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Supporting Information Text11

1. QED Hamiltonian12

In order to predict the properties of SrTiO3 embedded in an optical cavity we introduce the following atomistic quantum13

electrodynamical (QED) Hamiltonian (1):14

Ĥ = ωcâ
†â+ p̂2

c

2Mc
+ 1

2Mf

[
p̂f −A0Zf

(
â† + â

)]2 + VDFT(Q̂c, Q̂f), [1]15

where ωc is the frequency of the photons in the cavity which is set by the cavity length L⊥, a† and a are the corresponding creation16

and annihilation operators, A = A0(a† + a) is the cavity vector potential, Mc = 111492 a.u. and Mf = 194059 a.u. the effective17

masses of the lattice vibration (sum of the masses of the atoms in the unit cell) and the ferroelectric soft (FES) mode respectively,18

Zf the Born effective charge of the FES mode and VDFT(Qc, Qf) =
∑6

i=1 kf,iQ̂
2i
f +

∑5
j=2 kc,jQ̂

j
c +
∑6

i=1

∑5
j=1 kfc,i,jQ̂

2i
f Q̂

j
c19

the potential energy surface shown in Fig. 1(c) of the main text, which includes the intrinsic phonon non-linearities of SrTiO3.20

The FES and lattice modes are parameterized in terms Qf and Qc respectively (see next section for more details on Qf . The21

Born effective charges and the 2D potential energy surface expansion coefficients k are determined within DFT (density22

functional theory) using the Perdew-Burke-Ernzerhof (PBE) functional (2) as described in Ref. (3). Furthermore, we assume23

the Born-effective charge Zf to be not affected by the light-matter coupling. We stress that in the Hamiltonian it is essential to24

take into account the diamagnetic as it guarantees the existence of a groundstate bound from below (4). It is important to note25

that in the Hamiltonian above we reduced the phononic degrees of freedom of SrTiO3 to the FES mode and lattice vibration26

only and it is effectively describing a single unit cell. The unit cell Hamitlonian is effectively describing the collective Γ-phonon27

modes coupled with the dipole component of the electromagnetic fields. As shown in Ref. (3), this two modes are sufficient to28

correctly describes the physics of SrTiO3 by demonstrating quantum paraelectricity and proving the correct behaviour of FES29

mode for an extended range of temperatures.30

The strength of the cavity light-phonon coupling is determined by the Born effective charge and the photon mode amplitude31

A0. For the Γ-phonon mode coupled to the dipole component of the electromagnetic field the mode amplitude is given by (5, 6):32

A0 =
√

d⊥
2πc v [2]33

with d⊥ and v the thickness of the SrTiO3 slab and the volume of the unit cell respectively, c the speed of light and we used34

the relation L⊥ = πc/ωc where L⊥ is the vertical dimension of the cavity. In order to obtain the expression above we took into35

account the difference in the thickness of the cavity and the material, i.e. Vc = VSrTiO3 ∗ L⊥/d⊥. The scaling of the mode36

volume above with the thickness of the SrTiO3 crystal provides a direct way to increase the coupling of the cavity increasing37

the amount of material.38

2. Parameterization of Lattice Mode39

In the atomistic Hamiltonian shown in the previous section we have conveniently decided to parameterize the FES mode with40

the distance between the Ti and O atoms along the c-axis, as this distance is ultimately involved in the definition of the unit41

cell dipole: | ~D| ≡ ZfdTi−O. The particular choice however implies that the effective mass Mf and Born effective charge Zf have42

to be rescaled accordingly as compared to the corresponding quantities for the FES phonon mode. This is because, even if of43

minor importance, the FES phonon mode involves the motion of all the other atoms in the unit cell. Since within density44

functional perturbation theory with the PBE functional (DFPT@PBE) (7) the FES mode has an imaginary frequency, the45

phonon mode is ill defined and therefore we evaluated such mode directly from the difference of the atomic position in the46

optimized paraeletric and ferroelectric geometry. Specifically, we defined the FES eigenvector as:47

~U f
I =

~s ferro
I − ~s para

I∑
J
|~s ferro
J − ~s para

J |
, [3]48

where I is the index running over the atoms of the unit cell and ~s are the atomic basis vectors of the two different geometries.49

The eigevector above and Qf are then related by:50

Qf = xf
(
U f

Ti,z − U f
O,z
)

[4]51

with xf the actual FES mode parameter, i.e. the one that is independent of the specific atoms and to which the phonon52

effective masses and Born effective charges are standardly referred to. To calculate the effective mass and charge for the Qf53

parameter, the following formula can be applied:54

Mf =
∑
I

MI

(
U f
I,z

U f
Ti,z − U f

O,z

)2

Zf =
∑
a

ZI

(
U f
I,z

U f
Ti,z − U f

O,z

)
,

[5]55
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where MI and ZI are the atomic mass and the Born effective charge for the atom I.56

We set up our atomistic Hamiltonian for the SrTiO3, outside the cavity, with the quantities defined above calculated using57

the PBE functional. The full diagonalization of the Hamiltonian is performed on a simple product basis set |Qf〉 ⊗ |Qc〉 ⊗ |n〉58

which consists of a 50× 25 real space grid for the phononic coordinates Qf and Qc and up to n = 9 Fock number states as a59

basis for the photons. We obtain a FES mode frequency of 0.44 THz, which reproduces well the experimental results (8–10).60

3. Characterization of the Ferroelectric Photo-Groundstate61

In the main text we characterized the photo-groundstate of SrTiO3 in terms of the generalized FES mode frequency, mean62

displacement of the lattice vibration and Von Neumann entropy of the photonic sub-system. The latter quantity is commonly63

used to describe the amount of correlation between a given sub-system and all the others, which in our case is just the phononic64

system. The Von Neumann entropy is defined as:65

S = −ηi
∑
i

ηi log(ηi), [6]66

where ηi are the eigenvalues of the density matrix of the chosen subsystem, which for the photons is defined as:67

ρ̂ph = Trpn [ρ̂full] , [7]68

with Trpn meant as the trace over the phononic states. The resulting photonic entropy is the one shown in Fig. 2(c) of the69

main text.70

To further characterize the photo-groundstate of SrTiO3, we report the expectation value of the squared FES mode71

displacement, the purity and the expectation value of the photon number. These quantities are shown in Fig. S1 as a function72

of the coupling strength. We point out that the maximum of the mean squared displacement 〈Q̂2
f 〉 is at ωc = 3 THz, which is73

off-resonant with the FES mode frequency.74

The existence of an optimal for 〈Q̂2
f 〉 is a consequence of the trade-off between the delocalization and the dipole matrix elements75

between the phononic states coupled by the cavity photons. Indeed the higher ωc, the higher the phononic excited states76

that are coupled to the groundstate. In turns, this means that resulting delocalization gets larger but at the same time the77

dipole-matrix element becomes smaller.78

Beside the Von Neumann entropy another way to characterize the correlation between light and matter is to evaluate the79

so-called purity (11). This is defined as follows:80

γ = Tr
[
ρ̂2

ph
]
. [8]81

A purity value that deviates from 1 means that the groundstate cannot be factorized in a simple tensor product of a phononic82

and photonic wavefunction, hence light and matter are correlated. In the context of correlated systems, another informative83

quantity is the so called inverse participation ratio (IPR). The IPR gives a measure of localization and it is defined as84

σ =
∑

x
ρ(x)2 with ρ(x) the density of the system on a given space x. We calculated the IPR for the ferrolectric mode (we85

integrated out the Qc dimension) with and without light-matter coupling for a cavity frequency of 3 THz: we found that the86

ferrolectric mode is more localized and the IPR ratio is σA0=0.3/σA0=0 = 0.017.87

Finally, the finite expectation value of the photon number operator Nph = 〈â†â〉 on the groundstate justifies the use of the term88

photo-groundstate. Indeed, even if the cavity is dark, there is a finite number of photons generated by the presence of SrTiO3.89

4. Dynamical Localization induced by Vacuum Fluctuations90

In this section, we describe an alternative analytic simple approach to extend the theory of dynamical localization to the case91

of the quantized light field in a cavity (12, 13).92

A. Effective Hamiltonian. The eigenvalue problem associated with the QED Hamiltonian in the first section can be rewritten in93

the following matrix form:94 
H0 H1 0 0 0 . . .

H†1 H0 + ω
√

2H1 0 0 . . .

0
√

2H†1 H0 + 2ω
√

3H1 0 . . .
...

. . . . . . . . .
...




u0
u1
u2
...

 = E


u0
u1
u2
...

 [9]95

where H0 and H1 are matrices in the matter basis (see below) and ui are photon components of the eigenstate. The action on96

the n-th photon-sector can be written as97

√
nH†1un−1 + (H0 + nω)un +

√
n+ 1H1un+1 = Eun, [10]98

which can be proven by inspection. From this, one can recursively write the action of the full Hamiltonian matrix into a single99

photon sector in the form Heff |u0〉 = E|u0〉 and thus get an approximation for the groundstate (or low lying eigenvalues). The100

effective Hamiltonian can be easily shown to be:101

Heff = H0 −H1
1

H0 + ω − E − 2H1
1

H0 + 2ω − E + · · ·H
†
1

H†1 . [11]102
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B. High frequency Approximation. How many photon sectors need to be included depends on the ratio between light-matter103

coupling and frequency. To make this clear we write H1 = A0PH̃1 and factorize:104

Heff = H0 −
(A0P )2

ω
H̃1

1

1 + H0−E
ω
− 2

(A0P )2

ω
H̃1

1
H0+2ω−E H̃

†
1

H̃†1 [12]105

Only if ω � A0P the continued fractions can be neglected and the leading term reads106

Heff = H0 −
A2

0P
2

ω
H̃1

1
1 + H0−E

ω

H̃†1 = H0 −H1 [H0 + ω − E]−1 H†1 , [13]107

as in the main text A0 defines the photon mode volume and P is a c-number that sets the scale of the photon-phonon momentum108

matrix. Under this condition we can use the resolvent as a Neumann series and write109

Heff = H0 −H1

∞∑
n=0

(H0 − E)n

ωn+1 H†1 . [14]110

The Neumann series converges for ω > max({E0λ})− E, where H0ψλ = E0λψλ, but Eq. (14) is only a valid approximation for111

the full Hamiltonian as long as the truncation at n = 1 is possible.112

The series formulation of the effective Hamiltonian is useful because it yields to leading order in 1/ω:113

H
(1)
eff ≈ H0 −

H1H
†
1

ω
[15]114

which can be readily solved. For all higher orders the effective Hamiltonain gives self-consistent eigenvalue equation that can115

only be solved iteratively. However, one can approximate this self-consistency by considering the linearization E → E0. To116

second order in 1/ω the effective Hamiltonian for the ith eigenstate then reads117

H
(2)
eff,i ≈ H0 −

H1H
†
1

ω
+ H1H0H

†
1

ω2 − H1E0iH
†
1

ω2 [16]118

which has to be solved separately for each eigenstate.119

C. Localisation in SrTiO3. To describe the photon induced localization we consider the system within a two-level approximation.120

We choose as the two levels, two Gaussians which are localized in the left and right well of the 1D FES mode energy potential121

respectively. In matrix form this translates to:122

H =
(

0 t
t 0

)
+A0P

(
0 −i
i 0

)
(a+ a†) + ωa†a [17]123

so that H0 = tσx and H1 = A0Pσy. Here P is directly the L-R momentum matrix element. The high frequency approximation124

from the previous subsection then reads:125

Heff =
(
t− A2

0P
2t

ω2

)
σx −

(
A2

0P
2

ω
+ A2

0P
2E0

ω2

)
1. [18]126

The second term is only shifting the eigenvalues, while the first one gives full localisation if A2
0P

2

ω2 = 1. In that case the127

effective Hamiltonian has degenerate eigenvalues and similar to the full phonon-QED case one can make linear combinations of128

eigenvectors that give (1, 0) and (0, 1).129

5. Temperature Dependent Response Function130

In order to calculate the phase diagram that we presented in the main text, we need to include the effect of temperature in our131

theory. To do so we apply Kubo’s formula for the linear response of a thermal state to a perturbation described by:132

Ĥ ′(t) = −ZfQ̂fE(t) [19]133

where Zf , the FES mode effective charge, is assumed to be temperature independent. Applying Kubo’s formula, the resulting134

polarizability takes the form:135

χ(ω, T,A0) = −
∑
i,j

ρi(T,A0)Z∗|Dij(A0)|2 ×
{

1
[εj(A0)− εi(A0)]− ω − iδ + 1

[εj(A0)− εi(A0)] + ω + iδ

}
, [20]136

where the dipole matrix and the thermal density matrix are defined as Dij(A0) = 〈ψi(A0)|Q̂f |ψj(A0)〉 and ρi(T,A0) =137

e−[εi(A0)−ε0(A0)]/kBT /
∑

j
e−[εj(A0)−ε0(A0)]/kBT , respectively and |ψi(A0)〉 are the eigenstates of the QED Hamiltonian for138
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different values of the cavity coupling. Such a response function for SrTiO3 is shown in Fig. S2 for different temperatures and139

cavity coupling strengths. Note that the artificial broadening δ is kept constant with temperature however the increase in140

temperature introduces a finite population in the excited states which explains the appearance of further peaks.141

We then define a characteristic temperature dependent FES mode frequency from such a response function as:142

ω(T,A0) =
∫
dω ω Im[χ(ω, TA0)]∫
dω Im[χ(ω, T,A0)]

. [21]143
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Fig. S1. Dependence of the microscopic properties of SrTiO3 on the cavity parameters. (a) mean squared displacement of the generalized
ferroelectric soft mode as a function of the cavity coupling and photon energy. Note that by the symmetry of the 2D potential energy surface the expectation value of the
ferroelectric soft mode displacement has to be zero. (b) Purity of the photo-groundstate as a measure of light-matter correlation. (c) Expectation value of the number of photons.
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Fig. S2. Dependence of the imaginary part of the response function on temperature and cavity coupling strenght. The response to a probing electric field is calculated within
Kubo’s linear response theory. The values are shown in logarithmic scale and they are shifted by a constant for clarity.
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