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Preface

This dissertation is publication-based, meaning its scientific content is published in a series of
related, but independent articles, all of which have undergone the scientific peer-review process
in international scientific journals. The first chapters therefore mainly serve as an introduction to
methods and relevant literature. Summaries for each article are then provided in chapter 6. The
main part of the presented work has been carried out at the Chair of Theoretical Chemistry of
the Technical University of Munich (TUM) between March 2017 and September 2020, under the
supervision of Prof. Dr. Karsten Reuter and it has been completed between October 2020 and
February 2021 at the Fritz Haber Institute of the Max Planck Society in Berlin. A research stay in
May 2018 hosted by Prof. Dr. Patrick Rinke at Aalto University complemented this work.
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Abstract

Organic electronics have a low ecological- and economic footprint and are versatile in their appli-
cation. Progress in research and stronger commercialization have also raised high expectations
for their continued market-success. Improving device parameters and materials properties such
as electrical conductivity however remains important, so far usually tackled by laborious empiri-
cal structural tuning of a promising compound and device architecture. The advent of molecular
machine learning and data-driven design techniques has lead to high hopes, as such methods
can potentially enable a more efficient, computationally guided improvement of important OSC
material properties. In this dissertation such strategies are explored in a series of related but
independent publications. The first part of the dissertation was based on a previously estab-
lished in-house dataset of > 64.000 organic small-molecule organic crystals – the 64k-dataset –,
annotated with charge-transport related descriptors (electronic coupling and the reorganization
energy) computed from first-principles. The virtual screening effort from which it had originated
was able to recover known and well-performing materials, while it could also uncover many ad-
ditional promising candidates. Building on this well-suited data-source, we first provide a more
in-depth analysis of the encoded design space. To arrive at design principles we evaluated the
relative performance of molecular scaffold and side group clusters occurring in the compounds,
finding certain scaffolds and side groups to consistently improve charge-transport properties.
Functionalizing promising scaffolds with favorable side groups can then result in molecular crys-
tals with improved charge-transport properties. In a subsequent study, we further analyzed this
design space by a chemical space network, whose visualization hints at already covered- as well
as promising new regions of the design space. In a next step and in order to complement the
workhorse-method of density functional theory (DFT), – still relatively expensive for these large-
scale screening studies, efficient molecular machine learning (ML) methods were tested that can
greatly accelerate the molecular design workflow in vast molecular spaces. In collaboration and
starting from the 64k-dataset , the OE62-dataset was assembled and made public, allowing ML
method development for the prediction of molecular electronic properties. Composed of large,
technologically relevant molecules from a sparsely and unevenly sampled chemical space, the
dataset is complementary to the QM9-dataset commonly used to assess the performance of new
ML methods. While working on the dissertation, the new OE dataset was already used by our
colleagues and us to test and extend the predictive capacity of common molecular ML methods
to larger systems. In a last step, we employ molecular machine learning for the OSC design task,
devising an active machine learning (AML) framework that explores an unlimited search space of
π-conjugated molecules along consecutively applied molecular transformation operations. The
dissertation thereby highlights the usefulness of data-based approaches for a targeted design
of organic electronics materials, while further work should extend the approaches in scope and
accuracy, as well as include additional important design parameters.
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Zusammenfassung

Organische Elektronik ist ökonomisch und ökologisch attraktiv und vielseitig einsetzbar. Erzielte
Fortschritte in der Forschung und zunehmende Kommerzialisierung lassen außerdem auf an-
haltenden Erfolg hoffen. Bauteilparameter und Eigenschaften der aktiven Materialschichten
wie elektrische Leitfähigkeit müssen jedoch weiter verbessert werden. Häufig geschieht dies
bisher durch arbeitsintensive empirische (Struktur-) Verbesserung einer vielversprechenden
Verbindungsklasse oder Bauteilarchitektur. Das Aufkommen von maschinellem Lernen (ML) und
datengestütztem Design lässt jedoch erhoffen, dass eine computerunterstützte Verbesserung
von wichtigen Materialeigenschaften möglich wird. In dieser Dissertation wird die Anwendbarkeit
entsprechender Strategien in einer Reihe zusammenhängender, aber eigenständiger Publika-
tionen untersucht. Der erste Teil basiert dabei auf einer vorhandenen Datenbank von > 64.000
organischen molekularen Kristallen für die Deskriptoren für Ladungstransport durch ab-initio Sim-
ulationsmethoden berechnet wurden (elektronische Kopplungselemente und Reorganisationsen-
ergien) – der 64k-Datensatz. Das virtuelle Datenbankscreening aus dem der Datensatz her-
vorging konnte dabei bereits bekannte und leistungsfähige Materialien wiederfinden, während
eine Vielzahl weiterer vielversprechende Kandidaten entdeckt wurde. Aufbauend auf dieser gut
geeigneten Datenquelle geben wir im ersten Schritt dieser Dissertation einen Überblick über
den Designraum organischer Halbleiterkristalle. Um Designregeln abzuleiten, werteten wir die
Eignung von molekularen Gerüsten (scaffolds) und Seitengruppen aus. Dabei zeigte sich, dass
bestimmte molekulare Gerüste und Seitengruppen die Ladungstransporteigenschaften beständig
verbessern. Die Kombination von vielversprechenden Gerüsten mit vorteilhaften Seitengruppen
kann dann zu molekularen Kristallen mit verbesserten Ladungstransporteigenschaften führen.
Darauf aufbauend analysierten wir den Designraum mithilfe eines "Chemical Space Network",
dessen Visualisierung auf bereits untersuchte sowie auf neue vielversprechende Regionen im
Designraum hinweist. In einem weiteren Schritt und um die bis dahin verwendete wichtigste Sim-
ulationsmethode "Dichtefunktionaltheorie" (DFT) zu erweitern –die für große Screening-Studien
viel Rechenzeit benötigt– wurden effiziente Methoden des maschinellen Lernens für die An-
wendung an Molekülen getestet, welche den Workflow des molekularen Designs in umfangre-
ichen Designräumen signifikant beschleunigen können. In Kooperation und ausgehend vom
64k-Datensatz bauten wir daher den OE62-Datensatz auf. Dieser publizierte Datensatz er-
laubt die Entwicklung von ML-Methoden zur Vorhersage von molekularen elektronischen Eigen-
schaften. Zusammengesetzt aus großen, technologisch relevanten Molekülen aus einem un-
gleichmäßig abgedeckten chemischen Raum ist dieser Datensatz komplementär zum QM9-
Datensatz, welcher häufig genutzt wird, um die Performance neuer ML-Methoden zu bewerten.
Der neue Datensatz wurde im Laufe der Dissertation bereits von unseren Kollegen, sowie von uns
verwendet, um die Anwendbarkeit von molekularem ML für größere Moleküle zu testen und zu er-
weitern. Im letzten Schritt wenden wir molekulares ML für OSC-Design an. Wir verwenden dabei
aktives (maschinelles) Lernen (AML) um in einem virtuell unbegrenzten Suchraum der durch
konsekutive Anwendung von molekularen Transformationsregeln erzeugt wird nach vorteilhaften
π-konjugierten Molekülen zu suchen. Insgesamt hebt die Dissertation damit die Nützlichkeit von
datenbasierten Ansätzen für ein gezieltes Design von organischen elektronischen Materialien
hervor. Weitere Arbeiten sollten diese Ansätze in Umfang und Genauigkeit erweitern und durch
zusätzliche Kenngrössen ergänzen.
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Abbreviations

OSC Organic semiconductor
HOMO Highest occupied molecular orbital
LUMO Lowest unoccupied molecular orbital
IP Ionization potential
EA Electron affinity
CB Conduction band
VB Valence band
HTL Hole transport layer
HTL Electron transport layer
EML Emitting material layer
OLED Organic light-emitting diode
OPV Organic photovoltaic (device)
OFET Organic field-effect transistor
AML Active machine learning
ML Machine learning
SOAP Smooth overlap of atomic positions
DFT Density functional theory
FO-DFT Fragment-orbital DFT
KRR Kernel Ridge Regression
GPR Gaussian Process Regression
CM Coulomb matrix
MBTR Many-body tensor representation
AI Artificial Intelligence
QML Quantum machine learning
SMILES Simplified Molecular-Input Line-Entry System
CSD Cambridge Structural Database
CSN Chemical space network
BM Bemis-murcko (scaffold)
PCA Principal component analysis
KPCA Kernel PCA
TST Transition state theory
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1 | Introduction

Inorganic semiconducting materials (such as silicon or GaAs) are an empowering factor for whole
industries, deeply rooted in the information technology- or solar energy sectors. This is not sur-
prising, as the devices made from such materials often display high performance. They can
however turn out to be too brittle or expensive for certain applications.1 Considerable technologi-
cal interest in new materials therefore exists, and these could extend the application-spectrum of
electronic devices by the novel properties they potentially bring along.

Organic semiconductors (OSCs)2 are an interesting class of materials, displaying clear-cut bene-
fits such as a low ecological- and economic footprint, while allowing for a straightforward produc-
tion of transparent, lightweight, and mechanically flexible large-area devices, that are adaptable
to a customers’ needs (see Figure for an example 1.1). Device performances achieved over the
last decades have thereby already led to some commercially successful applications, such as the
routine use of organic light-emitting diodes (OLEDs) in high-resolution self-luminous displays3

which created a multi-billion dollar industry.4 Organic photovoltaic devices5 have followed and
further innovative products are expected to emerge, such as lasers,6 organic radio frequency
identification devices (RFID),7 nanoscale memory- or sensing devices,8,9 possibly embedded in
smart textiles10 or used on skin.11

Figure 1.1 Organic CMOS logic circuit with
a total thickness of less than 3 m. Scale
bar: 25 mm. Reproduced from reference
12 under a Creative Commons Attribution
4.0 International License.

Obstacles for widespread use of OSC materials how-
ever remain, such as their limited longevity or low
electrical conductivity.15 This is true for polymers and
small molecular materials alike, both of which have
been intensively researched in the OSC community. In
fact, a smaller number of ordered, crystalline materials
made from small molecules now reproducibly yield high
charge carrier mobilities and conductivities,13,16–20 see
examples in Figure 1.2. The discovery of further im-
proved molecular materials can however take years of
intensive research, involving labor-intensive cycles of it-
erative improvement.

These discovery campaigns are often based on a se-
lected molecular family, trying to identify the best-
performing candidate based on small modifications.
Such efforts are then usually guided by experimen-
tal results, relying also on empirically derived knowl-
edge,16,21 and chemical intuition. Moving beyond such
local exploration could well-extend the number and ver-
satility of known materials. In fact, the well-performing
materials known to date might be only the tip of the iceberg, as the following argument illustrates.
Even from a few building blocks that regularly occur in typical π-conjugated molecular systems,
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1 | Introduction

Figure 1.2 Examples of crystalline molecular materials exhibiting state-of-the-art charge-carrier mobili-
ties.13 Constituent molecules are usually made of extended π-conjugated systems, allowing for the (par-
tial) accommodation of charge-carriers. The exhibited crystalline arrangements originate from an intricate
balance of intermolecular interactions (e.g. van-der-Waals, exchange- correlation and electrostatic) among
neighboring molecules, dictating also the charge-transport properties of the structure. The displayed ex-
perimentally resolved crystals are PENCEN02, QQQCIG04, NICLAN and PIVBAY as identified by their
Cambridge Structural Database14 (CSD) reference codes.

a vast number of new candidates can already be obtained – a combinatorial explosion. An esti-
mate for small molecules of molecular weight < 500 Da that are composed of the most relevant
elements in organic chemistry (C, N, O, S and halogens) reaches 1033.22 Adding to that, molec-
ular properties can be highly sensitive to small changes23,24 and are consequently also highly
tuneable. It is therefore expectable that hitherto unknown, but highly favorable materials can be
found in such vast materials spaces. Bespoke vastness however also makes molecular discovery
by data-efficient search strategies crucial.

Hope thereby rests on efficient, data-driven materials design methods,25 which are the topic of
this dissertation. As a matter of fact, while the available theories for charge-conductivity (see
chapter 2) already early on helped to explain performance trends in experimentally characterized
OSC materials, they can also guide an in-silico discovery process based on the computable
descriptors they expose. In this spirit, and in limited materials spaces, this approach led to
the successful and experimentally verified discovery of a high-performance OSC material,26,27

while subsequent virtual discovery efforts have more recently been scaled to larger molecular
databases,23,28–35 see also.36–38

A study by Schober et al.30,39 is representative of this development and played a central role at
the outset of this dissertation. Being among the first large-scale studies that screened a large
database for potential OSC materials, it recovered many known and well-performing materials,
while also uncovering many more promising ones, not yet considered for organic electronics appli-
cations. Based on the resulting 64k-dataset of > 64.000 experimentally known organic molecular
crystals annotated with computed charge-transport descriptors (see chapter 3), we in this dis-
sertation first applied methods of knowledge-discovery. We thereby arrive at general principles
for a "molecular Lego" design approach40 as well as at an intuitive visualization of the available
data.41 The corresponding methods are introduced mainly in chapters, 4 and 5, while the idea is
illustrated in Figure 1.3.
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Figure 1.3 Idea of data-driven molecular design ex-
plained. By means of data-analysis or machine-
learning, general molecular design rules are de-
rived from existing data and subsequently used to
propose new materials of high performance. Fig-
ure adapted from references 40 and 41 with per-
missions from American Chemical Society and the
Springer Nature Customer Service Centre GmbH.

Such exhaustive materials screening ap-
proaches however relied on the expensive
computational property evaluation for a large
number of materials to produce the underlying
data. We, therefore, researched machine-
learning methods, which allow for the cheap
interpolation of relevant molecular properties
among thousands of candidate materials, see
chapter 4. For this purpose, the methods simply
establish surrogate models of the underlying
physical relationships, learning from data-sets
that are representative of the problem. Such
methods were first established in a joint effort
with colleagues from Aalto University, starting
from the 64k-dataset and leading up to the new
OE62-dataset42 (see chapter 3), a specialized
and challenging benchmark for molecular
machine-learning of quantum properties on
technologically relevant molecules. Studies on
its application with established and new models
were also undertaken.43,44

In further collaboration with colleagues from Ox-
ford, Cambridge and Washington we then extended our capabilities, in the visualization of or ma-
terials design spaces, leading to an easy-to-read overview of the developing field45 (see chap-
ter 5). At last, we returned to the OSC design problem again, approaching it with the help of
molecular machine learning and visualization. As mentioned, a drawback of the above-mentioned
resource intensive virtual screening or data-driven methods had been the reliance on an exhaus-
tive (staged) screening. We thus employed an active machine-learning (AML) feedback loop,
training a machine learning model on available data, while using it to guide the search to the next
prospects. Feedback from these subsequently accumulating computational results can then be
used for an ever better-informed selection strategy and discovery success (see chapter 4). Since
the dissertation is publication based, all results have been published in peer-reviewed articles.
The following chapters therefore discuss the most important concepts necessary for a broader
understanding of this line of research, while summaries of the single articles are provided in
chapter 6.
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2 | Theoretical models for charge conduc-
tivity in organic semiconductors

The dissertation is mainly concerned with the optimization of conductivity in small molecule crys-
talline organic semiconductors. This chapter thus provides the physical background for OSC
molecular- and material optimization. It starts with an introduction of the main devices which
employ OSCs as active charge transport layers. This introduction is followed by a review of the-
oretical models for charge conductivity. Due to their relevance to molecular design, a focus will
thereby lie on the most decisive descriptors that these incorporate.

2.1 Organic semiconductor devices

Thin OSC films are often employed as active material layers of OLEDs (organic light emitting
diodes), OPVs (organic photovoltaic devices) and OFETs (organic field effect transistors). Since
excellent in-depth summaries of employed materials5,17,18 and physical principles2,46 are avail-
able, I will only provide an introductory overview of their operational principles, schematically
depicted in Figure 2.1. OLEDs and OPVs will thereby be briefly introduced. The focus in this
work however lies on computational discovery of organic materials with high electrical conductiv-
ity. In a direct way these are most relevant to OFETs, and hence these will be discussed in more
detail.

OLEDs47,48 produce photon emission (light) upon application of an electric current. These pho-
tons are internally created through recombination of electrons and holes under radiative (fluo-
rescence or phosphorescence) decay. In these often multi-layered devices, the latter process
usually takes place in an emitting material layer (EML) with suitable luminescent properties. This
layer is usually sandwiched between two additional organic layers with high and balanced charge
mobility, which transport injected holes and electrons from anode and cathode to the EML. An

OFET

Gate electrode
Gate dielectric

OSCS D

OLED

Cathode
ETL
EML

Vg

VdChannel length

HTL
Anode (transparent)

-

+-

+ +

OPV

Cathode

Anode (transparent)

+-

-

+
+

ETL HTL

Figure 2.1 OSC-based device architectures discussed in this chapter. For the OFET device a bottom gate,
bottom contact architecture is shown, while different variants exist. For the OPV device, the process of
photon absorption takes place in a bulk-heterojunction (blend of donor and acceptor materials).
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2 | Theoretical models for charge conductivity in organic semiconductors

efficient injection of charge-carriers, as well as a balanced performance of these latter hole- and
electron transport layers (HTL and ETL) is hence necessary to allow for equally efficient transport
to and subsequent radiative decay in the EML. Note in this context, that blocking layers that pre-
vent injected charges from leaving the EML, or hole or electron injection layers are here omitted
for brevity. For light to be able to escape from such a device, one of the electrodes needs to be
transparent for the emitting photon wavelength. Indium tin oxide (ITO) is thereby often used for
this purpose.

By reversing the process, OPVs49–51 absorb light in the form of photons, converting them to elec-
trical energy. In devices, a hole and an electron conducting layer are brought in contact, and
form an interface. Upon illumination, excitons –Coulomb-bound, electrically neutral electron-hole
pairs– form in the organic layers, subsequently diffusing through the material. Exciton diffusion
to and dissociation at the material interface then leads to separate holes and electrons. Once
separated, they are transported to the respective electrodes, generating a current. The efficiency
of this latter step thereby crucially depends on the mobility in the respective organic layers. While
details are beyond the scope, it is worth mentioning an important breakthrough for OPVs –the
bulk heterojunction. A mixed phase of hole- and electron conducting semiconductors thereby
enhances the interfacial area, positively influencing the efficiency of charge-separation and sub-
sequent transport to the electrodes.

Apart from these optoelectronic devices, classic electronic devices such as transistors can be
made with organic materials as well. Such OFETs1,15,52,53 can also be used to make complex
logical circuits of electronic devices, i.e. to drive the operation of OLED displays.1 In an OFET,
two electrodes (source and drain) are directly connected through a thin OSC layer (the channel).
A third electrode (gate) is located close to the channel as well but is kept in spatial separation
from it by an insulating dielectric layer – forming a capacitor with it. A controlled current between
the source- and the drain electrode can then flow when applying potentials at the gate and the
drain electrodes simultaneously: The potential at the gate electrode thereby controls the flow of
current by the induction of charge carriers in the OSC layer ("field-effect doping"). The charge
carriers can then be transported through the OSC layer along the direction of source to drain
potential difference. In this way, the potential applied at the gate electrode acts as a switch that
can be used to allow for, or amplify an electric signal through the device. For OFETs a high
charge carrier mobility in the OSC layer is crucially affecting device performance, i.e. lowering
the response times as well as the signal-to-noise ratio of the OFET and thereby determining
the frequency and accuracy with which the logic circuit can be operated. Achieving high charge
conductivities in the OSC active layers thus allows for faster switching times, leading to reduced
calculation times and energy savings. A more fundamental application of the OFET architecture
is in the experimental evaluation of a materials charge carrier mobility, care must be exerted to
arrive at reproducible results.54 Nevertheless, OFETs achieve the highest mobilities when made
from single crystal OSC layers, linked to their high chemical purity and high structural order (in
particular the absence of grain boundaries).

Technological interest for single-crystal applications is thus considerable.19,55,56 In the herein de-
scribed materials discovery efforts related to the 64k-dataset , we hence mainly focused on im-
proved crystalline materials applicable e.g. in OFET devices. The use case is however not
exclusive, as OPV and OLED devices could also benefit from improved charge-transport char-
acteristics, additionally considering their optical properties. On the other hand, the molecular
properties we assess are not exclusively relevant for charge-transport in molecular crystals, but
also in amorphous films, albeit charge-mobility is here often by an order of magnitude lower.57

While we mainly focus on the computational discovery of favorable small molecules tailored for an
envisioned electronic OSC application, other factors that can significantly influence performance
should be mentioned, such as method and conditions of material deposition (i.e. spin-coating,
printing from solution, or vapor deposition), which influence the degree of order present in the de-
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posited amorphous or crystalline material film. This also includes structural defects and impurities
often present in the real material layers.

2.2 Conductivity in OSC materials

The presence and efficient migration of charge carriers through an organic material layer is im-
portant for the operation of the introduced devices. The theoretical modeling of this process
will therefore here be reviewed, focussing on the descriptors that mostly influence charge carrier
conductivity σ in such material layers. The literature on this topic is however vast and numer-
ous models are available. I will hence provide a perspective and reference the most important
developments pertaining to the goals of this dissertation.

By Ohms law, σ relates the voltage V applied to a material with the electrical current I flowing
through it as

I = σV (2.1)

In a simplified picture, σ can be decomposed into charge mobility, µ and charge carrier concen-
tration ρ as

σ = eρµ (2.2)

with an elementary charge e. It should be noted, that conductivity or mobility in organic crystals
are generally anisotropic,58 from here on illustrated by the use of rank-2 tensors (bold, under-
lined).

µ thereby characterizes the intrinsic ability of a charge carrier to move in the bulk of an organic
layer, making it an essential parameter for a material’s performance in its current morphology. Dif-
ferent theoretical models for µ exist, related to a variety of proposed and observed mechanisms
and transport regimes, see below. Charge carriers in OSC materials on the other hand can arise
from different sources, in total giving rise to a charge carrier concentration ρ. Here, a significant
difference between OSCs and inorganic semiconductors becomes evident. In inorganic semicon-
ductors, mobile charge carriers are intrinsically available at room temperature, simply due to a
small gap (usually < 1.5 eV) between the valence- and conduction band which can be overcome
by thermal excitation. Common OSC materials on the other hand show a wide band gap (> 2 eV),
rendering such intrinsic charge carriers a minority species. Extrinsic sources for charge carriers
such as (unintentional) doping,59,60 photogeneration by absorption of light or especially efficient
charge injection at electrodes (see below) are thus important.

To tackle the materials design task for high conductivity σ one can therefore target µ or ρ, and
theoretical models for both quantities are described in more detail below. In this dissertation
we thereby focused on the improvement of hole (p-type) conductivity of small molecule organic
semiconductors,17,61 mainly used in OFETs to date. Electron-conductive or ambipolar materials
could however also be used62 and the design problem could be tackled by simply changing to the
respective electron-conduction related descriptors.

7



2 | Theoretical models for charge conductivity in organic semiconductors

2.3 Charge carrier injection

In a simple Mott-Schottky model, the efficient injection of holes (electrons) from a metal electrode
to an OSC layer is dependent on the energy difference between the work function Φ of the metallic
electrode (energy to eject an electron into vacuum) and the respective molecular states in the
organic layer, see Figure 2.2. Injection is thereby barrierless if Φ is perfectly aligned with the
relevant molecular solid state ionization potential (IP) and electron affinity (EA). In practice, this
is hardly achieved and an injection barrier arises from the energy mismatch.63 It should however
be mentioned that this simplified picture neglects interface dipole effects that can arise at the
surface of electrodes, and can significantly shift respective energy levels and alter their relative
alignment.63,64 Interfacial geometric effects or charge redistribution can add to this effect, e.g.
brought about upon chemical reaction between electrode and organic layer.65 Contact doping
can be used to lower barriers.66

E
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Figure 2.2 Schematic depiction of hole- and
electron injection from metal electrodes into
a single organic semiconductor layer. While
overcoming a small Mott-Schottky barrier ∆IP
(∆EA), holes (electrons) are injected to an
energy level in the OSC layer, represented by
the molecular HOMO (LUMO) level. Note, a
common vacuum level is here assumed, while
detailed discussions on vacuum levels at fi-
nite distance to the material surfaces can be
found in references 63, 64. Figure adapted
from Koehler.2

Nevertheless, the simple guideline provided by the
Mott-Schottky model can be used in a computational
screening, choosing useful molecules that satisfy an
Ohmic contact condition with a small energy mis-
match, while those with an expected higher injec-
tion barrier are excluded. In devices, hole inject-
ing electrodes such as indium tin oxide or gold are
common, while calcium or aluminum electrodes are
used to inject electrons. Experimental values for Φ
are thereby tabulated67 for different metals (and their
specific surfaces). Solid-state IPs or EAs on the
other hand can be gauged by DFT-methods employ-
ing e.g. tuned range-corrected functionals and im-
plicit solvation models that mimic the solid state en-
vironment.68,69 To avoid confusion, it should here be
noted that bespoke solid state IPs/EAs differ signifi-
cantly from values found for the isolated molecules in
vacuum, simply due to polarization in the solid state.
As an example, common IPs measured in vacuum
are on the order of 8 eV, reduced by roughly 2 eV in
the solid state.69

In the OSC field, it is however common practice to
substitute IP/EA values by HOMO (LUMO) energies.
On the one hand this is justified when assuming an
effective one-electron picture in which hole (electron)
injection takes place into these energy levels. On the
other hand, DFT calculations on molecules in vacuum and at the B3LYP level of theory70–72 yield
HOMO or LUMO energies that fortunately match well with experimental data of solid state IP or
EA,73 rendering this computational level a well established standard for this task.31,34,58,74
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2.4 Models for charge mobility

Following Oberhofer et al.75 charge mobility is defined as the response of a charge carrier’s
velocity v within the material to an applied electric field F.

µij =
〈v〉i
Fj

(2.3)

Alternatively a diffusion equation is often used, relating mobility to the charge carriers diffusion
coefficient D as

µij =
qDij

kbT
(2.4)

with kb and T denoting Boltzmann-constant and temperature, respectively. This latter equation is
also known as the Einstein-Smoluchowski equation often used to treat a purely diffusive mobility
in the limit of a vanishing electric field.

A larger number of theories estimate D or v, usually making assumptions about the underly-
ing transport regime and mechanism, see extensive reviews on the topic15,16,57,75–81 or mono-
graphs.2,46,82–84 The reason for the wealth of theoretical descriptions is simple and complicated
at the same time: "In essence, the problem consists in the prediction of the quantum dynamics
in a system with strong coupling between electronic and nuclear degrees of freedom where it is
not easy to introduce the standard approximations because all the relevant time/energy scales
coincide." as Nematiaram and Troisi aptly note.81

Figure 2.3 Experimental room-temperature organic crystal charge carrier mobilities compared to the re-
spective theoretical predictions. A typical upper/lower limit of the respective theory is indicated by a red
line. Gray lines indicate the applicability limits of the theories. Short forms of known materials have al-
ready been introduced in Figure 1.2. Mobility values above 104cm2/Vs amount to high-mobility reference
systems, among them bi-layer graphene (BLG). Figure reproduced from reference 13 (I. Yavuz) with per-
mission from the PCCP Owner Societies.

This was especially realized when reliable experimental mobility values became available that
were measured in high-quality single-crystal OFETs.85 The measured mobilities were neither
fully consistent with predictions of widely employed localized charge carrier hopping nor with de-
localized band-transport models as illustrated by Yavuz,13 see Figure 2.3. In contrast to inorganic
semiconductors where band models are in fact widely applicable, the ambiguity in OSCs results
from the charge carrier’s interactions with the surroundings, experienced when passing through
the "soft" material. A quantitative description of charge carrier mobility in such single-crystal
OSCs will therefore likely rely on an accurate description of an intermediate regime transport
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2 | Theoretical models for charge conductivity in organic semiconductors

mechanism in the crossover between typical hopping and band transport pictures. For a more
systematic overview, the predominant interactions are here summarized in a minimal Hamilto-
nian, describing the charge carrier in an organic layer (following reference 16).

Ĥ =
∑
a

εaĉ
†
aĉa +

∑
ad
a6=d

Hadĉ
†
aĉd +

∑
Q

~ωQ

(
b̂†Qb̂Q +

1

2

)
+
∑
aQ

~ωQgaaQ
(
b̂†Q + b̂−Q

)
ĉ†aĉa +

∑
adQ
a6=d

~ωQgadQ
(
b̂†Q + b̂−Q

)
ĉ†aĉd

(2.5)

In the purely electronic part (line 1), εa is the on-site energy at the molecular site a, while Had are
the electronic coupling elements between site a with neighboring site d. ĉ(†)

a denote the annihi-
lation (creation) operators for a respective charge carrier. Adding to this electronic description of
the charge carrier, in line 2 the presence and interaction with (harmonically approximated) lattice
phonons modes Q of frequency ωQ is modeled, giving rise to "dynamic disorder".86 Phonon an-
nihilation (creation) operators b̂(†)

Q occur respectively, while the strength of the coupling of charge
carrier and phonons is (in linear approximation) described by the coupling constants gaaQ and
gadQ. These respectively capture the local modulation of on-site energy and the non-local modu-
lation of electronic couplings.

Depending on the strength of these couplings, a charge carrier is expected to be either fully lo-
calized (hopping from site to site), weakly (transiently) localized spanning multiple sites, or fully
delocalized (forming a band) as schematically depicted in Figure 2.4. So far, these regimes are of-
ten treated with different theoretical models, while especially theory-development in the crossover
regime of transient localization79 as well as insights into the actual charge carrier dynamics are
of current interest,87 and have been reviewed recently.15,75,81 In light of the results, the discussion
about a realistic limit for charge-mobility in organic small molecule crystals is also still ongoing, but
estimates range between 70 - 100 cm2/Vs,35,50 albeit an exceptionally-high value of 170 cm2/Vs
has been reported88 in an OFET device at room temperature. In light of these results, mobilities
of OSCs therefore easily surpass typical values found for amorphous silicon, but fall way behind
crystalline silicon.89

From a materials design perspective, it is however often sufficient to rely on a simple hopping
model that already incorporates the factors that should first and foremost be fulfilled to arrive at
a well-performing material. I will therefore first introduce the main ideas behind classic hopping
models. This also includes a summary of the most decisive factors they incorporate, for which I
point out their role in other models and regimes. Nevertheless, the limitations of the discussed
hopping model should be kept in mind and will be discussed as well.

Hopping regime

Hopping models operate under the assumption that a charge carrier intermittently localizes on
molecular sites while traveling through the material. Pictorially speaking, this localization is
caused by induced deformations that the charge carrier drags with it through the material (in
combination a so-called "small polaron"). This polaron is then considered to move between the
molecular sites in discrete jumps. For now, it is assumed that a molecular site is here a single
molecule in the molecular crystal or amorphous film, but recalling Figure 2.4 and the associated
discussion, this is not always given. Nevertheless, simple hopping models have been highly suc-
cessful and often empirically reproduced trends among measured mobilities.13,58,87 In the models,
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Figure 2.4 Charge carrier localization and mobility expected in different regimes. Note, that these are
schematic depictions, for explicit simulations using see e.g. references 87, 90.

a charge carrier jumps from a molecular site a to the other sites d, quantifiable by charge transfer
reaction rates kad which can be used to arrive at a mobility of a charge carrier at the site

µa =
q

kBT

1

2n

∑
d

pdkadr
2
ad (2.6)

with pd = kad/
∑

d kad being the probability of hopping from site a along the percolation path to
site d. An important underlying assumption is thereby that of an incoherent transport, meaning
hopping events are not influenced by preceding steps. Note however, that this simple weighted
average can fail when a single, high coupling is present in the network where the charge carrier
jumps back and forth, not contributing to the overall mobility. An alternative are kinetic Monte
Carlo simulations that can be used to obtain such hopping mobilities.58

Based on semiclassical transition state theory, the charge-transfer rate is given by75

kTST = veffκelΓne
−β(∆G‡−∆‡) (2.7)

with the effective vibrational frequency veff , the electronic transmission coefficient κel, the nuclear
tunneling factor Γn and β = 1/kbT . The activation energy ∆G‡ for the transition between the
diabatic donor and acceptor state is thereby corrected by an adiabatic correction ∆‡ which cap-
tures the electronic coupling between these states, see below. I will here focus on the so-called
non-adiabatic charge-transport regime. A number of models have here again been developed,
working with different assumptions and levels of approximation.13,91 Prototypical and widely used
is the model devised by Marcus for electron transfer reactions in solvents.92,93

kad =
2π

~
|Had|2

1√
4πλkBT

e−β∆G‡
∆G‡ =

(λ+ ∆G0)2

4λ
(2.8)

The determining descriptors are thereby the driving force ∆G0, the electronic coupling Had

between acceptor and donor, and the reorganization energy λ. In ordered, mono-molecular
periodic crystals it is often the case that ∆G0 is 0, simply due to the equivalence of crystal sites.
We assume the latter approximation in our database analysis and λ and Had were therefore the
main mobility-related descriptors. While introduced here in the context of the hopping regime, It
is important to stress that λ and Had also play a general role in the modeling of mobility in other
regimes,75,81,87 see further discussion below.

As mentioned above, Marcus theory describes non-adiabatic charge-transport. In essence, the
electronic coupling is here considered to be significantly smaller than the reorganization energy
and it is assumed that the geometric relaxation of and around the molecular site upon charge
localization is fast compared to the charge transfer itself. Clearly, not every system should be
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2 | Theoretical models for charge conductivity in organic semiconductors

Figure 2.5 Hole hopping along the main charge transport pathways in the anthracene crystal. In the main
part of the image the network of electronic couplings between molecular dimers forming transport pathways
are illustrated by orange sticks, scaled by the respective size of |Had|. Note, that molecular sites of a single
unit-cell are emphasized as ball-and-stick models, while the surrounding periodically repeated environment
is represented with opacity. In the left inset, the FO-DFT method to obtain |Had| values is illustrated. The
ground-state highest occupied molecular orbitals obtained in isolated vacuum DFT-calculations form the
approximate diabatic states. Here they are arranged according to a dimer geometry occurring in the crystal.
As can be deduced from the nodal structure, the specific arrangement significantly influences electronic
coupling elements. In the right inset, the molecular graph representation of anthracene is reproduced.

treated in this regime. Especially for organic crystals with good transport properties, e.g. a
large electronic coupling and small reorganization energies (routinely reaching 100 meV in both
cases), ∆‡ becomes substantially large and the non-adiabatic picture of localized charge carriers
and slow transfer breaks down, up to the point where the concept of a hopping-rate becomes
ill-defined.13,75 It is further noted that small polaron hopping is thermally activated as seen from
equation 2.8, but it can not always be conclusively inferred from the temperature dependence of
the charge carrier mobility.94

Electronic coupling

The modeling of charge transfer processes between a donor and an acceptor fragment often
relies on diabatic (localized) electronic states. The electronic couplings Had among these states
then influence the hopping rate (or in the band picture the degree of charge delocalization over
the states). Unfortunately most electronic structure methods –including DFT– provide adiabatic
states of the combined donor-acceptor system. Deriving diabatic states from this adiabatic repre-
sentation, followed by an accurate calculation of their electronic coupling is therefore an important
part in the accurate modeling of a charge-transfer process.

A number of methods exist, among them constrained density functional theory (CDFT), the gen-
eralized Mulliken-Hush method, or Block-Diagonalization, see Oberhofer et al.75 for an overview.
We here mainly relied on the so-called fragment-orbital density functional theory (FO-DFT), a
standard method in the OSC field.95–97 The Had values contained in the 64k-dataset 30,39 were
obtained by the implementation of this method in the FHI-aims DFT code.97

Had = 〈ψa|Ĥ|ψd〉 (2.9)

with the Hamiltonian Ĥ of the donor-acceptor system and the single diabatic states of donor and
acceptor |ψd〉 and |ψa〉.
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In FO-DFT these diabatic states are approximated from isolated monomer calculations, carried
out for each of the neighboring molecules (e.g. extracted from the crystal) as Figure 2.5 illus-
trates for anthracene. From the obtained fragment Kohn-Sham states, the combined Hamiltonian
Ĥ of the donor-acceptor system can then be constructed and the coupling elementHad evaluated
as 〈φa|Ĥ|φd〉 between the (orthogonalized) monomer Kohn-Sham orbitals. For hole (electron)
transport, HOMOs (LUMOs) are thereby decisive. Even when relying on a computationally cheap
non-selfconsistent construction of the Hamiltonian, the FO-DFT approach yields electronic cou-
plings of high accuracy as benchmark results demonstrated.97 Specifically, the best-performing
H2n−1@D+A method was used in the database screening of Schober et al.30 for the construc-
tion of the 64k-dataset . A downside of the method is that polarization effects between donor and
acceptor are in this way not taken into account. Our recently developed Block-Diagonalization
methods that yield well-localized diabatic states could be used in that case.98

The nodal structure of the molecular orbitals (HOMO or LUMO) can lead to highly modulated
electronic coupling values already at small geometric displacements.57,99,100 Even in well-defined
crystalline materials the values can thus be heavily influenced by the application of external pres-
sure101 or strongly modulated by the intrinsic intermolecular vibrations.102 As mentioned above,
the treatment of the latter contribution ("dynamic disorder") is considered an important factor in
the accurate modeling of charge mobility, while strategies to reduce it are being investigated.103

From a molecular design perspective, the highly non-linear behavior of electronic couplings how-
ever also makes molecular design or discovery of novel organic semiconductors an extremely
challenging task. This can be easily seen from the fact, that polymorphs –different, stable exper-
imental crystal structures of the same molecule– often show differing Had values88,100,104,105 and
charge mobilities related to the differing molecular arrangement. To accelerate the computation of
this highly sensitive property during multiscale simulations, machine-learning based predictions
of electronic coupling elements are now entering the field.106–108 From an experimental perspec-
tive, controlling the molecular arrangement in the solid-state thin-film by a well-defined deposition
technique is thus crucial for high device performance. One can also conclude that a success-
ful in-silico design-problem thus heavily relies on obtaining accurate structural models of it, see
discussion in chapter 7.

Reorganization energy

The reorganization energy λ provides a measure for charge-carrier stabilization due to its inter-
action with molecular site and surroundings. It is closely related to the more descriptive concept
of the "polaron binding energy".57,109 Accordingly partitioning λ into a local contribution of the
molecular site and a nonlocal contribution of the molecular surroundings, the former is in fact of-
ten dominant.110–112 In a good approximation, we therefore here focused on the local contribution
to judge a molecules prospective applicability in the charge-transport context, simply denoting it
as λ.

To compute λ, the 4-point method by Nelsen113 is often used, in which separate total energy
calculations are carried out in vacuum:

λ = λ+ + λ0 = [E0(R+)− E0(R0)] + [E+(R0)− E+(R+)] (2.10)

The four occurring total energies E thereby result from the combination of the charged (E+) or
neutral (E0) electronic state energies at equilibrium geometries for charged (R+) or neutral states
(R0) respectively, see Figure 2.6 a) for a schematic depiction of the involved potential energy
surfaces. Arrows correspondingly illustrate how λ measures the energetic cost to convert the
donor state nuclear configuration to the respective acceptor state configuration,76 while keeping
the electronic configuration fixed.

13



2 | Theoretical models for charge conductivity in organic semiconductors
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Figure 2.6 a) State-diagram of charged and neutral state. Using the 4-point method, λ can be derived from
single-point energies obtained for the two potential energy surfaces. b) Effect of molecular modification on
reorganization energies. At the top, a simple scaffold is shown, together with bond-length variations (in Å)
between neutral and charged state geometries. Below, the scaffold is modified with a favorable side group,
lowering its reorganization energy. A simple decomposition scheme can be used to arrive at contributions,
see text. Figure reproduced with permission from reference 40 under the terms of American Chemical
Society’s Policy on Theses and Dissertations.

Aside from the 4-point method, and especially for rigid, fused organic systems, contributions to λ
can often be reliably computed from vibrational harmonic normal mode contributions as76,114

λ+/0 =
∑
M

λM =
∑
M

1

2
ωM∆Q2

M (2.11)

where ωM is the frequency of normal mode M , and ∆QM the mode resolved displacement
between the involved state geometries (neutral and charged states). Alternatively, the normal-
mode resolved electron-vibrational (vibronic) coupling can be assessed from forces arising in
the charged state at the neutral state geometry.24,74,115 It is now easily seen, that the (local)
reorganization energy is directly related to the local electron-phonon coupling of charge carrier
and molecular site, which already appeared in equation 2.5.

I will now mostly focus on holes as charge-carriers, as these were the main target of the work,
denoting the corresponding reorganization energy as λh . DFT has been established as the stan-
dard method for the practical computation of molecular reorganization energies. It should however
be considered, that charge-carrier localization is highly dependent on the employed exchange-
correlation functional. Global hybrid functionals like the routinely employed B3LYP functional
might thereby still underestimate local reorganization energies, albeit reproducing trends well.116

Experimental reorganization energies measured by UPS for a few common oligoacene OSC ma-
terials have been found to match values obtained at the B3LYP.117

From a molecular design perspective, the decomposition of λh is valuable as an analytic tool.118

As especially the low-energy normal modes are often delocalized over the whole molecule it is
however difficult to derive insight, let alone to propose changes to the molecular structure based
on them. Other more local mode decomposition schemes have therefore been applied, allowing
one to focus the analysis on the contribution of specific molecular parts. A good example is an
investigation of chemical substitution effects of an indolocarbazole framework by means of an in-
ternal coordinate based decomposition.24 In our systematic investigation of side-group effects,40

we found that evaluating λh contributions on two geometries in which a molecular framework ge-
ometry in its charged state is combined with the neutral side group geometry and vice versa
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already yielded a quantitative decomposition for a single side-group, see Figure 2.6 b). A more
recent decomposition into larger more localized fragment contributions was further proposed, de-
riving from them a successful molecular redesign that adds a non-covalent lock to the molecular
backbone.119 Machine learning33 or evolutionary strategies120 have also been employed to un-
cover useful compound designs, including a recent study using AML.121

As according to Koopmans-theorem the HOMO is the relevant frontier orbital to accommodate a
hole as a charge carrier, design strategies that focus on the tuning of the HOMO wavefunction
have been proposed.118,122–124 Similarly, vibronic coupling densities have also been proposed
as an analytical tool.74 Apart, the literature also contains a set of empirical rules and structure-
property relationships for molecular modification to improve the reorganization energy, such as
heteroatom replacement,125,126 introduction of side groups,24,40,127 or enlarging the system by
ring fusion,123,124,128 the latter also exploiting the tendency of λh to decrease with increasing
molecular size.30 These strategies are further applicable to the tuning of HOMO and LUMO
energies,23,129 relevant to charge-injection from electrodes, see above. We incorporated such
strategies in our AML method based on chemical transformations of the molecular graph, see
section 6.5.
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3 | The 64k- and OE62-datasets

Parts of the presented work are based on the "64k-dataset ", assembled by Christoph Schober,
Harald Oberhofer and Karsten Reuter.30,39 It was choosen as a starting point for this dissertation
to extract structure-property relationships for molecular design from a diverse dataset. In this
respect, it provided the necessary large data-source and is here described in more detail.

The dataset was originally assembled in one of the first large-scale virtual screening efforts for
high charge-mobility in OSCs. Accordingly, the study leveraged computational methods to evalu-
ate a large pool of candidate materials and to filter for the most promising ones. Similar concepts
mostly originated in the field of drug discovery,130,131 and were later adapted to materials discov-
ery,132 among them organic functional materials133 or organic photovoltaics.28,29,134,135

Experimentally well-resolved organic crystal structures were used as a starting-point for the un-
dertaken screening. These crystal structures were originally retrieved from the Cambridge Struc-
tural Database (CSD) – to date the largest repository of crystallographic data for organic crys-
tals.14,136 Among 750.000 experimental structures, an initial library of 95.445 was built, focus-
ing on well resolved organic crystals without metal-organic components, structural disorder or
polymeric parts, containing only one type of molecular species in each crystal ("monomolecular
crystal"). Using a Python-based workflow, the library was then screened for descriptors of high
charge-carrier mobility by employing a computational funnel concept, see Figure 3.1. This in-
cluded extraction of molecular environments around a single molecule and the computation of
electronic coupling elements Had for all molecular pairs formed between central molecule and
neighbor using FO-DFT. At this stage, 64.725 organic crystals had been successfully processed
and finally entered the "64k-dataset ". A crystal was now only passed on for further process-
ing when an Had value exceeded a minimal threshold value of 50 meV, as confirmed at higher
accuracy computational settings. For a confirmed favorable crystal λh finally was calculated, pre-
serving a realistic solid-state environment, finally leading to 10.214 annotated crystals.

The outcome of this screening is presented in a 2D histogram, see Figure 3.2. The final se-
lection already recovered known and well-performing materials and examples are indicated by
orange markers –as expected– appearing in the region of high maximal |Hmax

ad | and low λh . The
screening however also uncovered many promising candidates, not yet considered for organic
electronics applications. In the histogram, four cases are highlighted in red and molecular struc-
tures are provided. A closer analysis of their connected charge-transport networks is provided in
the original work.30

17



3 | The 64k- and OE62-datasets

Figure 3.1 Overview of the virtual screening approach that led to the generation of the 64k-dataset . Re-
produced from reference 30 with permission from the American Chemical Society.

The 64k-dataset was stored in an SQLite database from where it could be further analyzed. In
short, the database contained the xyz-coordinates of the central molecule originally extracted
from the crystal, its molecular graph stored in a unique SMILES string, metadata and crystallo-
graphic information from the CSD, cheminformatics descriptors derived from the RDKit,137 as well
as quantum chemical data for the respective entries (|Had|, λh and HOMO-/LUMO energy). A full
description is given in.39 Stored in this form, the 64k-dataset has formed the basis of work carried
out in this dissertation. In a first step, we performed a molecular analysis to uncover structure-
property relationships present in the dataset. We thereby relied on clustering and data-mining
as described in40 or summarized in section 6.1. We further provide a visually understandable
representation of this analysis,41 see section 6.2.

During our work on the dataset, we also investigated the diversity of molecular structures and
crystals contained in it. This analysis revealed a high structural diversity. The molecules in the
dataset are composed of up to 174 (or 92 non-hydrogen) atoms, covering all elements commonly
occurring in organic chemistry, adding some less commonly occurring ones, see Figure 3.3 a).
These molecules are distributed over more than 20 molecular point groups, while for their crystals,
83 space groups were found to occur at least three times in the dataset. Further, a variety of
molecular scaffolds are contained with > 800 side chains occurring in more than three different
crystals.40 While an absolute attribution of "diversity" is challenging,138 these numbers indicate
a high diversity. In fact, in a short survey, we found common pharmaceuticals, intermediates
of chemical synthesis, pigments, fungicides, antioxidants or photoinitiators occurring in the 64k-
dataset . As has also been pointed out by others, the underlying CSD is in fact considered to be
composed of highly diverse molecules136 with organic crystal structures originating from a wide
background of chemical applications.

Having established that the 64k-dataset is composed of highly diverse molecules, we envisioned
it to be useful for the testing and benchmarking of quantum machine learning methods on realisti-
cally sized and technologically relevant molecules. In collaboration with our colleagues from Aalto
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Figure 3.2 Final selection from the 64k-dataset . The result is presented as a histogram (middle 2D, flanked
with 1D versions). Reproduced from reference 30 with permission from the American Chemical Society.

University we therefore decided to base a new dataset for molecular quantum machine learning
on it – the OE62-dataset. To provide some background on this idea, I here want to compare
molecular composition and size-distribution to the often cited and widely used QM9-dataset139

which contains 133.885 small organic molecules. As seen in Figure 3.3 b), molecules in QM9
are significantly smaller and composed of H and up to nine heavy atoms (C, N, O, and F only).
An additional characteristic of QM9 is the (by construction) dense coverage of chemical space,
clearly distinguishing it from OE62. This is due to the fact that molecules in QM9 originate from
the exhaustively enumerated GDB-9 subset of the GDB-17 dataset,140 and were thus derived
from a virtual library enumeration approach. An overview of QM9 is also provided in our work on
the visualization of molecular- and crystal structures,45 see also chapter 5. QM9 then provides
equilibrium geometries and 13 quantum chemical properties computed at a hybrid DFT level of
theory. Based on this data, quantum machine learning models have been developed that can
accurately predict these properties, ever improving in accuracy.141 As others have also noted, a
general lack of diversity could hamper the further development of machine learning models,142

while the advent of new and challenging datasets could spur its further spread.
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3 | The 64k- and OE62-datasets

Figure 3.3 a) Composition (by element) of the unique molecules contained in the 64k-dataset . b) Molecular
size distribution of OE62- and QM9-datasets. c) Overview of the computational results available in the
OE62 dataset and its three subsets. d) Comparison of typical structures found in the OE62- and QM9-
datasets. A combinatorally rich chemical space arises by the combination of a multitude of chemical
scaffolds, side groups and chemical elements of which these molecules are composed of.

The published OE62-dataset42 provides a highly diverse and challenging dataset that can be
used for the further development of machine learning models. It contains equilibrium gas-phase
geometries for 61.489 unique molecules taken from the 64k-dataset , calculated at the DFT
GGA+vdW level of theory. In addition, smaller subsets provide computational data at other lev-
els of theory, see Figure 6.3 c) for a Venn-diagram of the structure. Since our colleagues from
Aalto-University mainly pursued the development of machine learning models for molecular en-
ergy level prediction, these are available in the dataset at different levels of theory. A full summary
is provided in section 6.3. In two studies with my involvement, we already saw how the dataset
poses new challenges for common molecular representations and machine learning models. For
completeness, I want to point out that additional datasets for quantum machine learing are avail-
able, see a summary.143
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4 | Molecular analysis and machine
learning

Data-driven approaches25 and artificial intelligence (AI)144 have regained popularity in all sci-
ences. With early approaches e.g. undertaken in cheminformatics,145,146 this includes the chem-
ical sciences as well. A number of recent specialized review articles now cover this broad array of
methods, especially focusing on the most important subfield of machine learning.141,147–154 These
methods now also partially fulfill the promise of a more efficient in silico drug-discovery155 in vast
chemical spaces, or use of these methods for advanced modeling.156,157 Following this general
trend, and especially in the years of working on this dissertation, such methods are also entering
the field of OSC materials design,32,33,37,38,43,158 see also.36,38 This is not surprising: As men-
tioned before, the chemical spaces under scrutiny are vast, and potentially not enumerable. An
exhaustive screening for desired but highly nonlinear electronic properties thus benefits greatly
from the use of efficient, data-driven methods that can navigate such spaces.

We herein employed such data-driven methods for the identification of OSC design principles. On
the one hand, we therefore relied on methods of data-mining ("knowledge discovery from data")
to derive chemical insight from our large 64k-dataset , see Figure 4.1 a) for a schematic depiction.
We thereby focused on molecular substructures and their relation to properties, decomposing a
molecular graph along specific bonds. Different decomposition schemes can be employed for
such tasks, including decomposition along synthetically reasonable disconnections (e.g. RE-
CAP159 or BRICS160), or (rotatable) non-ring bonds.161 Such decomposition schemes are often
also stepping-stones for combinatorial, targeted molecular library creation162,163 and de-novo de-
sign of molecules,164–166 see also our active-learning discovery of molecules (section 6.5). For
our data-mining approach,40 we relied on a fragment-definition that incorporates the chemically
intuitive notion of a molecular scaffold (or backbone). This was afforded by the scaffold-definition
of Bemis and Murcko,167,168 in which a molecular scaffold is defined as an (aromatic) core com-
posed of connected ring systems and conjugated linkers, resulting after removal of all side group
atoms that branch off from it, see Figure 4.2. This often extracts the largest and most decisive
part of the molecule – largely determining electronic structure, shape, and conformational flexibil-
ity. Vice versa, and based on this definition, the influence of side groups can be investigated as
well.

In a second step, privileged structures among these molecular scaffolds or side groups were
identified. Using e.g. a statistical assessment, a fragment can be evaluated for a significant
structure-property relation. We here used the nonparametric Mann-Whitney U test169 to verify
that the median of a property-distribution of all compounds with a certain substructure is signifi-
cantly different from the background distribution. In fact, statistically significant relationships could
be discovered in the scaffold and side group clustered data originating from the 64k-dataset , see
the summary in 6.1. Similar ideas have been applied to interpret gene expression data (gene-
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4 | Molecular analysis and machine learning

Figure 4.1 Schematic summary of data-driven methods used in this work. a) Data-mining strategies ap-
plied to derive structure-property relationships from a chemical database. b) Supervised machine-learning
for molecular property prediction. c) Active-learning cycle allowing a gradually improving machine-learning
model to propose an approximate strategy to an optimal exploration-exploitation tradeoff. d) Unsupervised
visualization of a high-dimensional data in a low dimensional space, see chapter for a discussion 5.

set enrichment analysis),170 to derive structural alerts for chemical compound toxicity,171 or to
identify biologically active chemical series from screening data on drug-targets.172

While these data-mining methods could easily provide chemical insight, they relied on a specific
type of molecular decomposition. We thus additionally employed supervised machine-learning
methods to derive surrogate models that can more directly interpolate the molecular property
space. These surrogate models can thus be used to infer properties of so far unlabeled structures
–allowing for a computationally cheap molecular property prediction–, while being trained on a
limited amount of data e.g. generated from expensive ab initio computations, see Figure 4.1 b).
By making use of the underlying correlations present in the dataset these methods therefore hold
the promise that redundant calculations can be avoided.

A certain amount of expensive training data is still needed and used to derive the ML models.
If not available, this data needs to be generated first, usually requiring some cost for annotation
with labels (e.g. by DFT computations on molecular structures). By resorting to more efficient and
smart data sampling methods such as active machine learning173 (AML), the cost of labeling
can be minimized significantly. Smart sampling can e.g. mean that a successively improving
machine-learning model subsequently infers useful training examples for which properties are
then simulated or obtained. Figure 4.1 c) depicts a respective design cycle. The process can
also be designed in such a way that a significant number of desired molecules is discovered along
the way – exploiting the knowledge the models gradually gain, while exploring the space further.
Such strategies have found use for drug-discovery174 and later-on also in materials science.175

A fourth strategy is geared towards an intuitive understanding of structure-property relationships
in molecular datasets by means of visualization, see Figure 4.1 d). This is more akin to unsuper-
vised machine learning and will be discussed in detail in chapter 5. In the remaining chapter I will
now provide a brief overview of ML methods used while performing the work for this dissertation.

With the completion of our OE62-dataset for molecular machine learning (chapter 3), different
machine learning methods for molecular property prediction were applied and further developed.
An important first step is thereby to transform the molecular structures into a suitable repre-
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Figure 4.2 Summary of molecular representations used throughout the work.

sentation (e.g. a vector) that encodes the relation of their constituent atoms (either in 2D or
3D). These representations are passed to the learning algorithms, that can infer the underlying
structure-property relationships from a labeled dataset, while the respective properties for the
hitherto unlabeled molecules of interest can be predicted. The process of creating a representa-
tion is called molecular featurization and a larger number of algorithms for it has been proposed
in different communities.176–179 The featurization process thereby either starts from the molecular
graph, the molecular 3D structure or quantum chemical data, such as the molecular density or
electrostatic potential. The resulting representations are then stored as (fixed-length) vectors or
matrices, encoding structural counts, 2D graph representations, grid representations of spatial
data. Representations used within this work are summarized in Figure 4.2.

A common type of representation are "molecular fingerprints", often put to use in virtual screen-
ing and similarity searching.180,181 The generation of such fingerprints usually relies on a rule-
based partitioning of the 2D molecular graph into linear or branched subgraphs, while storing
the occurrence (counts) of the latter. In our work on an active machine-learning exploration
of a molecular OSC design space, we here mostly relied on the "extended connectivity finger-
prints",182 see Figure 4.2. To derive the fingerprint of a particular molecule, all available circular
subgraphs around the atoms are produced – starting from each atom and moving outwards up
to a predefined diameter. Iterative updating and hashing then generate unique identifiers for
each type of subgraph. Fixed-length bit- or count vectors can also be generated from this data,
e.g. by the application of a hashing function and a subsequent folding to a fixed-length vector
representation. This particular, as well as other similar molecular fingerprints are still in heavy
use. It should however be noted that the idea of a more flexible, data-driven subgraph extraction
is being actively developed, e.g. employing graph-neural networks that directly infer the input
representation.177,183,184

On the other hand, and more often based on 3D-structures, significant progress has been made
in applying machine learning for the prediction of quantum mechanical properties.141,185 Again, a
variety of suitable molecular representations have been developed. I will review those represen-
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4 | Molecular analysis and machine learning

tations relevant to the work on molecular machine learning I was involved in43,44 as well as the
one used in the work on visualization.45 A summary of these is shown in Figure 4.2.

• The coulomb matrix (CM) is an early example.186 Essentially it is an inverse distance
matrix, encoding the internuclear coulomb repulsion between atoms. The underlying idea
is thereby to mimic the structure of the molecular Hamiltonian, providing an analogous
mapping between coordinates and properties. The CM does however not respect atom-
permutational symmetry and this is a clear drawback of the representation. It is therefore
now mainly used as a baseline model and for illustrative purposes. In this spirit it was also
employed in the work of Stuke et al.,43 that dealt with the prediction of molecular orbital
energies of our OE62-dataset, see section 6.3.

• We have also made use of a global descriptor for molecular or crystal structures – the
many-body tensor representation (MBTR).187 The descriptor thereby collects the char-
acteristic geometric features occurring in a structure (atom counts, distances, angles or
even higher body-order terms) in broadened, discretized (fixed-length) distribution func-
tions, thereby achieving permutational and rotational invariance. The MBTR representa-
tion should be a natural choice if global properties of structures are to be predicted as
the representation initially does not assume a conceptual decomposition into local (atomic)
properties. It was therefore employed to predict HOMO energies as well as atomization
energies for molecules contained OE62-dataset, see section 6.3.

• The smooth overlap of atomic positions (SOAP)179,185 representation provides a local
descriptor for atomic environments. An atomic density function is first created by placing a
Gaussian density on each atom. This density is then expanded in atom-centered spheri-
cal harmonics and orthogonal radial functions, within a cutoff. The expansion-coefficients
can be used to form a rotationally invariant descriptor. In the context of this thesis, we
mainly used this concept to visualize the different types of atomic environments present in it.
Note however, that the descriptor is also widely employed to fit interatomic potentials.157,188

While the concept fully builds on local structural representation of a single atomic environ-
ment, it can easily be extended to a global descriptor (for molecules or periodic structures
alike) by averaging over structures.189 In our work on visualization, we also employed this
concept in the context of visualizing the relationships between molecules.45

Having introduced the representations, I now want to focus on machine-learning models. Again,
numerous methods190–192 have been popularized,193 with significant recent development espe-
cially taking place in the deep-learning community.194 While the discussed representations are
quite general in their construction, at least some of them have been developed and used in com-
bination with kernel-based machine learning methods195,196 such as Kernel Ridge Regression
(KRR) and Gaussian Process Regression (GPR) – now highly popular in the chemical sciences.
Since we were mainly concerned with scalar property prediction (e.g. HOMO orbital energy, λ)
we here used these models to map multidimensional inputs to respective scalar outputs, while
the mapping is inferred from the labeled training data first. While KRR has also been used in
our work,43,44 I will focus on GPR,197,198 easily employable for supervised- and active machine
learning tasks.

For a molecular machine learning task, a training set D = {X,y} is assumed, with X =
{x1, ...,xN} denoting a set of molecular descriptor vectors, e.g. derived by one of the above-
discussed representations of Figure 4.2. The associated property values y = {y1, ..., yN} on
the other hand are also available, e.g. from previously performed DFT simulations. In the GPR-
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framework, a property prediction for an unlabeled structure x′ can then be obtained, it is however
not simply a scalar, but follows the predictive Gaussian distribution

f(x′) ∼ N (µ(x′),σ2(x′)) (4.1)

The scalar property-prediction can then be obtained as the mean µ(x′) of this distribution as

µ(x′) = k(x′,X)[K + σ2
nI]−1y (4.2)

where I is the identity. In addition, a predictive variance σ(x′)2 can be obtained, its magnitude
indicating, whether x′ is coming from a densely- or loosely sampled region of feature space,
about which the model is more or less uncertain in its prediction

σ2(x′) = k(x′,x′)− k(x′,X)[K + σ2
nI]−1k(X,x′) (4.3)

In both cases, k(x,x′) is the covariance- or kernel function, which measures the similarity be-
tween two molecular representations x and x′. K then correspondingly known as the covariance
or kernel matrix of the training set, with entries defined as Kij = k(xi,xj). A noise level σn can
thereby be used to model intrinsic noise in the property values. As an example I want to mention
the stationary Gaussian kernel

k(x,x′) = σ2
v exp

(
− d2

2l2

)
(4.4)

with euclidean distances d = ‖x − x′‖2 between datapoints, often applied for CM- or MBTR
representations. Noise level σn, vertical scale σv and kernel bandwith l are so-called hyperpa-
rameters that need to be determined during model fitting, and can be inferred from the training-
set197 e.g. by log marginal likelihood maximization. Commonly employed in cheminformatics are
count-based kernels,199 take e.g. the Tanimoto-kernel, which measures the similarity between
molecular fingerprints. In principle many possibilities for valid kernel construction exist. For a
more technical introduction on the underlying prerequisites for a valid (Mercer) kernel, I refer to
references 191, 197 and 199. It should however be noted that publications describing molecular
representations often also suggest an employable kernel measure.

As the Gaussian Process Regression (GPR) model provides property predictions µ(x′) it can
be employed for supervised machine learning to predict molecular properties. The inherently
provided uncertainty estimates σ2(x′) however makes the model more versatile. In the spirit of an
active-learning strategy, σ2(x′) can e.g. be used to identify candidates of low predictability, and
requesting an explicit descriptor calculation on such molecules can thus provide significant new
information, finally increasing the applicability of the model (uncertainty sampling). Combining
both objectives in an acquisition function, a balance between exploratory and exploitative queries
can be achieved.200
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4 | Molecular analysis and machine learning
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5 | Visualization of high-dimensional chem-
ical space

With growing dataset sizes, advanced visualization techniques have become an important area of
machine learning research.201,202 Such techniques can be used to visualize the underlying trends
in the highly non-linear property-distributions of a dataset.201,203–205 A deeper understanding of
a new dataset can thereby often be gained, or opaque machine learning predictions can be
rationalized, resembling ideas of explorative data analysis and explainable AI.206

The success of such "unsupervised machine learning" methods rests on the assumption that
a dataset can be represented and visualized over two- or three dimensions while (qualitatively)
preserving the underlying relationships among high-dimensional (molecular) representations. To
arrive at such visualizations, sophisticated dimensionality reduction techniques often need to be
applied. An important linear method among them is principal component analysis (PCA). PCA ex-
tracts representative linear combinations of features to capture variance in as few dimensions as
possible. In high-dimensional spaces, this linear technique can however reach its limitations and
non-linear projections are used instead. A reformulation of PCA – Kernel PCA (KPCA) can easily
incorporate such non-linearity by employing a non-linear kernel similarity between (molecular)
representations (see chapter 4). In addition, other methods have gained popularity in the chem-
ical sciences as well, including t-SNE,207 sketch-map203 or UMAP208 and could be applied for
"materials cartography".209

In this dissertation we relied on PCA and KPCA to illustrate how dimensionality reduced visualiza-
tions can be helpful in the analysis of crystalline or amorphous materials, as well as of molecular
datasets. PCA and KPCA were thereby used in conjunction with the SOAP descriptor for 3D
structures, already discussed in section 4. A summary of this extensive perspective article is
provided in section 6.4, while Figure 5.1 reproduces an example map. While the article points out
why and how such maps are highly useful, it should be noted that their appearance is dependent
on the specific method used for dimensionality reduction, as well as on the representation used
to encode the structures.

In cheminformatics,211 methods based on neural networks (self-organizing maps, or generative
topographic mapping212) or network structures are also widely used.168 The latter type can e.g.
be used to visualize structure–activity relationships in biologically relevant molecular space.213

For a visualization of an organic semiconductor design space, we also relied on this technique and
provided a chemical space network (CSN) visualizing similarities between molecular scaffolds
contained in the 64k-dataset . Annotated with performance-related electronic descriptors, a layout
of the representation places related structures in close proximity and can easily be generated.
Again, two major factors that influence the final appearance of these CSNs are measures of
molecular similarity and the specific layout algorithm employed. A summary of this approach is
provided in section 6.2.
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5 | Visualization of high-dimensional chemical space

Figure 5.1 KPCA map of the QM9-dataset of small molecules (see also chapter 3). A global SOAP
kernel was used for structural representation and similarity comparison. The composition and topology of
molecules contained in the finalized map can then be navigated along various paths through the chemical
space. During production of the map, these were compiled using the interactive viewer, see Figure 5.2.
Color-coded structural descriptors (b, c, d, g) and quantum mechanical properties (a, e, f) are shown
in different frames. A command for the ASAP code210 is provided in a gray box above, with which the
layout can be readily reproduced. A full discussion is given in reference 45 from which the figure was
also reprinted with permission under the terms of American Chemical Society’s Policy on Theses and
Dissertations. c© 2020 American Chemical Society.
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Figure 5.2 Screenshot of the browser-based projection viewer216 for interactive exploration of
dimensionality-reduced structural datasets. In the top bar, fields (pertaining to properties or coordinates
in the dimensionality reduced projection) can be selected to be displayed on the x- or y-axis, or used for
coloring or scaling of points in the scatter plot (displayed in the lower left part of the window). On the right
hand side, a structural viewer is implemented, that visualizes respective structures selected upon clicking
on a point in the scatterplot. This mechanism allows for interactive exploration of the map.

An important factor that made these dimensionality-reduction techniques useful to us are inter-
active visualization tools. These allow for an interactive exploration of large datasets. We here
mostly relied on general-purpose libraries for interactive visualization to easily create interactive
plots or dashboards. These included the python libraries "bokeh"214 or "plotly"215 and the associ-
ated "dash" library. Their close integration with powerful javascript libraries allowed for a smooth
visualization in web browsers. When coupled with javascript-based interactive chemical structure
viewers, exploration of chemical datasets can easily be performed by mouse navigation. We used
this principle in our implementation of a viewer tool,216 see Figure 5.2, designed to work with the
"ASAP" code that provides a framework to generate structure maps.210 It can visualize data of
periodic materials as well as molecular structures, allowing also to focus on the visualization of
specific atomic environments in these structures. For completeness, I want to reference some
examples of other (now) available visualization tools here,217–219 while some powerful workflow
tools (i.e. freely accessible ones220,221) also integrate functionality.
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6 | Publications

This chapter provides an overview of articles that have been published by my coauthors and me
during the work on this dissertation. I thereby restrict myself to those that are of main relevance
to this dissertation. For each publication a short summary is provided with a listing of my detailed
contributions. The publications are ordered thematically.
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6.1 Finding the Right Bricks for Molecular Legos: A Data
Mining Approach to Organic Semiconductor Design

Christian Kunkel, Christoph Schober,
Johannes T. Margraf, Karsten Reuter,
and Harald Oberhofer

Chemistry of Materials 2019, 31, 969–978

Summary: The project of data-driven organic semiconductor discovery resulted from Christoph
Schober’s work on organic semiconductor virtual screening, see chapter 3. This article is a
direct follow-up, analyzing the molecular structures, contained in the 64k-dataset , with the aim of
establishing guiding principles that potentially improve upon charge carrier mobilities. Topically
the article fitted the time, as other fields of materials science also started to extract general
design criteria by data mining or even machine learning approaches from their available large-
scale datasets. Approaches targeting organic semiconductors (OSCs) had however been limited
to a much smaller scale and molecular diversity.

We therefore combined statistical tools of data mining and molecular analysis to uncover guiding
principles for organic semiconductor materials design. Our approach focused on commonal-
ities among the contained molecular structures, and we herein investigate how they relate to
the charge-transport descriptors contained in the dataset. One design aspect of the study was
thereby to make the analysis chemically intuitive and comprehensible. The analysis was hence
undertaken with a rule-based molecular decomposition scheme, partitioning a molecule into scaf-
fold and side groups — concepts well-known from organic chemistry. In this context, we rely on
the established scaffold definition by Bemis and Murcko (BM)167 where the molecular scaffold
is defined as the molecular core comprised of connected ring systems and their linkers, while
side group atoms are defined as branching off from it. Being able to carry out the decomposition
in an automated fashion, we then clustered molecules by common scaffolds and side groups.
For the 195 considered scaffold clusters comprising close to 7000 molecules and crystals, we
obtained statistically significant performance differences, identifying scaffolds that are favorable
for charge transport. A range of identified side groups then generally lowers the reorganization
energy, meaning that functionalizing promising scaffolds with favorable side groups can result in
improved charge-transport properties, directly suggesting a promising design criterion.

Individual contributions: The 64k-dataset was kindly provided by Christoph Schober. Based
on the dataset I carried out the BM-scaffold analysis using the contained |Had| and λh descriptor
data. Due to the staged screening-workflow applied by Christoph Schober, not all λh values were
directly available for the BM-clustered data-subset analyzed here, and I carried out the necessary
additional descriptor calculations. The final manuscript was then jointly written by Johannes T.
Margraf, Harald Oberhofer and Karsten Reuter and myself.
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6.2 Knowledge discovery through chemical space networks:
the case of organic electronics

Christian Kunkel, Christoph Schober,
Harald Oberhofer, and Karsten Reuter

Journal of Molecular Modeling 2019, 25:87

Summary: Following up on our previous work, we now provided a visually comprehensive
analysis of the design space in the 64k-dataset . As before, we focused on a scaffold-clustered
dataset. As a visualization technique, we then used a so-called chemical space network (CSN),
treating every BM scaffold cluster as a node, while edges are inserted between nodes based on
detected pairwise scaffold similarity. For pairwise similarity detection, four different methods were
employed that capture different aspects of similarity between scaffolds. With an algorithmic lay-
out, a map of the chemical landscape is created, which embeds molecular scaffold clusters into
an environment of similar topologies. To analyze this global map as well as the local communities
of closely related analogues occurring in it, we included the median descriptor values of each
cluster in the CSN visualization by a color-code. From a close inspection of the generated map
we find that it not only visually reproduced known trends for good organic semiconductors, but
further allowed for a visual extraction of design rules, as we illustrate in selected examples. A
crowded local cluster was e.g. found to represent the acene family of structures, well-known as
organic semiconductors and correspondingly enriched in favorable charge-transport descriptor
values. On a narrower scale, effects of scaffold extension or hetero-atom exchange are directly
visible when following along the gradual progression in design space that is by construction in-
tegrated in the CSN representation. We further identify local environments of scaffolds where
clusters with promising descriptor values reside. Some of these show little or no connection to
the sampled chemical space, and potential for further exploration. In combination with a created
browser-based tool that we extensively used for interactive visualization during the writing of the
manuscript, we found CSNs to be a useful tool for materials design and organic semiconductor
discovery.

Individual contributions: Following the initial idea of Karsten Reuter, I developed the chemical
space network visualization and performed the analysis. The dataset was again based on the
64k-dataset of Christoph Schober. I also carried out additionally necessary λh descriptor calcula-
tions. The manusscript was jointly written and edited by all authors.
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6.3 Atomic structures and orbital energies of 61,489
crystal-forming organic molecules

Annika Stuke*, Christian Kunkel*, Dorothea Golze,
Milica Todorović, Johannes T. Margraf, Karsten Reuter,
Patrick Rinke and Harald Oberhofer

Scientific Data 2020, 7, 58

* These authors contributed equally to the work.

Summary: While working on this dissertation, methods for molecular property prediction by
machine learning have seen a significant development. This is not surprising as they gener-
ally promise a simple and computationally cheap screening of vast molecular candidate spaces
during molecular discovery projects. Methodological development of quantum chemical property
prediction had however often relied on smaller molecules, using e.g. the well-established QM9-
dataset, containing small molecules composed of H and up to nine heavy atoms (C, N, O, and
F only). We noticed, that the technologically relevant molecular structures contained in the 64k-
dataset are larger and of much higher diversity – being composed of up to 92 non-hydrogen atoms
and 16 different elements, while containing extended hetero aromatic backbones and attached
functional groups. Being mostly interested in such larger structures, we started a collaboration
with colleagues from Aalto-University to work on this problem. In this contribution, we hence
used the 64k-dataset as a starting point to produce a high-quality reference data set for quan-
tum chemical property prediction of large molecules. For this so-called OE62-dataset, 61,489
unique organic molecular structures were extracted from the respective organic crystals of the
64k-dataset . These geometries were then first relaxed in vacuum using van-der Waals corrected
density-functional theory (DFT) at the PBE level of theory. Based on these equilibrium structures,
the OE62-dataset then supplies vacuum total energies, partial charges and orbital eigenvalues
at the PBE and the computationally more demanding PBE hybrid (PBE0) level of DFT for all 62 k
molecules. Further, the PBE0 level values in (implicit) water are included for a subset of 30,876
molecules. At the most expensive computational level, the dataset provides quasi-particle ener-
gies for 5,239 molecules in vacuum computed with many-body perturbation theory in the G0W0
approximation extrapolated to the complete basis set (CBS) limit, while using PBE0 as a starting
point. For the different levels of theory we provide a technical validation including information
on numerical accuracy. The multi-level computational results summarized in this new and freely
available dataset can now be used to develop and evaluate machine learning algorithms.

Individual contributions: The initial idea was conceived by Karsten Reuter, Patrick Rinke and
Harald Oberhofer. Annika Stuke and me jointly curated the data and later postprocessed the
results. I thereby performed the calculations at the DFT-levels of theory. Calculations at the
G0W0 level of theory were conducted by Annika Stuke and Dorothea Golze. The manuscript was
cowritten by all authors.
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Additional remarks: To illustrate use-cases of the dataset, I here want to mention publications
that already applied it in molecular machine learning, limited to those two publications I was
personally involved in:

• Chemical diversity in molecular orbital energy predictions with kernel ridge regression
Annika Stuke, Milica Todorović, Matthias Rupp,
Christian Kunkel, Kunal Ghosh, Lauri Himanen, and Patrick
Rinke

The Journal of Chemical Physics 2019, 150, 204121

Summary: Our colleagues from Aalto University tested the performance of kernel ridge regression
(KRR) for molecular machine learning for highest occupied molecular orbital (HOMO) prediction. In
detail, the study provides a comparative benchmark on three large datasets of different composition
and scope: Small organic molecules are included in the QM9-dataset. A second dataset contains
amino acid and dipeptide conformers. Thirdly, the PBE-subset of OE62 supplied large and diverse
molecules. In addition, two different representations that encode the molecular structure were com-
pared. While finding that HOMO energy predictions on unseen molecules are possible for any dataset,
the overall accuracy varied among them, influenced also by the chosen molecular representation. Re-
markably, the justifiably most diverse and unevenly sampled OE62-dataset posed the biggest challenge
to accuracy, rendering it a suitable dataset to develop molecular machine learning methods further.

• Size-Extensive Molecular Machine Learning with Global Representations

Hyunwook Jung*, Sina Stocker*, Christian Kunkel,
Harald Oberhofer, Byungchan Han, Karsten Reuter,
and Johannes T. Margraf

ChemSystemsChem 2020, 2, e1900052
* These authors contributed equally to the work.

In this contribution, we illustrate the issue of "size-extensivity" in so-called global molecular represen-
tations, used to encode molecules for machine learning property prediction. "Size-extensivity" thereby
refers to a dependence of the target property on an (increasing) molecular size, and should be accord-
ingly treated in a devised molecular machine-learning model. To illustrate this point we exploited, that
the QM9- and OE62-datasets show a widely differing size-distribution among constituent molecules.
We here again use KRR, but now focus on size-extensive molecular atomization energies. We show
that non size-extensive models are only useful in the range of their training set, meaning a model trained
on QM9 data can hardly predict values for the larger molecules of OE62. Building size-extensivity into
the global molecular representations then already provides reasonable predictions across large size
differences, allowing for model training on QM9- and prediction on OE62 molecules. Sources of error
for extensive models however remain as discussed in the article.
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6.4 Mapping materials and molecules

Bingqing Cheng, Ryan-Rhys Griffiths, Simon Wengert,
Christian Kunkel, Tamas Stenczel, Bonan Zhu, Volker L.
Deringer, Noam Bernstein, Johannes T. Margraf, Karsten
Reuter, and Gábor Csányi
Accounts of Chemical Research 2020, 53, 1981-1991

Summary: In our earlier work on the 64k-dataset , we had already seen how a well-performed
large-dataset visualization could contribute to an understanding of its inner structure. We now
teamed up with colleagues from Oxford, Cambridge and, Washington to provide an easy-to-read
perspective of the developing field of molecular or materials visualization. For the contribution,
we mainly relied on a description of atomic environments present in a dataset by a Smooth Over-
lap of Atomic Positions (SOAP) descriptor. Universally applicable hyperparameters for the SOAP
descriptor are thereby also supplied with the article, creating a standard for visualization. Using
this high-dimensional descriptor, atomic environments can be easily compared and a continuous
structural similarity can be assigned. The concept can be easily extended to entire molecules or
crystal structures, e.g. by computing an averaged descriptor from it. A second ingredient to the
visualization of a respectively encoded structural dataset is then the computation of a low dimen-
sional representation. To visualize the relationship between structures, this representation should
well-preserve local structural similarities among the single data-points in a low-dimensional map,
while providing a global overview of dataset structure as well. While multiple techniques can be
applied, we here mainly relied on principal component analysis (PCA) and a kernelized version of
it (KPCA). Examples illustrate the outcome of the workflow, among others comprising mappings
of amorphous carbon local environments, liquid water structure, crystal structures of titanium
dioxide, organic crystal structures, or of organic molecular databases. The use cases for the
different mappings are thereby as diverse as the corresponding datasets. They include analysis
of differing atomic environments present in a dataset and their relation to chemical reactivity and
stability, classification of differing crystal structures resulting from automated structure search,
diversity and compositional analysis of molecular datasets, or the analysis of molecular dynamics
trajectories. Upon analyzing such diverse datasets, we thereby found that valuable information
can often readily be extracted by navigating interactively in the corresponding maps. This renders
them a valuable standard tool for the computational chemistry and materials science community
in the future. Finally, all examples discussed in the article can be easily reproduced by the com-
munity, as data and an automated-framework for visualizing and analyzing such structural data
sets (the ASAP package) are provided in repositories stored on github. We also implemented
a complementary browser-based visualization tool for interactive exploration of the generated
maps.

Individual contributions: The idea for this article was a result of intense discussion with our
collaborators at workshops, and also within our group. All people involved in the presented article
work with machine learning on larger data sets and the idea of working on scientific visualization
thereby mostly grew out of the need to perform analyses of the various datasets that were around
by the time in the different groups. I hence want to stress, that everyone involved contributed
fruitful ideas, datasets, code or sections of the article, and we jointly improved on them. This
process cannot and should not fully be delimited. Nevertheless, my contributions were on the
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one hand a browser-based visualizer tool for chemical structures and atomic environments that I
had started to work on quite early and that was then finalized together with Simon Wengert and
Tamas Stenczel. Its published code is referenced at the end of the article and the tool was used
by Simon Wengert and me to directly produce parts of the figures in the article. I also contributed
a section on organic molecular visualization using the example of the QM9-dataset, writing the
corresponding part in the article.
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6.5 Active Discovery of Organic Semiconductors

Christian Kunkel, Johannes T. Margraf, Ke Chen,
Harald Oberhofer, and Karsten Reuter
Nature Communications, 2021, 12, 2422

Summary: As we have seen before, virtual screening approaches have already uncovered a
larger number of favorable candidates for high-performing organic semiconductors. Data-mining
strategies applied to the resulting databases then unveiled interesting design principles. Never-
theless, the design space that could be spawned by the combination of even a limited number of
fragments is virtually unlimited. This clearly dictates design strategies that go beyond exhaustive
virtual screening of candidates, relying on their smart selection for effective use of computational
resources. To devise such a strategy we apply active machine learning (AML) concepts for the
efficient discovery of p-type organic semiconductor candidates. A versatile set of molecular con-
struction rules thereby spanned a searchable molecular design space of flexible, π-conjugated
candidates. The usefulness of candidates can then be assessed by a combination of charge-
injection and mobility related molecular descriptors. The multi objective problem of molecular
discovery in this design space was then efficiently solved by AML, in which an ever improving
surrogate model of the underlying property surface is used to judge the usefulness of molecular
candidates and advance the search. During runtime, the devised algorithm can thereby actively
exploit knowledge about favorable candidates and query explicit descriptor calculation on them,
balanced with explorative queries that are used to gain knowledge about molecules with an un-
certain outcome. Computational resources were thereby employed exceptionally well, leading to
a significant acceleration of discovery over random searches or commonly employed computa-
tional funnels. This scheme is further applicable even in a virtually unlimited molecular space,
not requiring the full exhaustive enumeration of all structures. Methodological insight was first
gained on a fully enumerated, but limited molecular test space of > 65.000 molecules annotated
with cheaply computed molecular descriptors. In this space, a simple realization of the algorithm
discovered up to 85 % of the known 2438 favorable candidates after querying descriptor calcu-
lation on 5179 molecules. Application of this algorithm to a virtually unlimited molecular design
space, evaluated with DFT-B3LYP calculations lead to the discovery of 900 favorable and diverse
molecules among 1680 processed ones, a relative success rate of > 50 %. The AML-discovery
strategy was, therefore, able to drive efficient and continuous autonomous discovery of promising
OSC materials in a design space with initially unknown structure-property relationships.

Individual contributions: The idea was jointly conceived by Johannes T. Margraf, Harald Ober-
hofer, Karsten Reuter and myself. I implemented and executed the algorithms for molecular space
enumeration and AML discovery on the high-performance computing hardware. Methodological
details were worked out in conjunction with Ke Chen and Johannes T. Margraf. Harald Oberhofer,
Johannes T. Margraf and Karsten Reuter and me wrote the manuscript.
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6.6 Further work

The following articles have appeared during my time of working at the Chair of Theoretical Chem-
istry or are in preparation. The two first ones are topically related to our work on OSCs, containing
methodology on the computation and use of electronic coupling values. Others have no direct
relation to the topic but are nevertheless related to the field of computational chemistry. Since
these articles don’t form essential parts of the dissertation, they haven’t been included, and I only
want to mention them here for completeness and future reference.

• Electronic property trends of single-component organic molecular crystals containing C, N,
O, and H.
Steven Monaco, Ryan Baer, Ryan Giernackya, Miguel Villalbaa, Taylor Garcia, Carlos Mora-Perez,
Spencer Brady, Kris Erlitz, Christian Kunkel, Sebastian Jezowskia, Harald Oberhofer, Carsten
Lange, and Bohdan Schatschneider
submitted

• Improved projection-operator diabatization schemes for the calculation of electronic cou-
pling values
Simiam Ghan, Christian Kunkel, Karsten Reuter, and Harald Oberhofer
Journal of Chemical Theory and Computation, 2020, 16, 7431–7443

• Anomalous pressure dependence of the electronic properties of molecular crystals ex-
plained by changes in intermolecular electronic coupling
Maituo Yu, Xiaopeng Wang, Xiong-Fei Du, Christian Kunkel, Taylor M. Garcia, Stephen Monaco,
Bohdan Schatschneider, Harald Oberhofer, and Noa Marom
Synthetic Metals, 2019, 253, 9-19

• Towards Density Functional Approximations from Coupled Cluster Correlation Energy Den-
sities
Johannes T. Margraf, Christian Kunkel, and Karsten Reuter
The Journal of Chemical Physics, 2019, 150, 244116

• Generalized molecular solvation in non-aqueous solutions by a single parameter implicit
solvation scheme
Christoph Hille, Stefan Ringe, Martin Deimel, Christian Kunkel, William E. Acree, Karsten Reuter,
and Harald Oberhofer
The Journal of Chemical Physics, 2019, 150, 041710

• Surface Activity of Early Transition Metal Oxycarbides: CO2 Adsorption Case Study
Christian Kunkel, Francesc Viñes, and Francesc Illas
The Journal of Physical Chemistry C, 2019, 123, 3664-3671
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7 | Conclusion and Outlook

Organic semiconducting devices have undergone significant development over the last years,
leading to their commercialization. Nevertheless, performance increases could still lead to a fur-
ther boost in market penetration and allow for new applications. Especially in electronic devices,
charge conductivity is the decisive property, determining e.g. the performance of organic field-
effect devices (OFETs). While materials have been gradually improving, the richness of possible
molecular structures and their complex structure-property relationships make it difficult to iden-
tify optimal ones solely based on labor-intensive experimentation. Guided by well-characterized
theory-derived charge-conductivity descriptors, in-silico methods relying on computational sim-
ulation have a large potential in accelerating this process. In fact, the theoretical description of
charge transport in OSC materials has also evolved significantly. New insight suggests that im-
proved OSC materials, with charge-transport properties less dominated by disorder, could in the
future reach the suspected upper-limits to materials performance.

In this work, we, therefore, explored the optimization of charge-transport related properties
through a data-driven approach. In the first part, we examined a large-scale 64k-dataset of or-
ganic crystals available to us through the work of Schober et al.30,39 and annotated with charge-
transport descriptors. The descriptors were the electronic coupling |Had| related to molecular
dimer geometries occurring in the crystal, as well as the reorganization energy λ, related to
molecular structures. Data-mining and visualization strategies then revealed favorable relations
of certain molecular structures with charge-transport descriptors, and these could be used to pro-
pose new combinations and hence molecules. So far limited to and biased by the availability of
experimental organic crystals and their computational annotation, correlations between structural
elements (i.e. functionalization of certain scaffolds with side groups at selected positions) are
not yet fully captured in the data-mining approach, influenced here also by the specific molecular
decomposition scheme chosen for analysis.

Extending the search to even larger organic materials spaces, the workhorse method – den-
sity functional theory (DFT) seems computationally too expensive for an exhaustive screening.
Machine learning applied to the prediction of molecular properties hence emerged as a compu-
tationally more tractable method to (partially) tackle this problem. By the time of writing, it had
however routinely been tested on small molecules and rarely been applied to molecular sizes
of technological interest. We, therefore, made the 64k-dataset publicly available as a compli-
cated benchmark dataset for molecular machine learning – the OE62-dataset. The work of our
collaborators on this dataset demonstrated that the performance of a common machine learning
technique for the prediction of orbital energies then inherently decreases with the increasing com-
plexity represented by this dataset as compared to other datasets. Nevertheless, switching the
property to be predicted to the atomization energy and adjusting the underlying machine learn-
ing method to incorporate "size-extensivity" helped to greatly improve predictions across different
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datasets and large size differences as was shown by us. This part of the work thus demonstrated
that molecular machine learning methods can still be significantly improved to generalize to the
vastness of organic chemistry. On the other hand and if possible for the molecular design prob-
lem at hand, the narrowing of chemical space to a more targeted, less diverse design space can
make the problem easier to tackle.

From thereon, we revisited the OSC design problem with the help of molecular machine learning
and visualization. This time, and to circumvent the reliance on an exhaustively screened dataset
we finally employed an active machine learning (AML) feedback loop, training a machine learning
model on available data, while using it to guide the search to new prospective candidates. The
subsequently accumulating computational results then lead to an ever-improving selection strat-
egy of the oncoming computations. Accordingly, the method is here employed to search a com-
binatorially vast molecular space, determined from a set of chemical transformations from which
typical OSC candidate molecules can be generated. Molecules exhibiting a favorable balance
of charge-conductivity related descriptors are then automatically searched for with a continuous
refinement allowing to most efficiently focus on promising parts of the chemical space.

The challenges for the ongoing development of autonomous OSC discovery seem to be an ex-
tension to more diverse chemical spaces, and a search by refined models. A third avenue is the
improvement of OSC candidate fitness evaluation, which was here so far limited to two molecular
electronic properties, neglecting the solid-state arrangement. Feedback on actual carrier dynam-
ics87 and solid-state properties such as charge-transport networks should be incorporated, prob-
ably employing refined models e.g. derived from dimer, crystalline- or amorphous phase mod-
els.31,32,34,222,223 The computational savings of the AML discovery strategy could correspondingly
be invested in a finer candidate evaluation. Adding a solid-state description in the evaluation func-
tion might then also influence the molecular selection made by the current AML methodology – so
far strongly prioritizing larger molecules. Their larger combinatorial availability, as well as a favor-
able scaling of λ with this larger size, might be a cause. The influence of dynamic disorder81,86 or
interfaces with electrode materials could additionally (and occasionally) be requested224 during
AML, augmented by (automated) occasional experimental evaluation.225
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