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Abstract
Tinnitus is the perception of a ‘ringing’ sound without an acoustic source. It is generally accepted that tinnitus develops after 
peripheral hearing loss and is associated with altered auditory processing. The thalamus is a crucial relay in the underlying 
pathways that actively shapes processing of auditory signals before the respective information reaches the cerebral cortex. 
Here, we review animal and human evidence to define thalamic function in tinnitus. Overall increased spontaneous firing 
patterns and altered coherence between the thalamic medial geniculate body (MGB) and auditory cortices is observed in 
animal models of tinnitus. It is likely that the functional connectivity between the MGB and primary and secondary auditory 
cortices is reduced in humans. Conversely, there are indications for increased connectivity between the MGB and several areas 
in the cingulate cortex and posterior cerebellar regions, as well as variability in connectivity between the MGB and frontal 
areas regarding laterality and orientation in the inferior, medial and superior frontal gyrus. We suggest that these changes 
affect adaptive sensory gating of temporal and spectral sound features along the auditory pathway, reflecting dysfunction in 
an extensive thalamo-cortical network implicated in predictive temporal adaptation to the auditory environment. Modulation 
of temporal characteristics of input signals might hence factor into a thalamo-cortical dysrhythmia profile of tinnitus, but 
could ultimately also establish new directions for treatment options for persons with tinnitus.
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Introduction

Tinnitus is frequently described as hearing a sound without 
an external source or as a ringing in the ears (Baguley et al. 
2013). The prevalence of tinnitus ranges from 10 to 15% in 
the general population, and in 1–2% it severely interferes 

with the affected person’s daily life (Langguth et al. 2013; 
McCormack et al. 2016; Schlee et al. 2017). Severe forms 
of tinnitus exert a particular negative impact on the qual-
ity of life, with symptoms of depression, anxiety, sleep 
disturbances, concentration difficulties, or reduced cogni-
tive efficiency (Hallam et al. 2004; Langguth 2011). Con-
sequently, tinnitus has direct societal impact, as reflected in 
high healthcare costs and loss of productivity (Maes et al. 
2013). Currently, there is no curative evidence-based therapy 
for tinnitus, i.e., although drug targets, cognitive, behavioral, 
and neuromodulative interventions have been put forward, 
there is a lack of randomized controlled trials confirming 
effective tinnitus treatment (Kleinjung and Langguth 2020).

Over the past two decades, general interest in tinnitus 
has rapidly grown as part and parcel of new hypotheses 
about tinnitus pathophysiology (Moller et al. 2015; Rob-
erts and Salvi 2019). Reflecting parallel advances in neu-
roimaging methodology, the general focus shifted from 
otology to neuronal correlates of tinnitus (Langguth et al. 
2013). Although there is no strong consensus, it is gener-
ally assumed that hearing loss precedes the development 
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of tinnitus. Consequently, changes along the classical and 
non-classical auditory pathway, expressed in alterations 
of spontaneous firing activities, neural synchronization, or 
tonotopic organization are possible key elements of tinnitus 
pathogenesis (Elgoyhen et al. 2015).

The classical ascending auditory pathway includes projec-
tions to mainly primary auditory regions, while non-classical 
auditory pathways have been described as extralemniscal, 
diffuse, or polysensory pathways that involve connections to 
non-primary auditory areas (Fig. 1) (Aitkin 1986; Graybiel 
1972; Møller 2012). Next to neural correlates of tinnitus, 
current theories suggest maladaptive gating, increased cen-
tral gain or altered neural thalamo-cortical coherence as fac-
tors underlying the development of tinnitus (De Ridder et al. 
2015; Llinas et al. 1999; Norena 2011; Rauschecker et al. 
2010). However, although the auditory thalamus, and in par-
ticular the medial geniculate body (MGB), is a mandatory 

relay station along the auditory pathway, its contribution to 
tinnitus pathology is often disregarded.

The MGB is part of the classical and non-classical audi-
tory pathway, mediating the thalamo-cortical network 
involved in tinnitus. It actively shapes information process-
ing between subcortical and cortical areas (Bartlett 2013; 
De Ridder et al. 2015; Llinas et al. 1999). Animal research 
provides first indications of successful tinnitus treatment by 
invasively stimulating the MGB in rats (van Zwieten et al. 
2019b). The MGB should hence not only be considered a 
major gateway station for auditory signals transmitted to the 
cerebral cortex, but also as a crucial component in devel-
oping a better understanding of tinnitus pathology (Leaver 
et al. 2011; Moller 2003). Taking this perspective and start-
ing with a review of thalamic contributions to auditory pro-
cessing, we formulate a hypothesis of thalamic function-
ing in tinnitus pathology from a comparative perspective, 
integrating animal and human evidence. We propose that 
changes in thalamic functioning affect sensory gating at 
the level of the MGB, suggesting a dedicated timing and 
temporal prediction mechanism as an independent source of 
information and a potential tool for modulating the experi-
ence of tinnitus.

Functional neuroanatomy of the medial 
geniculate body of the thalamus

To improve understanding of tinnitus and the role of the 
auditory thalamus in tinnitus pathophysiology, it is neces-
sary to first consider the functional anatomy of the MGB. 
In general, the auditory pathway contains ascending and 
descending connections to auditory cortices and along its 
way, information is transformed and reorganized (Møller 
2011; Oertel and Doupe 2013). Input travels through the 
ear, the cochlea (Fig. 1), the cochlear nuclei (CN) and the 
inferior colliculus (IC) before reaching the MGB (Oertel 
and Doupe 2013).

Originating from the IC, two ascending pathways, the 
classical and the non-classical auditory pathway innervate 
the MGB, primary (PAC) and non-primary auditory cortices 
(non-PAC), as well as limbic regions (Møller 2002; Pick-
les 2015). The IC can be divided into three distinct nuclei, 
the central part of the IC (ICC), the dorsal cortex of the IC 
(ICD), and the external nucleus of the IC (ICX). In the clas-
sical pathway, the ICC provides the main input to the ventral 
MGB (MGV; Table 1 for an overview).

The MGV forms the “core” subdivision of the MGB. 
The MGV has a pronounced tonotopic organization, narrow 
tone frequency tuning, and exclusively responds to audi-
tory input (Aitkin and Webster 1972; Bartlett 2013; Hackett 
et al. 2011). Fibers from the MGV primarily innervate the 
primary auditory cortex (Bartlett 2013).

Fig. 1  Schematic and simplified representation of the classical and 
non-classical ascending auditory pathway. Ascending auditory sig-
nal travels from the ears to primary and secondary auditory cortices, 
while taking two different pathways. PAC primary auditory cortex, 
Non-PAC non-primary auditory cortices, CN cochlear nucleus, ICC 
central inferior colliculus, ICD dorsal inferior colliculus, ICX, exter-
nal inferior colliculus, MGB medial geniculate body, MGD dorsal 
MGB, MGM medial MGB, MGV ventral MGB
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The non-classical pathway processes input beyond the 
auditory domain and innervates limbic regions, such as the 
amygdala, next to primary and secondary auditory corti-
ces (Bartlett 2013; Møller 2002). The ICD and the ICX 
provide input to the medial and dorsal subdivisions of the 
MGB in the non-classical pathway. The dorsal subdivision 
of the MGB (MGD) is not tonotopically organized (Bartlett 
2013) and projects to the Non-PAC, the lateral nucleus of 
the amygdala and non-auditory areas (Bartlett 2013). The 
medial subdivision of the MGB (MGM) is the most hetero-
geneous part of the MGB. The tonotopic organization of the 
MGM is not as pronounced as in the MGV, tone frequency 
tuning is heterogeneous and neurons in the MGM respond 
not only to auditory, but also to visual and somatosensory 
input (Bartlett 2013; Hackett et al. 2011; Rouiller et al. 
1989). Projections from the MGM terminate in primary and 
non-primary auditory cortices as well as the amygdala (Ait-
kin 1986; Bartlett 2013; Møller 2002). Moreover, all MGB 
subdivisions receive input from the reticular nucleus in the 
thalamus (TRN), which influences general excitability of 
neuronal activity in the MGB (Bartlett 2013; Møller 2002).

Consequently, classical and non-classical ascending 
auditory pathways contribute differently to the processing 
of auditory stimuli in the MGB and most likely to tinnitus 
pathophysiology. Due to the different input and output struc-
tures, the three subdivisions of the MGB may form three 
separate and parallel pathways to higher cortical auditory 
areas (Pickles 2015; Winer et al. 2005).

Tonotopic map and sound level tuning 
in the MGB

As described above, the MGB is divided into different 
parts, the MGD, MGM and MGV. These parts have differ-
ent neurophysiological properties and respond differently 
to external auditory stimuli. Frequency maps have been 
created in animal models by means of electrophysiological 
studies. Frequency tuning in the MGB is sharpest in the 
MGV in awake marmoset primates (Bartlett et al. 2011). 
Similar results were obtained in rats (Bordi and LeDoux 
1994). Comparable to the MGV, neurons in the MGM have 
also been shown to respond in a narrow fashion in the anes-
thetized rat (Anderson and Linden 2011). An intermediate 
level of frequency tuning has been described for the MGD 
(Bartlett 2013). However, results are not consistent and fast 
habituation to repeated stimuli using isointensity tones in 
the MGD are described in Bordi and LeDoux (1994). The 
picture is even more complex as recent evidence suggests 
more variable tonotopic maps for neurons with multi-peaked 
frequency tuning curves (Gaucher et al. 2019).

Sound level tuning on the other hand, is monotonic, i.e., 
the sound intensity changes, while the frequency remains Ta
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stable. Neurons exhibiting either a progressive increase or a 
progressive decrease in firing rates when intensity changes 
can be classified as monotonic. Non-monotonic responses 
are observed when firing rates increase with increasing tone 
intensity until a plateau is reached, after which firing rates 
decrease. Rouiller et al. (1983) investigated sound level 
tuning in the MGB in anesthetized cats and found that the 
majority of units exhibited non-monotonic responses.

Animal studies investigating the MGB predominantly rely 
on invasive techniques whereas in human studies non-inva-
sive methods are predominant due to self-evident ethical rea-
sons. This makes the identification and subsequent manipu-
lations of the small (i.e., 5 × 4 × 5 mm, Winer et al. 1984) and 
densely clustered MGB nuclei intrinsically difficult. Techno-
logical advances such as ultra-high field functional neuroim-
aging (i.e., 7 T) allow creating precise tonotopic maps of the 
human MGB (Berlot et al. 2020; Mihai et al. 2019a; Moerel 
et al. 2015). These functional magnetic resonance imaging 
(fMRI) techniques allow high spatial resolution imaging, 
but depend on slow changes in blood oxygenation. Thus the 
signal depends on the vascular morphology of the relatively 
small MGB (Moerel et al. 2015). In humans, a low-to-high 
tonotopic map has been identified in the MGV in a ventro-
lateral-dorsomedial direction (Moerel et al. 2015). Moerel 
et al. (2015) further observed another, dorsomedial area with 
a preference for low frequency stimuli, located outside the 
MGV. Berlot et al. (2020) investigated the MGB tonotopy 
in persons with tinnitus and healthy controls, confirming a 
low–high–low frequency preference in the sagittal plane, 
comparable between groups. Tonotopic organization of the 
MGV and of the pars lateralis (PL) in the MGB in anesthe-
tized cats has been found to also range from low-to-high in 
a latero-medial gradient (Aitkin and Webster 1972; Morel 
et al. 1987). Thus, mounting evidence supports a roughly 
similar low-to-high tonotopic organization in animals and 
humans in the MGV, validating the comparative usage of 
animal models.

Representation of complex sounds

It is likely that artificially created sine tones do not entirely 
capture the functioning of the MGB when it perceives more 
complex auditory stimuli, such as vocalizations. In awake 
guinea pigs, the MGB has been shown to respond to ampli-
tude-modulated (AM) and frequency-modulated (FM) sine 
tones as well as to natural calls (Creutzfeldt et al. 1980). 
Interestingly, the MGB responded to natural calls of the 
same and of other species, and its response was depicted 
in more detail in the MGB than in cortical cells, meaning 
that MGB units could differentiate between high modula-
tion frequencies, while cortical cells could not (Creutzfeldt 
et al. 1980).

Discrimination of speech-like contrasts seems to occur at 
the level of the MGB, as observed in mismatch responses in 
the caudo-medial MGB of guinea pigs (Kraus et al. 1994). 
Cai et al. (2016) investigated whether young, old, awake, 
or anesthetized rats differentially process complex auditory 
stimuli in the MGB. They found that MGB cells in the old 
awake rat preferred regular predictable, vocalization-like 
signals, especially when increasing the difficulty in modu-
lation frequency (Cai et al. 2016). In young rats, however, 
randomly presented modulated sequences were preferred 
(Cai et al. 2016). This suggests that with increasing age, 
top–down processes may enhance the processing of expected 
stimuli with the same formal structure at the level of the 
MGB. Accordingly, previous research shows that the MGB 
is not only tonotopically organized, but that it is closely 
involved in the representation of complex vocalizations 
across species and that its functioning may change across 
the life span (i.e., preferring predictable stimuli) (Amin et al. 
2010; Cai et al. 2016; Huetz et al. 2009; Kraus et al. 1994).

Human research specifically targeting MGB activity in 
response to human vocalization and speech is rare (Mihai 
et al. 2019a, c). The MGB is active irrespective of content 
or loudness manipulations of speech sounds (von Kriegstein 
et al. 2008). Mihai et al. (2019a) assessed speech recognition 
abilities in the core subdivision of the auditory thalamus 
(i.e., MGV) and found behaviorally-relevant task dependent 
fMRI modulation of the left MGV. Furthermore, left MGV 
was found to be increasingly activated when participants had 
to recognize speech in noise compared to intelligible speech 
(Mihai et al. 2019b). Previously, the ventral intermediate 
nucleus (VIM) has been reported to respond to syntactic 
and semantic components in spoken language (Wahl et al. 
2008). In addition, it has been proposed that the thalamus 
contributes to speech processing via its differential encod-
ing of temporal and spectro-temporal information (Kotz and 
Schwartze 2010). Taken together, evidence across several 
species indicates that the MGB dynamically shapes simple 
tones and complex vocalizations before auditory sensations 
reach the cerebral cortex.

Information processing in the MGB—
intrinsic cell properties

To gain better understanding of information processing in 
the auditory thalamus and how these processes transform 
auditory information before it reaches the cortex, it is nec-
essary to focus on specific electrophysiological properties 
of MGB neurons. Thalamic neurons respond to incoming 
information in either a burst or a tonic mode (Sherman and 
Guillery 2006). Thus, questions arise as to how the two fir-
ing modes (i.e., burst and tonic mode) emerge and how they 
shape auditory information processing.
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Next to classical action potentials (i.e., single-spikes), 
low threshold spikes (LTS) are important voltage depend-
ent conductance mechanisms for thalamic relay cells (Jahn-
sen and Llinas 1984b; Sherman and Guillery 2006). A LTS 
involves the membrane depolarization of T-type voltage-
gated calcium channels (Jahnsen and Llinas 1984a, b), 
while classical action potentials are provoked by the open-
ing of sodium  (Na+) channels. The threshold to elicit a LTS 
is approximately 10 mV lower (i.e., more hyperpolarized) 
than for classical action potentials (Hu 1995; Jahnsen and 
Llinas 1984b; McCormick et al. 1991). In addition to the 
fact that T-type calcium channels act on more hyperpolar-
ized membrane potentials, than sodium channels, T-type cal-
cium channels are slower and need approximately 100 ms to 
switch between states of inactivation (Sherman and Guillery 
2006).

Of specific interest for subsequent information processing 
in the MGB are the two different firing modes in response 
to LTSs. The state of the T-type calcium channels, deter-
mines the respective firing mode of the thalamic neurons 
(Ramcharan et al. 2000). Irrespective of the neuron type, 
thalamic neurons have been found to respond in either a 
tonic or a burst mode and also switch between these modes 
(Jahnsen and Llinas 1984b; McCormick et al. 1991; Sher-
man 2001; Sherman and Guillery 2006). The tonic mode 
has been described as preserving input linearity, whereas 
the burst mode acts as a ‘wake-up call’ to cortical targets 
(Ramcharan et al. 2000; Sherman 1996). Rhythmic burst 
firing has been primarily observed during sleep, potentially 
indicating reduced transmission of sensory information 
to the cortex (Domich et al. 1986; Sherman and Guillery 
2006). However, it has been shown that burst firing is not 
limited to sleep and can be recorded from the thalamus of 
awake behaving macaque monkeys (Ramcharan et al. 2000). 
Information processing in burst mode has been suggested 
to be less detailed and less noisy, but also more efficient, as 
only infrequent ‘wake-up calls’ are processed (Sherman and 
Guillery 2006). Information processing in the tonic mode, 
however, maintains a more detailed representation of an 
input signal (i.e., more linearity).

When T-type channels are inactivated by membrane depo-
larization, the tonic mode is elicited (Ramcharan et al. 2000). 
To elicit burst firing, T-type calcium channels are activated 
from a hyperpolarized condition (Ramcharan et al. 2000). In 
mice, it was shown that switching between burst and tonic 
firing in MGV neurons partly underlies paired-pulse depres-
sion in thalamo-cortical neurons (Bayazitov et al. 2013). 
Bayazitov et al. (2013) employed an auditory paired-pulse 
paradigm (i.e., intra-pair-interval = 100–1000 ms, inter-
pair interval = 500–10,000 ms) and found that thalamic 
neurons responded to the first tone of the pair with a burst, 
followed by a single-spike action potential. Furthermore, 
it was found that the point of switching between the burst 

firing—single-spike pattern to a single-spike—single-spike 
pattern in response to a stimulus pair occurs around an inter-
pair-interval of 1000 ms, when applying intra-pair-intervals 
of 200–1000 ms (Bayazitov et al. 2013). These results indi-
cate temporal sensitivity when switching between the tonic 
and the burst firing mode. A similar hypothesis has previ-
ously been formulated by Bartlett (2013), stating that in 
speech, where fast-changing temporal features are common, 
burst firing may encode the rhythmic dynamic of syllabic 
on- and offsets, while tonic firing may help discriminating 
between finer, more faint auditory signals. In addition, it has 
been suggested that burst mode patterns are more frequently 
encountered in MGD neurons and single-spike firing pre-
dominantly in MGV (Hu 1995), a pattern that has not been 
confirmed by Bartlett and Smith (1999). Thalamic cells thus 
fire in a burst or a tonic mode, which map onto non-linear 
and linear information processing, respectively. However, it 
is unclear how the different firing modes and spiking pat-
terns may relate to tinnitus pathology.

The MGB in tinnitus pathology

Animal models of tinnitus are frequently employed to sys-
tematically investigate the pathophysiology of tinnitus and 
the changes it causes along the auditory pathway, including 
the MGB. These models can be broadly divided into inter-
rogative models and reflexive models (Brozoski and Bauer 
2016; Galazyuk and Brozoski 2020). Interrogative models 
evaluate voluntary behavior (i.e., performing an action to 
obtain food when hearing a sound), while reflexive models 
evaluate involuntary behavioral responses to the acoustic 
startle reflex (Brozoski and Bauer 2016; Galazyuk and Bro-
zoski 2020). Across species, the most frequently employed 
reflexive model uses the gap–prepulse inhibition of the 
acoustic startle (GPIAS) to determine the presence and 
course of tinnitus pathology (Galazyuk and Hebert 2015; 
Turner et al. 2006). To induce tinnitus, animals are either 
administered high doses of sodium salicylate (Su et al. 2012; 
Yang et al. 2007) or exposed to loud sound (Brozoski and 
Bauer 2016). In the latter case, animals under anesthesia 
are unilaterally exposed to loud broad-band noise while the 
contralateral ear is plugged to prevent hearing loss. In the 
GPIAS paradigm, acoustic startle responses are reduced, 
when a silent gap (e.g., 50 ms) is inserted before the startle 
sound (Smit et al. 2016). However, when a sound matching 
the tinnitus frequency is played and a silent gap is presented, 
the gap will not be perceived by the animal experiencing 
tinnitus, because it has been filled-in by the tinnitus fre-
quency (Turner et al. 2006). Thus, animals experiencing 
tinnitus show increased startle responses in comparison to 
unexposed controls (Turner et al. 2006; Yang et al. 2007). 
Advantages of the GPIAS model are that it is relatively fast 
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to administer, does not require training, and motivational 
states (i.e., frequently managed via diet restrictions) play 
a minor role (Brozoski and Bauer 2016). One of the disad-
vantages is habituation, i.e., when repeated, unconditioned 
reflexes diminish in amplitude (Lobarinas et al. 2013; Lon-
genecker and Galazyuk 2011). This issue was addressed 
by administering fewer trials and by randomly varying the 
inter-stimulus interval (van Zwieten et al. 2019a, b). Based 
on the assumption that tinnitus pathogenesis relies on mal-
functioning of a vast network of primary auditory and non-
auditory structures (Llinas et al. 1999; Rauschecker et al. 
2010), it has also been criticized that the GPIAS model does 
not take hyperacusis and emotional factors such as stress into 
account (Brozoski and Bauer 2016; Kleinjung and Langguth 
2020). Thus, evaluating animal studies investigating MGB 
functioning in tinnitus pathology requires close monitoring 
of the paradigm choice, because even if motivational states 
do play a minor role in the GPIAS model, stress might still 
influence an animal’s performance.

Animal studies investigating the MGB in tinnitus

Several studies investigated MGB changes in tinnitus animal 
models (Table 2).

However, due to heterogeneous methodology and the 
overall limited number of studies, it is difficult to identify 
generalizable result patterns. When focusing on changes 
related to neurotransmitters, decreased GABA has been 
found in the MGB in rat models of tinnitus (Brozoski and 
Odintsov 2012; Llano et al. 2012). However, contradict-
ing evidence exists (Sametsky et al. 2015). Administering 
high doses of sodium salicylate decreased the excitability 
of neurons in the MGB, leading to increased hyperpolari-
zation of resting state potentials (Su et al. 2012; Wang 
et al. 2016). Another approach to assess alterations in the 
MGB in animals experiencing tinnitus is to investigate 
firing patterns, in vitro or in vivo in either anesthetized or 
awake animals. In vitro, both healthy control animals and 
rats with behavioral evidence of tinnitus, displayed burst 
firing after a current injection to the soma (Sametsky et al. 
2015). Animals with tinnitus had an increased number of 
spikes per burst in comparison to controls and increased 
tonic GABAA currents. This suggests a shift towards 
increased tonic inhibition, which may result in abnormal 
bursting activity in the MGB, in turn leading to increased 
output from the MGB to higher auditory cortices (Samet-
sky et al. 2015). Moreover Sametsky et al. (2015) investi-
gated whether changes in LTS responses could be associ-
ated to the increase of spikes per burst in rats with tinnitus. 
The authors found no differences between tinnitus and 
control animals in amplitude or area of LTS for bursts elic-
ited by injecting a hyperpolarizing current. Thus, suggest-
ing that multiple and additional mechanisms might play 

a role in the excitability of MGB neurons. Another study 
observed reduced numbers of neurons exhibiting burst 
activity patterns, decreased spikes per burst and bursts 
per minute in anesthetized rats who were administered an 
acoustic noise trauma, irrespective of tinnitus presence 
(Barry et al. 2019). Another study investigating the MGB 
in anesthetized rats with and without noise exposure clas-
sified four response types (i.e., fast, sustained, suppressed 
and no response) (van Zwieten et al. 2021). It was found 
that noise exposure resulted in an overall decrease of fast 
responding neurons, while non-responsive increased (van 
Zwieten et al. 2021). In addition, spontaneous firing rates 
increased in sustained and suppressed neurons, while this 
was not the case for fast responding neurons. Acquired 
LFPs suggest suppressed thalamocortical synchronization 
in the beta and gamma bands, independent of noise trauma 
(van Zwieten et al. 2021).

Oscillatory coherence between the MGB and the pri-
mary auditory cortex has been investigated using local field 
potentials (LFP) in anesthetized rats, while tinnitus was 
induced by sodium salicylate (Vianney-Rodrigues et al. 
2019). Results indicate that sodium salicylate decreased 
theta, alpha, and beta oscillations in the MGB. Decreased 
coherence (i.e., the strength of a correlation between two 
signals as a function of frequency) between theta and alpha 
oscillations was further observed, while gamma coherence 
was increased between pairs of electrodes positioned in 
the MGB and PAC (Vianney-Rodrigues et al. 2019). Inter-
estingly, when assessing the coherence (i.e., synchrony) 
between the MGB and PAC, sodium salicylate decreased 
coherence measures in the beta, alpha, and theta bands and 
again, enhanced coherence for the gamma band (Vianney-
Rodrigues et al. 2019). Enhanced gamma coherence relates 
to previous research, as gamma band activity was sug-
gested to be a direct neural correlate of tinnitus, influencing 
thalamo-cortical networks (Schlee et al. 2009; Sedley et al. 
2012; van der Loo et al. 2009).

In awake rats, Kalappa et al. (2014) found similar results 
as Sametsky and colleagues (2015), confirming increased 
number of bursts per minute, increased mean burst duration 
and mean spikes in a burst. Kalappa et al. (2014) showed 
increased spontaneous firing in the MGD, MGM, and the 
MGV in a rat model of tinnitus. However, spontaneous fir-
ing rates in the MGB have also been found to be unaffected 
in rats with acoustic noise trauma or tinnitus (Barry et al. 
2019). Most importantly, enhanced behavioral evidence of 
tinnitus pathology (i.e., increased z-scores of the raw-gap-
startle in the GPIAs) was linked to higher spontaneous firing 
rates, irrespective of sound exposure (Kalappa et al. 2014). 
The increases in spontaneous firing could be specified by 
increases in bursts per minute, in mean spikes per burst, 
and in overall burst duration (Kalappa et al. 2014). Taken 
together, this suggests a shift towards a more spontaneous 
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hyperactive bursting pattern of MGB neurons, moreover LFP 
studies show an altered coherence in the MGB in tinnitus.

Human neuroimaging studies investigating 
the MGB in tinnitus

To the best of our current knowledge, intracranial or single-
unit recordings from the MGB in humans do not exist. Para-
digms investigating functionalities of the MGB in persons 
with tinnitus therefore often rely on measures of functional 
and structural connectivity obtained with fMRI (Table 3).

A large cross sectional population-based study conducted 
in Japan identified an inverse relation between cerebral 
infarction in the thalamus and tinnitus, which could either 
be interpreted as cerebral infarctions inhibiting tinnitus or 
as increased tinnitus symptoms being present with no or 
reduced cerebral infarctions (Sugiura et al. 2008). Investi-
gations of MGB volume in persons with tinnitus is gener-
ally in favor of similar MGB sizes in persons with tinnitus 
and controls (Landgrebe et al. 2009; Zhang et al. 2015), 
but opposing findings exist (Allan et al. 2016; Muhlau et al. 
2006; Tae et al. 2018). Irrespective of hearing loss, diffusion 
tensor imaging (DTI) revealed that MGB connectivity was 
bilaterally reduced in persons with tinnitus (Gunbey et al. 
2017). Another DTI study confirmed reduced white matter 
integrity in persons with tinnitus in the anterior thalamic 
radiation (Aldhafeeri et al. 2012), but opposing evidence 
exists, suggesting increased white matter integrity in the 
anterior thalamic radiation in persons experiencing tinni-
tus after noise induced hearing loss (Benson et al. 2014). A 
task-based fMRI study investigated a group of persons with 
chronic tinnitus listening to music segments (Smits et al. 
2007). When participants experienced bilateral tinnitus, 
signal change in the MGB was bilateral and if participants 
experienced tinnitus in the left ear, the right thalamus had 
a lower activation ratio (Smits et al. 2007). The reverse pat-
tern (i.e., right tinnitus percept) was not significant, which 
is likely attributable to a smaller sample size. Another task-
based fMRI study suggests reduced sound-evoked responses 
in the MGB in persons with tinnitus (Hofmeier et al. 2018).

Resting-state fMRI in persons with tinnitus suggests over-
all decreased functional connectivity between the MGB and 
cortical regions. Han et al. (2019) found increased functional 
connectivity strength in the thalamus in persons with tinni-
tus compared to controls. Amplitude low-frequency fluctua-
tions (ALFFs), a measure that has previously been related to 
spontaneous neural activity (Lv et al. 2018), was bilaterally 
decreased in the thalamus in persons with chronic tinnitus 
(Chen et al. 2014). There was a positive correlation between 
tinnitus duration and increases in ALFFs in the superior 
frontal gyrus (SFG) (Chen et al. 2014). Decreased functional 
connectivity between the left thalamus and right middle tem-
poral gyrus (MTG), right middle OFC, left middle frontal 

cortex, right precentral gyrus was found in persons with 
chronic tinnitus (Zhang et al. 2015). When the right thala-
mus was used as a seed region, decreased functional connec-
tivity between the right thalamus and the left superior tem-
poral gyrus (STG), left amygdala, right SFG, left precentral 
gyrus, and left middle occipital gyrus was observed (Zhang 
et al. 2015). Conversely, increases in functional connectiv-
ity were observed between the thalamus and the posterior 
cerebellum, middle, and posterior cingulate cortices (Zhang 
et al. 2015). Taken together, these results confirm that the 
thalamus plays a central role in a wider thalamo-cortical net-
work implicated in tinnitus pathology. However, Zhang et al. 
(2015) and Chen et al. (2014) did not differentiate between 
subcomponents within the thalamus (i.e., parts of the MGB), 
and it is noteworthy that decreased functional connectiv-
ity and increased spontaneous neural activity between the 
thalamus and SFG were observed in both experiments. Lv 
et al. (2020) investigated changes in functional connectiv-
ity before and after sound therapy. This study found higher 
connectivity measures at baseline for the tinnitus group 
between the thalamus, the inferior frontal gyrus (IFG; Brod-
man area (BA) 45), and the anterior cingulate cortex (ACC; 
BA 33), which were restored (i.e., decreased) after treat-
ment (Lv et al. 2020). Reduced tinnitus severity could be 
associated with decreased functional connectivity between 
the right thalamus and the right IFG. Thus, the study of 
Lv et al. (2020) indicates increased functional connectiv-
ity for persons with tinnitus at baseline, whereas, a differ-
ent pattern (i.e., decrease in functional connectivity) for the 
superior and middle frontal gyrus was previously suggested 
by Zhang et al. (2015). Nevertheless, Lv et al. (2020) sug-
gests that decreased functional connectivity may represent a 
decrease in attention in tinnitus pathology and a reduction in 
the involvement of the noise cancellation system (i.e., sen-
sory gating) (Rauschecker et al. 2010), which supports the 
previously discussed findings. Another recent study focused 
on resting-state activity in persons with tinnitus (Berlot et al. 
2020). Here, the MGB seed regions were chosen based on 
responses to the individual tinnitus frequency and to a con-
trol frequency, which had the farthest distance to the tinnitus 
pitch (i.e., using tonotopic maps from each participant-con-
trol pair), while connectivity was measured along several 
centers of the auditory pathway. Results suggest reduced 
connectivity measures in persons with tinnitus starting at 
the level of the MGB (Berlot et al. 2020). Thus, in persons 
with tinnitus functional connectivity between the MGB and 
the primary auditory cortex and between the primary and 
the secondary cortices were reduced for the tinnitus and the 
control frequency seed (Berlot et al. 2020). These findings 
are in line with the findings reported by Zhang et al. (2015), 
suggesting reduced connectivity between the left thalamus 
seed and the right MTG.
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Previously the inhibitory influence of the TRN on the 
MGB was incorporated in the noise-cancellation approach, 
stating that in persons without tinnitus, the TRN cancels out 
or filters unwanted sounds (Leaver et al. 2011; Rauschecker 
et al. 2010; Zhang 2013). However, in persons with tinni-
tus, this filtering becomes distorted, leading to the percep-
tion of tinnitus (Leaver et al. 2011; Rauschecker et al. 2010; 
Zhang 2013). To the best of our knowledge, there is only 
one human study investigating the TRN in tinnitus (Gunbey 
et al. 2017). Results by Gunbey et al. (2017) for the TRN 
parallel their findings for the MGB in persons with tinnitus 
this is reflected in decreased fractional anisotropy (FA) and 
increased apparent diffusion coefficient (ADC) values.

From the existing evidence, it can hence be concluded 
that functional connectivity between the auditory thala-
mus and auditory cortices (i.e., PAC, non-PAC) seems to 
be reduced in persons with tinnitus. In addition, there is 
increased connectivity between cingulate cortices, likely 
the IFG and posterior cerebellum, which indicates changes 
in the function of a widespread network due to disrupted 
thalamo-cortical functional connectivity (Fig. 2). A recent 
study by Lin et al. (2020) compared topological network 
changes in gray matter between persons with tinnitus and 
controls using a graph-theoretical approach. Their between-
ness centrality analyses revealed exclusive hubs in the amyg-
dala and parahippocampus in persons with tinnitus, while 
hubs in the auditory cortex, insula, and the thalamus were 
exclusively present in controls but not in persons with tin-
nitus (Lin et al. 2020). The absence of the thalamus hub in 
the tinnitus group suggests altered interactions between the 
auditory thalamus and related auditory regions.

Currently, there are no invasive human MGB recordings 
available, but a limited amount of case studies performed 
intracranial cortical recordings in patients that also expe-
rienced tinnitus, which can be linked to alterations in the 
MGB. Two case studies investigated persons with tinnitus, 
while performing intracranial recordings from the (second-
ary) auditory cortex (i.e., electrocorticography, ECoG). 
Results from one study in a person suffering from severe 
tinnitus for 14 years showed increased gamma and theta 
activity in one of the eight implanted electrode poles (De 
Ridder et al. 2011). Interestingly, the pole reflecting the 
enhanced gamma-theta coupling was located in an area 
that showed maximal BOLD activity levels in response to 
tones in the tinnitus frequency during an fMRI session (De 
Ridder et al. 2011). Lastly, intracranial measures recorded 
from the auditory cortex in a patient suffering from com-
plex temporal lobe seizures suggest that tinnitus suppression 
(measured via residual inhibition) is linked to widespread 
delta band coherence (Sedley et al. 2015). Moreover, Sedley 
et al. (2015) observed increases in gamma (> 28 Hz) and 
beta2 (20–28 Hz) bands during tinnitus suppression. The 
authors identified three tinnitus sub-networks. The first is 

the large tinnitus-driven network characterized by changes 
in delta coherence in addition to delta, theta and alpha 
power changes. The second is the tinnitus memory network 
involved in auditory memory and mainly characterized by 
increases in alpha power. The third network is the tinnitus 
perception network characterized by changes in the gamma 
and beta range (Sedley et al. 2015). Although these networks 
do not specifically focus on the functioning of the MGB, the 
authors note that the observed alterations in delta oscilla-
tions may be triggered by the thalamus.

Overarching framework: linking animal 
and human findings and implementation 
in theoretical framework of temporal 
predictions

Due to fundamental methodological differences, the integra-
tion of results from animal studies investigating tinnitus and 
MGB functioning in humans faces several issues (for a sum-
mary of animal and human studies (Tables 1, 2). It is there-
fore important to evaluate the advantages and constraints 

Fig. 2  Summary and schematic representation of increased/decreased 
functional connectivity measures between the MGB and cortical 
areas. The representation is based on baseline measures of Lv et al. 
(2020), Berlot et  al. (2020), and Zhang et  al. (2015). Depicted are 
only areas with altered connections to the bilateral MGB. Zhang et al. 
(2015) observed decreased connectivity between the left thalamus to 
the medial frontal gyrus and the right thalamus and superior frontal 
gyrus, contrasting with increased connectivity between the MGB 
and the IFG (BA 45) by Lv et al. (2020). Zhang et al. (2015) further 
observed increased connectivity between the left thalamus and the 
middle cingulate cortex, and the right thalamus and the posterior cin-
gulate cortex. ACC, Anterior cingulate cortex (BA 33), PAC, Primary 
auditory cortex, Non-PAC, Non-Primary auditory cortices, IFG, Infe-
rior frontal gyrus, MGB, Medial geniculate body, PostCB, Posterior 
cerebellum. Lv  et al. (2020), Berlot et al. (2020), Zhang et al. (2015)
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of each method in order to draw conclusions about how to 
relate measurements at different functional levels to each 
other. Animal studies employ methods measuring single cell 
and multi-unit activity, or LFPs. These approaches allow 
drawing conclusions about neurotransmission, spontaneous 
firing rates, or coherence. In contrast, human studies report 
data obtained from large populations of neurons, or even 
whole brain analyses, with the thalamus increasingly being 
recognized as a seed region for connectivity analyses (Berlot 
et al. 2020; Lv et al. 2020; Zhang et al. 2015). As the MGB 
is a small subcortical structure, accessibility by means of 
high-temporal neuroimaging methods such as EEG/MEG to 
assess neural synchrony and coherence is severely limited. 
Therefore, resting-state functional connectivity or structural 
measurements are most common. Next to these methodolog-
ical constraints, variability in tinnitus pathology is another 
critical factor. In animals, tinnitus is often induced using 
noise trauma or by administering sodium salicylate before 
behaviorally testing for tinnitus using either interrogative or 
reflexive models (i.e., GPIAS). While sodium salicylate was 
found to reliably induce tinnitus (Day et al. 1989; Lobarinas 
et al. 2004; Stolzberg et al. 2012; Su et al. 2012), affective 
components such as anxiety or stress are typically not con-
sidered (Brozoski and Bauer 2016; Kleinjung and Langguth 
2020). In addition, the type of tinnitus induced with sodium 
salicylate is quite different when compared to the poise 
induced model, as tinnitus experience after receiving sodium 
salicylate is more intense and not accompanied by hearing 
loss, which could occur when administering a noise trauma 
(Norena et al. 2010). The GPIAS model on the other hand 
has been criticized to not be transferable to humans, because 
in humans gap detection thresholds were similar for persons 
with tinnitus and controls (Clayton and Koops 2021; Zeng 
et al. 2020). In humans, tinnitus pathology is heterogene-
ous as well (Cederroth et al. 2019; Kleinjung and Langguth 
2020). For instance, persons with tinnitus differ with respect 
to perceptual characteristics, time course, comorbidities and 
response to interventions (Kleinjung and Langguth 2020). 
The identification of reliable tinnitus subtypes therefore 
remains a major challenge (Cederroth et al. 2019; Kleinjung 
and Langguth 2020). In general, tinnitus is likely preceded 
by peripheral hearing loss and the majority of persons with 
tinnitus have abnormal audiograms. However, several issues 
remain, as for example, the majority of people experiencing 
hearing loss does not develop tinnitus (Roberts et al. 2006; 
Sedley 2019). Of note that peripheral hearing loss leads to 
deafferentiation at the level of the cochlear, but that even 
without behaviorally measurable hearing loss, deafferentai-
tion is probably still present in persons with tinnitus (Weisz 
et al. 2006). Another unresolved paradox is that the devel-
opment of tinnitus is difficult to explain by either a pure 
peripheral or central model, although, even though tinnitus 
is thought to be initialized by peripheral hearing loss (Sedley 

et al. 2016). Therefore, in order to bridge the gap between 
the results obtained by animal models and human studies, 
additional research is clearly needed to link the underlying 
mechanisms to the known functional characteristics of the 
auditory thalamus.

Thalamo‑cortical dysrhythmia and sensory gating 
in tinnitus

Several theoretical approaches attempted to explain the 
development of tinnitus (for an overview see: Sedley et al. 
(2016)). However, only a few specifically account for MGB 
function. The noise cancellation approach for instance, pro-
poses interactions between limbic structures and the audi-
tory thalamus in tinnitus pathogenesis in a top–down fash-
ion (Rauschecker et al. 2010; Song et al. 2015). Healthy 
individuals engage the non-classical auditory pathway to 
evaluate the emotional content of sound stimuli in parallel 
to auditory processing along the classical auditory pathway. 
Unpleasant auditory input is normally “cancelled out” at 
the level of the MGB (Rauschecker et al. 2010). In persons 
with tinnitus, however, the noise cancellation (i.e., sensory 
gating) mechanism is dysfunctional, leading to disinhibition 
of the MGB, possibly contributing to the perception of a tin-
nitus sound (Elgoyhen et al. 2015). Sensory gating may also 
be conceived as an adaptive mechanism that is employed to 
filter out irrelevant information based on spectral and tempo-
ral information to predictively adapt and optimize auditory 
function (Schwartze and Kotz 2013).

Another approach suggests that distorted firing patterns 
and altered oscillatory coupling mechanisms at the level of 
the MGB may induce tinnitus in a bottom–up fashion (De 
Ridder et al. 2015; Llinas et al. 1999). The thalamo-cortical 
dysrhythmia hypothesis suggests aberrant neural synchrony 
within and between the thalamus and cortex. Decreased 
auditory input leads to altered rhythmic burst firing in the 
MGB (i.e., increased low-frequency thalamic oscillations, 
triggered by LTS), which leads to increased activation in 
higher auditory cortices in theta, delta and gamma ranges 
(De Ridder et al. 2015; Llinas et al. 1999). De Ridder et al. 
(2015) speculate that in tinnitus with limited deafferentia-
tion, alpha oscillations slow down and turn into theta oscil-
lations, which are coupled to gamma oscillations, while 
gamma has been interpreted as the bottom–up transmitted 
prediction error. In severe deafferentiation, however, audi-
tory information retrieval might be mediated by parahip-
pocampal auditory memories acting in the theta range (De 
Ridder et al. 2015). Altered high frequency activity in the 
dorsal ACC or pregenual anterior cingulate might represent 
allostasis processes involved in a reference resetting, indicat-
ing that the new norm state might be the tinnitus state and 
not the silent state (De Ridder et al. 2015). Theta is sug-
gested to act as a carrier frequency, needed to activate the 
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tinnitus network, while gamma encodes the tinnitus intensity 
(De Ridder et al. 2011, 2015).

Support for dysfunctional sensory gating mechanisms in 
the thalamus in persons with tinnitus was recently provided 
by Lin et al. (2020), showing in a graph-theoretical approach 
that the thalamus hub was only present in the control group 
and not in persons with tinnitus. Eliciting tinnitus-like symp-
toms using an auditory illusion in healthy young adults with-
out hearing loss, resulted in enhanced total theta power in 
the parahippocampus, pregenual ACC, the ventro-medial 
PFC and OFC, further supporting inadequate sensory gat-
ing even in healthy participants (Mohan et al. 2020). The 
concept of sensory gating allows linking the intrinsic firing 
modes of the thalamus, the top–down noise-cancellation 
approach (Rauschecker et  al. 2010) and the bottom–up 
thalamo-cortical dysrhythmia approach (De Ridder et al. 
2015; Llinas et al. 1999) into a common theoretical frame-
work for predictive adaptation.

The functional principle of sensory gating (i.e., the fil-
tering out of irrelevant information) has been associated 
with reduced neural activity for predicted information 
(i.e., gating out) and increased activity for unpredicted 

information (i.e., gating in) (Grunwald et al. 2003; Mar-
shall et al. 2004; Pratt et al. 2008; Schwartze and Kotz 
2013). Schwartze and Kotz (2013) introduced an integra-
tive subcortico-cortical network for feature-based and 
temporal predictions. Feature-based information (used to 
generate “what” predictions based on the formal structure 
of a dynamic input) is primarily encoded linearly (i.e., 
engaging thalamic tonic firing), whereas temporal infor-
mation (used to generate “when” predictions based on 
salient input features such as onsets, offsets, and rising 
energy contours) are encoded non-linearly (i.e., engaging 
thalamic burst firing) in the MGB. The resulting dual-
pathway neural architecture for specific temporal predic-
tion may provide a common framework for understanding 
how alterations in the MGB could translate to the expe-
rience of tinnitus (Fig. 3). Reduced sensory gating (i.e., 
reduced inhibition) at the level of the cortex, as suggested 
by the noise-cancellation approach, the thalamo-cortical 
dysrhythmia approach and by the increases in spontane-
ous firing rates at the level of the MGB may be key to 
guide understanding of the role of the MGB in tinnitus 
pathology.

Fig. 3  Schematic representation of the neural architecture for specific 
temporal prediction in persons without tinnitus a and with tinnitus b. 
Here, the ascending auditory pathway does not distinguish between 
the classical and the non-classical auditory pathway. The schema 
does not depict predictive top–down modulation of the network by 
dynamic input. The MGB forms a major hub in transmitting a tim-
ing signal to higher cortical areas (event-/beat-based temporal pro-
cessing (red)). This signal forms the basis for interval-based temporal 
processing (green) in BG circuits. Parallel activation and integration 
of memory representations recruit connections between temporal and 

frontal cortices (blue). In tinnitus (B), connections between the MGB 
and auditory cortices are reduced. Starting from the MGB, increased 
burst and spontaneous firing leads to an increase in event-/beat-based 
temporal processing. Tonic firing is proposed to be reduced, reflected 
by decreased interval-based temporal processing, as depicted by the 
different arrow sizes + and – signs. In severe deafferentiation, mem-
ory retrieval increasingly relies on parahippocampal and auditory 
areas. PAC/Non-PAC primary and non-primary auditory cortices, BG 
basal ganglia, CB cerebellum, CN cochlear nucleus, FC frontal cor-
tex, IC inferior colliculus, MGB medial geniculate body
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Sensory gating in the MGB and temporal stimulus 
predictability

Tinnitus has previously been associated with predictive 
coding (De Ridder et al. 2015; Hullfish et al. 2019; Sedley 
et al. 2016). (Latent) prediction errors are likely represented 
by gamma oscillations. Attention, memory and learning 
towards the tinnitus experience might modulate the influ-
ence of prediction errors at higher functional levels (Sedley 
et al. 2016). Sedley and colleagues suggest that high fre-
quency gamma oscillations convey bottom–up prediction 
errors that are compared to top–down predictions, involving 
lower frequency beta oscillations (Sedley et al. 2016). Low-
frequency oscillations, especially in the theta range, have 
been suggested to function as carriers, while being able to 
modulate high-frequency oscillations (Canolty et al. 2006). 
Hullfish et al. (2019) further suggest that differential predic-
tive mechanisms might underlie acute or chronic tinnitus. 
Moreover, increased mismatch negativity responses (MMN) 
were observed in persons experiencing tinnitus, indicating 
violated sensory predictions (Sedley et al. 2019). However, 
it may still be necessary to further differentiate temporal and 
formal aspects of predictions in relation to MGB function-
ing. Here we suggest that alterations in the thalamic firing 
modes, likely caused by tinnitus, contribute to the observed 
changes in oscillatory activity in higher cortical auditory 
areas. As it is proposed that sensory gating (e.g., gating out 
the predicted stimuli in a paired-stimulus paradigm) is dys-
functional in tinnitus (Bayazitov et al. 2013; Lin et al. 2020), 
we propose that sensory gating at the level of the MGB can 
be differentially influenced by altering the temporal and for-
mal predictability of the input signal (Fig. 3).

It is possible that there is a direct input route for audi-
tory sensory processing to the cerebellum, as suggested by 
an ALE meta-analysis by Petacchi et al. (2005). In addi-
tion, research in the cat auditory system supports direct 
connections between the cochlear nucleus and the cerebel-
lum (Huang and Burkard 1986; Huang et al. 1982). Rapid 
cerebellar transmission is suggested to encode event-based 
temporal information (Schwartze and Kotz 2013; Teki et al. 
2011a, b), triggering a burst firing mode (i.e., non-linear) 
in the thalamus (Fig. 3a). In other words, the cerebellum 
receives auditory input and transmits successive events via 
the thalamus to frontal areas, mimicking a “clock signal”. 
The basal ganglia encodes the relation (i.e., the interval-
based timing) between events and feeds this information 
back to frontal areas (Allman and Meck 2012; Schwartze 
and Kotz 2013; Teki et al. 2011a, b). The auditory cortex 
is connected to frontal cortices, while receiving input from 
parahippocampal areas for memory retrieval, as suggested 
by De Ridder et al. (2015) and Schwartze and Kotz (2013). 
Moreover, the frontal cortex feeds information about stimu-
lus identity and interval duration back to the basal ganglia 

(Matell et al. 2005). In persons with tinnitus however, signal 
encoding is less efficient. Animal and human studies have 
shown altered connectivity between the MGB and cortical 
areas, and increased bursting and spontaneous firing rates 
in the MGB itself, leading to less precise predictive adapta-
tion. The connectivity between the MGB and the primary 
and secondary auditory cortex is probably reduced (Fig. 3b). 
In addition, as increased bursting in the MGB has been 
observed in persons with tinnitus, increased event- or beat-
based processing may be observed starting from the thala-
mus, while the processing interval-based durations might be 
reduced. Especially in severely affected persons, memory 
retrieval from parahippocampal areas probably strengthens 
the association between the auditory cortices and frontal 
areas. Manifestations of the described alterations in this neu-
ral architecture for specific temporal predictions might be 
observed by increases in gamma and slow frequency bands 
such as theta or delta, as suggested by work from Sedley 
and colleagues or De Ridder et al. (2015) and by dysfunc-
tional sensory gating mechanisms in persons with tinnitus 
(for example: Schwartze et al. (2011, 2013). However, it 
still needs to be elucidated if it is possible to influence and 
eventually optimize synchronization between the thalamus 
and the auditory cortices, to ultimately compensate for the 
thalamo-cortical dysrhythmia by altering the rhythmical 
structure of the input signal. Compensation of the thalamo-
cortical dysrhythmia would allow treating tinnitus at the 
level of the MGB and to reinstate its functionality.

Conclusion

Based on the limited number of studies investigating MGB 
functioning in tinnitus pathology and their overall hetero-
geneous approaches, it can be concluded that tinnitus is 
associated with increased spontaneous firing in the MGB, 
decreased functional connectivity between the MGB and 
a widespread thalamo-cortical network, in addition to 
decreased connectivity between the MGB and auditory cor-
tices. Decreased functional connectivity between the MGB 
and auditory cortices can lead to reduced inhibition at the 
level of the auditory cortex. Parallel increased functional 
connectivity between the ACC and the IFG and the MGB 
may represent dysfunctional attentional processes or allo-
static mechanisms. Similarly, altered patterns of oscillatory 
activity have been observed between the MGB and cortical 
areas, mainly expressed as increased activity in high-fre-
quency gamma and beta bands, decreased activity in delta 
bands, and altered theta and alpha coherence, providing 
support for the thalamo-cortical dysrhythmia hypothesis. 
However, the existence and contribution of several local 
sub-networks to the development and maintenance of tin-
nitus, as suggested by Sedley et al. (2015), should not be 
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neglected. Here, we link changes in thalamic firing modes 
and oscillatory bands to tinnitus. We suggest that these 
changes modulate the function within a neural architecture 
mediating predictive adaptation of an organism to the audi-
tory environment. Modulation of temporal characteristics 
of input signals might influence this neural architecture for 
predictive adaptation, likely altering the tinnitus experience. 
Therefore, modulation of temporal characteristics could ulti-
mately help establish new directions for treatment options 
for persons with tinnitus.
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