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Despite decades of intensive search for compounds that modulate the activity of particular

protein targets, a large proportion of the human kinome remains as yet undrugged. Effective

approaches are therefore required to map the massive space of unexplored compound–

kinase interactions for novel and potent activities. Here, we carry out a crowdsourced

benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase

families tested on unpublished bioactivity data. We find the top-performing predictions are

based on various models, including kernel learning, gradient boosting and deep learning, and

their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity

assays. We design experiments based on the model predictions and identify unexpected

activities even for under-studied kinases, thereby accelerating experimental mapping efforts.

The open-source prediction algorithms together with the bioactivities between 95 com-

pounds and 295 kinases provide a resource for benchmarking prediction algorithms and for

extending the druggable kinome.
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Only 11% of the human proteome can be currently targeted
by small molecules or drugs, whereas one in three pro-
teins remains understudied1. Despite many years of

target-based drug discovery, chemical agents inhibiting single
protein targets are still rare2. Most approved drugs have multiple
targets, suggesting their therapeutic efficacy as well as adverse
side-effects originate from polypharmacological effects3. Sys-
tematic mapping of the target binding profiles is therefore critical
not only to explore the therapeutic potential of promiscuous
agents, but also to better predict and manage possible adverse
effects within early stages of drug development process to miti-
gate future risks and costs. Comprehensive understanding of the
polypharmacological effects of approved drugs could also uncover
novel off-target potencies to extend their therapeutic application
area via off-label use or repurposing4. However, due to the
massive size of the chemical universe, an exhaustive experimental
mapping of compound-target activities is infeasible, even with
automated high-throughput profiling assays.

To accelerate the mapping efforts, we hosted the IDG-DREAM
Drug-Kinase Binding Prediction Challenge, a crowd-sourced
competition that evaluated the power of machine learning (ML)
models as a systematic and cost-effective means for predicting yet
unexplored compound-target potencies. The Challenge focused
on predicting quantitative target activities of kinase inhibitors,
since kinases are implicated in a wide range of diseases, such as
cardiovascular disorders and cancers. However, protein kinase
domains are inherently similar in their structure and sequence,
and most kinase inhibitors bind to conserved ATP-binding
pockets, leading to extensive target promiscuity and poly-
pharmacological effects5–8. Such multi-target activities require
methods for effective target deconvolution, including multi-target
ML approaches, that leverage the information extracted from
similar kinases and compounds to predict the activity of so far
unexplored compound-kinase interactions9,10.

The specific questions this Challenge sought to address were:
(i) What are the best computational modeling approaches for
predicting quantitative compound-target activity profiles?; (ii)
What are the best molecular, chemical, and protein descriptors
for maximal prediction accuracy?; and (iii) What are the most
informative bioactivity assays for dose-response bioactivity pre-
diction? Models submitted to the Challenge were quantitatively
evaluated using bioactivity data contributed by—and in partner-
ship with—the Illuminating the Druggable Genome (IDG) con-
sortium (https://druggablegenome.net/). IDG is a NIH Common
Fund program aimed at improving our understanding of
understudied proteins within three drug-targeted protein families:
G-protein coupled receptors, ion channels, and protein kinases1.
Specifically, it seeks to improve the druggability of dark kinases by
kinome-wide profiling small-molecule agents, with the goal of
extending the activity information for the understudied human
kinome.

Here, we describe the benchmarking results of the Challenge,
as well as the post-Challenge analysis of top-performing models
to identify so far unexplored kinase inhibitor activities. The
benchmarking results include a total of 268 predictions from 212
active Challenge participants, covering a wide range of ML
approaches, including linear regularized regression, deep and
kernel learning algorithms, and gradient boosting decision trees.

Results
Challenge implementation and training datasets. To develop
regression models for prediction of quantitative bioactivities,
participants were encouraged to utilize a wide variety of bioac-
tivity data for model training and cross-validation through open
databases such as ChEMBL11, BindingDB12, and IDG Pharos13

(Fig. 1). For training data collection, integration, management
and harmonization, the Challenge made use of an open-data
platform, DrugTargetCommons (DTC)14. DTC is a community
platform that provides a comprehensive and standardized inter-
face to retrieve compound-target profiles and related information
to support predictive activity modeling (Supplementary Fig. 1).
The Challenge infrastructure was built on the Synapse colla-
borative science platform15, which supported receiving, validating
and scoring of the teams’ predictions as well as long-term man-
agement of the test bioactivity data and submitted Challenge
models as a benchmarking resource (Fig. 1).

Challenge test datasets of kinase inhibitors. The blinded eva-
luation of the model predictions was based on unpublished
kinase activity data generated by the IDG Consortium, with a
focus to investigate especially understudied yet readily screen-
able human kinome, so-called dark kinases13, and those lacking
small-molecule activities in ChEMBL11, but with a robust assay
readily available through commercial vendors16. The Challenge
was conducted over a series of rounds based on availability of
test datasets (Supplementary Fig. 3). Round 1 test dataset was
generated based on the two-step screening approach6,7,16,
where the quantitative dose-response measurement of the dis-
sociation constant (Kd) activities was carried out across 430
interactions between 70 inhibitors and 199 kinases that had
inhibition >80% in the single-dose kinome activity scan (see
Methods). An additional set of completely new Kd data was
generated for Round 2, consisting of 394 multi-dose assays
between 25 inhibitors and 207 kinases with single-dose inhi-
bition >80%. Together, these 824 Kd assays spanned a total of 95
compounds and 295 kinases, covering 57% of the human
kinome (Fig. 2a, b). The Challenge test data consisted both of
promiscuous compounds targeting multiple kinases at low
concentrations, compounds with narrow target profiles, as well
as compounds with no potent targets among the tested kinases
(Supplementary Fig. 2).

Round 1 enabled the teams to carry out the initial testing of
various model classes and data resources, whereas Round 2,
implemented 6 months later once the new Kd data became
available, was used to score the final prediction models and to
select the top-performing teams. None of the Kd values were
available in the public domain, and the Round 1 test data
remained blinded in Round 2. Round 1 and 2 test datasets had
very similar pKd distributions (Fig. 2c), which provided
comparable binding affinity outcome data to monitor the
improvements made by the teams between the two rounds. The
tested kinase inhibitors in the two test sets were mutually
exclusive between the rounds (Fig. 2a), with Round 2 including
less selective inhibitors with broader target profiles (Fig. 2d),
and therefore fewer inactive compound-kinase pairs (pKd= 5).
Round 1 and 2 kinase targets were partly overlapping, and
covered all the major kinase families and groups (Fig. 2b, e).
Taken together, these two test datasets provided a standardized
and sufficiently large quantitative bioactivity resource to
evaluate the accuracy of predicting on- and off-target kinase
activities, using pharmacologically realistic and computation-
ally rather challenging compound and target spaces of multi-
targeting kinase inhibitors.

Predictive performance of the Challenge models. The compe-
tition phase challenged the participants to predict blinded Kd

profiles between 95 inhibitors and 295 kinases. Since the goal of
this Challenge was to encourage regression model development
that would exceed state-of-the-art, we selected as baseline
model a recently published and experimentally validated kernel
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regression approach for compound-kinase activity prediction17.
The performance of the Challenge model predictions improved
from Round 1 to Round 2 submissions as measured by Spear-
man correlation (two-sample Wilcoxon test, P < 0.005; Fig. 3a)
and Root Mean Square Error (RMSE, P < 10−6; Fig. 3c).
Comparison against the baseline model indicated that the
Round 2 dataset was marginally easier to predict (Supplemen-
tary Fig. 4), partly due to a smaller proportion of inactive pairs
in Round 2 (pKd= 5, Fig. 2c). To take into account this shift,
we compared the submissions against a set of random predic-
tions. Using Spearman correlation, we observed that 48% of the
submissions were better than random in Round 1, compared to
61% in Round 2 (Fig. 3b). Using RMSE, 71% of the submissions
in Round 1 were better than random, compared to 76% in
Round 2 (Fig. 3d).

The 20 teams that participated in both rounds improved their
Kd predictions (P < 0.05 and P < 0.001 for Spearman correlation
and RMSE, respectively, paired Wilcoxon signed-rank test), but
when comparing against the baseline model, the overall
improvements became insignificant (P > 0.05). However, there
were individual teams (like Zahraa Sobhy) that were able to
improve their predictions considerably between the two rounds.
The practical upper bound of the model predictions was defined
based on experimental replicates of Kd measurements (Fig. 3b, d).
The predictive accuracy of the top-performing models in Round 2
was relatively high based on both of the winning metrics,
Spearman correlation for ranked pairs predictions and RMSE for
quantitative activity predictions; these metrics showed less-
correlated performance over the less-accurate models in Round
2 (Fig. 3f). The tie-breaking metric, averaged area under the
receiver operating characteristic (ROC) curve, provided comple-
mentary information on prediction accuracy when compared to
RMSE but not to Spearman correlation (Supplementary Fig. 5).
Overall, the models based on deep learning algorithms did not
perform better than other learning algorithms submitted in
Round 2 (Fig. 3f).

Selection of the top-performing Challenge models. The top-
performing models were selected in Round 2 based on 394 pKd

predictions between 25 compounds and 207 kinases. Only those
participants who submitted their Dockerized models, method
write-ups, and method surveys were qualified to win the two sub-
challenges (see Supplementary Table 1 for all submissions in
Round 2 from the participants who submitted method surveys,
together with their model features and training data). To select
the top performers, we conducted a bootstrap analysis of each
participant’s best submission, and then calculated a Bayes factor
(K) relative to the bootstrapped overall best submission for each
winning metric (Supplementary Fig. 6). Considering Spearman
correlation, the top performer was team Q.E.D (K < 3; Fig. 4a).
For the RMSE metric, the top-performing teams were AI Winter
is Coming (AIWIC) and DMIS_DK (K < 3), with AIWIC having
a marginally better tie-breaking metric (average AUC of 0.773;
Fig. 4b). Only two non-qualifying participants (Gregory Koytiger
and Olivier Labayle) showed comparable performance. Overall,
these five teams performed the best across the 54 teams and the
99 total submissions in Round 2 (Supplementary Fig. 7).

Notably, the top-performing models were based on rather
different ML approaches, including deep learning, graph
convolutional networks, gradient boosting decision trees, kernel
learning and regularized regression (Table 1). To study whether
combining predictions from the multiple ML approaches could
further improve prediction accuracy, we constructed an ensemble
model by simple mean aggregation of an increasing number of
top-performing models in Round 2. A combination of the four
best performing models resulted in the peak Spearman correla-
tion (Fig. 4c), demonstrating a complementary value of these
models and their features. After adding more models, the
ensemble prediction accuracy decreased rapidly in terms of
Spearman correlation and RMSE (Fig. 4d). Combinations of four
random models resulted in a decreased performance compared to
the top-model ensemble (empirical P= 0.0, Supplementary
Fig. 8). This suggests that combination of best performing

Fig. 1 Implementation of the IDG-DREAM Drug-Kinase Binding prediction Challenge. The participants had access to publicly available large-scale target
profiling training data, and the quantitative predictions from regression models were then validated in two unpublished and blinded test datasets profiled by the
Illuminating the Druggable Genome (IDG) program (Round 1 and Round 2 datasets). Heatmap on the left is for illustrative purposes only (see Supplementary
Fig. 2 for the actual test data matrices, and Supplementary Fig. 3 for the Challenge timeline). All the models, new bioactivity data, and benchmarking
infrastructure are openly available to support future target prediction and benchmarking studies. BF Bayes factor; RMSE Root Mean Square Error.
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approaches using an ensemble model leads to accurate and robust
predictions of kinase inhibitor potencies across multiple kinase
families.

Analysis of the Q.E.D and ensemble models. To better under-
stand how the amount and diversity of training data contribute to
the Q.E.D model accuracy, we removed training bioactivity data
based on compound structural similarity (Fig. 5a). Surprisingly,
we found that the structural similarity of the training and test
compounds was relatively unimportant in predicting the activity
of the test compounds, indicating that the Q.E.D model made use
of other, structurally diverse set of compounds in the test com-
pound activity predictions (Fig. 5a). At the lower similarity cut-
offs (Tanimoto similarity <0.7), the model performance decreased
substantially, likely due to an increased disparity in chemistry
between the test and training compounds, as well as an overall
decrease in the training dataset size. We also performed a similar
experiment to test the importance of high- and low-potency
compounds on model accuracy (Fig. 5b), by removal of training
data compounds with high pKd, low pKd, or both. As anticipated,
we observed that removal of high pKd compound-kinase pairs
(pKd values larger than 8) reduced performance of the model.
This is likely a consequence of both loss of the overall number of
training data and loss of rare extreme activities. However,
removal of the small number of compound-kinase pairs with the

most extreme pKd values (training on pKd values between 4 and
10) had no effect on accuracy.

We further systematically investigated the relative contribu-
tions of various chemical and protein descriptors to the predictive
performance of the Q.E.D model. These results showed that
whilst several different chemical fingerprints performed similarly
well (Supplementary Fig. 10), the choice of protein descriptor had
a more notable impact on the model prediction accuracy (Fig. 6a).
Especially the protein kernel based on amino acid subsequences
of ATP-binding pockets resulted in a poor performance (adjusted
P < 10−10, Pearson and Filon test), compared to the full amino
acid sequences, which can at least partly be explained by the
missing subsequences for several kinases that reduced the training
dataset size and also led to some activity predictions of zero
(Supplementary Fig. 11; we note that this is also the case for
kinase domain sequences). We also re-trained the Q.E.D model
with different combinations of training bioactivity data types to
investigate which types contributed most to the high prediction
accuracy. We observed that while Kd alone or in combination
with other bioactivity data types, especially with Ki, systematically
resulted in rather accurate Kd predictions, the other types led to
significantly worse prediction performances (Fig. 6b). Especially
the rather abundant EC50 and IC50 bioactivities alone led to poor
pKd prediction accuracy (Supplementary Fig. 12). This result can
be explained by the fact that, in contrast to Kd affinity assay, EC50

Fig. 2 Challenge test datasets. a The overlap between Round 1 and Round 2 kinase inhibitors and kinase targets, and their distributions in the kinome tree
(b), and across various kinase groups (e). c The quantitative dissociation constant (Kd) of compound-kinase activities was measured in dose-response
assays (see Methods), presented in the logarithmic scale as pKd=−log10(Kd). The higher the pKd value, the higher the inhibitory ability of a compound
against a protein kinase (Supplementary Data 1 includes the compounds and kinases in Round 1 and Round 2 test datasets). The frequent values of pKd= 5
originate from inactive pairs (maximum tested concentration of 10 µM in the multi-dose activity profiling). d The selectivity index of kinase inhibitors was
calculated based on the single-dose activity assay (at 1 µM concentration) across the full compound-kinase matrices before the Challenge. The kinome tree
figure was created with KinMap, reproduced courtesy of Cell Signaling Technology, Inc. Source data are provided as a Source Data file54.
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and IC50 values are dependent on the pre-specified target protein
concentration of the assay.

We also investigated how well the Challenge models predicted
various kinase classes to study their applicability ranges. We first
ranked the compound-kinase pairs based on their absolute errors

(AEs), and then systematically explored whether any kinase group
or family would be enriched among the best or worst-predicted
pairs (see Methods). When considering 90 out of 99 Challenge
submissions in Round 2 (with average AE < 2), the compound-
kinase pairs involving mitogen-activated protein (MAP) and

Fig. 3 Overall performance of the Challenge submissions. a, c Performance of the submissions in terms of the two winning metrics in Round 1
(n= 169 submissions) and Round 2 (n= 99 submissions). The horizontal lines indicate median correlation and the colors mark the baseline model and
the top-performing participants in Round 2 (see the color legend of f). The empty circles mark the submissions that did not differ from random predictions
(the open pink circle indicates the Round 1 submission of Zahraa Sobhy as an example). The baseline model17 remained the same in both of the rounds.
b, d Distributions of the random predictions (based on 10,000 permuted pKd values) and replicate distributions (based on 10,000 subsamples with
replacement of overlapping pKd pairs between two large-scale target activity profiling studies5,6) in Round 1 (top panel) and Round 2 (bottom). The points
correspond to the individual submissions. e, f Relationship of the two winning metrics across the submissions in Round 1 and Round 2. The triangle shape
indicates submissions based on deep learning (DL) in Round 2 (f). For instance, team DMIS_DK submitted predictions based both on random forest (RF)
and DL algorithms in Round 2, where the latter showed slightly better accuracy. A total of 33 submissions with Root Mean Square Error (RMSE) >2 are
omitted in the RMSE results (c, e, f). Source data are provided as a Source Data file54.
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platelet-derived growth factor receptor kinases showed poorer
accuracies compared to other kinase families (P= 0.001,
Kruskal–Wallis test), but these families were better predicted
using the Q.E.D and the top-ensemble models (Supplementary
Fig. 13). For MAP kinases, the higher prediction error (adjusted
P= 0.016, Kolmogorov–Smirnov test) could be attributed to the
fact that most of the inhibitors targeting MAP kinases are
noncompetitive allosteric inhibitors18. Similarly, pairs in the
CMGC kinase group, including e.g. cyclin-dependent kinases,
showed an increased error for bulk of the submissions (adjusted
P= 0.030, Kolmogorov–Smirnov test), but again both the
ensemble and Q.E.D models made better predictions also in this
kinase group (Supplementary Fig. 14).

Comparison against single-dose activity assays. We next inves-
tigated how well the top-performing prediction models compare
against the single-dose activity assays in terms of reducing the
number of false positives and negatives when selecting most potent
compound-kinase activities for more detailed, multi-dose Kd pro-
filing. Such two-step screening approach is widely used in large-
scale kinase-profiling studies5–7,16, where Kd profiling is carried out
only for compound-kinase pairs with an inhibition above 80% in
the single-dose assays. For this classification task, we defined the
ground truth activity classes based on the measured Kd values,
which provide a more practical prediction outcome, compared to
the rank correlation analyses that already demonstrated predictive

rankings with the top-performing models (Fig. 4). Using the activity
cut-off of measured pKd= 6 and a single-dose inhibition cut-off of
80%, similar to previous studies7,16,19, the positive predictive value
(PPV) and the false discovery rate (FDR) of the single-dose assay
were PPV= 0.66 and FDR= 0.44, respectively, in the Round 2
dataset. When using the mean aggregation ensemble from the top-
performing models and the same cut-off of pKd= 6 for both the
predicted and measured activities, we observed an improved pre-
cision of PPV= 0.76 and FDR= 0.24.

We repeated the activity classification experiment with multi-
ple pKd activity cut-offs, and ranked the Round 2 pairs both using
the model-predicted pKd values and the measured single-dose
inhibition assay values, and then compared these rankings against
the true activity classes based on the measured dose-response
assay (with either pKd > 6 or 7 indicating true positive activity).
These analyses demonstrated an improved activity classification
accuracy using the mean ensemble of the top-performing models
(Fig. 7a), especially when focusing on the most potent
compound-kinase activities with the highest specificity. This
improvement in both sensitivity and specificity was achieved
without making any additional activity measurements, and it
became even more pronounced with the precision-recall (PR)
analysis, which showed that the precision of the ensemble model
remained above PPV= 75% level even when the recall (sensitiv-
ity) level exceeded 75% (Fig. 7b). The top-performing model
(Q.E.D) also showed improved performance when compared to
the single-dose activity assay. As expected, the prediction

Fig. 4 The top-performing Challenge models and their ensemble combination. a Spearman correlation sub-challenge top performer in Round 2 (Q.E.D).
b RMSE sub-challenge top performer in Round 2 (AI Winter is Coming). The points correspond to 394 pairs between 25 compounds and 207 kinases.
c Ensemble model that combines the top four models selected based on their Spearman correlation in Round 2. d The mean aggregation ensemble model
was constructed by adding an increasing number of top-performing models based on their Spearman correlation (the solid curve), until the ensemble
correlation dropped below 0.45. The peak performance was reached after aggregating four teams (marked in the legend; see Supplementary Fig. 9 for all
the teams. Note: ensemble prediction from a total of 21 best teams had a significantly better Spearman correlation compared to the Q.E.D model alone).
The right-hand y-axis and the dotted curve show the Root Mean Square Error (RMSE) of the ensemble model as a function of an increasing number of top-
performing models. Source data are provided as a Source Data file54.
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accuracies decreased when using a more stringent measured
activity cut-off of pKd > 7 (Supplementary Fig. 15), since these
rare extreme activities are more challenging to predict.

Model-based kinase predictions and their validation. To further
investigate both the sensitivity and specificity of the model pre-
dictions, we experimentally profiled 81 additional compound-
kinase pairs, which were not part of Round 1 or 2 datasets,
selected based on the pKd predictions from the top-performing
models. These post-Challenge experiments were carried out in an
unbiased manner, regardless of the compound classes, kinase
families, or inhibition levels, to investigate the accuracy of pre-
dictive models to identify potent inhibitors of kinases with less
than 80% single-dose inhibition; this activity cut-off is often used
when selecting pairs for multi-dose Kd testing7,16,19 but it may
miss the more challenging compound-kinase dose-response
relationships. Most of the measured pKd values of these 81 pairs
were distributed as expected, according to the expected single-
dose inhibition function (Fig. 8a, black trace). However, the
model-based approach also identified a large number of unex-
pected activities (pKd > 6) that had been missed based on the
single-dose inhibition assay alone (inhibition <80%); selected
examples are discussed below.

As an example of a potent activity missed by the single-dose
assay, the ensemble of the top-performing models predicted
PYK2 (PTK2B) as a high-affinity target of a PLK inhibitor TPKI-
30 (Fig. 8a). The new multi-dose pKd measurements carried out
after the Challenge validated that TPKI-30 indeed has an activity
against PYK2 close to its potency towards PLK2 (Fig. 8b, left
panel). Neither PYK2 or FAK would have been predicted as
potent targets based on the single-dose testing alone, which led to
multiple false negatives (Fig. 8b, right panel). In general, the
single-dose testing had a relatively low predictivity of the actual
TPKI-30 potencies, since kinases other than PLKs with high
single-dose activity were confirmed as non-potent targets based
on the dose-response Kd testing, resulting in many false positives.
In contrast, the top-performing ensemble model predictions
turned out to be relatively accurate, except for a few receptor
tyrosine kinases (Fig. 8b, left panel). This example shows how the
predictive models identify so far unexplored compound-kinase
activities missed by standard methods (see also next section).

Another unexpected kinase activity was predicted for
GSK1379763 that showed a novel chemotype for inhibition of
DDR1 based on the subsequent Kd assays, exceeding that of the
AURKB (Fig. 8c, left panel). The single-dose testing suggested
that this compound would have potency neither against DDR1 or
AURKB (Fig. 8c, right panel), whereas the multi-dose assays

Fig. 5 The Q.E.D model performance as a function of training data size and scope. a The drop-out experiment removed increasing numbers of training
compounds (as measured by maximum Tanimoto similarity with ECFP4 fingerprint between each training compound and all Round 2 test set compounds),
retrained the Q.E.D model, and tested the performance. AD stands for all data. A noticeable decrease in performance begins to appear only at around 0.6
Tanimoto similarity suggesting that highly similar compounds in the training dataset are not necessarily required for accurate model performance. As a
control, identical numbers of random compound-kinase pairs were removed, repeated 5 times to assess the variability of random removal. The error bars
indicate the standard deviation of these replicates. Black points indicate proportions of removed compound-kinase pairs. b A histogram describing the full
training dataset used to generate the results in a. c Model performance with multiple training datasets and varying pKd levels, where the ranges in the x-
axis labels refer to the compound-kinase pairs that were included for the model training. AD stands for all data. Random dropout control was repeated 5
times. The error bars indicate the standard deviation of these replicates. d A histogram describing the full training dataset used to generate the results in c.
Source data are provided as a Source Data file54.
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confirmed potency towards DDR1 at a similar level as the Round
2 highest affinity target MEK5 (MAP2K5). A novel activity was
predicted also between PFE-PKIS14 and CSNK2A2, a dark kinase
nominated by the IDG consortium, which was missed by the
Round 2 single-dose assay (inhibition= 78%; Fig. 8d, right
panel). The single-dose assay led also to a number of other false
positive and false negative activities for PFE-PKIS14, whereas the
ensemble model demonstrated again a good predictive accuracy

(Fig. 8d, left panel). Arguably, however, this interaction and the
ensemble-predicted activity between AKI00000050a and FLT1
could have been identified based on their relatively high single-
dose activity, even if less than 80% (Fig. 8a).

Comparison with other target prediction methods. To study
whether standard target prediction methods could identify the

Fig. 6 The effect of protein descriptors and bioactivity types on Q.E.D model accuracy. The bars show Pearson correlations between the measured and
Q.E.D model-predicted pKd’s calculated over the 394 Round 2 compound-kinase pairs based on different a protein kernels and b training bioactivity data
types. The total number of training bioactivity data points is written in parentheses. The original, submitted Q.E.D model based on the full amino acid
sequence-based protein kernel and using Kd, Ki, and EC50 bioactivities in the training dataset is marked with red. No other changes were introduced to the
submitted Q.E.D model, which is an ensemble of the regressors with different regularization hyperparameter values and eight compound kernels, but where
each regressor is built upon the same protein kernel based on full amino acid sequences. The protein kernel and training bioactivity type used in the
baseline model are marked in boldface. The numbers inside the bars are Benjamini–Hochberg adjusted two-sided P values calculated with the Pearson and
Filon test for comparing the correlation of the submitted Q.E.D model and each of its re-trained variants. Since the two correlations under comparison are
calculated on the same set of data points and they have one variable in common (measured pKd), the dependence between pKd’s predicted by the
submitted Q.E.D model and the new model variant is taken into account in the statistical test. Significant P values (adjusted P < 0.05) are written in
boldface. Source data are provided as a Source Data file54.

Fig. 7 Top-performing model predictions compared against single-dose assays. a Receiver operating characteristic (ROC) curves when ranking the 394
compound-kinase pairs in Round 2 using the pKd predictions either from the ensemble of the top-performing models (average predicted pKd from Q.E.D,
DMIS_DK and AI Winter is Coming), or only from the Q.E.D model, compared against the experimental single-dose inhibition assays (the pairs with higher
inhibition% are ranked first). The true positive activity class contains pairs with measured pKd > 6 (see Supplementary Fig. 15 for pKd > 7). The area under
the ROC curve values are shown after the predictors (and the balanced accuracy is marked in the parentheses), and the diagonal dotted line shows the
random predictor with an accuracy of AU-ROC= 0.50. b Precision-recall (PR) curves for the same activity classification analysis as shown in a. The area
under the PR curve values are shown after the predictors and the horizontal dotted line indicates the random predictor with a precision of 0.64. Note:
Round 2 Kd measurements were pre-selected to include mostly pairs with single-dose inhibition >80%, which makes Round 2 pairs optimal for systematic
analysis of false positive predictions, and hence sensitivity (recall) and PPV (precision). However, these 394 pairs pre-selected for Kd profiling were less
optimal for a comprehensive analysis of false negative predictions, and the evaluation of specificity. Source data are provided as a Source Data file54.
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selected compound-target activities predicted by the top-
performing ensemble model (Fig. 8), we used the similarity
ensemble approach (SEA), a popular target classification method
that relates proteins based on chemical similarity among their
ligands20. Strikingly, the SEA method did not identify target
activity among any of the three selected kinases and their con-
firmed inhibitors (Supplementary Table 2). For instance, the
highest scoring hit from SEA for compound TPKI-30 was FAK
(PTK2), which belongs to the same subfamily of kinases as PYK2,
that was confirmed as potent target of TPKI-30, but their
sequence identity is only ~43%. To further model the ligand-
receptor interaction between TPKI-30 and PYK2, in the absence
of 3D chemical structures, we carried out an in-silico docking
procedure. As expected, the protein structure-based docking

approach was not informative enough for predicting the dose-
response activity relationships between TPKI-30 and PYK2, but
its results supported a potent binding between TPKI-30 and
PYK2, with a similar binding affinity compared to the known
active ligands that bind to the same binding pocket of PYK2
(Supplementary Fig. 18).

Based on the observation that the single-dose assays and
model-based pKd predictions were overall only weakly correlated
(Supplementary Fig. 19), and that they showed opposite trends
for the pKd prediction accuracy when increasing the inhibition
cut-off level (Fig. 8e), we finally studied whether the single-dose
measurements and the ensemble-based pKd predictions could be
combined for improved kinase activity predictions. Specifically,
for each compound-kinase pair, we calculated the average of its

Fig. 8 Machine learning-based kinase activity predictions. a Comparison of single-dose inhibition assay (at 1 µM) against multi-dose Kd assay activities
across 475 compound-target pairs (395 from Round 2 and 81 from the post-Challenge experiments). The red points indicate false negatives and blue
points false positives when using the cut-offs of pKd= 6 and inhibition= 80% among the 394 Round 2 pairs (including 75 pairs with inhibition >80% but
that showed no activity in the dose-response assays, i.e, pKd= 5). The green points indicate the new 81 pairs profiled post-Challenge solely based on the
ensemble model predictions, regardless of their inhibition levels. The black trace is the expected %inhibition rate based on measured pKd’s, estimated using
the maximum ligand concentration of 1 µM both for the single-dose and dose-response assays (see Methods). b–dMulti-dose (left) and single-dose (right)
assays for kinases tested with TPKI-30, GSK1379763, and PFE-PKIS14. Green points indicate the new experimental validations based on the ensemble
model predictions, whereas black points come from Round 2 data. Blue points indicate false positive predictions based either on predictive models or
single-dose testing. e Predictive accuracy of the top-performing ensemble model (average predicted pKd), top-performing Q.E.D model and single-dose
assay (at 1 µM), when classifying subsets of the 475 pairs into the true activity classes with measured pKd less or higher than 6. The y-axis indicates the
area under the receiver operating characteristic (ROC) curve (AU-ROC) as a function of the single-dose inhibition% levels, x-axis the pairs with inhibition
>x%, and the dashed black curve the percentage of all pairs that passed that single-dose activity threshold. The combined model trace corresponds to the
average of measured and expected inhibition values, where the latter was calculated based on the mean ensemble of the top-performing model pKd

predictions (Q.E.D, DMIS_DK and AI Winter is Coming). See Supplementary Fig. 16 for the corresponding analysis with precision-recall (PR) metric, and
Supplementary Fig. 17 for the ROC and PR curves for all the 475 pairs. Source data are provided as a Source Data file54.
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measured and expected inhibition values based on the single-dose
assay and ensemble model predictions, respectively. This
combined predictor showed improved activity classifications
beyond that of the ensemble model predictions, across various
inhibition levels, and it identified an extended number of potent
compound-kinase interactions at lower single-dose activity,
compared to the standard 80% cut-off (Fig. 8d, dotted line). In
the full set of all the 475 pairs, the combined model improved
both the sensitivity and specificity of the pKd predictions
(Supplementary Fig. 17a), and especially the precision of the
top-activity predictions that are prioritized for further validation
(Supplementary Fig. 17b). Based on the wider availability of
single-dose activity data, this integrated method provides a
generally applicable and cost-effective approach for future target
activity profiling studies.

Discussion
While experimental mapping of target activities is critical for
understanding compounds’ mode of action, biochemical target
activity profiling experiments are both time consuming and
costly. The enormous size of the chemical universe, spanned
by up to 1020 molecules with potential pharmacological
properties21,22, makes the experimental bioactivity mapping of
the full compound and target space quickly infeasible in practice.
The IDG-DREAM Drug Kinase Binding Prediction Challenge
was designed to benchmark algorithms capable of predicting and
prioritizing compound-kinase activities, and therefore to guide
data-driven decision making and reduce the high failure rates.
The model-guided approach has the potential to help both
phenotype-based drug discovery (e.g., mapping of the activity
space of lead compounds), and target-based drug discovery (e.g.,
identification of candidate compounds that selectively inhibit a
particular disease-related kinase). As an example, the ensemble of
the top-performing models led to a surprising result that the PLK
inhibitor TPKI-30 targets also PYK2, and with a somewhat lesser
potency also its paralog, FAK (Fig. 8b). Another selected example,
CSNK2A2, belongs to the dark kinases nominated by the IDG
consortium23, suggesting that the prediction models can identify
potent inhibitors even for the currently understudied kinases. The
two other highlighted kinases, PYK2 and DDR1, were neither
among the most-studied kinases in terms of the number of dose-
response bioactivity data points in the public domain for the
model training (Supplementary Fig. 20).

There is an increasing number of studies published each year
that introduce new computational algorithms to predict
compound-target activities (Supplementary Fig. 21a). Although
previous studies have demonstrated the potential of ML algo-
rithms to help fill in the gaps in compound-target interaction
maps17,24, and to accelerate several phases of drug discovery25,26,
to date there has been no systematic and unbiased evaluations of
quantitative prediction models for target activity on a blinded and
large-enough dataset, such as the one used in the present
benchmarking. Participants of this Challenge made use of various
ML approaches, which led to relatively wide performance dif-
ferences (Supplementary Figs. 6 and 7), and covered the most
popular ML approaches used for compound-target activity pre-
diction, especially when considering the supervised regression
problem (Supplementary Fig. 21b–d; Supplementary Table 1).
Only the k-nearest neighbors (kNN) and Bayesian methods were
not part of the Challenge submissions. Recently, many advanced
deep learning (DL) algorithms have been proposed for
compound-target interaction prediction27–29, and a previous
comparative work that used nested cross-validation on bioactivity
data from ChEMBL found out that DL methods outperformed
other methods, including kNN, support vector machines, random

forests, naive Bayes and SEA, as representative target prediction
methods24. In contrast, our Challenge results did not support the
overall superiority of the DL methods compared to the other
learning approaches (Fig. 3f).

Among the 31 teams that answered our survey at the end of the
Challenge, none of the method classes had a very strong con-
tribution to the prediction accuracy (Supplementary Fig. 22a, b),
similarly as has been seen also in other DREAM challenges30–32.
A striking observation from the survey was that there was a
tendency for improved Kd prediction accuracies by teams that
used other types of multi-dose bioactivity data (e.g., Ki, IC50,
EC50), compared to using Kd data alone (Supplementary Fig. 22c,
d). This provides a further opportunity for ML models such as DL
that require relatively large training datasets, as these bioactivity
types are among the most common in multi-dose target profiling
(Supplementary Fig. 22e). Single-dose bioactivity measurements
(e.g., potency% and other activity assays) are most abundant in
the open bioactivity databases, making their use an exciting
option for predicting dose-response activities such as Kd. In the
Challenge, single-dose %inhibition and %activity data were uti-
lized by one of the top-performing models, AIWIC, whereas the
other top performer Q.E.D missed the most abundant multi-dose
IC50 bioactivities in the model training (Table 1). However, we
showed how the integrated use of the other multi-dose bioactivity
types, especially Ki, compensated for the lack of IC50 data and led
to the top-performance of the Q.E.D model (Fig. 6b). In contrast,
our results based on the Q.E.D model showed that the use of
other than kinase proteins and kinase inhibitors in the training
data led to a decreased prediction performance compared to the
original Q.E.D model with kinases only (Supplementary Fig. 23).

To further study whether the individual models complement
each other and could yield an overall better result, we aggregated
the top-performing models as a mean ensemble model. Many
previous DREAM Challenges have demonstrated that such wis-
dom of the crowds may improve the predictive power of the
individual models through combining models as meta-predictors
or ensemble models30–32. The ensemble model constructed in this
Challenge made use of the various modeling approaches and
features of the top-performing models, after which adding more
models led to rapid decrease in accuracy (Fig. 4d). In our post-
Challenge analyses, the combination of the top-performing ML
models improved both the sensitivity and specificity, compared to
single-dose target activity assays, without requiring any additional
experiments (Fig. 7). We also observed that the combination of
the top-performing models using an ensemble model led to
accurate and robust predictions of kinase inhibitor potencies
across multiple kinase families and groups (Supplementary
Figs. 13 and 14). Subsequent target profiling experiments carried
out based on the ensemble model predictions demonstrated that
the ML models facilitate experimental mapping efforts, both for
well-studied and understudied kinases (Fig. 8). Interestingly,
combining the single-dose inhibition measurements with the top-
performing ML models led to even higher prediction accuracy
than using either one alone, while identifying an increased
number of potent compound-kinase activities compared to that
using the standard 80% inhibition cut-off (Fig. 8e).

The Spearman correlation sub-challenge top performer
(Q.E.D) used the same kernel-based regression algorithm as the
baseline model17, yet showed markedly better performance
(Fig. 3f). The two models, however, differ in several aspects. The
Q.E.D model integrated multiple bioactivity types in their train-
ing data, as opposed to using Kd only as was done in the baseline
model, and this integrative approach led to significant differences
in the prediction accuracy (Supplementary Fig. 12). Although the
training dataset sizes of both models had similar numbers of
bioactivity values (baseline 44,186 vs. Q.E.D 60,462), Q.E.D used
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bioactivity data points for many more compounds than the
baseline approach (1968 vs. 13,608 compounds). This increased
the diversity of the training dataset, which is often more impor-
tant than its actual size, especially when majority of the test
compounds have no multi-dose bioactivity data available for
model training. Furthermore, while both models used the same
protein kernel based on Smith–Waterman amino acid sequence
alignment, Q.E.D implemented an ensemble model of 440 indi-
vidual regressors based on various model hyperparameters and
eight compound kernels, which resulted in an effective integra-
tion of several different compound representations and an
improved prediction performance (Supplementary Fig. 24).
However, we found that many combinations of the widely used
kinase and chemical descriptors led to relatively high prediction
accuracies (Fig. 6a; Supplementary Fig. 10), which should make
the ensemble approach practical for future applications, also
beyond kinases. We also observed that full amino acid sequences
used as protein kernels performed significantly better than those
based on kinase domain sequences (Fig. 6a). This observation is
most likely due to a number of missing kinase domain sequences
in the Q.E.D model, which resulted in several pKd predictions of
zero (7%), and reduced training dataset size.

Rather surprisingly, the number of training bioactivity data did
not strongly contribute to the prediction accuracies of the top-
performing Q.E.D model (Supplementary Fig. 25), provided the
training data had sufficient structural diversity for the kinase
families being predicted (Fig. 5a). Our training data drop-out
analyses have substantial implications for the application of
supervised ML in predicting the activity of kinase inhibitors, as
they demonstrated that the predictions are reasonably robust
even when only limited numbers of structurally similar training
data exist (Fig. 5). This observation is also evident from the fact
that the top-performing models used a rather different number of
training bioactivity values from different multi-dose assays when
predicting the pKd profiles (Table 1). This suggests that the
number of training data is not the strongest factor for the pre-
dictive performance, rather the way the model is constructed has
a much larger contribution to the prediction accuracy, which has
implications especially for so-far understudied kinases. Given that
the currently available bioactivity data are still rather limited and
come in various types, it was comforting to note that the top-
performing models made use of the various data types in the
training phase (Table 1). This can be considered as another form
of ‘wisdom of the crowds’, and suggests that beyond the com-
munity effort for target activity predictions, there is a need for
also crowdsourced collection, annotation, and harmonization of
different types of bioactivity data to further improve the accuracy
and coverage of the predictive models.

To enable the community to apply the predictive models
benchmarked in the Challenge to various drug development
applications, we have made available the top-performing models
as containerized source code. The Docker models enable con-
tinuous validation of the model predictions whenever new
experimental kinase-profiling data will become available, as well
as make it possible to run the best performing models on private
data that would otherwise remain closed and unavailable to the
research community33. The current test data covers ca. 57% of the
human protein kinome, and future screening efforts are war-
ranted to extend it to additional interactions with remaining
kinases and other important target families. Future applications
should select the model class that best fits the specific needs. All
the top-performing teams used ML models that leverage infor-
mation extracted from similar kinases and/or inhibitors to predict
the activity of so far unexplored interactions (see Table 1 and
Supplementary Table 1). Most of the top-performing models also
used amino acid sequences or K-mer counting as target-based

features in their class-agnostic prediction models, and two of the
top performers did not utilize any type of protein features. Fur-
thermore, none of the top-models required 3D or other detailed
chemical information, making the ML models straightforward to
apply for various compound classes. We therefore believe the
Challenge models and the current benchmarking results will
provide useful information for constructing predictive models
also beyond kinases inhibitors.

In conclusion, we envision that the IDG-DREAM Challenge
will provide a continuously updated resource for the chemical
biology community to benchmark, prioritize, and experimentally
test new kinase activities toward accelerating many drug dis-
covery and repurposing applications.

Methods
Challenge infrastructure and timeline. The Challenge was organized and run on
the collaborative science platform Synapse. All prediction files were submitted
using the Challenge feature of this platform to track which teams and individuals
submitted files, and to track the number of submissions per team. Challenge
infrastructure scripts including code for calculating the scoring metrics are avail-
able at https://github.com/Sage-Bionetworks/IDG-DREAM-Drug-Kinase-
Challenge and archived at https://doi.org/10.5281/zenodo.4648011. Teams were
permitted to submit three predictions for Round 1, and two predictions for Round
2 (Supplementary Fig. 3). In Round 2, we selected the best of the two submissions
for each scoring metric. This led to a selection of 54 final prediction sets for each of
the Round 2 scoring metrics (Spearman correlation and RMSE, see ‘Scoring of the
model predictions’ below) from the 99 total submissions in Round 2. For Rounds 1
and 2, we used a common workflow language-based challenge infrastructure to
perform the following tasks: (1) validate a prediction file to ensure that it con-
formed to the correct file structure and had numeric pKd predictions and return an
error email to participants if invalid, (2) run a python script to calculate the
performance metrics for a submitted prediction, and (3) return the score to the
Synapse platform. For Round 1b, in which we permitted 1 submission a day for
60 days, we implemented a modified Ladderboot34 protocol to prevent model
overfitting. This was done by modifying step (2) above as follows: the scoring
infrastructure receive a submitted prediction, check for a previous submission from
the same team and run an R script to bootstrap the current and previous sub-
mission 10,000 times, calculate a Bayes factor (K) between the two submissions; the
scoring harness would then only return an updated score if it was substantially
better (K > 3) than the previous submission.

New bioactivity data for model testing. To generate unpublished test bioactivity
data for scoring of predictions, we sent kinase inhibitors to DiscoverX (Eurofins
Corporation) for the generation of new dose-response dissociation constant (Kd)
values, as a measure of a binding affinity. In order to give a better sense of the
relative compound potencies, Kd is represented in the logarithmic scale, as pKd=
−log10(Kd), where Kd is given in molars [M]. The higher the pKd value, the higher
the inhibitory ability of a compound against a protein kinase. A two-step screening
approach was adopted5–7, where the dose-response Kd values were generated for a
range of compound-kinase pairs that had inhibition >80% in the primary single-
dose screen using the DiscoverX KINOMEscan protocol (https://www.discoverx.
com/services/drug-discovery-development-services/kinase-profiling/kinomescan).
KINOMEscan employs a competitive binding assay to estimate Kd, wherein the
immobilized ligands and the test compound compete for the same binding pocket
of the assayed kinase. The compounds were supplied as 10 mM stocks in DMSO,
and the top screening concentration was 10 µM in the graded-dose profiling (with
one technical replicate). The single-dose assays used a single fixed concentration of
1 µM (no replicates).

A total of 25 of the axitinib-kinase pairs generated for Round 2 were already
profiled in previous published studies7,16, and were therefore excluded from the
Round 2 test dataset. The Spearman correlation between these newly measured
pKd’s and those available from DTC was 0.701 (Supplementary Fig. 26a), providing
the experimental consistency of the Kd measurements for axitinib. We note this 25
pKd’s is a rather limited set for such analysis of consistency, and therefore we
extracted a larger set of 416 Kd measurements that overlapped with the Round 2
kinases from two comprehensive target profiling studies5,6, including 104 pairs
where pKd= 5 in both of the studies. The Spearman correlation of these replicate
pKd measurements was 0.842 (Supplementary Fig. 26b), demonstrating a relatively
good reproducibility for the large-scale binding affinity measurements. These
replicate measurements were also used for determining a practical upper limit of
the predictive accuracy of machine learning models in the scoring of their
predictions (see below).

The selected kinase targets are a part of the SGC-UNC screening initiative, the
Kinase Chemogenomic Set16. The primary selection criterion was to investigate the
readily screenable human kinome, i.e., kinases with a robust assay readily available
through commercial vendors. An additional focus point was to include those
screenable kinase targets that are either understudied and/or targets with a Gene
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Ontology information available but lacking associated small-molecule activities in
ChEMBL11, called as dark kinases (Tdark) and Tbio targets, respectively13. Out of
the 392 wild-type human kinases subjected to the screening study by the KGCS
Consortium, a subset of 295 kinases were used in our IDG-DREAM Challenge
during the Rounds 1 and 2. The 95 kinase inhibitors used in the Challenge (70 for
Round 1 and 25 for Round 2) were a part of the kinase inhibitor collection at the
SGC-UNC for which we already had the single-dose inhibition screening done at
DiscoverX across their large kinase panel (scanMaxSM).

To subsequently test the top-performing model predictions in additional
compound-kinase pairs that were not part of Round 1 or 2 datasets, we selected a
set of 88 pairs that showed most potency based on the average predicted pKd of the
top-performing models (Q.E.D, DMIS-DK, and AIWIC), regardless of their single-
dose inhibition levels. These 88 pairs were actually scattered across the whole
spectrum of single-dose inhibition levels, ranging from 0 to 78% (Supplementary
Fig. 19; note: pairs with inhibition >80% were Kd-profiled already in Round 2). One
of the compounds (TPKI-35) was not available from IDG, so the predicted 7 kinase
targets for that compound could not be tested experimentally, resulting in a dataset
of total of 81 compound-kinase pairs that were shipped to DiscoverX for multi-
dose Kd profiling. One of the compounds (GW819776) was shipped separately in a
tube, whereas the other 14 compounds were supplied as 10 µM stocks in DMSO,
and the Kd profiling was done using the same KINOMEscan competitive binding
assay protocol as for the Round 1 and Round 2 pairs.

Estimating the expected inhibition levels. The KINOMEscan assay protocol
utilized for both the single-dose and dose-response assays is based on competitive
binding assays, where the maximum compound concentration tested was 1 µM and
10 µM respectively. For a given compound-kinase pair, the Kd values calculated
from the dose-response assay (excluding pairs with activity ≥10 µM) were then
used to estimate the expected single-dose %inhibition level (at 1 µM of compound)
using the conventional ligand occupancy formula:

Ligand occupancy %ð Þ ¼ Maximum ligand concentration Mð Þ
Maximum ligand concentration Mð Þ þMeasuredKd Mð Þ ð1Þ

In Eq. (1), the maximum ligand concentration is 1 µM in the kinase assay.
Therefore, a measured pKd= 3 (i.e. Kd= 10−3 M) results in the expected inhibition
of 0%, pKd= 4 and 5 in 1% and 10% expected inhibitions, respectively, and
pKd= 9 (i.e. Kd= 10−9 M) results in expected inhibition of 100%. The single-dose
%inhibition assays were not optimized to accurately estimate the activity values of
any specific compound-kinase interaction, leading to a variability in Fig. 8.

Scoring of the model predictions. In the Challenge phase, we used the following
six metrics to score the quantitative pKd predictions from the participants:

● Root mean square error (RMSE): square root of the average squared
difference between the predicted pKd and measured pKd, to score continuous
activity predictions.

● Pearson correlation: Pearson correlation coefficient between the predicted
and measured pKd’s, which quantifies the linear relationship between the
activity values.

● Spearman correlation: Spearman’s rank correlation coefficient between the
predicted and measured pKd’s, which quantifies the ability to rank pairs in
correct order.

● Concordance index (CI)35: probability that the predictions for two
randomly drawn compound-kinase pairs with different pKd values are in
the correct order based on measured pKd values.

● F1 score: the harmonic mean of the precision and recall metrics.
Interactions were binarized by their measured pKd values into true positive
class (pKd > 7) and true negative class (pKd ≤ 7).

● Average area under the curve (AUC): average area under ten receiver
operating characteristic (ROC) curves generated using ten interaction
thresholds based on the measured pKd interval [6, 8] to binarize pKd’s into
true class labels.

The submissions in Round 1 were scored across the six metrics but the teams
remained unranked. The Round 2 consisted of two sub-challenges, the top
performers of which were determined based on RMSE and Spearman correlation,
respectively. Spearman correlation evaluated the predictions in terms of accuracy at
ranking of the compound-kinase pairs according to the measured Kd values,
whereas RMSE considers the AEs in the quantitative binding affinity predictions.
The tie-breaking metric for both Rounds was the averaged AUC metric in the ROC
analyses that evaluated the accuracy of the models to classify the pKd values into
active and inactive classes based on multiple Kd cutoffs.

In the post-Challenge activity classification analyses, we used two additional
metrics that take into account potentially unbalanced class distributions (see also
Activity classification analyses):

● PR: area under the PR curve, where precision (PPV) is the fraction of true
actives among positive predictions and recall equals to sensitivity.

● Balanced accuracy: the arithmetic mean of the precision and recall metrics.
Interactions were binarized into true active class and true inactive class
based on the measured pKd values.

Two different activity cut-offs were applied (measured pKd > 6 or 7) to study
how the ground truth class balance affects the results (see Fig. 7, and
Supplementary Figs. 15–17). The same cut-off value was used for the predicted pKd

to calculate the balanced accuracy.

Statistical evaluation of the predictions. Determination of the top performers
was made by calculation of a Bayes factor relative to the top-ranked submission in
each category. Briefly, we bootstrapped all submissions (10,000 iterations of sam-
pling with replacement), and calculated RMSE and Spearman correlation to the test
dataset to generate a distribution of scores for each submission. A Bayes factor was
then calculated using the challengescoring R package (https://github.com/sage-
bionetworks/challengescoring) for each submission relative to the top submission
in each sub-challenge. Submissions with a Bayes factor K ≤ 3 relative to the top
submission were considered to be tied as top performers. Tie breaking for both
sub-challenges was performed by identifying submission with the highest average
AUC. To create a distribution of random predictions, we randomly shuffled the
430/394 Kd values across the set of 430/394 compound-kinase pairs in the Round 1/
Round 2 datasets, and repeated the permutation procedure 10,000 times. Then we
compared the actual Round 1/Round 2 prediction scores to Spearman and RMSE
calculated from the permuted Kd data. We defined a prediction as better than
random if its score was higher than the maximum of the 10,000 random predic-
tions (empirical P= 0.0, non-parametric permutation test).

Statistical comparison of the predictions in terms of the two winning metrics
was performed using either two-sample or paired Wilcoxon tests (non-parametric
tests), depending whether groups of participants or the same participants were
compared between the two Challenge scoring rounds. We compared the
magnitudes of Pearson correlations between the measured and predicted pKd’s
from two different models using Pearson and Filon test for two overlapping
correlations implemented in cocor36 R package. Specifically, since the two
correlations under comparison were calculated on the same set of compound-
kinase pairs and have one variable in common (measured pKd), the correlation
between pKd’s predicted by two different models is taken into account in the
statistical test. Parametric test was applied in these comparisons due to the large
number of compound-target pairs in Round 2 (394 pairs). When analysing the
questionnaire’s results, statistical significance was assessed using the non-
parametric Kruskal–Wallis test, adjusted for multiple comparisons with
Benjamini–Hochberg control of FDR. All the measurements corresponded to
distinct participants or teams in the Challenge.

To determine the maximum possible performance practically achievable by any
computational models, we utilized replicate Kd measurements from distinct studies
that applied a similar biochemical assay protocol. We used the DrugTargetCommons
to retrieve 863 and 835 replicated Kd values for kinases or compounds that overlapped
with the Round 1 and 2 datasets, respectively. These data originated from two
comprehensive screening studies5,6. To better represent the distribution of pKd values
in the test data, we subset the DTC data to contain 35% (Round 1) and 25% (Round
2) pKd= 5 values, approximately matching the proportion of pKd= 5 values in
Round 1 and Round 2 test sets. For Round 1, we used 317 replicated Kd’s, including
111 randomly selected pairs where pKd= 5. For Round 2, we used 416 replicated Kd’s,
including 104 randomly selected pairs where pKd= 5. We randomly sampled the
replicate measurements of these compound-kinase pairs (with replacement),
calculated the Spearman correlation and RMSE between the pKd’s of the two studies
for each 430 and 394 sub-sampled sets for Round 1 and 2, respectively, and repeated
this procedure for a total of 10,000 samplings.

The baseline prediction model. We used a recently published and experimentally
validated kernel regression framework as a baseline model for compound-kinase
binding affinity prediction17. Our training dataset consisted of 44,186 pKd values
(between 1968 compounds and 423 human kinases) extracted from DTC. Median
was taken if multiple pKd measurements were available for the same compound-
kinase pair. We constructed protein kinase kernel using normalized
Smith–Waterman alignment scores between full amino acid sequences, and four
Tanimoto compound kernels based on the following fingerprints implemented in
rcdk R package37: (i) 881-bit fingerprint defined by PubChem (pubchem), (ii) path-
based 1024-bit fingerprint (standard), (iii) 1024-bit fingerprint based on the
shortest paths between atoms taking into account ring systems and charges
(shortestpath), and (iv) extended connectivity 1024-bit fingerprint with a max-
imum diameter set to 6 (ECFP6; circular). We used CGKronRLS as a learning
algorithm (implementation available at https://github.com/aatapa/RLScore)38. We
conducted a nested cross-validation in order to evaluate the generalization per-
formance of CGKronRLS with each pair of kinase and compound kernels as well as
to tune the regularization hyperparameter of the model. In particular, since the
majority of the compounds from the Challenge test datasets had no bioactivity data
available in the public domain, we implemented a nested leave-compound-out
cross-validation to resemble the setting of the Challenge as closely as possible. The
model comprising protein kernel coupled with compound kernel built upon path-
based fingerprint (standard) achieved the highest predictive performance on the
training dataset (as measured by RMSE), and therefore it was used as a baseline
model for compound-kinase binding affinity prediction in both Challenge Rounds.
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Top-performing models. Supplementary write ups provide details of all qualified
models submitted to the Challenge39. The key components of the top-performing
models are listed in Table 1 and summarized below.

Team Q.E.D model. To enable a fine-grained discrimination of binding affinities
between similar targets (e.g., kinase family members), the team Q.E.D explicitly
introduced similarity matrices of compounds and targets as input features into
their regression model. The regression model was implemented as an ensemble
version (uniformly averaged predictor) of 440 CGKronRLS regressors
(CGKronRLS v0.81)38,40, but with different choices of regularization strengths [0.1,
0.5, 1.0, 1.5, 2.0], training epochs [400, 410, …, 500], and similarity matrices: the
protein similarity matrix was derived based on the normalized striped
Smith–Waterman alignment scores41 between full protein sequences (https://
github.com/mengyao/Complete-Striped-Smith-Waterman-Library). Eight different
alternatives of compound similarity matrices were computed using both Tanimoto
and Dice similarity metrics for different variants of 1024-bit Morgan fingerprints42

(‘radius’ [2, 3] and ‘useChirality’ [True, False], implementation available at https://
github.com/rdkit/rdkit). Unlike the baseline method, which used only the available
pKd values from DTC for training, the team Q.E.D model extracted 16,945 pKd,
53,894 pKi, and 3301 pEC50 values from DTC. After merging the same compound-
kinase pairs from different studies by computing their medians, 60,462 affinity
values between 13,608 compounds and 527 kinases were used as the training data.

Team DMIS_DK model. Team DMIS_DK built a multi-task Graph Convolutional
Network (GCN) model based on 953,521 bioactivity values between 474,875
compounds and 1474 proteins extracted from DTC and BindingDB. Three types of
bioactivities were considered, that is, pKd, pKi, and pIC50. Median was computed if
multiple bioactivities were present for the same compound-protein pair. Multi-task
GCN model was designed to take compound SMILES strings as an input, which
were then converted to molecular graphs using RDKit python library (http://www.
rdkit.org). Each node (i.e. atom) in a molecular graph was represented by a 78-
dimensional feature vector, including the information of atom symbol, implicit
valence, aromaticity, number of bonded neighbors in the graph, and hydrogen
count. No protein descriptors were utilized. The final model was an ensemble of
four multi-task GCN architectures described in the Supplementary writeups39. For
the Challenge submission, the binding affinity predictions from the last K epochs
were averaged, and then the average was taken over the 12 multi-task GCN models
(four different architectures with three different weight initializations). Hyper-
parameters of the multi-task GCN models were selected based on the performance
on a hold-out set extracted from the training data. The GCN models were
implemented using PyTorch Geometric (PyG) library43.

Team AI Winter is Coming model. Team AI Winter is Coming built their pre-
diction model using Gradient Boosted Decision Trees (GBDT) implemented in
XGBoost algorithm (xgboost v0.90, scikit-learn v0.20.3)44. Training dataset inclu-
ded 600,000 pKd, pKi, pIC50, and pEC50 values extracted from DTC and ChEMBL
(version 25), considering only compound-protein pairs with ChEMBL confidence
score of 6 or greater for ‘binding’ or ‘functional’ human kinase protein assays. For a
given protein target, replicate compounds with different bioactivities in a given
assay (differences larger than one unit on a log scale) were excluded. For similar
replicate measurements, a single representative assay value was selected for
inclusion in the training dataset. Chemical data was standardized using the Che-
mAxon Standardizer v18 (https://www.chemaxon.com), and further processed
with OpenEye chemistry toolkit (Software Inc, https://www.eyesopen.com/oechem-
tk). Each compound was characterized by a 16,000-dimensional feature vector
being a concatenation of four ECFP fingerprints (as implemented in RDKit) with a
length set to 5, 7, 9, and 11. No protein descriptors were used in the XGBoost
algorithm44. A separate model for each protein target was trained using nested
cross-validation (CV), where inner loops were used to perform hyperparameter
optimization and recursive feature elimination. The final binding affinity predic-
tion was calculated as an average of the predictions from the cross-validated
models based on five outer CV loops.

Training data dropout experiments. We developed Docker containers using the
Team Q.E.D model that accepted input parameters for minimum Tanimoto
similarity to the test dataset (similarity calculated using the ECFP4 fingerprint), or
pKd cutoff values, to eliminate training data based on various thresholds (see Data
and Code Availability). For each condition, training data were dropped out, the
model was trained on the remaining data, and the trained model generated pre-
dictions for the Round 2 test compound-kinase pKd values. The predicted pKd

values for each training condition were then scored by calculating the Spearman
correlation in the test dataset. We trained and tested each experimental condition
once. As a control for each experimental condition, we randomly removed an
equivalent number of training compounds, repeated 5 times per condition.

Ensemble model construction. Ensemble models were generated by
combining the best-scoring Round 2 predictions from each team. We iteratively
combined models starting from the highest scoring Round 2 prediction (e.g.,
ensemble #1—highest scoring prediction, ensemble #2—second highest scoring,

ensemble #3—third highest scoring, and so on) for all 54 Round 2 submitting
teams. Three types of ensembles were created using arithmetic mean, median, and
rank-weighted summarization approaches. The rank-weighted ensemble was cal-
culated by multiplying each set of predictions by the total number of submissions
plus 1 minus the rank of the prediction file, summing these weighted predictions,
and then dividing by the sum of the multiplication factors. The 54 ensemble
predictions for each of the three summary metrics were bootstrapped and Bayes
factors were calculated as described in the ‘Statistical evaluation of the predictions’
Methods section to determine which models were substantially different from the
top-ranked submission. We also randomly sampled 1000 sets of 4 models among
the Challenge submissions, ensembled the predictions in each set, and scored each
set. These combinations of four random-performance models could not match or
supersede the performance of an ensemble of the top four models (i.e., an empirical
P= 0.0, Supplementary Fig. 8).

Activity classification analyses. To compare the top-performing prediction
models and their ensemble against the single-dose activity assay, the standard
confusion matrix was constructed using the measured pKd values to define the true
positive and true negative classes for the 394 pairs in Round 2, using either pKd > 6
or pKd > 7 for indicating true positive activity. The predicted positive and negative
classes for the pairs were defined based on either the single-dose activity mea-
surement, using inhibition cut-off of 80%7,16,19, or the model-predicted pKd values,
using the same activity thresholds as with the measured pKd values (i.e., either
pKd= 6 or pKd= 7). PPV and FDR were calculated as the classification perfor-
mance scores. The lower threshold of measured pKd= 6 was used in the classifi-
cation evaluations to have more balanced true positive and negative classes. To
carry out a more systematic analysis of the model prediction accuracies, the 394
pairs in Round 2 were ranked both using the model-predicted pKd values and the
measured single-dose %inhibition values, and then these rankings were compared
against the ground-truth activity classification based on the dose-response mea-
surements (using again either pKd > 6 or pKd > 7 for indicating the true positive
activity). The results were visualized using both ROC and PR curves, implemented
in the pROC and pRROC R-packages, respectively45,46. The area under the ROC
curve (AU-ROC) and PR curve (PR-AUC) were calculated as summary classifi-
cation performance metrics.

Class enrichment analyses. For each of the 394 compound-kinase pairs from the
Round 2 test set, we calculated an AE (i.e., residual errors between predicted and
measured pKd values) considering (i) 90 out of all 99 submissions with average AE
below 2, (ii) Spearman correlation-based mean aggregation ensemble model, and
(iii) the best submission from the top-performing Q.E.D team. We computed
median AE across 90 submissions and, in each case (i–iii), we ranked all the
compound-kinase pairs according to their AE (from highest to lowest AE). To
explore whether any of the pre-defined kinase classes were enriched among the
predictions with the highest or lowest AE, we applied the enrichment analysis
implemented in the clusterProfiler R package47. In this tool, the enrichment P
values were calculated based on a weighted Kolmogorov–Smirnov-like statistic,
similar to gene set enrichment analysis (GSEA). We considered the classes defined
based on kinase families and kinase groups.

PubMed literature scan. A total of 959 abstracts of drug-target interaction pre-
diction publications were extracted from PubMed (on 16 February 2021) using
easyPubMed R package48 with the following query: ((“compound target”) OR
(“target affinity”) OR (“drug target”) OR (“binding affinity”)) AND ((“prediction”)
OR (“algorithm”)) AND (“computational”) NOT (review[Publication Type]) NOT
(news[Publication Type]) NOT (newspaper article[Publication Type]) NOT (sys-
tematic review[Publication Type]) NOT (editorial[Publication Type]). textmineR49

and SnowballC50 R packages were used to convert all words in the abstracts to
lowercase, remove punctuation, numbers and stop words, as well as perform
stemming. Next, 4847 n-grams of size up to three and occurring in at least five
abstracts were extracted and manually curated to keep only n-grams related to
machine learning methods (e.g., deep_neural, deep_learn, kernel_base) and pro-
blem classes (e.g., classif_model, regress_model, supervis_learn). Finally, the
resulting n-grams were grouped (e.g., both deep_neural and deep_learn bigrams
represent deep learning methods), and the various modeling approaches used by
the Challenge teams were mapped into the approaches based on the literature scan.
A co-occurrence graph of the problem classes and machine learning methods was
created using the igraph51 R package.

Existing target prediction methods. We applied the online SEA web-application
(http://sea.bkslab.org/search) to make target predictions for the three compounds
highlighted in the revised manuscript, TPKI-30, GSK1379763 and PFE-PKIS14, for
which Q.E.D model-predicted strong activity against DDR1, PYK2 (PTK2B) and
CSNK2A2 (pKd > 6), and which were experimentally validated post-Challenge. In
the SEA method, we used the ECFP4 fingerprints that were also used by the top-
performing prediction models in the Challenge (see Table 1).

To model the interaction between TPKI-30 and PYK2 (PDB entry 5TO8
[https://doi.org/10.2210/pdb5TO8/pdb]), we carried out binding affinity
predictions of various active ligands with docking study in terms of their measured
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pKd/pKi activity values. The docking was done with AutoDock Vina52. The X-ray
crystal structure of protein PYK2 (PDB entry 5TO8 [https://doi.org/10.2210/
pdb5TO8/pdb]) was obtained from RCSB53, and a collection of 26 compounds
(including TPKI-30), with potent activity towards PYK2 (i.e., pKd/pKi > 6) from
ChEMBL11, BindingDB12, and DTC14, were used as ligands in the docking
procedure.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Challenge Round 1 and Round 2 pKd datasets are available from DrugTargetCommons
(https://drugtargetcommons.fimm.fi/), and in Supplementary Data 1. The pKd values of
additional compound-target pairs selected for post-Challenge DiscoverX profiling are
available in Supplementary Data 2. Source data underlying the figures and display items
are provided on Zenodo54 (subdirectory source_data) and with this paper as a Source
Data file. The study made use of the following publicly available databases: Druggable
Genome (IDG) consortium (https://druggablegenome.net/), ChEMBL (https://www.ebi.
ac.uk/chembl/), BindingDB (https://www.bindingdb.org), IDG Pharos (https://pharos.
nih.gov/), DrugTargetCommons (https://drugtargetcommons.fimm.fi/), Synapse (https://
www.synapse.org/). The crystal structure to model the interaction between TPKI-30 and
PYK2 was obtained from the RCSB PDB (https://www.rcsb.org/) with the PDB code
5TO8 [https://doi.org/10.2210/pdb5TO8/pdb]. Source data are provided with this paper.

Code availability
The Docker containers of the top-performing teams are available on Synapse55. Please
refer to the Synapse.org documentation (https://docs.synapse.org/articles/docker.html)
for guidance on using the Synapse Docker repository. The codes for reproducing the
results and figures are available at GitHub (https://github.com/Sage-Bionetworks/IDG-
DREAM-Challenge-Analysis/) and archived in Zenodo54. Key R packages used beyond
those mentioned elsewhere in Methods include tidyverse56 and the Synapse Python
Client (https://github.com/Sage-Bionetworks/synapsePythonClient); packages used and
their versions are listed in the renv lockfile in the Github and Zenodo repositories.
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