in split signature is the torus S1×S1 with the line α = β removed.
To visualize this structure, we consider again the three cases (3.31), (3.32), (3.33), where
now ξA and ηA are real spinors. We see that K1 and K3 are real, but K2 is purely
imaginary, so we define the real map K ′

2 = iK2. These tensors satisfy the following:

(K1)
2 = (K3)

2 = I = −(K ′
2)

2, K1K
′
2 = −K ′

2K1 = K3. (3.39)

From these relations and definition 2.7 we see that the triple (K1, K
′
2, K3) defines an

almost-para-hyperhermitian structure. If a, b, c are real numbers, we now find

(aK1 + bK ′
2 + cK3)

2 = (a2 − b2 + c2)I, (3.40)

thus the condition for aK1 + bK ′
2 + cK3 to be an almost-para-Hermitian structure is

a2− b2+ c2 = 1, which describes a hyperboloid. Therefore, the space (3.38) is in this case
a hyperboloid of one sheet. One can also convince oneself of this by drawing (S1×S1)\S1

(where we think of the removed S1 as a “diagonal” circle —i.e. non-contractible).

Remark 3.9 (Almost-complex structures). An analysis analogous to the one that leads
to (3.28) can be carried out to find the set of almost complex structures compatible with
g in split signature (i.e. maps satisfying J2 = −I and g(J ·, J ·) = +g(·, ·)). Requiring J
to be real, it is straightforward to see (cf. around eq. (A.10)) that the principal spinors
must be complex. Since they are complex conjugates of each other, i.e. βA = ᾱA, J is
parametrized by only one spinor αA, and one finds

Ja
b = − i

(αC ᾱC)
(αAᾱB + ᾱAαB)δ

A′

B′ (3.41)

(note that this is real since (αCᾱC) = −(αCᾱ
C)). We have the freedom αA → λαA with

λ ∈ C
×, and we must exclude the set ᾱA ∝ αA, so it follows that the set of Hermitian

structures at a point is CP
1\RP1. Topologically this is S2\S1, which is homemorphic to

a hyperboloid of two sheets. This can also be seen by simply requiring a2 − b2 + c2 = −1
in (3.40). We will invoke this result in section 5.2.1 below.

3.2.3 Lorentz signature

As observed in Remark 3.3, in this case the elements of the set (3.15) are necessarily

complex-valued, and P
(L)
x is simply given by (3.28). Topologically, this is the product

S2×S2 of two 2-spheres with the “diagonal” α = β removed. We can obtain an alternative
description of this structure by considering again the three maps (3.31), (3.32), (3.33).
These tensors satisfy (3.35), but now they are complex-valued. Considering K(a,b,c) =
aK1 + bK2 + cK3, equation (3.36) still holds, but now a, b, c are complex numbers. The
condition for K(a,b,c) to be a “Lorentzian para-Hermitian structure” is thus

a2 + b2 + c2 = 1, a, b, c ∈ C (3.42)

which is the complexification of the 2-sphere, CS2. (In this case it is perhaps not so easy
to argue intuitively that the set (S2 × S2)\S2 is a complex 2-sphere.)

Each of the two components in the set (3.15), without any reality conditions, is there-
fore a complexified sphere CS2. Notice that this is true in any signature, and also for
complex 4-manifolds.
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3.3 Gauge freedom and a covariant formalism

From Remark 2.5 and the results of section 3.2, we see that fixing a (para-)complex
structure K at a point x ∈M is equivalent to fixing (ignoring reality conditions):

1. a conformal structure [g], and

2. two (different) points on the Riemann sphere at x.

Over an open neighbourhood in M , instead of considering point objects we consider
fields, i.e. smooth sections of the appropriate bundles. In practice we will work with
representatives, i.e. with some metric gab, or its spinor equivalents ǫAB and ǫA′B′ , and
with two non-proportional spinors αA, βA (which in split signature are real, while in
Riemannian signature one has βA = iα†

A). But since the only given data is K, the
framework should not depend on the representatives chosen. Here we give the essential
points of a formalism that takes into account this issue, namely that is covariant under
the transformations associated to this “gauge freedom”. A more detailed description of
this framework is given in Appendix B.

We have seen that the explicit expression of K in terms of the representative spinors
is (3.26), that is:

Ka
b =

1

(ǫCDαCβD)
ǫAE(αEβB + βEαB)δ

A′

B′ . (3.43)

We are free to assign conformal weights to the spinors αA, βA, i.e. we can impose these
spinors to change under a conformal transformation of the metric as

αA → Ωw0+1αA, βA → Ωw1+1βA (3.44)

for some real numbers w0, w1. Recalling the conformal behavior

ǫAB → ΩǫAB , ǫA′B′ → ΩǫA′B′ . (3.45)

we see explicitly from (3.43) that K is invariant under conformal rescalings. (The confor-
mal weights in (3.44) are chosen so that αA → Ωw0αA, βA → Ωw1βA.)

The “gauge freedom” is given by conformal (3.45) and projective (3.27) rescalings.
In Lorentzian and Riemannian signature, these transformations define the group12 Go =
C× × C× × R+, where R+ corresponds to conformal rescalings (3.45) and C× × C× to
projective rescalings (3.27). In split signature one replaces C× × C× by R× × R×.

Definition 3.10. We say that a spinor/tensor/scalar field ϕB...B′...
C...C′... is weighted and has

type (r, r′;w), where r, r′, w are real numbers, if under the transformations (3.45)-(3.27)
it changes as

ϕB...B′...
C...C′... → Ωwλrµr′ϕB...B′...

C...C′... . (3.46)

This transformation law defines a representation of the group Go, see Appendix B.
Examples of weighted fields are αA, βA and φ = αAβ

A; we give the specific weights for
them in table 1.

12R+ denotes the multiplicative group of positive real numbers, and C× (R×) is the multiplicative
group of complex (real) numbers.
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w r r′

βA w1 0 1
βA w1 + 1 0 1
αA w0 1 0
αA w0 + 1 1 0
φ w0 + w1 + 1 1 1

Table 1: Weights of the fields associated to an almost-para Hermitian structure.

A non-trivial issue is how to define a derivative operator that is covariant under all the
transformations involved, since, to begin with, in a conformal structure one does not have
the usual Levi-Civita connection. The first point is to apply Lee’s construction, seen in
Section 2.3, to use the natural Weyl connection w∇a induced by an almost-para Hermitian
conformal structure ([g], K) (Proposition 2.28). Then, after applying the appropriate
machinery, one arrives at:

Definition 3.11. Let (M, [g], K) be a real, 4-dimensional, almost-para-Hermitian con-
formal structure, and let αA, βA be the spinor fields representing K as in (3.26), with
ǫABαAβB = φ 6= 0. Let w∇AA′ and fAA′ be the Weyl connection and Lee form induced by
K, and let ϕB...B′...

C...C′... be a spinor field of type (r, r′;w). We define the covariant derivative
CAA′ by

CAA′ϕB...B′...
C...C′... =

w∇AA′ϕB...B′...
C...C′... + (wfAA′ + rLAA′ + r′MAA′)ϕB...B′...

C...C′... (3.47)

where

LAA′ := φ−1βB∇AA′αB + φ−1βAfA′Bα
B − w0fAA′ , (3.48)

MAA′ := − φ−1αB∇AA′βB − φ−1αAfA′Bβ
B − w1fAA′ (3.49)

(with w0 and w1 defined by (3.44)), and where ∇AA′ is any Levi-Civita connection in the
conformal class.

To understand the construction of (3.47), we refer to the discussion that leads to eq.
(B.9) in Appendix B. Under a gauge transformation (3.46), CAA′ satisfies

CAA′ϕB...B′...
C...C′... → Ωwλrµr′CAA′ϕB...B′...

C...C′... . (3.50)

The projection of CAA′ into the eigenbundles of K deserves special attention, so we
introduce:

Definition 3.12. Let (M, [g], K) be a real, 4-dimensional, almost-para-Hermitian con-
formal structure, and let αA, βA be the spinor fields representing K as in (3.26). Let CAA′

be the associated covariant derivative, defined by (3.47). We define the operators

C̃A′ := αACAA′, CA′ := βACAA′. (3.51)
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Remark 3.13. Let (g,K) be an almost-para-Hermitian structure, let P and P̃ be the
associated projectors (2.8) to its eigenbundles, and let αA, βA be the spinor fields rep-
resenting K (eq. (3.26)). Furthermore, let ∇ be an arbitrary derivative operator, and
X ∈ Γ(TM ⊗ C). In the modern para-Hermitian approach to double field theory, see in
particular [6] and [7], an especially important role is played by the operators ∇P̃ (X) and
∇P (X) (in arbitrary dimensions). These operators are also crucial in the present work,
and in our notation we have the equivalence:

∇̃A′ := αA∇AA′ ⇔ ∇P̃ (X), (3.52a)

∇A′ := βA∇AA′ ⇔ ∇P (X). (3.52b)

In particular, C̃A′ corresponds to CP̃ (X), and CA′ corresponds to CP (X).

4 Integrable structures

4.1 Special spinor fields

The characterization given by Theorem 3.4 of the space of almost para-Hermitian struc-
tures allows immediately an explicit description of the eigenbundles: given K, there exist
projective spinors αA, βA such that eq. (3.26) (or (3.29) in the Riemmanian case) holds,
and from this expression one can readily check that the ±1 eigenbundles are respectively

L = {ua ∈ TM ⊗ C | ua = βAνA
′

, νA
′ ∈ S

′(0,−1;−w1)}, (4.1)

L̃ = {va ∈ TM ⊗ C | va = αAµA′

, µA′ ∈ S
′(−1, 0;−w0)}, (4.2)

where βA, αA are fixed and νA
′

, µA′

vary, and where S′(r, r′;w) represents the weighted
bundles described in Appendix B. We have to include these weighted bundles because,
since βA and αA have non-trivial weights (see table 1), the spinors νA

′

, µA′

should also
have non-trivial weights so that the elements of L, L̃ are ordinary vectors.

As discussed in Section 2.1, the integrability properties of an almost para-Hermitian
structure like (3.26) refer to whether the distributions L and L̃ are involutive. In partic-
ular, according to Definition 2.10, K is half-integrable if and only if NP ≡ 0 or NP̃ ≡ 0,
and integrable if and only if NP = NP̃ = 0. For the case of (3.26), the projectors (2.8) to
L and L̃ are respectively

P a
b =

1
2
(δab +Ka

b) = φ−1βAαBδ
A′

B′ , (4.3a)

P̃ a
b =

1
2
(δab −Ka

b) = −φ−1αAβBδ
A′

B′ . (4.3b)

where φ = αAβ
A.

Lemma 4.1. Consider an almost (para-)Hermitian structure on a real 4-manifold M
(Def. 2.3), and let ∇ be the Levi-Civita connection of g. For concreteness suppose that
the (para-)complex structure is of negative chirality (see Remark 3.6). Then the (para-
)Hermitian structure is

1. half-integrable if and only if there exists a non-trivial unprimed spinor field ϕA such
that

ϕAϕB∇AA′ϕB = 0. (4.4)
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2. integrable if and only if there are two linearly independent solutions to equation
(4.4).

Proof. Denote the (para-)complex structure by K, and suppose it has negative chirality.
Then K can be written as (3.26) for some (projective) spinor fields αA, βA (where in the
Riemannian case we have βA = iα†

A). Then the projectors P, P̃ take the form (4.3a)-(4.3b).
Now let us compute NP (X, Y ) for arbitrary X, Y , using (4.3a)-(4.3b). We have:

(NP (X, Y ))AA′

= − φ−1αAβB[PX, PY ]
BA′

= − φ−1αAβB

(
φ−1βCαDX

DC′∇CC′(φ−1βBαEY
EA′

)

−φ−1βCαDY
DC′∇CC′(φ−1βBαEX

EA′

)
)

= − φ−3αAβB(β
CαDX

DC′

αEY
EA′∇CC′βB − βCαDY

DC′

αEX
EA′∇CC′βB)

= − φ−3αAβBβ
CαEαD(X

DC′

Y EA′ −XDA′

Y EC′

)∇CC′βB

= − φ−3(αEαDXDE′Y EE′

)αAβBβC∇C
A′

βB,

therefore we see that NP ≡ 0 if and only if βA satisfies equation (4.4), which proves the
first item. An analogous calculation applies to αA, and this shows that NP̃ ≡ 0 iff αA

satisfies (4.4). Therefore, the condition NP = NP̃ ≡ 0 is equivalent to the condition that
both spinors αA and βB satisfy eq. (4.4); this proves the second item.

Not any 4-manifold admits non-trivial solutions to (4.4), so half-integrability of K
imposes restrictions. We may call equation (4.4) the “shear-free condition”, since in
Lorentzian general relativity its solutions define what are known as shear-free null geodesic
congruences: the real vector field ℓa = ϕAϕ̄A′

is tangent to a null geodesic congruence
which is shear-free (see e.g. [31, Section 9.2] for the definition of shear of a geodesic con-
gruence). If, for example, one also asks the metric to be Einstein, then by the Goldberg-
Sachs theorem the Weyl tensor must be algebraically special, which is a restriction on
the curvature. Still, many physically interesting spacetimes in general relativity satisfy
this property; in particular, stationary black hole solutions such as Kerr or Schwarzschild
(with or without cosmological constant).

In the DFT language, a choice of K means a choice of T-dual ‘spacetimes’, where the
physical spacetime is related to the involutive eigenbundle. If we change K, the new K
might not be half-integrable so it would not define such T-dual spaces. Requiring any K
to be “appropriate” in this sense imposes more severe restrictions:

Lemma 4.2. Let M be a real, 4-dimensional, orientable manifold equipped with a metric
g. If all almost-para-Hermitian structures (of a definite chirality) are half-integrable, then
the Weyl curvature of g is (A)SD.

Proof. Let K be an arbitrary almost para-Hermitian structure, and assume for concrete-
ness that it has negative chirality. Then we know that it is represented by two projective
spinor fields αA, βA. We also know that K is half-integrable if and only if one of these
spinor fields satisfies eq. (4.4). Let ϕA denote any of these spinors. From (4.4) we deduce
that ϕA∇AA′ϕB = ϕBπB′ for some spinor field πB′ . Applying now ϕC∇C

A′

to equation
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(4.4), one obtains the following integrability condition:

0 = ϕC∇C
A′

(ϕAϕB∇AA′ϕB)

= 2πA′

ϕAϕB∇AA′ϕB − ϕCϕAϕB
�ACϕB

= −ΨABCDϕ
AϕBϕCϕD (4.5)

where �AC = ∇A′(A∇C)
A′

, and ΨABCD is the Weyl curvature spinor (see [25] for details).
If any almost para-Hermitian structure K is half-integrable, then (4.5) must be satisfied
by all spinors ϕA, which implies that ΨABCD ≡ 0 and thus the Weyl curvature of g is SD.
(Choosing positive chirality instead leads to ASD Weyl curvature.)

Remark 4.3. When saying that “any almost-para-Hermitian structure is half-integrable”,
it is convenient to be more specific and say, using the terminology mentioned in Remark
2.11, that “the manifold is L-para Hermitian with respect to any K”, i.e. the (+1)-
eigenbundle of any K is involutive. From this perspective, if a manifold is L-para Her-
mitian with respect to any K, then it follows that it is para-Hermitian. To see this: let
K be an arbitrary L-para Hermitian structure, i.e. its (+1)-eigenbundle is involutive. If
any other K is also L-para Hermitian, then in particular this is true for K ′ = −K. The
(+1)-eigenbundle of K ′ is then involutive, and it is the (−1)-eigenbundle of K. So K is
both L-para Hermitian and L̃-para Hermitian, i.e., it is para-Hermitian.

The (A)SD restriction in lemma 4.2 is quite strong. In Lorentz signature, the left-
and right-handed Weyl curvature spinors are complex conjugates of each other, which
implies that (A)SD Weyl curvature means vanishing Weyl tensor, so the manifold must
be conformally flat. In Riemannian and split signature, the two Weyl curvature spinors
are independent from each other, so one of them can vanish while the other one is general.
In the Riemannian case, if one also asks Ricci-flatness (as well as (A)SD Weyl curvature),
then it can be shown that the manifold must be hyperkähler.

In the DFT literature, a change of para-complex structure is referred to as a change
of polarization. As mentioned, an arbitrary change of polarization in general does not
lead to a new pair of T-dual ‘spacetimes’, unless all para-complex structures are half-
integrable. Another possibility is to consider “small” changes of polarization, by which
we mean deformations of the para-complex structure. These issues will be addressed in
section 5, in connection also with twistor constructions.

4.2 Lie and Courant algebroids

We have seen that, given a 4-dimensional real manifold M with a metric g, any K ∈
Aut(TM ⊗ C) satisfying conditions (3.13) and (3.14) is characterized by two projective
spinor fields [αA], [βA]. The tangent bundle splits as TM ⊗ C = L ⊕ L̃, where L and L̃
are the eigenbundles of K, given explicitly in eqs. (4.1), (4.2). Because of this splitting,
any vector in TM ⊗C can be decomposed into two pieces, as originally done in (2.1). We
can explicitly describe these pieces using (4.1), (4.2), the identity P + P̃ = I and the fact
that the projectors P and P̃ are given by (4.3a), (4.3b). That is, any X ∈ Γ(TM ⊗C) is
decomposed as

XAA′

= (PX)AA′

+ (P̃X)AA′ ≡ xAA′

+ x̃AA′

, (4.6)
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where

(PX)AA′ ≡ xAA′

= βAxA
′

, xA
′

= φ−1αBX
BA′

, (4.7)

(P̃X)AA′ ≡ x̃AA′

= αAx̃A
′

, x̃A
′

= −φ−1βBX
BA′

. (4.8)

Analogous decompositions and notation apply to any other vector Y AA′

= yAA′

+ ỹAA′

,
etc. Similarly, a 1-form W ∈ Γ(T ∗M ⊗ C) is decomposed as

WAA′ = ωAA′ + ω̃AA′ = αAωA′ + βAω̃A′, (4.9)

with

ωA′ = φ−1βBωBA′,

ω̃A′ = − φ−1αBωBA′.

Remark 4.4. Ordinary tensor fields have trivial r, r′, w weights (in the notation of Defini-
tion 3.10), but the spinors αA, βA have non-trivial weights (given in Table 1). Therefore,
when decomposed into pieces like (4.6) or (4.9), the primed spinor parts are also non-
trivially weighted. For example, the spinors xA

′

and x̃A
′

in the decomposition (4.7)-(4.8)
have non-trivial weights, which can be deduced from those of φ and αA, βA. This is
analogous to the fact that νA

′

, µA′

in (4.1), (4.2) are also weighted.

We now use the above decomposition to describe the Lie and Courant algebroid struc-
tures of 4-manifolds admitting non-trivial solutions to (4.4). Since this equation involves
only a conformal structure and a projective spinor field, the covariant formalism of Section
3.3 is here appropriate to give a formulation invariant under the associated gauge freedom.
We recall that the metric is allowed to have any signature.

Lemma 4.5. Let (M, [gab]) be a 4-dimensional, real conformal structure. Let gab ∈ [gab],
with Levi-Civita connection ∇AA′. Suppose that there is a projective spinor field [βA],
where any representative βA satisfies the equation

βAβB∇AA′βB = 0. (4.10)

Let αA be any spinor field such that ǫABαAβB ≡ φ 6= 0. Let L ⊂ TM ⊗ C be defined by
(4.1), and let CA′ be the operator introduced in (3.51).

1. The triple (L, [·, ·]L, P ) is a Lie algebroid, where P is the projector (4.3a), and the
Lie algebroid bracket is

[X, Y ]AA′

L = βA(xB
′

CB′yA
′ − yB

′

CB′xA
′

), (4.11)

for any vector fields X, Y ∈ Γ(L).

2. Let Λk = ∧kL∗, k = 0, 1, 2, .... The Lie algebroid exterior derivative of (L, [·, ·]L, P )
is given by

(dLf)AA′ = φ−1αACA′f, (4.12)

(dLω)AA′BB′ = φ−1(CC′ωC′

)αAαBǫA′B′ , (4.13)

and dLω = 0 for any ω ∈ Γ(Λk) with k ≥ 2, where ωC′

in the right hand side of
(4.13) refers to the decomposition (4.9).
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3. For a 1-form ω ∈ Γ(L∗), the generalized Lie derivative along X ∈ Γ(L) is

(£L
Xω)AA′ = αA[xA′(CB′ωB′

) + CA′(xB
′

ωB′)]. (4.14)

Proof. For the first item, we need to check that the conditions in Definition 2.17 are
satisfied. First of all, we know that L is a vector bundle over M . We have also seen that
the condition (4.10) implies that sections of L are in involution with respect to the usual
Lie bracket [·, ·] of vector fields, thus its restriction to L, [·, ·]L, indeed maps Γ(L)× Γ(L)
to Γ(L), is skew-symmetric and satisfies the Jacobi identity. In addition, the identity in
TM restricted to L coincides with P , and it satisfies the conditions to be an anchor. So
it only remains to prove the expression (4.11) for the Lie algebroid bracket. To do this,
notice first that, since ordinary vector fields X, Y have trivial w, r, r′ weights (see Remark
4.4), we have for example

CbX
a = ∇bX

a +Qbc
aXc,

where Qbc
a was defined in (2.27). Since Qbc

a = Q(bc)
a, we get

Xb∇bY
a − Y b∇bX

a = Xb
CbY

a − Y b
CbX

a.

Using this and decompositions like (4.6)-(4.7)-(4.8) for X, Y ∈ Γ(L), we have:

[X, Y ]AA′

L = XBB′∇BB′Y AA′ − Y BB′∇BB′XAA′

= xB
′

βBCBB′(βAyA
′

)− yB
′

βBCBB′(βAxA
′

)

= βA(xB
′

CB′yA
′ − yB

′

CB′xA
′

)

where in the third line we used (B.11c) and (4.10), together with the definition (3.51) for
CA′.

Now let us prove the second item. From Definition 2.20, the Lie algebroid exterior
derivative acting on a 0-form f ∈ Γ(Λ0) is given by (dLf)(X) = P (X)(f) (since here the
anchor is the projector P ). Since f has trivial weights, we can replace the ordinary ∂AA′

implicit in this formula by the covariant derivative CAA′, so we get

(dLf)(X) = (PX)AA′

CAA′f.

Using (4.7), formula (4.12) follows. Consider now a 1-form ω ∈ Γ(Λ1). The operator dL

acting on ω is given by the expression (2.15), with ρ ≡ P . Since ω,X, Y have trivial
weights we can, as before, replace ∂AA′ by CAA′:

(dLω)(X, Y ) = (PX)AA′

CAA′(ωBB′Y BB′

)− (PY )AA′

CAA′(ωBB′XBB′

)− ωAA′[X, Y ]AA′

L .

Replacing the expressions for X, Y and [X, Y ]L, this is

(dLω)(X, Y ) = xB
′

CB′(φωA′yA
′

)− yB
′

CB′(φωA′xA
′

)− φωA′(xB
′

CB′yA
′ − yB

′

CB′xA
′

)

= φ
[
xB

′

CB′(ωA′yA
′

)− yB
′

CB′(ωA′xA
′

)− ωA′xB
′

CB′yA
′

+ ωA′yB
′

CB′xA
′

]

= φ(xA
′

yB
′ − yA

′

xB
′

)CA′ωB′ (4.15)
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where in the second line we used (B.11d). Now:

xA
′

yB
′ − yA

′

xB
′

= (ǫC′D′xC
′

yD
′

)ǫA
′B′

= (ǫC′D′φ−2αCX
CC′

αDY
DD′

)ǫA
′B′

= (φ−2αCαDǫC′D′ǫA
′B′

)XCC′

Y DD′

where in the second line we replaced the expression (4.7) for xA
′

, and similarly for yA
′

.
Replacing now in (4.15), and noticing that

(dLω)(X, Y ) = (dLω)CC′DD′XCC′

Y DD′

,

formula (4.13) follows. If now ω ∈ Γ(Λk), k ≥ 2, then dLω vanishes since it is a (k+1)-form
with k ≥ 2 in a 2-dimensional space.

Finally, to show the third item, from the general expression (2.13) we have

(£L
Xω)AA′ = XBB′

(dLω)BB′AA′ + [dL(XBB′

ωBB′)]AA′.

Using the second item, this is

(£L
Xω)AA′ = XBB′

φ−1αBαAǫB′A′CC′ωC′

+ φ−1αACA′(φxB
′

ωB′)

= αAxA′CC′ωC′

+ αACA′(xB
′

ωB′),

which proves (4.14).

Lemma 4.6. Let (M, [gab]) be a 4-dimensional, real conformal structure. Let gab ∈ [gab],
with Levi-Civita connection ∇AA′. Suppose that there is a projective spinor field [βA],
where any representative βA satisfies the equation

βAβB∇AA′βB = 0. (4.16)

Let αA be any spinor field such that ǫABαAβB = φ 6= 0. Then the quadruple

(TM ⊗ C, g, P, J·, ·K) (4.17)

is a Courant algebroid, where the anchor P and the Dorfman bracket are respectively

PAA′

BB′ = φ−1βAαBδ
A′

B′ , (4.18)

JX, Y KAA′

= βA(xB
′

CB′yA
′ − yB

′

CB′xA
′

) + αA
(
xA

′

CB′ ỹB
′ − yA

′

CB′ x̃B
′

+ C
A′

(xB
′

ỹB′)
)

(4.19)

with CA′ the operator defined in (3.51).

Proof. Define the bundle L ⊂ TM ⊗ C by (4.1); then from Lemma 4.5, the triple
(L, [·, ·]L, P ) is a Lie algebroid. Thus, applying Proposition 2.24, the vector bundle L⊕L∗

together with the maps defined by (2.18), (2.19) and (2.20), constitute a Courant al-
gebroid. Using now the pair of spinors (αA, βA) to define, via (3.26), a tensor field K
satisfying conditions (3.13) and (3.14), the eigenbundles of K are given by (4.1) and (4.2)
and we have the splitting TM ⊗ C = L⊕ L̃. We can then apply Proposition 2.25, so the
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quadruple (4.17) is also a Courant algebroid. The anchor is simply the projector (4.3a).
What remains now is to translate the expression (2.24) for the Dorfman bracket to the
language we are using in this section. Using (4.7), (4.8), (4.12) and (4.14), we have

(x̃♭)AA′ = ǫABǫA′B′ x̃BB′

= αAx̃A′ , (4.20)

(ỹ♭)AA′ = ǫABǫA′B′ ỹBB′

= αAỹA′, (4.21)

g(x̃, y) = ǫABǫA′B′ x̃AA′

yBB′

= φx̃A′yA
′

, (4.22)

(dLg(x̃, y))AA′ = αACA′(x̃B′yB
′

), (4.23)

[£L
x (ỹ♭)]AA′ = αA[xA′CB′ ỹB

′

+ CA′(xB
′

ỹB′)]. (4.24)

The Dorfman bracket (2.24) is

JX, Y KAA′

= [x, y]AA′

+ (£L
x (ỹ♭)− £

L
y (x̃♭) + dLg(x̃, y))AA′

.

Since x, y are sections of L, we have [x, y]AA′

= [x, y]AA′

L , so we can use formula (4.11).
Replacing also (4.23), (4.24), we get

JX, Y KAA′

= βA(xB
′

CB′yA
′ − yB

′

CB′xA
′

) + αA[xA
′

CB′ ỹB
′

+ CA′

(xB
′

ỹB′)]

− αA[yA
′

CB′ x̃B
′

+ CA′

(yB
′

x̃B′)] + αACA′

(x̃B′yB
′

)

= βA(xB
′

CB′yA
′ − yB

′

CB′xA
′

) + αA
(
xA

′

CB′ ỹB
′ − yA

′

CB′ x̃B
′

+ CA′

(xB
′

ỹB′)
)

which is (4.19).

Recall from Remark 2.21 that a Lie algebroid has naturally associated a cochain com-
plex (Γ(Λ•), dL). In our case this is

0 → Γ(Λ0)
dL−→ Γ(Λ1)

dL−→ Γ(Λ2) → 0. (4.25)

We can think of this as a (twisted) de Rham complex. Since a twisted de Rham complex
is locally exact, if an object ϕ satisfies dLϕ = 0, then there exists, locally13, another field
ψ such that ϕ = dLψ. Therefore, the Lie algebroid structure leads to a “potentialization”
scheme. For example, suppose WAA′ = αAωA′ ∈ Γ(Λ1) satisfies dLW = 0, then there
exists f ∈ Γ(Λ0) such that W = dLf . Using (4.12)-(4.13), the equation dLW = 0 is
CA′ωA′

= 0, and the equation W = dLf is WAA′ = φ−1αACA′f . In other words:

CA′ωA′

= 0 ⇒ ωA′ = φ−1CA′f (4.26)

for some f . Such a basic ‘potentialization’ scheme turns out to be very powerful when
applied to problems of interest in relativity (this will be the subject of a separate work).
Notice, however, that the weights of the potentials here are restricted by the fact that the
spaces Γ(Λk) in the complex (4.25) are composed of objects with zero weights. If we want
to study whether the complex (4.25) can be generalized to fields with other weights, we
are led to the question of constructing Lie algebroids for weighted fields. This turns out
to be a bit tricky, and will be analysed in the next subsection.

13Of course, global existence of potentials is a different story, where one has to take into account the
cohomology of the complex (4.25).
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4.3 Weighted algebroids

The algebroids constructed in lemmas 4.5 and 4.6 consist of vectors with trivial weights
(in the sense of def. 3.10). From the discussion at the end of the previous subsection, we
are also interested in analysing whether spaces of non-trivially weighted objects can be
given an algebroid structure. We will see here that ordinary Lie algebroids do not seem
to be compatible with weighted fields.

Let L be the bundle (4.1), where βA satisfies (4.4). Consider the weighted vector
bundle L(r,r′;w) := L⊗ S(r, r′;w), where S(r, r′;w) is the line bundle defined in (B.4). An
element of L(r,r′;w) is a vector with weights (r, r′;w) (so L is simply L(0,0;0)):

X ∈ L(r,r′;w) ⇔ Xa = βAxA
′

and X
Go−→ λrµr′ΩwX.

L(r,r′;w) is a vector bundle over M . In order to construct a Lie algebroid, we also need an
anchor and a Lie bracket satisfying the conditions given in Def. 2.17.

Let us first focus on the bracket. Given two weighted vector fields X ∈ Γ(L(r1,r′1;w1)),
Y ∈ Γ(L(r2,r′2;w2)), we have a natural candidate for a bracket operation:

[X, Y ]aC := XbCbY
a − Y bCbX

a. (4.27)

This is skew-symmetric, and, since Ca satisfies (3.50) and Cbβ
A = 0, the result of [X, Y ]aC

is again a vector of the form βAπA′

with well-defined weights. However, the first problem
that arises is that the weights of [X, Y ]aC are (r1+r2, r

′
1+r

′
2;w1+w2), so [X, Y ]aC is neither

an element of L(r1,r′1;w1) nor of L(r2,r′2;w2), and consequently, we cannot use [·, ·]C as a Lie
bracket for a particular L(r,r′;w). More precisely, what we have is

[·, ·]C : Γ(L(r1,r′1;w1))× Γ(L(r2,r′2;w2)) → Γ(L(r1+r2,r′1+r′2;w1+w2)). (4.28)

This suggests that we consider the vector bundle with graded fibers

L =
⊕

(r,r′;w)

L(r,r′;w), (4.29)

where the sum runs over all possible values of (r, r′;w). We then have [·, ·]C : Γ(L)×Γ(L) →
Γ(L). So the first item in Def. 2.17 is satisfied, and we can try to give a Lie algebroid
structure to L.

The second item in Def. 2.17 requires the Jacobi identity for [·, ·]C to hold. Since
Cb cannot be replaced by ∂b in (4.27) (because X and Y now have non-trivial weights),
whether or not the Jacobi identity for [·, ·]C is satisfied is a non-trivial issue. To investigate
this, we use the Jacobiator:

JacC(X, Y, Z) := [X, [Y, Z]C]C + [Z, [X, Y ]C]C + [Y, [Z,X ]C]C. (4.30)

The following result shows that in order for this to vanish, we also need to require (half-
)algebraic speciality of the Weyl curvature:

Lemma 4.7. Suppose that the spinor field βA is shear-free. Then the Jacobiator (4.30)
vanishes if and only if βA is a repeated principal spinor of the ASD Weyl curvature.
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Proof. Take three arbitrary vector fields in Γ(L) (with possibly different weights), Xa =
βAxA

′

, Y a = βAyA
′

, Za = βAzA
′

. A tedious but straightforward calculation shows that

(JacC(X, Y, Z))
AA′

= βA[(xC′yC
′

)(CB′C
B′

zA
′

)−(xC′zC
′

)(CB′C
B′

yA
′

)+(yC′zC
′

)(CB′C
B′

xA
′

)].

Therefore, the Jacobi identity for [·, ·]C is satisfied if and only if

CA′C
A′

= 0 (4.31)

when acting on any weighted primed spinor field. This equation is investigated in Ap-
pendix C, where the proof of Lemma C.5 shows that equation (4.31) is satisfied if and
only if ΨABCDβ

BβCβD = 0, i.e., βA is a repeated principal spinor of the ASD Weyl
curvature.

Let us now focus on the construction of the anchor. From Def. 2.17, this should be
a map ρ : L → TM ⊗ C. An element X ∈ L(r,r′;w) ⊂ L has non-trivial weights, so we
cannot use the projector P as an anchor as before, since PX has also non-trivial weights
and thus it is not an element of TM ⊗ C. Therefore, to any weighted vector X we must
somehow associate a vector ρ(X) with trivial weights. To this end, consider three scalar
fields A,B,C of types (1, 0; 0), (0, 1; 0) and (0, 0; 1) respectively; that is:

A
Go−→ λA, B

Go−→ µB, C
Go−→ ΩC.

Then we can define a map

ρ : L(r,r′;w) → TM ⊗ C, ρ(X) := A−rB−r′C−wX. (4.32)

Although this is rather ad hoc since we have not specified anything about the scalars
A,B,C, we restrict the possible choices of them by requiring

CA′A = CA′B = CA′C = 0 (4.33)

where as before CA′ = βACAA′. In Lemma C.5 it is shown that, if βA is shear-free and
a repeated principal spinor, the integrability condition CA′

CA′Φ = 0 is satisfied for any
weighted scalar field Φ, so there are indeed solutions to (4.33). With the choice (4.33), if
X ∈ Γ(L(r1,r′1;w1)), Y ∈ Γ(L(r2,r′2;w2)), we have

ρ([X, Y ]C)
a = A−(r1+r2)B−(r′1+r′2)C−(w1+w2)[X, Y ]aC

= A−(r1+r2)B−(r′1+r′2)C−(w1+w2)(XbCbY
a − Y bCbX

a)

= A−r1B−r′1C−w1XbCb(A
−r2B−r′2C−w2Y a)−A−r2B−r′2C−w2Y bCb(A

−r1B−r′1C−w1Xa)

= ρ(X)bCb(ρ(Y )
a)− ρ(Y )bCb(ρ(X)a)

= [ρ(X), ρ(Y )]a

where in the third line we used (4.33), in the fourth we used the definition (4.32), and in
the fifth the fact that ρ(X), ρ(Y ) have trivial weights. Therefore, we see that with the
choice of the anchor (4.32)-(4.33) and the bracket (4.27), the map (4.32) is a morphism
and the third item in the definition 2.17 of a Lie algebroid is satisfied.
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The last condition that we need to investigate is the fourth item in Def. 2.17, namely
the Leibniz rule for the bracket and the anchor:

[X, fY ]C
?
= (ρ(X)f)Y + f [X, Y ]C (4.34)

for any X ∈ Γ(L(r1,r′1;w1)), Y ∈ Γ(L(r2,r′2;w2)) and f ∈ C∞(M). However, the gradation
(4.28) of the bracket implies immediately that we cannot expect this condition to be
satisfied: If f ∈ C∞(M) is an ordinary function, then fY ∈ Γ(L(r2,r′2;w2)), so, because of
(4.28), the left hand side of (4.34) is an element of Γ(L(r1+r2,r′1+r2;w1+w2)); but in the right
hand side, while the second term is in this space as well, the first term lives in Γ(L(r2,r′2;w2)),
so eq. (4.34) is generally inconsistent. (There is the possibility however of taking ρ ≡ 0,
but this is not something that we wish to consider here; see (4.35) below.) In other words,
asking the condition (4.34) to hold is incompatible with the gradation (assuming ρ 6= 0).
The structure we appear to need is then some sort of “graded Lie algebroid” (if such a
thing can be defined at all). Here we simply observe that computation of the left hand
side of (4.34) gives

[X, fY ]C = X(f) Y + f [X, Y ]C, (4.35)

which is the Leibniz rule satisfied by the ordinary Lie bracket of vector fields.
In conclusion, the triple (L, ρ, [·, ·]C), where L, ρ and [·, ·]C are defined respectively by

(4.29), (4.32)-(4.33) and (4.27), satisfies the conditions to be a Lie algebroid except for
the Leibniz rule (4.34), which must be replaced by the ordinary Leibniz rule (4.35). More
precisely, the Leibniz rule (4.34) cannot be compatible with the gradation of a vector
bundle (when ρ 6= 0), so it seems that one would need to find an appropriate modification
of it in order to accommodate a situation with graded fibers.

Another possibility is to introduce a notion of “weighted algebroids”, by simply re-
placing the tangent bundle in the original definition 2.17 by the weighted tangent bundle
TMC

(r,r′;w) = TM ⊗ C ⊗ S(r, r′;w). The bracket (4.27) is also defined for any section of

TMC

(r,r′;w), so the ordinary Lie bracket of the tangent bundle could be replaced by (4.27).
A “weighted Lie algebroid” would then be given by definition 2.17 and its four items, but
using TMC

(r,r′;w) instead of the tangent bundle. Then, by simply taking the inclusion map

L(r,r′;w) →֒ TMC

(r,r′;w) as “anchor” (in other words, ρ = P again), the triple (L, P, [·, ·]C) is
a “weighted Lie algebroid” in the above sense.

The above definition is completely ad hoc, and it is not clear if one gains anything at all
by introducing such a structure, apart from perhaps adapting the Lie algebroid definition
to a situation with graded fibers in this particular case. However, our motivation for
analysing this issue was, as mentioned at the end subsection 4.2, to see if the differential
complex (4.25) can be generalized to objects with arbitrary weights. The fact that (4.25) is
indeed a differential complex is a consequence of: (i) the morphism property of the anchor,
and (ii) the vanishing Jacobiator for the Lie algebroid bracket. If we now take the inclusion
L(r,r′;w) →֒ TMC

(r,r′;w) as anchor, then it is trivially a morphism, and the Jacobiator for the

bracket (4.27) has been investigated in Lemma 4.7. Therefore, it still makes sense to try
to construct an analogue of the complex (4.25). To this end, we first introduce weighted
differential forms as sections of the space14 Λk

(r,r′;w) := (∧kL∗)⊗ S(r, r′;w), and we define

14Note that Λk
(r,r′;w) 6= ∧k(L⊗ S(r, r′;w))∗.

37



the “weighted Lie algebroid differential”,

dL : Γ(Λk
(r,r′;w)) → Γ(Λk+1

(r,r′;w)), (4.36)

by its action on weighted 0- and 1-forms, in close analogy to (2.14)-(2.15):

(dLf)(X) := CXf, (4.37)

(dLω)(X, Y ) := CXω(Y )− CY ω(X)− ω([X, Y ]C). (4.38)

Explicitly, these expressions are formally equal to the right hand sides of (4.12)-(4.13),
but now f and ω are allowed to have arbitrary weights. We have:

Lemma 4.8. Suppose that βA is shear-free. Then the following sequence is a differential
complex if and only if βA is also a repeated principal spinor of the ASD Weyl curvature15:

0 → Γ(Λ0
(r,r′;w))

dL−→ Γ(Λ1
(r,r′;w))

dL−→ Γ(Λ2
(r,r′;w)) → 0. (4.39)

Proof. We have to check dL ◦ dL = 0. We only have to see this for (weighted) 0-forms,
since for a 1-form ω, dLdLω is a 3-form in a 2-dimensional space and thus it vanishes
automatically. Consider an arbitrary weighted scalar f ∈ Γ(Λ0

(r,r′;w)), and two arbitrary

weighted vectors Xa = βAxA
′

, Y a = βAyA
′

, then, using (4.37), (4.38):

(dLdLf)(X, Y ) = CXCY f − CY CXf − C[X,Y ]Cf

= XaY b(CaCb − CbCa)f

= xA
′

yB
′

βAβB[Ca,Cb]f

= xB′yB
′

CA′CA′

f

where in the fourth line we used (C.8). Therefore, dLdLf = 0 if and only if CA′CA′

f = 0,
which, because of Lemma C.5, is equivalent to requiring βA to be a repeated principal
spinor.

Therefore, we see that as long as βA is shear-free and a repeated principal spinor, the
“potentialization” (4.26) is also valid for fields with arbitrary weights.

Remark 4.9. If we are only interested in a particular metric gab, i.e. not in a conformal
structure, then instead of CAA′ we can use the so-called “GHP” covariant derivative ΘAA′

(which consists of only some parts of CAA′) and its projections ΘA′ , Θ̃A′. One can show
that if βA is shear-free and a repeated principal spinor, then ΘA′ = βAΘAA′ also satisfies
ΘA′ΘA′

= 0 (on scalars and primed spinor fields), so we again have a “potentialization”
scheme for ΘA′. This is particularly useful for analysing integrability of the Einstein
equations.

Remark 4.10. Although the Leibniz rule is not included in the definition 2.22 of a
Courant algebroid, we saw in eq. (2.16) that it is actually a consequence of the axioms;
thus, the vector bundle L cannot give an ordinary Courant algebroid structure either.

15A similar complex was obtained in [20], but not in the context of Lie algebroids.
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5 Twistors

The twistor programme was introduced by Roger Penrose and it describes a non-local
correspondence between spacetime and another space called twistor space. In this section
we describe some natural relations between the constructions we have seen so far and
twistor theory. We first give the basic definition of a twistor, then we elaborate in sections
5.1 and 5.2 on the relation between the integrable structures studied in previous sections
and twistor spaces.

According to Penrose, the basic premise in twistor theory is that light rays are to
be regarded as more basic entities than spacetime events (see e.g. [26, Section 6.1]).
Consider real, 4-dimensional Minkowski spacetime M, and a point with coordinates xAA′

o

(with respect to an arbitrary origin). A light ray γ through this point is described by the
null geodesic

xAA′

(τ) = τλAλ̄A
′

+ xAA′

o , (5.1)

where τ is a real parameter, and we are using that the vector field pAA′

tangent to
the geodesic is null, so it can be expressed as pAA′ ≡ λAλ̄A

′

for some spinor field λA.
Contraction with λA shows that xAA′

(τ)λA = xAA′

o λA for all τ . Since this is true for all τ ,
the contraction defines a spinor µA′

by

xAA′

λA ≡ iµA′

(5.2)

where xAA′

denotes any point in γ, and the factor i is here introduced only to follow
standard twistor conventions. The entire light ray γ is then in principle represented by
the pair of spinors (λA, µ

A′

). However, the same γ is obtained if we multiply λA and µA′

by a non-zero complex number. Thus, γ can be represented as a point in (C2∗ ⊕ C̄2)/ ∼,
where ∼ refers to the equivalence relation just mentioned. The space PT := (C2∗⊕C̄2)/ ∼
is called (projective) twistor space (we see that it is isomorphic to the complex projective
3-space CP

3 16). Actually, real light rays lie in a submanifold of PT, since for real xAA′

one has the constraint µA′

λ̄A′ + µ̄AλA = 0, as follows from (5.2). On the other hand, given
a point (λA, µ

A′

) in twistor space PT, what does this correspond to in spacetime? The
answer is the set of xAA′

such that (5.2) holds. If µA′

λ̄A′ + µ̄AλA 6= 0, (5.2) has no real
solutions for xAA′

, so one needs to complexify spacetime in order to have solutions. In the
complexified spacetime CM, suppose that yAA′

is a solution to (5.2), i.e. yAA′

λA = iµA′

,
then we see that xAA′

= λAπA′

+yAA′

is also a solution for any spinor πA′

. Thus the set of
points in CM satisfying (5.2) is a 2-dimensional (complex) plane Σ. For any two points
x, y in Σ ⊂ CM we have xAA′ − yAA′

= λAπA′

for some πA′

, thus vectors tangents to Σ
are of the form λAπA′

where λA is fixed and πA′

varies. This implies that any tangent to
Σ is null, and likewise the inner product between any two tangent vectors vanishes. In
other words,

η|TΣ ≡ 0 (5.3)

where TΣ is the tangent bundle to Σ and η is the Minkowski metric. Twistor space PT

is then the moduli space of the 2-surfaces Σ in which (5.3) holds.
The above construction of twistor space starts from the explicit expression (5.1) for

light rays (null geodesics) in flat spacetime (which leads to the fundamental relation (5.2)),

16Twistor space is actually CP
3\CP1 (see e.g. [36, 34]), but we do not need to make this distinction

for our elementary presentation.
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thus it does not apply to curved spacetimes. For the curved case one has to generalize
(5.3). We allow also different signatures for the metric:

Definition 5.1. Let M be a (possibly complex) 4-dimensional manifold equipped with
a metric g. A twistor surface (or simply twistor) in M is a totally null 2-surface: a
2-dimensional surface Σ in which the induced metric vanishes identically,

g|TΣ ≡ 0 (5.4)

where TΣ is the tangent bundle to Σ. We define twistor space as the moduli space of the
2-surfaces (5.4).

In flat spacetime one can also define twistors via solutions to the twistor equation (see
[26]), but in general curved spacetimes this equation has no solutions so the definition
via (5.4) is slightly more general, see [35, 36, 34]. The existence of twistor surfaces is
however still quite restrictive; in particular, the usual twistor space of twistor theory is
3-dimensional and it requires the Weyl curvature to be (anti-)self-dual.

Having introduced these basic concepts, we can now describe the connection of these
ideas with the structures studied in previous sections. We notice first that, from the
basic definition (5.4) (or (5.3)) of a twistor, we see that it coincides with the Lagrangian
submanifolds considered in double field theory, eq. (1.1) (but the motivation here is
completely different, as we just saw).

Remark 5.2. Since here we are interested in twistors, which are generally complex sur-
faces, in this section we assume the manifold to be real-analytic, so that it admits a
complexification, which will be denoted by CM .

5.1 Two-dimensional twistor spaces

An immediate connection between twistors and the para-Hermitian structures considered
in this work is as follows: A half-integrable (para-)Hermitian structure in four dimensions
defines a two-dimensional twistor space.

To see this, consider an almost-para Hermitian structure (g,K) on a 4-manifold M ,
which produces a splitting TM⊗C = L⊕L̃, where L and L̃ are both 2-dimensional. If the
structure is half-integrable, then the distribution L (say) is involutive. Then the integral
manifolds associated to L are 2-surfaces Σ such that TΣ = L|Σ. Now, the para-Hermitian
property implies, as we know, that g|TΣ = 0, therefore the integral manifolds (i.e. leaves)
Σ are twistor surfaces. Furthermore, the space of leaves is two-dimensional, thus we have,
according to definition 5.1, a two-dimensional twistor space. Notice that this is true for
any signature.

If the almost-para Hermitian structure is moreover integrable, i.e. the two eigenbun-
dles L and L̃ are involutive, then there are two different sets of twistor surfaces, i.e. two
different two-dimensional twistor spaces. (In the next subsection we will analyse possible
ways of understanding these spaces in relation to the usual three-dimensional space of
twistor theory.) Note that each involutive eigenbundle defines a pair of (possibly com-
plex) coordinates, zi = (z1, z2) and z̃i = (z̃1, z̃2), which give in particular a basis for

40



the cotangent bundle, T ∗M ⊗ C = span(dzi, dz̃i). Furthermore, the fact that the metric
satisfies g(K·, K·) = −g(·, ·) implies that it can be written in this basis as

g = gi
jdzi ⊗ dz̃j + gijdz̃i ⊗ dzj . (5.5)

According to the DFT interpretation, the interchange of the foliations zi = const. and
z̃i = const. is understood as a T-duality transformation.

If only one of the distributions L, L̃ is integrable, it is worth mentioning that, apart
from the above interpretation in terms of the twistor programme, (complex) 4-manifolds
admitting a foliation by the associated twistor surfaces have been extensively studied by
Plebański and collaborators, who called these surfaces null strings, and the manifolds
admitting them HH- or hyper-heavenly spaces; the name originates in the fact that they
are a ‘generalization’ of the H-spaces, or heavens, introduced by Newman17. Remarkably,
Plebański and Robinson showed in [21] that the existence of such integral submanifolds is
sufficient for reducing the full non-linear Einstein vacuum equations to a scalar, second-
order, non-linear PDE known as ‘hyper-heavenly equation’.

A 2-dimensional twistor space like the one above has been considered in [20] in relation
to problems in perturbation theory in relativity. It is interesting to analyse how this 2-
dimensional twistor space is related to the usual 3-dimensional space of twistor theory;
we will do this next.

5.2 Three-dimensional twistor spaces

In this section we will show the following: If all almost-para Hermitian structures are
half-integrable, then there exists a three-dimensional (3D) twistor space PT, which is a
mono-parametric family of two-dimensional (2D) twistor spaces parametrized by projec-
tive spinor fields. This family is not necessarily a fibration over projective spinors: it is a
fibration iff the vacuum Einstein equations hold.

Our discussion will be valid for any signature (also for complex manifolds). We will
generically denote the space of projective spinors (at a point) as P

1, that is P
1 = CP

1 in
Riemannian and Lorentz signature (and in complex manifolds), and P1 = RP

1 in split
signature.

We will first see how to get from a 2D twistor space to a 3D one, then we will discuss
the fibration structure. First, recall from Remark 4.3 that, if any K is half-integrable,
then any K is actually integrable. Now let K be an arbitrary integrable para-Hermitian
structure. From Section 3.2 we know that it is represented by two projective spinor fields,
say αA and βA, in the form (3.26), where (since K is integrable) both fields satisfy (4.4).
Any other para-Hermitian structure K ′ is represented by two other projective spinor fields
ϕA and ψA in the same way, and, since spin-space is 2-dimensional, at any point these
spinors can be expressed as linear combinations of αA and βA, say ϕA = aαA + bβA and

17This ‘generalization’ is in the sense that while an H-space is a Ricci-flat, complex 4-manifold with
self-dual curvature, an HH-space was originally defined as a Ricci-flat, complex 4-manifold with (half)
algebraically special curvature. But the definition of Newman’s H-space is more subtle than this sim-
ple characterization in the sense that it is, by construction, associated to general, asymptotically flat
spacetimes (with real-analytic null infinity), via solutions to the good-cut equation. See also section
5.2.1.
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ψA = cαA + dβA. But since ϕA and ψA should really be thought of as projective spinor
fields, the scaling is irrelevant, so we can take ϕA = αA + λ1βA and ψA = αA + λ2βA for
some λ1, λ2. This means that the principal spinor fields of any para-Hermitian structure
can be reached by different values of λ in

γA(λ) := αA + λβA. (5.6)

Note that αA corresponds to λ = 0 whereas βA corresponds to λ = ∞. At any fixed
point of M , one can think of λ as a stereographic coordinate on the Riemann sphere
P1 ∼= C ∪ {∞} (for Riemannian and Lorentz signature) or on the circle P1 ∼= R ∪ {∞}
(for split signature).

For any fixed λ, γA(λ) is a principal spinor field of an integrable para-Hermitian
structure, thus, from section 5.1, it defines a 2D twistor space. Therefore, varying λ we
add one more dimension and we get a three-dimensional twistor space: equivalently, a
mono-parametric family of 2D twistor spaces. We denote the 3D twistor space as PT.
Since varying λ means varying γA(λ), the family is parametrized by projective spinor
fields.

Notice that in Riemannian and Lorentz signature, twistor surfaces are necessarily
complex, and the twistor space PT is complex. Twistor surfaces live in the complexification
CM , and at each point of CM there is a 2-sphere CP

1 worth of them. In terms of M ,
what we have is a 2-sphere bundle of twistor planes, where a twistor plane is the tangent
space to a twistor surface. In split signature, we can restrict to real twistor surfaces, and
the associated twistor space PT is real. In this case, at each point of M there is a circle
RP

1 worth of twistor surfaces; i.e. we have a circle bundle of twistor planes over M . For
the connection of these twistor spaces with other twistor constructions in the literature,
see section 5.2.1 below.

Remark 5.3. From the constructions seen in section 4, it follows that if any almost-para
Hermitian structure is half-integrable, then there is a one-parameter family of Lie and
Courant algebroids for the tangent bundle, where each algebroid structure is defined by
a projective spinor field.

Let us now discuss the possible fibration structure of PT. What we will argue is that
the family of 2D twistor spaces is fibered over projective spinors if and only if the Einstein
vacuum equations are satisfied18. Essentially, the obstruction for a fibration is that, given
an arbitrary integrable para-Hermitian structure K, defined by two projective spinor fields
[αA], [βA], we can achieve

αB∇BB′αA = 0, βB∇BB′βA = 0 (5.7)

but in general we have

βB∇BB′αA 6= 0, αB∇BB′βA 6= 0. (5.8)

First, recall that the assumption that any para-Hermitian structure is integrable im-
plies that the Weyl curvature is self-dual (i.e. ΨABCD ≡ 0, we saw this in Lemma 4.219).

18In twistor theory, the fact that the twistor space of a Ricci-flat complex 4-manifold is fibered over
CP

1 is already known; see e.g. Remark (2) in p. 444 in [34].
19The restriction to self-dual curvature in relation to the existence of a 3D twistor space has of course

been known in twistor theory since its origins.
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Recall also that any representative spinor field αA satisfies the shear-free condition (4.4).
We can now ask a stronger condition and choose the scaling such that αA is covariantly
constant over any twistor surface Σ associated to it:

Xb∇bαA = 0 ∀X ∈ Γ(TΣ), (5.9)

that is, αB∇BB′αA = 0. We can do this because the integrability condition for it is
ΨABCDα

CαBαD = 0, which is satisfied since ΨABCD ≡ 0.
Consider two neighboring points in PT. These correspond to two twistor surfaces Σ,Σ′

in CM , which we take to be associated to the same congruence defined by the spinor field
αA. We now use the concept of a ‘connecting vector’ as defined by Penrose and Rindler
in [26, Section 7.1], but slightly generalized to a congruence of surfaces instead of curves.
This is used by Ward and Wells in [34, Section 9.1]: a vector field v defined over Σ is a
‘connecting’ vector to the nearby twistor surface Σ′ if the Lie derivative of v along vectors
tangent to Σ is again tangent to Σ, i.e. £Xv ∈ Γ(TΣ) for all X ∈ Γ(TΣ). Given the
connecting vector v, the change in the spinor field αA between the nearby twistor surfaces
Σ and Σ′ is represented by the spinor field

δA = vb∇bαA. (5.10)

If δA 6= 0, the different twistor surfaces defined by the same spinor field αA (i.e. the
differents points in the associated 2D twistor space) cannot be associated to a same
point spinor. So, there is no projection from the 2D twistor space to a point in P

1, and
consequently, the 3D twistor space PT is not fibered over P1.

Now, we can decompose the vector v as vb = aB
′

αB + bB
′

βB for some aB
′

, bB
′

. Thus,
using (5.9), equation (5.10) is equivalently

δA = bB
′

βB∇BB′αA. (5.11)

Therefore, the change in αA between the different twistor surfaces of the congruence is
governed by βB∇BB′αA. If βB∇BB′αA 6= 0, αA changes along the congruence and thus
there is no projection PT → P

1. If βB∇BB′αA = 0, we have vb∇bαA = 0 for any connecting
vector and so αA does not change between the different twistor surfaces of the associated
2D twistor space. All such surfaces can then be associated to the same point spinor,
i.e. to the same element of P1. So in this case there is a fibration PT → P

1, where the
fibers are 2D twistor spaces. We represent this in Figure 1. In addition, note that, since
αAβ

A 6= 0, if we have both αB∇BB′αA = 0 and βB∇BB′αA = 0 then we actually have
∇BB′αA = 0. In particular this implies that [∇a,∇b]αC = 0, so the Riemann curvature
must be half-flat (since αA was arbitrary). Since we already had ΨABCD = 0, the new
information is

ΦABC′D′ = 0 = Λ (5.12)

where ΦABC′D′ is the spinor analogue of the trace-free Ricci tensor, and Λ is proportional
to the curvature scalar (see [25, Section 4.6]). Therefore, the manifold must be Ricci-flat.

Notice that in the Riemannian case, the conditions ΨABCD = 0 = ΦABC′D′ = Λ imply
that (M, g) is hyperkähler (see e.g. Theorem 9.3.3 in [33]).

43



P
1

[αA]

Tα

[γA(λ)]

Tγ(λ)

[βA]

Tβ
3D twistor space PT

2D twistor spaces

Figure 1: 3D twistor space PT seen as a fibration of 2D twistor spaces over projective
spinors P

1, in the case that the Einstein vacuum equations are satisfied. In Riemannian
and Lorentz signature, P1 = CP

1 ∼= S2, while in split signature P1 = RP
1 ∼= S1. If the

manifold is not Ricci-flat, PT still consists of a family of 2D twistor spaces, but it is not
fibered over P1. The 2D twistor spaces Tα and Tβ are “T-dual” in the sense that they
define two T-dual Lagrangian foliations of the manifold M .

5.2.1 Connections with other twistor constructions

Let us briefly comment on some relationships with the twistor space constructions in the
literature, following mainly [35, 34, 33, 22, 24]. (We are only concerned with projective
twistor space.) The original construction of twistor space was done by Penrose in [35],
where it is called non-linear graviton and is specific to complex (anti-)self-dual 4-manifolds.
The non-linear graviton is a 3-complex-dimensional manifold and its points are totally null
surfaces in the (A)SD 4-manifold. The precise relationship between the two spaces can
be encoded in a double fibration, where the correspondence space is the projective spin
bundle. For real 4-manifolds, one can, according to signature, introduce different ‘real
structures’ (involutions) on the twistor space of the complex 4-manifold; but there are
also other routes to construct the twistor space of a real 4-manifold.

In the Riemannian case, the reformulation of Penrose’s twistor construction was done
by Atiyah, Hitchin and Singer in [22]. This formulation associates a natural almost-
complex manifold to any real Riemannian 4-manifold (M, g). The basic idea is to in-
corporate all almost-complex structures in M into one almost-complex structure in a
larger manifold; in other words, to provide the space of almost-complex structures itself
with an almost-complex structure. The space of complex structures at a point is CP

1

(see Remark 3.8), so over the whole manifold one gets the projective spin bundle PS. The
almost-complex structure of PS is described by Ward and Wells [34, Section 9.1] as follows.
Since PS has a connection, at any point p = (x, α) ∈ PS the tangent space decomposes
as TpPS = TxM ⊕ TαCP

1. On TxM we have the complex structure J = iK defined by
α = [αA], with K given by (3.29), and TαCP

1 is the tangent space to a complex manifold
so it naturally has a complex structure, say JCP1 . Thus, the complex structure of TpPS is
J = diag(J, JCP1). Atiyah et al. proved [22, Theorem 4.1] that J is integrable if and only
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if the Weyl curvature of g is (A)SD. In that case, the space PS becomes a 3-dimensional
complex manifold: this is the twistor space of M . It coincides with the space of twistor
surfaces in the complexification of M .

Remark 5.4 (Twistor families). Suppose that π1 : PT → CP
1 is the fibration by 2D

twistor spaces, so that π−1
1 (α) is the 2D twistor space Tα. In the Riemannian setting,

there is an alternative way to define a fibration of PT over CP
1. Since PT is actually the

projective spin bundle of the real 4-manifold M , one can think of a different projection
π2 : PT = PS → CP

1 where a typical fiber π−1
2 (α) is the complex 2-manifold (M, g, Jα),

where Jα is the complex structure determined by α = [αA] (in our terms this is Jα = iKα,
with Kα given by the right hand side of (3.29)), and g is Hermitian w.r.t. Jα. Therefore,
PT can also be seen as a CP

1-family of complex surfaces where the fibers are isometric
as Riemannian manifolds but the complex structure changes from fiber to fiber. This is
known in the literature as a twistor family. (Particularly relevant is the case in which
M is a K3 surface, so that PT is a CP

1-family of K3 surfaces.) The relation between
the two fibrations π1, π2 : PT → CP

1 can be seen by considering the complexification of
M , denoted CM . An integral submanifold in CM of the involutive distribution Lα ⊂
TM ⊗ C = TCM is, on the one hand, a point in Tα = π−1

1 (α) (i.e. a twistor surface
defined by α = [αA]), and on the other hand, a complex surface (M, g, Jα) = π−1

2 (α).
In other words, a fiber of π1 is the space of leaves of the foliation of CM induced by a
projective spinor α, and a fiber of π2 is a leaf in this foliation. Both typical fibers are
2-dimensional complex manifolds.

In split signature, the twistor construction for ASD conformal structures was done by
LeBrun and Mason in [24], and it also involves, in a way, the consideration of the space
of almost-complex structures over M . In section 5.2 we restricted to real twistor planes
(recall that a twistor plane is the tangent space to a twistor surface), but we can also
consider complex twistor planes by simply complexifying the space of spinors, i.e. taking
R2 ⊗ C = C2. Then the bundle of complex twistor planes over M , which we denote by
Z following [24], has fibers CP

1 (the twistor planes we consider here are the β-planes of
[24]). The subbundle of real twistor planes is denoted by F in [24], and its fibers are
RP

1. Now, as we saw in Remark 3.9, the bundle of almost-complex structures over M ,
say H, has fibers CP

1\RP1. This is the same as removing real twistor planes in Z, so
it coincides with the bundle Z\F in [24]. Using that CP

1\RP1 is a hyperboloid of two
sheets, and identifying each sheet with a disk, we see that H consists of two connected
components, say H = U+ ∪ U−, each of which is a disk bundle over M . The twistor
space of M constructed in [24] is obtained essentially by giving a complex structure to the
manifold-with-boundary U+ ∪ F (see [24, Theorem 7.3]), which we can see as “one half”
(with a boundary attached) of the space of almost-complex structures over M . A twistor
space construction involving the two halves of the hyperboloid H2 together also with the
equator RP1 (in other words, the Riemann sphere CP

1 = H2 ∪RP
1) can be found in [33,

Section 10.5]. Here, the twistor space is obtained in a similar way to the Atiyah-Hitchin-
Singer construction [22], i.e. by finding an involutive subbundle for TPS20; and it consists
of two open sets that are separated by a 3-dimensional real boundary. This boundary is
the real twistor space that we considered in section 5.2.

20Whether this actually gives a complex structure to PS in the ordinary sense is a little subtle, see [37].
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Finally, in Lorentz signature, the Weyl curvature spinors of opposite chirality are com-
plex conjugates of each other, so (A)SD Weyl tensor implies conformally flat curvature.
Since the basic twistor construction is conformally invariant, the Lorentzian case is not
very different from the Minkowski case. Regarding spaces of complex structures, we saw
that any para-Hermitian structure is necessarily complex-valued, so by simply multiply-
ing by i =

√
−1 it can be converted into a “complex” structure. We showed that the

space of such structures is CP
1 × CP

1 with the “diagonal” removed, which turns out to
be a complex sphere CS2. The bundle of “almost-complex structures” compatible with
g over M has then CS2 fibers, and since S2 ∼= CP

1, CS2 is a kind of “second complex-
ification” of CP1 regarded as a real 2-manifold. It seems that one is then considering a
situation similar to the Riemannian case (in which the corresponding bundle has fibers
CP

1) but where the fibers are now the complexified version. While in this case we are not
aware of a twistor construction analogous to the one in other signatures, we find worth
mentioning that complexified spheres are actually crucial in the construction of H-space
and asymptotic twistor space (since these involve the complexification of null infinity).
This suggests a different connection between Lorentzian “almost-complex structures” and
twistor constructions: Since such “almost-complex structures” are complex-valued, we can
just consider the bundle of “almost-complex structures” compatible with a complex metric
on a genuine complex 4-manifold. As before, the fibers of this bundle are again CS2, so we
have a 4-parameter family of complexified spheres. If all such “almost-complex structures”
are “integrable”, then ΨABCD = 0 (Lemma 4.2), which suggests that we may identify the
complex 4-manifold of CS2’s with Newman’s H-space, and the CS2’s with the ‘good cuts’
of the complexified null infinity of a real, asymptotically flat (Lorentzian) spacetime21.

5.3 Deformations of the para-complex structure

We now wish to define a notion of deformations of a para-complex structure, and study the
integrability of such deformations. Notice that we explicitly distinguish deformations of
the para-complex structureK from deformations of the para-Hermitian structure (g,K); in
the former, we only deal with a familyK(t) of para-complex structures satisfying the para-
Hermitian condition with respect to some fixed metric g, while in the latter, one should
consider families of both para-complex structures K(t) and metrics g(t). For the definition
of deformations, we will follow [2, Chapter 5] and [38, Chapter 6]. The setting in these
works is however slightly different than ours in the sense that they consider deformations
of complex structures, where the eigenbundles are complex conjugates, whereas in our case
they are independent since we consider para-complex structures (or even complex-valued
maps). Our definition will agree with that of [7].

In the following we leave the dimension unspecified; we particularize to four dimensions
after this discussion. Let (g,K) be an almost-para Hermitian structure on a d-manifoldM ,
and let TM⊗C ∼= L⊕L̃ be the splitting induced by K. We consider a continuous, smooth
family K(t) = Kt of para-complex structures, with K0 = K and g(Kt·, Kt·) = −g(·, ·) for
all t. Then for each t we have a splitting TM ⊗ C ∼= Lt ⊕ L̃t into the eigenbundles of
Kt. For small t, an element of Lt can be described as x + Btx where x ∈ L, Btx ∈ L̃,

21H-space is also Ricci-flat, so presumably we would need to add some additional condition in order to
make this suggestion more precise.
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and the deformation has been encoded in Bt, which from the above we deduce is a map
Bt : L → L̃. Since Lt must be isotropic, we must have g(x + Btx, y + Bty) = 0 for all
x, y ∈ L, which translates into g(x,Bty) + g(Btx, y) = 0, that is, Bt is skew-symmetric
and can be thought of as an element of ∧2L∗. Analogously, the deformation of L̃ is
described by a skew-symmetric map B̃t : L̃ → L, i.e. an element of ∧2L. For the case of
Hermitian structures, one has B̃t = B̄t since the eigenbundles are complex conjugates; but
for para-Hermitian (or complex-valued) structures the maps B̃t and Bt are independent.
The small deformation is then described by an endomorphism At : L⊕ L̃→ L⊕ L̃ whose
matrix representation is

At =

(
IL B̃t

Bt IL̃

)
.

Thus we see that the deformation is given by (one half of) the sum of the B- and β-
transformations in (2.11), with parameters B = 2Bt and β = 2B̃t, and according to the
interpretation mentioned in Remark 2.16, it represents a simultaneous shearing in the
directions of L and L̃. Provided At is invertible, the deformed para-complex structure
is Kt = AtKA

−1
t . Now, we are interested in the case where the original para-Hermitian

structure is half-integrable, which means that (say) the eigenbundle L is involutive while
L̃ is not. Since we want to study integrable deformations, we will focus on deformations of
only L, that is, we set B̃t = 0. Then the deformation corresponds to a B-transformation
(2.11), and noticing that (in the splitting L⊕ L̃) K = diag(IL,−IL̃), the deformed (para-
)Hermitian structure Kt = AtKA

−1
t is

Kt =

(
IL 0
2Bt −IL̃

)
. (5.13)

This coincides with the definition given in [7]. For the calculations below, we will need
some more details about this matrix representation. Let EI = (ei, ẽ

i) be a basis for
L⊕ L̃, with ei and ẽi bases for L and L̃ respectively. Any vector X ∈ L⊕ L̃ can then be
decomposed as X = xiei + x̃iẽ

i. Let F I = (θi, θ̃j) be the dual basis, so that F I(EJ) = δIJ .
The map Kt ∈ Aut(L ⊕ L̃) can be expanded as Kt = (Kt)

I
JEI ⊗ F J , and the matrix

representation (5.13) means that

Kt = ei ⊗ θi − ẽi ⊗ θ̃i + 2(Bt)ij ẽ
i ⊗ θj . (5.14)

Remark 5.5. In four dimensions, we have seen that half-integrability of K is equivalent
to the fact that one of the spinor fields representing K is shear-free. Therefore, the result
that deformations of K are encoded in B-transformations is somewhat natural, since, as
mentioned in Remark 2.16, B-transformations in generalized geometry are interpreted as
a shearing.

Now let us restrict to d = 4 dimensions. Suppose that αA and βA are the spinor fields
representing K, eq. (3.26). Let µiA′

= (µ0A′

, µ1A′

) and νA
′

i = (νA
′

0 , ν
A′

1 ) be two bases for
the primed spin bundle S′. We have ǫA′B′µ0A′

µ1B′

= Ñ 6= 0 and ǫA′B′νA
′

0 ν
B′

1 = N 6= 0.
From these relations one can deduce22

ǫijµ
iA′

µjB′

= ÑǫA
′B′

, ǫA′B′µiA′

µjB′

= Ñǫij ,

µiA′

µjA′ = Ñδii, µiA′

µiB′ = ÑδA
′

B′ ,

22Here, ǫij is defined by ǫij = −ǫji (i, j = 0, 1) and ǫ01 = 1.

47



where µjB′ ≡ ǫA′B′ǫijµ
iA′

, and similarly for νA
′

i . (Indices i, j are raised and lowered with
ǫij and ǫij , analogously to A′, B′.) Using these identities and F I(EJ) = δIJ , we deduce the
following expressions for the frames and their duals:

ei = βAνA
′

i ∂AA′ , ẽi = αAµiA′

∂AA′ ,

θi = (φN)−1αAν
i
A′dxAA′

, θ̃i = −(φÑ)−1βAµiA′dxAA′

where we recall that φ = αAβ
A. It then follows that Bt is given by

Bt = (Bt)ij ẽ
i ⊗ θj = (φN)−1(Bt)ijα

AαBµ
iA′

νjB′∂AA′ ⊗ dxBB′

Using now that (Bt)ab = gac(Bt)
c
b is skew-symmetric, we get

(Bt)ab = −φ−1εαAαBǫA′B′ ,

where the scalar field ε ≡ −1
2
N−1(Bt)ijǫ

C′D′

µi
C′ν

j
D′ encodes the deformation. From (5.3)

we get (Bt)
a
b = φ−1εαAαBδ

A′

B′ , thus, the deformed para-complex structure (5.14) is

(Kt)
a
b = Ka

b + 2(Bt)
a
b

= φ−1(αAβB + βAαB)δ
A′

B′ + 2φ−1εαAαBδ
A′

B′

= (αCβ
C
ε )

−1(αAβεB + βA
ε αB)δ

A′

B′ , (5.15)

where we introduced
βA
ε := βA + εαA. (5.16)

Note that t is the parameter of the continuous family Kt, while ε is a (possibly complex)
scalar field on the manifold. The eigenbundles of Kt are analogous to (4.1)-(4.2):

Lt = {ua ∈ TM ⊗ C | ua = βA
ε ν

A′

, νA
′ ∈ S

′(0,−1;−w1)}, (5.17)

L̃t = {va ∈ TM ⊗ C | va = αAµA′

, µA′ ∈ S
′(−1, 0;−w0)}. (5.18)

We see that the bundle L̃ is not modified since L̃t = L̃, whereas L is deformed to Lt by
using βA

ε instead of βA.
Half-integrability of the deformationKt refers to the involutivity properties of Lt. Such

conditions were given in Lemma 4.1, where we saw that one has to study equation (4.4).
Therefore, the spinor field (5.16) codifies the integrability properties of the deformation
(5.14). We first prove the following identity:

Proposition 5.6. Let αA, βA be arbitrary spinor fields with αAβ
A = φ 6= 0, let CAA′ be

the associated covariant derivative (Def. 3.11) and let CA′ , C̃A′ be the projections (3.51).
Let βA

ε be given by (5.16), where ε is an arbitrary (possibly complex) scalar field. Then
we have the identity

βA
ε β

B
ε ∇AA′βεB = βAβB∇AA′βB + φCA′ε+ 1

2
φC̃A′ε2 + (αAαB∇AA′αB)ε

3. (5.19)

Proof. We first check that ∇AA′ can be replaced by CAA′ in the left hand side of (5.19).
Note that the weights of βεB are the same as those of βB, so using Table 1 and formula
(B.10) we have

CAA′βεB = ∇AA′βεB − fA′BβεA + ((w1 + 1)fAA′ +MAA′)βεB,
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thus, contracting with βA
ε β

B
ε , we get

βA
ε β

B
ε ∇AA′βεB = βA

ε β
B
ε CAA′βεB.

Now,

CAA′βεB = CAA′βB + αBCAA′ε+ εCAA′αB

= φ−2αAαB(β
CβD∇CA′βD) + αBCAA′ε+ εφ−2βAβB(α

CαD∇CA′αD)

where in the second line we used identities (B.11b) and (B.11c). Contracting now with
βA
ε β

B
ε and using βA

ε βA = −φε and βA
ε αA = φ, we get

βA
ε β

B
ε CAA′βεB = βAβB∇AA′βB + φCA′ε+ φεC̃A′ε+ (αAαB∇AA′αB)ε

3

therefore (5.19) follows.

Theorem 5.7. Let (g,K) be a half-integrable para-Hermitian structure (Def. 2.10) on
a 4-manifold M , and let αA, βA be the spinor fields representing K, where βA satisfies
(4.4). Let Kt be a small deformation of the para-complex structure K, represented by the
scalar field ε as in (5.15), (5.16). Then the eigenbundle Lt is involutive (i.e. Kt is a
half-integrable deformation) if and only if

CA′ε = 0. (5.20)

Proof. From Lemma 4.1 and its proof we know that involutivity of Lt is equivalent to
NPt

≡ 0, which in turn is true if and only if βA
ε satisfies equation (4.4). The left hand

side of (4.4) has been computed for βA
ε in (5.19). Since βA satisfies (4.4) by assumption,

and “small” deformation means that we only keep terms linear in ε, the result (5.20)
follows.

Remark 5.8. Equation (5.20) has non-trivial integrability conditions: applying CA′

, we
get CA′

CA′ε = 0. Using the first equation in (C.15), we have

CA′C
A′

ε = (βAβB∇A′Aψ
A′

B )ε

where ψa is given by (C.2) with r, r′, w the weights of ε. These weights can be deduced
from (5.16): w(ε) = w1 − w0, r(ε) = −1, r′(ε) = +1. Replacing these values in identity
(C.28):

CA′CA′

ε = 4φ−1ΨABCDα
AβBβCβD ε.

Therefore, if ε 6= 0 satisfies (5.20), then we must have ΨABCDα
AβBβCβD = 0, or equiv-

alently ΨABCDβ
BβCβD = 0 (since βA satisfies (4.5)). This means that in order for

integrable deformations to exist, the Weyl tensor must be (half) algebraically special.

We end this section with a few remarks.
First, notice that in view of (4.37) (see also (4.12)), we can write (5.20) equivalently

as
dLε = 0 (5.21)

where dL is the weighted Lie algebroid exterior derivative (4.36). Taking into account
the fact that ε is a scalar field, we can interpret this as a Maurer-Cartan equation (since
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[βA]

Tβ

L

[βεA]

Tβε
⇔ CA′ε = 0

Figure 2: Illustration of small deformations of a para-complex structure in M in terms of
2D twistor spaces. A principal spinor field βA of a half-integrable para-complex structure
K defines a 2D twistor space Tβ (thick vertical straight line). The dashed horizontal lines
represent a line bundle L over Tβ. A section of L (vertical curved line) corresponds to a
scalar field ε on M such that CA′ε = 0. It represents a small half-integrable deformation
of K, so it defines a 2D twistor space Tβε

. Integrability conditions imply that the Weyl
tensor must be half-algebraically special.

the commutator term in the usual Maurer-Cartan eq. vanishes because ε is a scalar).
The reason for interpreting (5.21) in such a way is that it fits with the usual theory of
integrable deformations of complex structures (see e.g. [38, Chapter 6]).

Second, recall from section 5.1 that a half-integrable para-Hermitian structure defines
a 2D twistor space, say Tβ. In [20], functions ε satisfying (5.20) were interpreted as
defining sections of line bundles over Tβ . Here we see that (5.20) appear as integrability
conditions for deformations of a para-complex structure in M . We can attempt a more
or less “intuitive” understanding of this by considering a picture similar to figure 1, in
which 2D twistor spaces are represented as vertical lines. We illustrate this in figure 2. If
L is a line bundle over Tβ , a section is a smooth map Tβ → L, defined by the condition
that it should be covariantly constant over the twistor surfaces associated to Tβ , i.e. we
can think of it as a scalar field ε on M such that CA′ε = 0. So a section of L defines,
by theorem 5.7, a half-integrable small deformation, and consequently a 2D twistor space
Tβε

, “close to” Tβ, see fig. 2.
Finally, in the literature on DFT (see [7]), there are weaker forms of integrability

where one replaces the ordinary Lie bracket by the so-called D-bracket (a generalization
of the Dorfman bracket). In particular, in [7, Proposition 5.6] it is shown that a small
deformation is ‘weakly integrable with respect to K’ if and only if a certain Maurer-Cartan
equation is satisfied, where the operators involved are associated to the Lie algebroid
structure. The notion of weak integrability refers to the involutivity of a subbundle in
terms of the canonical D-bracket J·, ·Kcan, see [7] for details. Adapting these concepts to
our formulation, the subbundle Lt is weakly integrable if, for all x, y ∈ Γ(Lt), it holds
(Jx, yKcan)AA′

= βA
ε π

A′

for some πA′

. Equivalently, this is βεA(Jx, yK
can)AA′

= 0. By a
direct calculation (using the definition of J·, ·Kcan given in [7]) one can show that this is
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always true in our case, so any small deformation of K is weakly integrable with respect
to K.

6 Summary and conclusions

In this work we have attempted to show that there is a close connection between the
para-Hermitian approach to double field theory (a formulation of string theory designed
to be manifestly covariant under T-duality) and the geometry of special four-dimensional
manifolds that are of particular interest in general relativity. This approach to DFT
is based on the consideration of para-complex structures where one of the eigenbundles
is integrable, so the tangent bundle of the extended manifold has the structure of a
Courant algebroid, which is one of the main objects studied in generalized geometry. We
have analysed the four-dimensional version of this approach while also allowing the para-
complex structure to be complex-valued, which in turn allows us to work with different
metric signatures.

One of our original motivations was to point out the similarity between some of the
geometrical structures in the para-Hermitian approach to DFT, and Plebański’s hyper-
heavenly construction in general relativity. This connection is revealed when one observes
that Plebański’s congruence of “null strings” can be understood as the foliation by integral
manifolds of an involutive eigenbundle of a complex-valued “almost-complex structure”.
Such a structure has independent eigenbundles and so it is actually ‘half-integrable’. In
real geometry, this phenomenon is captured by para-complex structures.

Since a spacetime manifold M is, in general, not naturally equipped with a (para-
)complex structure (see also below), we first deduced the general form of any almost (para-
)Hermitian structure in four dimensions, and we described the space of such structures
over M . We did this by showing their equivalence to (anti-)self-dual 2-forms and then
describing the corresponding spaces in terms of projective spaces, for the three different
possible metric signatures. We showed that these spaces are certain fiber bundles over
the 4-manifold, where the fibers can be real 2-spheres (Riemannian signature), 1-sheet
hyperboloids (split signature), or complex 2-spheres (Lorentz signature). Noticing that an
almost para-Hermitian structure is associated only to a conformal metric and to projective
spinor fields, we showed how to deal with the associated “gauge freedom” by employing a
formalism manifestly covariant under gauge transformations. The corresponding covariant
objects are weighted fields.

Having the general form of any almost para-Hermitian structure, we proceeded to
analyse integrability issues, showing that half-integrability corresponds to the existence
of special spinor fields (“shear-free congruences”), and then constructing the associated
Lie and Courant algebroids. We were naturally led to the problem of generalizing the
algebroid structures to fields with arbitrary weights, and we showed that ordinary Lie
algebroids seem to be incompatible with them, since the Leibniz rule is not compatible
with the gradation of the vector bundle of weighted fields (assuming that the anchor
does not vanish identically). Nevertheless, we were able to generalize the Lie algebroid
differential complex, under the additional assumption of algebraically special curvature.
Further applications of these generalized geometric structures are left for future work.

Finally, we discussed connections of this approach with twistors. The first obser-
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vation is that the Lagrangian submanifolds of DFT correspond to the basic object in
twistor theory, namely twistor surfaces in a 4-manifold. Such twistor surfaces arise as
integral submanifolds of a half-integrable (para-)Hermitian structure K. This K defines
a two-dimensional (2D) twistor space, by means of the corresponding projective spinor
field satisfying the shear-free condition. If all (para-)Hermitian structures are integrable,
we showed that one then gets a three-dimensional (3D) twistor space, which is a one-
parameter family of 2D twistor spaces, parametrized by projective spinor fields. In gen-
eral this is not a fibration over projective spinors: the fibration structure is obtained iff
the vacuum Einstein equations hold. We discussed connections of this construction with
other developments such as the Atiyah-Hitchin-Singer and the LeBrun-Mason approaches
to twistor theory, and also with the CP

1 twistor families known in the literature. Lastly,
we analysed deformations of a para-complex structure K in M , and we showed that a
small deformation is half-integrable iff it corresponds to a section of a line bundle over the
2D twistor space associated to K. We also found that small half-integrable deformations
can only exist if the Weyl tensor is half-algebraically special.

As mentioned, a choice of (para-)complex structure in a spacetime manifold is in
general an extra assumption, and this is one of the reasons why we first focused on
classifying all such possible choices. However, for 4-manifolds there are, at least, two
situations of interest where natural almost (para-)complex manifolds arise:

1. Einstein manifolds with algebraically special Weyl tensor,

2. Twistor theory.

The first case is perhaps the one of immediate interest in general relativity. The Goldberg-
Sachs theorem implies that a vacuum solution (cosmological constant allowed) to the
Einstein equations which is algebraically special, has at least one shear-free congruence.
If the corresponding (projective) spinor field is βA, one can choose any other spinor field
αA with βAαA 6= 0 and define a half-integrable para-Hermitian structure by (3.26). In the
second case, for 4-manifolds M with a metric of Riemannian or split signature, the twistor
construction associates a natural almost-complex manifold: it gives an almost-complex
structure to the space of all almost-complex structures in M .

To conclude, we make a few comments about some possible directions that will be
explored in future works.

First, as mentioned before, the Lie algebroid structure of a manifold with a shear-free
spinor field has associated natural differential complexes that, in our case, allow to find
certain potentials for problems of interest in general relativity. This particular point will
be the subject of a separate work. In addition, we notice that in the current work we
have merely given an explicit description of the Courant algebroid associated to such
special 4-manifolds, but we have not applied the resulting construction in any interesting
way. It may be worth analysing if this explicit connection between generalized geometry
and spacetimes of relevance in relativity has potentially interesting consequences. More
broadly, the generalized notions of integrability encountered in double field theory (such
as the D-bracket or the associated metric algebroids) were not applied in this work.

In addition, we have not attempted to analyse applications of the notion of T-duality
that is obtained in general relativity by particularizing the DFT framework to 4-manifolds.
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However, an immediate observation is that, for Einstein manifolds of Petrov type D,
there is a natural para-Hermitian structure where both eigenbundles are integrable, and
one eigenbundle is associated to ingoing principal null directions while the other one is
associated to outgoing p.n.d.’s. The transformation between ingoing and outgoing p.n.d.’s
can then be understood as a T-duality transformation. The question of whether this has
some interesting consequences for e.g. black hole spacetimes (or perturbations thereof) is
left for future work.

Another point that will be elaborated on in a separate work is the relationship between
the bundle of complex-valued almost-complex structures in a 4-manifold and the theory
of H-space and asymptotic twistor space (see section 5.2.1).

Finally, a possible generalization to higher dimensional manifolds of some of the ideas
developed in this work will likely follow the perspective and results in [39]. A spinorial
treatment should involve the use of pure spinors.
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A Spinors in four dimensions

In this appendix we review some basic facts about spinors at a point in four dimensions,
in any signature. For spinor fields, see the beginning of Appendix B.

Given a d-dimensional vector space with a non-degenerate inner product of signature
(p, q), with p+ q = d, the spin group can be defined as the double covering of the identity

component of the orthogonal group, that is Spin(p, q) = S̃Oo(p, q). In four dimensions,
one has the following isomorphisms depending on the signature:

Spin(1, 3) ∼= SL(2,C), (A.1)

Spin(4) ∼= SU(2)× SU(2), (A.2)

Spin(2, 2) ∼= SL(2,R)× SL(2,R). (A.3)

The natural (inequivalent) representations of SL(2,C) are C
2 and C̄

2. For SU(2), the
natural representation is C2 (which in this case is equivalent as a representation to C̄2), and
for SL(2,R) the natural representation is R2. Therefore, in all cases the finite dimensional
irreducible representations are classified by two integers or half-integers (n,m), that are
said to be of opposite chirality. The fundamentals are (1

2
, 0) and (0, 1

2
). We see that, in the

Lorentzian and Riemannian cases, spinors are complex, while in neutral signature they
are real. Furthermore, in Lorentz signature, complex conjugation interchanges chirality
(i.e. it maps an element of C2 to an element of C̄2), but in the Riemannian case it is an
involution. In the following everything is valid for any signature.

We denote elements in the (1
2
, 0) representation by e.g. ϕA, and elements in (0, 1

2
) by

e.g. ψA′

. The vector representation is (1
2
, 1
2
) = (1

2
, 0) ⊗ (0, 1

2
), thus, a vector va can be

represented as an object with a pair of spinor indices vAA′

. The map from va to vAA′

is
va → vAA′

= σa
AA′

va, where σa represents the identity and the three Pauli matrices. It
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is customary to omit σa
AA′

in this correspondence, so that one simply associates a vector
index with a pair of spinor indices of opposite chirality, e.g. va ≡ vAA′

, etc.; in this work
we follow this convention.

The spin spaces are equipped with the symplectic structures ǫAB and ǫA′B′ . The
inverses are denoted by ǫAB and ǫA

′B′

, and they satisfy ǫACǫBC = δAB and ǫA
′C′

ǫB′C′ =
δA

′

B′ . These objects allow to raise and lower spinor indices; our convention is

ϕA := ǫABϕB, φA := ǫBAφ
B, (A.4)

and analogously for primed indices. The relation between ǫAB, ǫA′B′ and the metric is
simply gab = gAA′BB′ = ǫABǫA′B′ .

Given two spinors ξA, ηA with ǫABξAηB = χ 6= 0, and using the convention (A.4) to
define ξA, ηA, we have

ǫAB = χ−1(ξAηB − ξBηA), (A.5)

δAB = − χ−1(ξAηB − ηAξB). (A.6)

These identities are used repeatedly throughout this work. For example, consider a spinor
ϕAB = ϕ(AB), then using the identity

ϕAB = δCAδ
D
BϕCD (A.7)

and replacing (A.6) one gets the expression (3.23).
Any symmetric spinor can be decomposed into a symmetrized product of 1-index

spinors, which are then called its principal spinors. This is a consequence of the fact
that the field of complex numbers is algebraically closed, see Proposition (3.5.18) in [25].
We illustrate this with a simple example. Using a basis ξA, ηA, with ξAη

A = χ 6= 0, let
ζA = ξA + zηA, and consider ϕAB = ϕ(AB). Then

p(z) := ϕABζ
AζB = ϕ0 + 2ϕ1z + ϕ2z

2 = (z − z+)(z − z−), (A.8)

where we assume ϕ2 6= 0, and the roots z± are

z± = ϕ−1
2 (−ϕ1 ± (ϕ2

1 − ϕ0ϕ2)
1/2). (A.9)

Then the principal spinors of ϕAB are ζ±A = ξA + z±ηA, and

ϕAB = χ−2ϕ2ζ
+
(Aζ

−
B). (A.10)

It is important to note, however, that the principal spinors may be complex. This is
of course always true in Riemannian and Lorentz signature, but in split signature, a
symmetric spinor can be real while its principal spinors are complex. This depends
on whether the roots z± are real or complex, which in turn depends on the sign of
−1

2
ϕABϕ

AB = χ−2(ϕ2
1 − ϕ0ϕ2). If ϕ2

1 − ϕ0ϕ2 ≥ 0, then z± are real and the principal

spinors ζ±A are real. If ϕ2
1 − ϕ0ϕ2 < 0, then z± are complex conjugates, and ζ+A = (ζ−A ).
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B Further details on the covariant formalism

Here we give more details on the covariant formalism introduced in section 3.3.
Let Pspin denote the principal fibre bundle corresponding to the spin structure in

the conformal manifold. Let G be the associated structure group: G = Spin(p, q)× R+,
where Spin(p, q) is one of the three groups (A.1)–(A.3) (and R+ accounts for the conformal
rescalings of the metric). Let V = (⊗kK2)⊗ (⊗k′K̄2)⊗ (⊗lK2∗)⊗ (⊗l′K̄2∗), where K = C

for signature (+ − −−) and (+ + ++), and K = R for (+ + −−) (in which case “R̄” is
simply another copy of R). The spinor bundles are the associated vector bundles

S
B...B′...
C...C′... = Pspin ×G V (B.1)

where SB...B′...
C...C′... has k unprimed and k′ primed indices in the upper position, and l unprimed

and l′ primed indices in the lower position; and ×G denotes the “natural” representation
of G on V 23. For only one index, we also use the notation S = SB, S′ = SB′

, S∗ = SB,
S′∗ = SB′ .

A spinor field is a section of (B.1). But in this work we also need weighted spinor
fields, as a consequence of the fact that we have the ‘gauge freedom’ (3.27) and (3.45). In
section 3.3 we mentioned that the gauge group associated to this freedom is Go. We see
that the transformation law (3.46) corresponds simply to the representation of Go on V
given by ρr,r′;w : Go → GL(V ),

[ρr,r′;w(λ, µ,Ω)ϕ]
B...B′...
C...C′... = λrµr′ΩwϕB...B′...

C...C′... . (B.2)

The principal bundle B over M whose structure group is Go can be understood as a
‘reduction’ of Pspin (in the sense that Go ⊂ G), and, similarly to (B.1), we now have the
weighted spinor bundles

S
B...B′...
C...C′...(r, r

′;w) = B ×ρr,r′;w
V. (B.3)

A spinor field of type (r, r′;w) (Definition 3.10) is a section of this bundle. For example,
the spinor fields αA, βA associated to a given almost para-Hermitian structure K, and the
scalar field φ = αAβ

A, are all sections of (B.3), for different values of r, r′, w. We give the
specific weights in table 1. For convenience we mention that objects without indices, i.e.
weighted scalar fields, are sections of the line bundles

S(r, r′;w) = B ×ρr,r′;w
V (B.4)

where V = C or V = R.
The covariant derivative introduced in Definition 3.11 is an operator on sections of

(B.3), whose construction can be understood as follows. First, use the spinors αA, βA

associated to K as a basis: εA
A

≡ (αA, βA) (where A = 0, 1 is understood as a concrete
index), with αAβ

A = φ. The dual frame is εAA = (−φ−1βA, φ
−1αA). The natural Weyl

connection w∇a induced by K defines a local connection 1-form by w∇aε
B
B
= wωaB

CεB
C
,

or equivalently
wωaB

C = εCB
w∇aε

B
B
. (B.5)

23More precisely, the tensor product of the natural representations. Also, we are being a bit sloppy
since G also includes the conformal rescalings R+, so this representation is understood to have also some
definite conformal weight. But this is not important here since it is accounted for anyway in (B.2).
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Under Go, some parts of this object transform covariantly, and some other do not. The
components that transform covariantly are wωa0

1 and wωa1
0. For the rest, one can check

that

wωa0
0 Go−→ wωa0

0 + w0Ω
−1∂aΩ+ λ−1∂aλ,

wωa1
1 Go−→ wωa1

1 + w1Ω
−1∂aΩ+ µ−1∂aµ.

Therefore, defining the 1-forms

La := − wωa0
0 − w0fa, (B.6a)

Ma := − wωa1
1 − w1fa, (B.6b)

and recalling the Lee-form fa, we have

fa
Go−→ fa − Ω−1∂aΩ,

La
Go−→ La − λ−1∂aλ,

Ma
Go−→Ma − µ−1∂aµ,

so ψa := (fa, La,Ma) can be thought of as the connection 1-form associated to the gauge
symmetry Go. The explicit expression of La and Ma in terms of the spinors αA, βA is
given in formulas (3.48), (3.49). For fa, a calculation shows the following:

Proposition B.1. The Lee form (2.31) induced by an almost-para Hermitian structure
K is given by

fAA′ = φ−2(αAβCα
B∇BA′βC + βAαCβ

B∇BA′αC). (B.7)

where αA and βA are the (projective) spinor fields representing K, with φ = αAβ
A.

Now, consider an element u = (x, y, z) ∈ Lie(Go) in the Lie algebra of Go. The
representation (B.2) of Go induces a representation ρ′r,r′;w of Lie(Go), given by

ρ′r,r′;w(u) = rx+ r′y + wz. (B.8)

Since the connection 1-form ψa is valued in Lie(Go), we have ρ′r,r′;w(ψa) = rLa+r
′Ma+wfa.

Combining this with the Weyl connection w∇a, the induced covariant derivative is

w∇a + ρ′r,r′;w(ψa) =: Ca (B.9)

which is simply (3.47). For convenience we give the explicit formula for (B.9) in terms
of an arbitrary Levi-Civita connection ∇AA′, when acting on a spinor field ϕBB′

CC′ of type
(r, r′;w):

CAA′ϕBB′

CC′ = ∇AA′ϕBB′

CC′ + (wfAA′ + rLAA′ + r′MAA′)ϕBB′

CC′

+ ǫA
BfA′Xϕ

XB′

CC′ + ǫA′

B′

fAX′ϕBX′

CC′ − fA′Cϕ
BB′

AC′ − fAC′ϕBB′

CA′ . (B.10)

Proposition B.2. We have the general identities:

Cagbc = 0 = CaǫBC = CaǫB′C′ , (B.11a)

CAA′αB = φ−2(αCαD∇CA′αD)βAβ
B, (B.11b)

CAA′βB = φ−2(βCβD∇CA′βD)αAα
B, (B.11c)

CAA′φ = 0. (B.11d)
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Remark B.3. Recalling the definition (3.51) of CA′ , C̃A′, we deduce from (B.11b) and
(B.11c) the general identities

CA′αB = 0, C̃A′βB = 0. (B.12)

C Curvature of Ca

In this appendix we describe some properties of the curvature of the connection (B.9),
that we need in the main text. The curvature of Ca is defined by the commutator [Ca,Cb].
Since this is skew-symmetric in ab, the decomposition (3.1) implies that [Ca,Cb] splits into
SD and ASD pieces; this will be applied below.

Let vAA′

be a vector field with weights (r, r′;w). Then by definition

Cbv
DD′

= ∇bv
DD′

+ ψbv
DD′

+WbC
DvCD′

+ W̃bC′

D′

vC
′D, (C.1)

where for convenience we put

ψb = wfb + rLb + r′Mb, (C.2)

WbC
D = fB′CǫB

D, (C.3)

W̃bC′

D′

= fBC′ǫB′

D′

. (C.4)

Applying another covariant derivative Ca and taking the commutator, after a short cal-
culation we find

[Ca,Cb]v
DD′

= [∇a,∇b]v
DD′

+ (2∇[aψb])v
DD′

+ FabC
DvCD′

+ F̃abC′

D′

vC
′D (C.5)

where

FabC
D := 2∇[aWb]C

D + 2W[a|E|
DWb]C

E , (C.6)

F̃abC′

D′

:= 2∇[aW̃b]C′

D′

+ 2W̃[a|E′|
D′

W̃b]C′

E′

. (C.7)

We can see three contributions to (C.5): the curvature of the Levi-Civita connection,
the curvature of the “internal” connection ψb, and the curvature of the Weyl connection,
which is encoded in the two pieces FabC

D and F̃abC′
D′

.
Now, a straightforward computation shows that

[Ca,Cb] = ǫABCC(A′CB′)
C + ǫA′B′CC′(ACB)

C′

, (C.8)

and similarly, all the pieces in the right hand side of (C.5) decompose into SD and ASD
pieces. Thus the SD and ASD pieces in (C.5) can be simply obtained as 1

2
ǫAB[Ca,Cb] and

1
2
ǫA

′B′

[Ca,Cb]. We find:

CA′(ACB)
A′

vDD′

= �ABv
DD′

+ (∇A′(Aψ
A′

B))v
DD′

+ FABC
DvCD′

+ G̃ABC′

D′

vC
′D, (C.9)

CA(A′CB′)
AvDD′

= �A′B′vDD′

+ (∇A(A′ψA
B′))v

DD′

+ F̃A′B′C′

D′

vC
′D +GA′B′C

DvCD′

, (C.10)
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where �AB and �A′B′ are ordinary spinor curvature operators, see [25, Section 4.9], and
we defined

FABC
D := ǫ(A

D
[
∇B)C′fC

C′

+ fB)C′fC
C′

]
, (C.11)

GA′B′C
D := −∇(A′

DfB′)C + f(A′

DfB′)C , (C.12)

F̃A′B′C′

D′

:= ǫ(A′

D′
[
∇B′)CfC′

C + fB′)CfC′

C
]
, (C.13)

G̃ABC′

D′

:= −∇(A
D′

fB)C′ + f(A
D′

fB)C′ . (C.14)

The spinors G,F are respectively the SD and ASD pieces of FabC
D, and G̃, F̃ those of

F̃abC′
D′

. Likewise, ∇A(A′ψA
B′) and ∇A′(Aψ

A′

B) are the SD and ASD pieces of 2∇[aψb].

Remark C.1. For weighted scalars Φ, formulas (C.9)-(C.10) are much simpler:

CA′(ACB)
A′

Φ = (∇A′(Aψ
A′

B))Φ, CA(A′CB′)
AΦ = (∇A(A′ψA

B′))Φ. (C.15)

Using (C.2) and the expressions (3.48)-(3.49) for La,Ma, we note that

ψa = (w − rw0 − r′w1)fa + r′ψ(β)
a + rψ(α)

a , (C.16)

where

ψ(β)
a = − φ−1αB∇AA′βB − φ−1αAfA′Bβ

B, (C.17)

ψ(α)
a = φ−1βB∇AA′αB + φ−1βAfA′Bα

B. (C.18)

Note also that ψ
(α)
a can be rewritten as ψ

(α)
a = −ψ(β)

a − ∇a log φ − fa; therefore, the
curvature of the “internal” connection can be computed in terms of the curvatures of fa
and ψ

(β)
a :

∇[aψb] = (w − r − rw0 − r′w1)∇[afb] + (r′ − r)∇[aψ
(β)
b] . (C.19)

For later use, we note in particular the following:

βAβB∇A′(Aψ
A′

B) = (w− r− rw0− r′w1)β
AβB∇A′(Af

A′

B) +(r′ − r)βAβB∇A′(Aψ
(β)A′

B) . (C.20)

Some identities when βA is shear-free

Proposition C.2. Suppose that βA is shear-free, then we have the following identities:

ΦA′B′CDβ
CβD +GA′B′CDβ

CβD = 0, (C.21)

ΨABCDβ
CβD + 2ΛβAβB + FABCDβ

CβD = 0. (C.22)

Proof. These identities follow from (C.10) and (C.9) by applying them to βD, using
Caβ

B = 0, and contracting with βD.

Proposition C.3. If βA is shear-free, we have:

βAβBΦABC′D′ + βAβBG̃ABC′D′ = 1
2
ǫC′D′βAβB∇A′(Af

A′

B), (C.23)

ΨABCDβ
BβCβD = 1

2
βAβ

BβC∇B′(Bf
B′

C) = −1
3
βAβ

BβC∇B′(Bψ
(β)B′

C) . (C.24)
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Proof. To prove (C.23), we use (C.21):

βAβBΦABC′D′ + βAβBG̃ABC′D′ = − βAβBGC′D′AB + βAβBG̃ABC′D′

= βAβB∇A(D′fC′)A − βAβB∇AD′fC′A

= − βAβB∇A[D′fC′]A

= 1
2
ǫC′D′βAβB∇A′(Af

A′

B). (C.25)

Now let us prove (C.24). Contracting (C.22) with βB, we find

ΨABCDβ
BβCβD + FABCDβ

BβCβD = 0. (C.26)

The second term is

FABCDβ
BβCβD = ǫ(A|D|

[
∇B)C′fC

C′

+ fB)C′fC
C′

]
βBβCβD = −1

2
(βBβC∇B′(Bf

B′

C))βA

which establishes the first equality in (C.24). Now, applying (C.9) to βD and contracting
with βAβB, we get

0 = ΨABCDβ
AβBβC + (βBβC∇B′(Bψ

(β)B′

C) )βD + FABCDβ
AβBβC.

From (C.26) we deduce that ΨABCDβ
AβBβC = −FDABCβ

AβBβC, where we used ΨABCD =
Ψ(ABCD). Thus,

0 = (βBβC∇B′(Bψ
(β)B′

C) )βD − FDABCβ
AβBβC + FABCDβ

AβBβC . (C.27)

The last term in the right hand side is

FABCDβ
AβBβC = ǫ(A|D|

[
∇B)C′fC

C′

+ fB)C′fC
C′

]
βAβBβC = (βBβC∇B′(Bf

B′

C) )βD,

which shows that FABCDβ
AβBβC = −2FDABCβ

AβBβC . Therefore

(βBβC∇B′(Bψ
(β)B′

C) )βD = 3FDABCβ
AβBβC = −3ΨABCDβ

AβBβC ,

and the last equality in (C.24) follows.

Remark C.4. Using (C.24), when βA is shear-free we can deduce a useful identity for
(C.20), for arbitrary weights w, r, r′ in (C.2):

βAβB∇A′(Aψ
A′

B) = −2φ−1(w − r − 3
2
(r′ − r)− rw0 − r′w1)ΨABCDα

AβBβCβD. (C.28)

Lemma C.5. Suppose that βA is shear-free. Then the equation

CA′CA′

= 0 (C.29)

is satisfied when acting on any weighted scalar/spinor/tensor field, if and only if βA is a
repeated principal spinor of the ASD Weyl curvature.
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Proof. Consider first a primed spinor field πA′

, with arbitrary weights (r, r′;w). Applying
(C.9) to πA′

and contracting with βAβB, we have

CA′C
A′

πD′

= βAβB
�ABπ

D′

+ (βAβB∇A′(Aψ
A′

B))π
D′

+ βAβBG̃ABC′

D′

πC′

= (βAβBΦABC′

D′

+ βAβBG̃ABC′

D′

)πC′

+ (βAβB∇A′(Aψ
A′

B))π
D′

= (1
2
βAβB∇A′(Af

A′

B))π
D′

+ (βAβB∇A′(Aψ
A′

B))π
D′

= (w + 1
2
+ 1

2
r − rw0 − 3

2
r′ − r′w1)(β

AβB∇A′(Af
A′

B))π
D′

,

where in the third line we replaced (C.23), and in the fourth we used (C.20) and the
second equality in (C.24). Therefore, we see that CA′CA′

πD′

= 0 for any πD′

if and only
if βAβB∇A′(Af

A′

B) = 0, which, using the first equality in (C.24), is true if and only if

ΨABCDβ
BβCβD = 0.

Consider now an unprimed spinor field ϕA with weights (r, r′;w). This can be written
as ϕA = aαA + bβA. Using Caβ

B = 0 and the first equation in (B.12), we have

CA′CA′

ϕD = αDCA′CA′

a + βDCA′CA′

b. (C.30)

Thus, we see that CA′CA′

ϕD = 0 on arbitrary weighted unprimed spinor fields ϕD if and
only if CA′CA′

Φ = 0 for arbitrary weighted scalar fields. From (C.15), we get

CA′CA′

Φ = (βAβB∇A′(Aψ
A′

B))Φ. (C.31)

Using now (C.20) and (C.24), we see that CA′CA′

Φ = 0 if and only if ΨABCDβ
BβCβD =

0.
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