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ABSTRACT
Studies of hominin dental morphology frequently consider accessory cusps on the
lower molars, in particular those on the distal margin of the tooth (C6 or distal
accessory cusp) and the lingual margin of the tooth (C7 or lingual accessory cusp).
They are often utilized in studies of hominin systematics, where their presence or
absence is assessed at the outer enamel surface (OES). However, studies of the
enamel-dentine junction (EDJ) suggest these traits may be more variable in
development, morphology and position than previously thought. Building on these
studies, we outline a scoring procedure for the EDJ expression of these accessory
cusps that considers the relationship between these accessory cusps and the
surrounding primary cusps. We apply this scoring system to a sample of
Plio-Pleistocene hominin mandibular molars of Paranthropus robustus,
Paranthropus boisei, Australopithecus afarensis, Australopithecus africanus, Homo
sp., Homo habilis and Homo erectus from Africa and Asia (n = 132). We find that
there are taxon-specific patterns in accessory cusp expression at the EDJ that are
consistent with previous findings at the OES. For example, P. robustus M1s and M2s
very often have a distal accessory cusp but no lingual accessory cusp, while H. habilis
M1s and M2s show the opposite pattern. The EDJ also reveals a number of
complicating factors; some apparent accessory cusps at the enamel surface are
represented at the EDJ only by shouldering on the ridges associated with the main
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cusps, while other accessory cusps appear to have little or no EDJ expression at all.
We also discuss the presence of double and triple accessory cusps, including the
presence of a double lingual accessory cusp on the distal ridge of the metaconid in the
type specimen of H. habilis (OH 7–M1) that is not clear at the OES due to occlusal
wear. Overall, our observations, as well as our understanding of the developmental
underpinnings of cusp patterning, suggest that we should be cautious in our
comparisons of accessory cusps for taxonomic interpretations.

Subjects Anthropology, Evolutionary Studies, Paleontology, Taxonomy
Keywords Tooth morphology, Hominin, Homo, Enamel-dentine junction, Accessory cusps,
Discrete traits, Taxonomy, Tooth development

INTRODUCTION
Although hominin mandibular molars typically have five main cusps, extra (accessory)
cusps are variably present and are common in some taxa. They are frequently present on
the distal marginal ridge (between the entoconid and hypoconulid) where they are termed
a tuberculum sextum (C6 or distal accessory cusp), or on the lingual marginal ridge
(between the metaconid and entoconid), where they are termed a tuberculum
intermedium (C7 or lingual accessory cusp—Fig. 1). Descriptions of fossil hominin teeth
routinely report the presence of these accessory cusps (Grine & Franzen, 1994; Johanson,
White & Coppens, 1982; Moggi-Cecchi, Grine & Tobias, 2006; Moggi-Cecchi et al., 2010;
Robinson, 1956; Tobias, 1991; Weidenreich, 1937; Wood, 1991) and studies of hominin
taxonomy frequently use both lingual and distal accessory cusps (Irish et al., 2018;
Suwa, 1990; Suwa, White & Howell, 1996; Wood & Abbott, 1983). For example, Wood &
Abbott (1983) stated that Paranthropus M1s very often have a distal accessory cusp,
while the M2s invariably show no lingual accessory cusp. Similarly, Suwa, White & Howell
(1996) suggested that for M1 and M2, the presence of a lingual accessory cusp and lack of a
distal accessory cusp implied an assignment to a non-robust taxon.

For the most part, accessory cusps are recorded at the outer enamel surface (OES).
While this is accurate in some cases, OES morphology can be obscured by the effects of
dental occlusal wear, which can impede accurate assessment of crown morphology.
For example, Burnett, Irish & Fong (2013) found that increasing degrees of occlusal wear
in a sample of M2s led to two independent observers recording fewer cusps in the teeth.
Fossil hominin tooth samples are often very small, meaning that it is rarely practical to
include only unworn or lightly worn teeth. Using X-ray, synchrotron and neutron
microtomography, however, it is possible to image, in three dimensions, the internal dental
structures of many fossil specimens (Davies et al., 2020; Le Cabec, Dean & Begun, 2017;
Martinón-Torres et al., 2019; Skinner et al., 2016; Skinner et al., 2008; Xing, Martinón-
Torres & De Castro, 2018; Zanolli et al., 2020). Accessory cusps are ‘primary-definitive’
traits (sensu Nager, 1960), a term that refers to dental features that are present at the
unworn OES, but derive from the enamel-dentine junction (EDJ). By imaging the EDJ we
can assess accessory cusp presence in worn teeth. In unworn and moderately worn
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specimens, we can compare the OES and EDJ morphology, allowing a more detailed
assessment of accessory cusp form.

Another advantage of utilizing the EDJ is that many hominin taxa have relatively thick
enamel, which can make the detailed morphology of crown features difficult to assess.
At the EDJ, such features often appear more distinctive, and we can assess not just the
presence of accessory cusps, but their spatial relationship and position relative to other
crown features. This is particularly important as a number of authors distinguish between
different ‘types’ of lingual and distal accessory cusps. For example, there is a distinction
between a ‘C7’ and a ‘postmetaconulid’ that is determined by the extent to which a
lingual accessory cusp is separated from the metaconid at the OES (Grine, 1984).
This distinction is frequently recognized in descriptions and analyses of hominin dental
remains (Grine et al., 2019; Kaifu, Aziz & Baba, 2005; Moggi-Cecchi, Grine & Tobias,
2006; Skinner et al., 2020; Suwa, Wood & White, 1994). Skinner et al. (2008) also
distinguished between different types of lingual and distal accessory cusps at the EDJ
according to the placement of the cusp and its association with adjacent cusps, as well as
identifying a number of ‘doubled’ accessory cusps. Further, Ortiz et al. (2017) found
that accessory cusps visible at the OES of hominoid upper and lower molars corresponded
to a wide variety of EDJ morphologies. They found a number of examples in which cusps at
the OES originated from shouldering features at the EDJ, rather than distinct dentine
horns, and in some cases found cusps that appear to originate entirely through enamel
deposition.

Furthermore, advances in our understanding of tooth development suggest that
accessory cusps are not individually patterned, and may instead form depending on a
number of upstream factors such as the size and spacing of the main cusps. For example,
Skinner & Gunz (2010) demonstrated that accessory cusp variation on the distal margin of
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Figure 1 Lower molar cusp layout. An example molar (OH 7 LM2, image reversed) illustrating the main
cusps and the two accessory cusps examined in this study. Full-size DOI: 10.7717/peerj.11415/fig-1

Davies et al. (2021), PeerJ, DOI 10.7717/peerj.11415 3/27

http://dx.doi.org/10.7717/peerj.11415/fig-1
http://dx.doi.org/10.7717/peerj.11415
https://peerj.com/


the EDJ of Panmandibular molars was consistent with predictions of a patterning cascade
model (Jernvall, 2000; Jernvall & Thesleff, 2000). Hunter et al. (2010) and Moormann,
Guatelli-Steinberg & Hunter (2013) demonstrated the predictions of the model were
consistent with variation in Carabelli’s trait expression in human upper molars (the latter
having been suggested to play a role to increase the functional occlusal area of the
tooth; Fiorenza et al., 2020). Moreover, Ortiz et al. (2018) found similar support for
variation in these and other accessory cusps in hominoids. These observations raise two
important questions, in particular for the use of these accessory cusps as characters in
taxonomic and phylogenetic studies. Are accessory cusps recorded at the OES in hominins
always developmentally homologous? And does the patterning cascade model mean that
accessory cusps are particularly liable to originate independently in separate hominin
lineages?

In this paper, we use microtomography to image the EDJ and OES expression of
accessory cusps on the distal and lingual margins of Plio-Pleistocene hominin lower
molars. We score accessory cusp expression at the EDJ, considering variation in the
placement of lingual and distal accessory cusps with respect to adjacent cusps. We discuss
the use of this system, and accessory cusps generally, for taxonomic distinction, and
consider the impact of several developmental complexities on the use of accessory cusps in
future studies.

METHODS
Study sample
The study sample is summarized in Table 1 and consists of 132 molars from a range of
hominin taxa spanning three genera, Australopithecus, Paranthropus andHomo (full study
sample can be found in Table S1). The study sample was selected to cover a number of
well-sampled Plio-Pleistocene hominin species to facilitate comparisons between taxa.
We were not able to include some samples such as Australopithecus anamensis and Laetoli

Table 1 Study sample summary. The taxon groupings, sites and sample sizes are listed for the study sample. More information on the study sample
can be found in Table S1.

Taxon Site n (M1, M2, M3)

P. robustus Drimolen and Swartkrans, South Africa 8, 7, 5

P. boisei Koobi Fora and Ileret, Kenya 2, 2, 2

A. afarensis Hadar, Ethiopia 7, 10, 4

A. africanus Sterkfontein, South Africa 6, 8, 8

Hominidae gen.
et sp. indet.

Koobi Fora, Kenya 1, 1, 0

Homo sp. Drimolen, Sterkfontein and Swartkrans, South Africa; Koobi Fora, Kenya; Shungura Formation, Ethiopia 7, 6, 4

H. habilis Koobi Fora, Kenya; Olduvai Gorge, Tanzania; Shungura Formation, Ethiopia 5, 3, 5

H. erectus (Africa) Baringo and Koobi Fora, Kenya; Olduvai Gorge, Tanzania 4, 6, 4

H. erectus (Asia) Sangiran, Indonesia; Chinese Apothecary 3, 8, 1

MP Homo Tighenif, Algeria 1, 2, 2

Note:
MP, Middle Pleistocene.
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Australopithecus afarensis as only a small number of specimens have sufficient tissue
contrast to image the EDJ. Samples containing only a small number of individuals, such as
Paranthropus boisei and molars from Tighenif, are excluded from frequency tables and
figures, but are discussed separately. Homo specimens from Africa were grouped as Homo
habilis or Homo erectus where possible, however there are a number of specimens for
which a specific attribution is not available, or there is disagreement over their attribution.
These specimens are grouped as Homo sp., with the acknowledgement that this group
is very likely heterogeneous. Images and descriptions of the OES and EDJ morphology of
all specimens, as well as a number of antimeres not included in the main sample, can be
found in the Supplemental Index.

Microtomography
Microtomographic scans for each molar were obtained using a SkyScan 1,172 or
SkyScan 1173 at 100–130 kV and 90–130 µA, a BIR ACTIS 225/300 scanner at 130 kV and
100–120 µA, a Diondo d3 at 100–140 kV and 100–140 µA, a X8050-16 Viscom AG
equipment at 115–125 kV and 350-600 µA and reconstructed as 16-bit tiff stacks with an
isometric voxel resolution ranging from 13-45 microns (two teeth, OH 16 LLM2 and
LLM3, are scanned at 60 microns, but only the higher resolution antimeres are included in
summary statistics).

Sangiran specimens S7-42, S7-78 and SMF-8865 were scanned using neutron
microtomography at the ANTARES Imaging facility (SR4a beamline) of the
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (Research Neutron Source; FRM II
reactor) of the Technische Universität München (see Zanolli et al., 2020). The neutron
beam originated from the cold source of the FRM II reactor, with an energy range from 3
to 20 meV, a collimation ratio of L/D = 500 (the ratio between the sample-detector
distance and collimator aperture) and an intensity of 6.4 × 107 n/cm2s. A 20 mm Gadox
screen was used to detect neutrons. Both a cooled, charge-coupled device camera (ikon-L
936; Andor) and cooled complementary metal-oxide semiconductor camera (Neo 5.5
sCMOS; Andor) were used as detectors. The final virtual volume of these specimens was
reconstructed with an isotropic voxel size of 20.45 µm.

Sangiran specimens S7-20, S7-62, S7-64 and S7-65, as well as both Chinese Apothecary
specimens (CA 804 and CA 808), were scanned on beamline ID 19 at the European
Synchrotron Radiation Facility (ESRF, Grenoble, France) using the protocol outlined in
Smith et al. (2018). These data were downloaded from the European Synchrotron
Radiation Facility Paleontological Microtomographic Database (http://paleo.esrf.eu).

Segmentation
For the majority of specimens, TIFF stacks were filtered using either a mean of least
variance filter (kernel size one) or a 3D median filter, followed by a mean of least variance
filter (each with a kernel size of three), implemented using MIA open source software
(Wollny et al., 2013). Filtered image stacks were segmented in Avizo 6.3 (Visualization
Sciences Group, 2010) using a seed growing watershed algorithm employed via a custom
Avizo plugin to segment enamel from dentine, before being checked manually.
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In specimens with particularly poor contrast between tissue types, enamel and dentine
were segmented using the magic wand tool in Avizo v.8.0 (FEI Visualization Sciences
Group) with manual corrections and use of the interpolation where enamel and dentine
could not be precisely demarcated (For more details, see Zanolli et al., 2019). Once enamel
and dentine were segmented, a triangle-based surface model of the EDJ was produced
using the unconstrained smoothing parameter in Avizo and then saved in polygon file
format (.ply).

Scoring system
All specimens were assessed visually and scored on rotatable 3D models (2D images in
occlusal, lingual and distal views at OES and EDJ are available in the SOM, along with a
written assessment of accessory cusp morphology for each specimen). Each tooth in the
sample was scored at the EDJ using the .ply surface model, making reference to the original
CT stack when necessary. The level of tissue distinction present in the scan was also
assessed as good, moderate or poor. Since accessory cusp features can be very small in
some cases, these categories allow us to assess the likelihood of accessory cusps being
missed at the EDJ. The scoring systems were adapted from Skinner et al. (2008) and
expanded to include new types that are present in this sample (Figs. 2 and 3).

Importantly, given the variation in number and position of accessory cusps, as well as
doubts over their developmental homology (Skinner et al., 2008; Ortiz et al., 2017), we do
not think it is feasible to use the terms cusp 6 and cusp 7. Instead, we refer to distal
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Figure 2 Scoring system for characterizing distal accessory cusp (DAC) variation at the EDJ. Distal
accessory cusps may be scored as (A) absent, (B) interconulid type, (C) hypoconulid type, or (D) ento-
conid type. An example EDJ surface is also shown (a; StW 309A). Types shown in grey are rare according
to our observations. Ent, Entoconid; Hld, Hypoconulid. Full-size DOI: 10.7717/peerj.11415/fig-2
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accessory cusps (DAC) for those appearing on the distal crown margin between the
hypoconulid and the entoconid, and to lingual accessory cusps (LAC) for those appearing
on the lingual crown margin between the metaconid and entoconid. These terms will be
used to describe cusps at the OES and the EDJ, but we will refer to the EDJ unless stated
otherwise.

Both DACs and LACs can appear in three forms at the EDJ, reflecting their
developmental origin and association (or lack thereof) with primary cusps. For DACs,
these are ‘hypoconulid type’ for those appearing on the distal crest of the hypoconulid,
‘entoconid type’ for those appearing on the distal crest of the entoconid, and ‘interconulid
type’ for those appearing on the marginal ridge between the hypoconulid and entoconid
(Fig. 2). These types can appear in isolation or in combination and in single, double or
triple forms. For LACs, these are ‘metaconid type’ for those appearing on the distal
crest of the metaconid, ‘entoconid type’ for those appearing on the mesial crest of the
entoconid and ‘interconulid type’ for those appearing on the marginal ridge between the
metaconid and entoconid (Fig. 3). As with DACs, these LAC types can appear in isolation
or in combination and in single or double forms.
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Med Ent

Med Ent Med Ent

Absent

Interconulid type
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Figure 3 Scoring system for characterizing lingual accessory cusp (LAC) variation at the EDJ.
Lingual accessory cusps may be scored as (A) absent, (B) interconulid type, (C) metaconid type, or
(D) entoconid type. An example EDJ surface is also shown (a; StW 309A). Types shown in grey are rare
according to our observations. Ent, Entoconid; Med, Metaconid.

Full-size DOI: 10.7717/peerj.11415/fig-3
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frequency of distal accessory cusp presence, of any type, in each taxon for the M1, M2 and M3. (B) The
frequency of lingual accessory cusp presence, of any type, in each taxon for the M1, M2 and M3.
The numbers beneath each bar show the sample size. Full-size DOI: 10.7717/peerj.11415/fig-4
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RESULTS
Taxon specific patterns
The overall frequency of distal and lingual accessory cusps of any type is summarized in
Fig. 4. The frequency of DAC presence increases along the tooth row in most taxa, with a
few minor exceptions (in A. afarensis and Asian H. erectus DACs are marginally less
frequent in M2s than M1s, but it is still highest in the M3). This pattern is not as clear in the
LACs, although six out of seven groups have the highest, or equal highest, frequency of
LACs in the M3s. DACs are particularly frequent in P. robustus; all M2s and M3s, and
6/8 (75%) of the M1s, have at least one DAC. A similar pattern is seen in P. boisei – all 6
molars included have one or more DACs. There are no DACs in the M1s of H. habilis
or African H. erectus. A contrasting pattern is seen in the LACs; they are rare in
Paranthropus (only SK 22 M3 and KNM-ER 25520 have LACs), absent in the M1s of
Australopithecus, but are more common inHomo. AllH. habilis teeth included here have a
LAC, as well as more than 50% of the M1s of Homo sp., and African and Asian H. erectus.
Homo sp., as well as African and Asian H. erectus, appear to be differentiated from
H. habilis by having fewer M2 LACs than the latter. However, only three H. habilis M2s
were included, so this pattern should be treated with caution. When the presence/
absence of both accessory cusps is considered together, there are clear patterns in the
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Figure 5 Combined distal and lingual accessory cusp presence/absence frequency for M1s and M2s.
The frequencies shown indicate, for each taxon, the proportion of M1s and M2s with each combination of
distal and lingual accessory cusp presence/absence. M3s are excluded here—see text. Numbers under-
neath the bars indicate sample sizes for each group. Abbreviations: DAC, distal accessory cusp; LAC,
Lingual accessory cusp. Full-size DOI: 10.7717/peerj.11415/fig-5
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combined M1 and M2 sample (Fig. 5—the M3s have been excluded here as accessory cusps
are more frequent and variable in form in the M3s than M1s and M2s, but the combined
DAC and LAC figures for each individual tooth position can be found in Fig. S1).
Paranthropus robustus M1s and M2s most often have a DAC and no LAC (13/15). Homo
habilis M1s and M2s show the opposite pattern, most often having a LAC and no DAC
(7/8), with only one M2 having a DAC and LAC (OH 7 M2, which has a double DAC).
Other groups are less consistent. Australopithecus afarensis M1s and M2s most often
have no accessory cusps or only a DAC, which is similar to the pattern seen in
Australopithecus africanus. In both of these taxa all specimens that do have a LAC are M2s
rather than M1s.

Accessory cusp types
Tables 2 and 3 show the presence/absence frequencies of each type of DAC (Fig. 2) and
LAC (Fig. 3). Table 2 shows that interconulid type DACs are present much more often
than the other types. Hypoconulid types are the next most frequent, but they are more

Table 2 Presence/absence frequencies of distal accessory cusp (DAC) types. The presence/absence
frequency of each type of DAC is shown for the M1, M2 and M3 for each taxon. An asterisk indicates that
frequencies exceed 100% due to the presence of multiple types of DAC in one or more specimens.

Taxon n
(M1, M2, M3)

M1 (%) M2 (%) M3 (%)

Ent Int Hld Ent Int Hld Ent Int Hld

P. robustus 8, 7, 5 0 62.5 12.5 0 85.7 28.6* 0 100 20*

A. afarensis 7, 10, 4 0 42.9 0 0 30 10 0 100 0

A. africanus 6, 8, 8 0 16.7 0 0 50 12.5 0 87.5 37.5*

Homo sp. 6, 6, 3 0 16.7 0 0 16.7 66.7 0 100 0

H. habilis 5, 3, 5 0 0 0 0 33.3 0 20 40 40

African H. erectus 4, 6, 4 0 0 0 0 50 0 25 25 25

Asian H. erectus 3, 8, 1 0 33.3 33.3 0 37.5 25 0 100 0

Note:
Abbreviations: Ent, Entoconid type; Int, Interconulid type; Hld, Hypoconulid type.

Table 3 Presence/absence frequencies of lingual accessory cusp (LAC) types. The presence/absence
frequency of each type of LAC is shown for the M1, M2 and M3 for each taxon.

Taxon n
(M1, M2, M3)

M1 (%) M2 (%) M3 (%)

Med Int Ent Med Int Ent Med Int Ent

P. robustus 8, 7, 5 0 0 0 0 0 0 0 20 0

A. afarensis 7, 10, 4 0 0 0 10 10 0 0 50 0

A. africanus 6, 8, 8 0 0 0 37.5 0 0 37.5 12.5 12.5

Homo sp. 7, 6, 4 57.1 0 0 16.7 0 0 25 50 0

H. habilis 5, 3, 5 80 20 0 66.7 33.3 0 0 100 0

African H. erectus 3, 6, 4 66.7 33.3 0 0 0 0 25 0 0

Asian H. erectus 3, 8, 1 66.7 0 0 25 25 0 0 100 0

Note:
Abbreviations: Med, Metaconid type; Int, Interconulid type; Ent, Entoconid type.
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common in the M2s and M3s. Entoconid types are rare; we did not find any among the M1s
or M2s, and there are only two entoconid types among the M3s. The two entoconid
types are in H. habilis and African H. erectus M3s, where there is a fairly even spread
between the three types. Metaconid type LACs are the most common type in the M1s
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Figure 6 Number and type of accessory cusps present for each specimen—Paranthropus and
Australopithecus. Each circle represents a single accessory cusp; specimens with two or three circles
in either column display double or triple cusps, respectively. Abbreviations: DAC, Distal accessory cusp;
LAC, Lingual accessory cusp. Full-size DOI: 10.7717/peerj.11415/fig-6
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(Table 3) and are confined for this tooth to species in the genus Homo. For the M3s, the
interconulid type LAC is most common. Both types are present in the M2s, but there are
more metaconid types overall. There is only one entoconid type LAC, in a M3 of
A. africanus (Sts 59).
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Figure 7 Number and type of accessory cusps present for each specimen in the sample—Homo and
KNM-ER 5431 (Hominidae gen. et. sp. indet). Each circle represents a single accessory cusp; specimens
with two or three circles in either column display double or triple cusps, respectively. Areas marked with a
red cross are those where part of the specimen was missing such that either the distal or lingual regions
could not be scored. Abbreviations: DAC, Distal accessory cusp; LAC, Lingual accessory cusp.
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The results are summarized graphically in Figs. 6 and 7, including the presence of
double and triple accessory cusps. Double LACs are rare but are found in several Homo
molars. The M1 of OH 7 has a double metaconid type LAC, the only specimen with
this arrangement in the sample (present in both antimeres). The M1 of KNM-ER 806 and
the M2 Sangiran S7-78 also have double LACs, but in this case one is an interconulid type
and the other a metaconid type. Finally, two A. africanus M3s have a double LAC.
Double DACs are more common. Two Asian H. erectus M1s have either a double
interconulid type or double hypoconulid type DAC, while numerous M2s and M3s have
double DACs, and two M2s have triple DACs (SK 25, P. robustus and StW 3, A. africanus).

DISCUSSION
Shouldering
There are a number of cases in which the morphology at the EDJ differs noticeably from
that of the OES. One issue in particular that can be problematic when scoring accessory
cusps is shouldering on the marginal ridges associated with the main cusps. This is
particularly noticeable on the distal ridge of the metaconid; in lingual view the shoulder is
evident at the EDJ as a convexity along the distal marginal ridge (Fig. 8). The OES
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Figure 8 Shouldering on the distal metaconid ridge. Shown are four specimens that exhibit shoul-
dering at the EDJ, with variable OES expression. (A) StW 421 RM1—Australopithecus africanus (B) SK
104 LM1—Paranthropus robustus. Images of this specimen have been reversed for comparative purposes
(C) StW 145 RM1—A. africanus (D) DNH 60B RM1—P. robustus. Each panel shows a lingual view of the
OES (top left) and EDJ (bottom left) and an occlusal view of the OES (right). Shouldering features are
indicated with arrows, see main text for details. Abbreviations: B, Buccal; L, Lingual; M, Mesial; D,
Distal. Full-size DOI: 10.7717/peerj.11415/fig-8
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manifestation of this shouldering is variable, but the distal ridge of the metaconid is often
raised, and in a number of cases there is a fissure present that, together with the lingual
groove, appears to demarcate a small or incipient OES cusp. In some cases, this fissure
incises the distal ridge of the metaconid such that in lingual view, there appears to be a
small cusp present. An example of this is StW 421A (RM1; Fig. 8A), which is described by
Moggi-Cecchi, Grine & Tobias (2006) as showing an ‘incipient postmetaconulid’ and given
a C7 score of 2 (‘small’) by Guatelli-Steinberg & Irish (2005) using the Arizona State
University Dental Anthropology System (ASUDAS; Turner, Nichol & Scott, 1991; Scott &
Irish, 2017). Another example is SK 104 (LM1; Fig. 8B); in this case Guatelli-Steinberg &
Irish (2005) score the tooth as having no C7, although Robinson (1956, p. 103) reports that
13/15 of Swartkrans M1s described display a ‘lingual accessory cusp partially separated
from the distal portion of the metaconid’. It is not clear if SK 104 is one of these specimens,
but it is likely given that there are a number of molars in this sample with weaker
expressions of this feature. In other specimens, the secondary fissure does not incise the
distal metaconid ridge. In these cases, the shape of the distal ridge of the metaconid at the
OES mirrors that of the EDJ in that it is raised and somewhat concave in shape. However,
in occlusal view, the fissure still suggests the presence of a cusp. Examples of this are
StW 145 (RM1; Fig. 8C); scored by Guatelli-Steinberg & Irish (2005) as having a medium
sized C7 (ASUDAS score 3), and DNH 60B (RM1; Fig. 8D); described by Moggi-Cecchi
et al. (2010) as showing an ‘incipient post-metaconulid’.

Shouldering is not limited to the lower molars. Martin et al. (2017) outlined a similar
trait in modern human and Neanderthal upper molars when describing the feature they
term the ‘post-paracone tubercle’. In some cases, this refers to a distinct cusp on the
paracone distal ridge, however in others there was only shouldering on the ridge, similar to
a number of the cases outlined here. This was also found to be present in other hominoid
taxa by Ortiz et al. (2017), who suggested that these examples of shouldering represent a
minor expression of the post-paracone tubercle trait.

The phenomenon of shouldering raises important questions about the developmental
nature of accessory cusps. Epithelial signalling centres called enamel knots have a
controlling role in cusp patterning during tooth development. The primary enamel
knot forms first, at the tip of the developing tooth bud, followed by secondary enamel
knots, at the future position of each cusp. The formation of these secondary enamel knots
directs folding of the inner enamel epithelium, the future boundary between enamel
and dentine, at the site of each cusp. We should therefore expect that all true accessory
cusps are initiated by the presence of a secondary enamel knot. If so, are secondary enamel
knots capable of producing broad shoulder-like features such as those outlined above?
This question is important because if shouldering features were not initiated by enamel
knots, then they would not be developmentally homologous to accessory cusps, and may
need to be considered separately in studies of taxonomy or phylogeny. An interesting
example is KNM-ER 806, for which the M3 antimeres differ in LAC expression (Fig. 9).
The left M3 has a broad shouldered distal metaconid ridge with no clear cusp, while the
right M3 has a distinct cusp on the distal metaconid ridge. This could lend support to
the idea that shouldering is equivalent to minor expression of an accessory cusp, with
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a) b)
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Figure 9 Third mandibular molar antimeres of KNM-ER 806—Homo erectus. (A) KNM- ER 806A—
Left M3 shows broad shouldering on the distal metaconid ridge. (B) KNM- ER 806C—Right M3 shows a
clear metaconid type lingual accessory cusp. Both panels show the specimens in lingual view at the OES
(top) and EDJ (bottom). Accessory cusps are indicated with arrows. Abbreviations: M, Mesial; D, Dis-
tal. Full-size DOI: 10.7717/peerj.11415/fig-9

a) b) c)
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Figure 10 Homo habilis M1s from Olduvai Gorge. Shown are three Olduvai H. habilis lower first
molars. All exhibit cusp features on the distal ridge of the metaconid, but the form is different in each. (A)
OH 7 LM1 showing two small, distinct accessory cusps on the distal ridge of the metaconid. Images of this
specimen have been reversed for comparative purposes. (B) OH 13 RM1 showing a single small accessory
cusp on the distal ridge of the metaconid. (C) OH 16 RM1 showing a single broad accessory cusp. Each
panel shows the specimens in lingual view at the OES (top) and EDJ (bottom). Accessory cusps are
indicated with arrows. Abbreviations: M, Mesial; D, Distal.

Full-size DOI: 10.7717/peerj.11415/fig-10
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the right M3 showing slightly stronger accessory cusp expression than the left.
Furthermore, if shouldering and cusps represent differing degrees of expression of the
same trait, then, at least to some extent, they are independent of size given that specimens
may have very large shouldering features (Figs. 8C, 9A) or very small, but distinct,
accessory cusps (Figs. 10A, 10B).

Ultimately, we need a better understanding of the developmental basis of shouldering in
order to determine the relationship between shouldering features and accessory cusps.
In the short term, a scheme that includes shouldering within the definition of the LAC, but
scores it separately to clear and distinct cusps, would be useful as it would allow these
traits to be assessed either separately or together, and would allow us to reassess these data
if our understanding of the development of these traits improves. However, this brings
practical difficulties; there are a wide array of morphologies that could be considered as
examples of shouldering, including some that are subtle and difficult to score reliably.
In the present study we scored only cusps that either have a clear apex, or are raised
above the level of the marginal ridge on both sides, thereby excluding the majority of
examples of shouldering (although some cusps that fit this definition, such as the right M1

of OH 16, Fig. 10C, also resemble shouldering features). An alternative solution would
be to conduct geometric morphometric analysis of the marginal ridge between the
metaconid and entoconid. This would remove the need for discrete trait categories, instead
measuring the shape of any cusp or shouldering feature without making assumptions
about their developmental underpinnings.

Cusps present only at the outer enamel surface
Another issue relates to the correspondence between the EDJ and OES. In some cases,
there appears to be a cusp at the OES with no clear corresponding EDJ feature. This can be
present lingually or distally, although there are more examples on the distal marginal
ridge in our sample. In some cases, particularly in scans exhibiting poor tissue distinction,
it is possible that the corresponding cusp at the EDJ is too small to be distinguished.
This may be particularly problematic in third molars since the cusps are generally smaller,
and some accessory cusps are represented by very low dentine horns at the EDJ. However,
there are a number of examples of this phenomenon in specimens with good tissue
distinction, and in first and second molars also (Fig. 11). These examples generally
involve quite small cusps, however they are large enough to be noted as accessory cusps;
all of the specimens shown in Fig. 11 have been described as having an accessory cusp/
cuspule at the OES (Johanson et al., 1982; Moggi-Cecchi, Grine & Tobias, 2006; Moggi-
Cecchi et al., 2010; Robinson, 1956).

It is not clear why the EDJ does not show any evidence of a dentine horn in these
examples. However, in some cases (Figs. 11B–11D) it does appear that regions of the EDJ
marginal ridges that we would expect to be concave, are instead flat. Given that we have
a number of cases in which dentine horns are low and broad, it is possible that the
presence of an elevation of the marginal ridge between main cusps (like for the shouldering
but in the interconulid region) could generate a portion of the EDJ that looks flat, but
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is in fact raised above the level that it otherwise would be, if this dentine horn-like
feature was not present. This flat morphology may then be exaggerated by the processes of
enamel deposition and appear as a small cuspule at the OES. Modelling on pig teeth has
suggested that concave and convex EDJ features can have different effects on enamel
deposition, which is suggested to explain how small differences in EDJ topography can
correspond to large differences at the OES (Häkkinen et al., 2019). Interestingly however,
this process does not require the presence of an enamel knot, meaning that some
features that appear as cusps at the OES may simply derive from small ridges at the EDJ.
This process could also explain the presence of cusp-like OES features overlying
shouldering at the EDJ as outlined above. In both cases, the absence of an enamel knot
would mean these features are not developmentally homologous to true accessory cusps
(i.e. those initiated by an enamel knot).
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Figure 11 Specimens displaying cusps at the OES but not at the EDJ. (A) DNH 75 LM3 (Paranthropus
robustus) displays two small cusps on the lingual marginal ridge at the OES. Left: lingual view of the OES
(top) and EDJ (bottom); Right: occlusal view of the OES. (B) A.L. 288-1 RM2 (Australopithecus afarensis)
with a small tubercle on the distal marginal ridge; Left: distal view at the OES (top) and EDJ (bottom);
Right: occlusal view of the OES. (C) StW 421A RM2 (Australopithecus africanus) shows a clear small cusp
on the distal marginal ridge. Left: lingual view of the OES (top) and EDJ (bottom); Right: occlusal view of
the OES. (D) SK 104 LM1 (P. robustus) shows a small cusp on the distal marginal ridge; Left: distal view at
the OES (top) and EDJ (bottom); Right: occlusal view of the OES. OES cusps are marked with arrows.
Images in (A) and (D) have been reversed for comparative purposes. Abbreviations: B, Buccal; L, Lingual;
M, Mesial; D, Distal. Full-size DOI: 10.7717/peerj.11415/fig-11
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Alternatively, it is possible that secondary enamel knots induce ameloblasts to deposit
more enamel in cuspal regions than in adjacent regions of the crown. In this case, late
forming secondary enamel knots, whose effect on the inner enamel epitheliummay be very
minor or nonexistent, may still produce noticeable cusps at the OES through the effect of
differential enamel deposition in these regions. This mechanism was previously put
forward in Skinner et al. (2008) but remains to be tested.

Twinned dentine horns
Another interesting phenomenon is that of twin dentine horns.Martin et al. (2017) noted
the presence of this feature in Neanderthal maxillary and mandibular molars, and Davies
et al. (2019) suggested that some mandibular premolars display a similar feature on the
protoconid. Twinned dentine horns are interesting because the patterning cascade
model of cusp development predicts that enamel knots should be inhibited from forming
in the immediate vicinity of one another (Jernvall, 2000; Jernvall & Thesleff, 2000),
suggesting that twinned dentine horns may result from a single enamel knot, rather than
two separate enamel knots. A similar argument could be made of double accessory cusps
forming in the immediate vicinity of each other as we see in the M1s of OH 7 (Fig. 10A).

There is a small number of possible examples of the twinned dentine horns trait in
our sample on the metaconid or hypoconulid. The most striking example is seen in
the M3 antimeres of KNM-ER 806 (Fig. 12). If the two teeth were scored in isolation, we
would suggest that the LM3 has a single hypoconulid dentine horn and a hypoconulid type
DAC, while the RM3 has double hypoconulid dentine horn. Both antimeres have two
dentine horns in the distolingual margin of the tooth; the only discernable difference
between them is the distance between the two dentine horns; in one case small enough to
be considered a double cusp and in the other large enough for one to be considered an
accessory cusp. This would seem to suggest that both traits are the result of the same
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Figure 12 Left and right antimeres of KNM-ER 806 (Homo erectus) third molars. (A) The left M3

shows a hypoconulid with a hypoconulid type distal accessory cusp. (B) The right M3 shows an
apparently double hypoconulid. Specimens are shown in oblique view at the EDJ (bottom) and OES
(top—thumbnail). Abbreviations: B, Buccal; L, Lingual; M, Mesial; D, Distal; Hld, Hypoconulid.

Full-size DOI: 10.7717/peerj.11415/fig-12

Davies et al. (2021), PeerJ, DOI 10.7717/peerj.11415 18/27

http://dx.doi.org/10.7717/peerj.11415/fig-12
http://dx.doi.org/10.7717/peerj.11415
https://peerj.com/


developmental processes, with minor differences during development leading to the
observed differences in spacing. In this case, it would suggest that either: (1) twinned
dentine horns can, in some cases, appear with a larger distance between the tips than
previously recognized, or (2) accessory cusps can appear very close to the main cusp in
some cases. Either scenario questions our ability to reliably tell the difference between the
two traits, if they are indeed distinct traits. Alternatively, we may conclude that the two
antimeres simply show different morphologies. Few antimeres were included in this study,
but they have been useful in investigating developmental questions; we suggest that future
studies include both antimeres whenever possible.

Accessory cusp types
In this study, we distinguished between several types of DACs (Fig. 2) and LACs (Fig. 3)
based on the association between accessory cusps and the main cusps. We found that the
majority of DACs are of the interconulid type, followed by hypoconulid type, although
these are more common in M2s and M3s than in M1s. For the LACs, the majority
were found to be metaconid types overall, although there were progressively more
interconulid types moving posteriorly along the tooth row. It should be noted that in M3s
the cusps are often very low, meaning the mesial and distal ridges of the main cusps
are less steep and it is harder to distinguish between the different types. We would expect
this to increase the number of interconulid types since any accessory cusps not clearly
associated with a main cusp were designated as interconulid types. This may explain the
increased number of interconulid type LACs along the tooth row.

Some authors distinguish a ‘postmetaconulid’ as distinct from a ‘C7’ (Grine et al.,
2019; Kaifu, Aziz & Baba, 2005; Moggi-Cecchi, Grine & Tobias, 2006; Skinner et al., 2020;
Suwa, Wood & White, 1994). Given that we did not find any clear taxon-specific patterns
when the distal and lingual accessory cusps were broken down into types that were not

LM2 LM1LM3
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Figure 13 Molar row of Tighenif 2. The left molars of Tighenif 2 are shown at the OES and EDJ,
showing the position of the LAC along the tooth row. Molars are shown in lingual view; (A) LM3,
(B) LM2, and (C) LM1. Arrows indicate the position of the accessory cusps. Note that the accessory cusp
is not visible at the OES of the LM2 (B) due to occlusal wear. Abbreviations: M, Mesial; D, Distal.

Full-size DOI: 10.7717/peerj.11415/fig-13
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present in the pooled samples, as well as the difficulty in distinguishing between the
types at the OES, we suggest that these distinctions are likely not useful for taxonomic
studies. The types described here may be useful in descriptions of dental material, although
it is unclear whether the types we distinguish here represent distinct traits; it is more
likely that there is a continuous variation in accessory cusp placement, and that this
variation is only partly captured by the categories used here. A good example illustrating
this is the molar row of Tighenif 2 (Fig. 13; see also Zanolli & Mazurier, 2013). All three
molars have a LAC, but its position shifts distally along the molar row from a clear
metaconid type in the M1, to interconulid types in the M2 and M3 that are situated close to
the entoconid (the LACs in the M2 and M3 are not situated on the mesial ridge of the
entoconid, which would make them an entoconid type, but they are situated close to
the entoconid because the cusp is low and its mesial ridge does not extend very far mesially
on the crown). If the variation in accessory cusp placement is continuous, then a method of
recording this variation continuously might better capture metameric differences, or
provide better taxonomic discrimination, than the categories used here.

Finally, it is interesting to note that there are very few accessory cusps closely
associated with the entoconid, either DACs or LACs. We find only three examples, all in
M3s. It is not clear why accessory cusps are less likely to form in this region, although in the
case of the LAC, the entoconid is typically initiated later than the metaconid (Smith
et al., 2007; Mahoney, 2008), and the mesial entoconid ridge is usually much shorter
than the distal metaconid ridge, suggesting there is less time and space for accessory cusps
to form in this region. In the case of the DAC, the mechanism is less clear since the
hypoconulid is frequently the smallest cusp, and is thought to be the last to initiate, but we
find that hypoconulid type DACs are nonetheless fairly common.

Use of accessory cusps for taxonomy
We find that there are a number of patterns present in accessory cusp expression that
may be useful in differentiating between hominin taxa. We find that Paranthropus molars
tend to have DACs but no LACs, consistent with studies of the OES (Suwa, White &
Howell, 1996; Suwa, Wood & White, 1994; Wood & Abbott, 1983). Guatelli-Steinberg &
Irish (2005) reported a comparably high DAC frequency at the OES for A. afarensis and
P. robustus. Our results, consistent with other studies of the OES (Bailey & Wood, 2007;
Suwa, Wood & White, 1994), instead suggest DACs are less frequent in A. afarensis.
Kimbel & Delezene (2009) suggested that A. afarensis M3s often have a double DAC at the
OES, distinguishing the species from Paranthropus and Homo. But we find double DACs
in the M3s of A. afarensis, A. africanus, P. robustus, P. boisei, Homo sp., H. habilis and
African H. erectus. In A. africanus they are particularly frequent (5/8). For the most part,
we suggest that accessory cusps in the M3s are too variable to be taxonomically
informative. We also find support for the suggestion that LACs are more common in
non-robust taxa (Suwa, Wood & White, 1994; Wood & Abbott, 1983). In particular, LACs
are associated with early Homo at the EDJ (Ortiz et al., 2017), and the presence of LACs at
the OES have been used to support an assignment of a number of specimens to Homo
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(Braga & Thackeray, 2003; Grine, 1989; Villmoare et al., 2015; Wood, 1991). We find that
LACs are frequent in Homo molars overall, but this is particularly true of H. habilis.

However, there are also some differences in the frequencies reported here from those
reported in various studies of the OES (Bailey & Wood, 2007; Guatelli-Steinberg & Irish,
2005; Irish et al., 2018; Suwa, White & Howell, 1996; Suwa, Wood &White, 1994;Wood &
Abbott, 1983). These differences may be due to differing study samples, or grouping of
specimens, or they may be the result of some of the issues described above such as
shouldering of the distal marginal ridges or OES cusps with minimal EDJ expression.
However, there are also differences likely to be introduced through the scoring systems
employed. A number of studies utilize ASUDAS accessory cusp traits with a presence/
absence breakpoint. For example, Irish et al. (2018) score the presence of a C7 with a
breakpoint of 2, meaning that a tooth scored as 1 or 1A in this system is counted as absent.
Types 1 and 1A refer to a “small, wedge-shaped cusp”, or a “groove on the lingual
surface of the metaconid”, respectively (Scott & Irish, 2017, p. 219). It is likely that a
number of the specimens that we score as having a LAC present at the EDJ could be scored
for the C7 ASUDAS trait as 1 or 1A at the OES, or in some cases even as 0. Good examples
of this are teeth with small metaconid type LACs; with moderate levels of dental wear, all
that remains of this feature at the OES is a small fissure. This may explain why, for
example, we report higher frequencies of LAC presence inH. habilis than Irish et al. (2018)
at the OES.

Beyond the issues presented above, there are also some fundamental questions
surrounding the use of accessory cusps in studies of taxonomy. Our understanding of
tooth development suggests that accessory cusps are not individually patterned. Instead,
according to the patterning cascade model (Jernvall, 2000; Jernvall & Thesleff, 2000),
accessory cusp formation is dependent on the size and spacing of earlier forming cusps.
This means that rather than accessory cusps representing a primary trait, they are
dependent on the shape of the crown, the size and spacing of the primary cusps, and that of
earlier forming accessory cusps. The taxonomic signal present in accessory cusps, as
reported here and elsewhere (Suwa, White & Howell, 1996; Wood & Abbott, 1983;
Ortiz et al., 2017), may come from the fact that the size and spacing factors they depend on
are genetically determined, or that these factors are themselves dependent on further
upstream genetically determined factors. Equally, this may make accessory cusps
particularly liable to homoplasy. Tooth shape, as well as cusp size and spacing factors, are
variable in hominin teeth, and multiple arrangements of these factors could lead to the
development of accessory cusps in separate hominin lineages. In this case, it would be
preferable to analyze these size and spacing factors directly through measures of crown
shape, relative cusp areas or geometric morphometric analysis of crown shape, either at the
OES or at the EDJ.

The factors controlling accessory cusp formation are complex and not fully understood.
For example, it is not clear how double or triple accessory cusps form. We may expect
that in some cases there may be enough space available on the lingual or distal
marginal ridges for multiple accessory cusps to form, however we would expect them to be
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relatively well-spaced apart, which is not always the case (e.g. OH 7 M1; Fig. 10A). It may
be possible that these cases of closely spaced accessory cusps are caused by the same
(unknown) processes responsible for the twinned dentine horns that sometimes underly
the main cusps, as outlined above. If this were the case, they would have to be distinguished
from double accessory cusps that are well-spaced from each other. It is also unclear
which conditions lead to multiple accessory cusps forming as opposed to a single large
accessory cusp. Trait scoring systems such as the ASUDAS score accessory cusps according
to size (although a DAC can alternatively be scored using the ‘cusp number’ trait, in
which case it is only present or absent). This relies on the assumption that a larger cusp
represents a greater level of expression of the trait. Equally, it could be argued that a double
or triple accessory cusp arrangement is equivalent to greater expression of the trait,
particularly if the ‘trait’ in question is actually a combination of size and spacing factors
that permit the development of accessory cusp(s). The ASUDAS system does not
ordinarily score the presence of double/triple accessory cusps, although some authors have
added or adapted traits for multiple DACs (Bailey & Wood, 2007; Irish et al., 2018).
However, for the most part, a specimen displaying multiple small DACs or LACs would
presumably be scored as having a small accessory C6 or C7, a minor expression of the trait.

CONCLUSION
We find that there are a number of patterns in lower molar accessory cusp expression at
the EDJ. Paranthropus robustusM1s and M2s very often have a DAC and no LAC, and no
LACs were found in any Australopithecus or Paranthropus M1s. Homo habilis M1s and
M2s very often combine the absence of a DAC with the presence of a LAC. However, the
EDJ also reveals a high level of complexity in accessory cusp expression that is not
always visible at the OES. Cusp-like morphologies at the OES may, at the EDJ, be
represented by one or more dentine horns, or by a shouldering on the marginal ridge of
one of the main cusps, or seemingly by nothing at all. We therefore suggest that, where
possible, accessory cusps are assessed at the EDJ as well as the OES. Even so, our
understanding of the development of these traits is poor and we cannot be sure they
are generated by the same developmental mechanisms in all cases. Further, our
understanding of the development of accessory cusps suggests that they are dependent on a
number of factors such as the size and spacing of earlier forming cusps and the space
available on the crown, suggesting it may be preferable to analyze these factors directly.
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